Quantum approximate optimization of non-planar graph problems on a planar superconducting processor

Faster algorithms for combinatorial optimization could prove transformative for diverse areas such as logistics, finance and machine learning. Accordingly, the possibility of quantum enhanced optimization has driven much interest in quantum technologies. Here we demonstrate the application of the Go...

Full description

Saved in:
Bibliographic Details
Published inNature physics Vol. 17; no. 3; pp. 332 - 336
Main Authors Harrigan, Matthew P., Sung, Kevin J., Neeley, Matthew, Satzinger, Kevin J., Arute, Frank, Arya, Kunal, Atalaya, Juan, Bardin, Joseph C., Barends, Rami, Boixo, Sergio, Broughton, Michael, Buckley, Bob B., Buell, David A., Burkett, Brian, Bushnell, Nicholas, Chen, Yu, Chen, Zijun, Ben Chiaro, Collins, Roberto, Courtney, William, Demura, Sean, Dunsworth, Andrew, Eppens, Daniel, Fowler, Austin, Foxen, Brooks, Gidney, Craig, Giustina, Marissa, Graff, Rob, Habegger, Steve, Ho, Alan, Hong, Sabrina, Huang, Trent, Ioffe, L. B., Isakov, Sergei V., Jeffrey, Evan, Jiang, Zhang, Jones, Cody, Kafri, Dvir, Kechedzhi, Kostyantyn, Kelly, Julian, Kim, Seon, Klimov, Paul V., Korotkov, Alexander N., Kostritsa, Fedor, Landhuis, David, Laptev, Pavel, Lindmark, Mike, Leib, Martin, Martin, Orion, Martinis, John M., McClean, Jarrod R., McEwen, Matt, Megrant, Anthony, Mi, Xiao, Mohseni, Masoud, Mruczkiewicz, Wojciech, Mutus, Josh, Naaman, Ofer, Neill, Charles, Neukart, Florian, Niu, Murphy Yuezhen, O’Brien, Thomas E., O’Gorman, Bryan, Ostby, Eric, Petukhov, Andre, Putterman, Harald, Quintana, Chris, Roushan, Pedram, Rubin, Nicholas C., Sank, Daniel, Skolik, Andrea, Smelyanskiy, Vadim, Strain, Doug, Streif, Michael, Szalay, Marco, Vainsencher, Amit, White, Theodore, Yao, Z. Jamie, Yeh, Ping, Zalcman, Adam, Zhou, Leo, Neven, Hartmut, Bacon, Dave, Lucero, Erik, Farhi, Edward, Babbush, Ryan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.03.2021
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Faster algorithms for combinatorial optimization could prove transformative for diverse areas such as logistics, finance and machine learning. Accordingly, the possibility of quantum enhanced optimization has driven much interest in quantum technologies. Here we demonstrate the application of the Google Sycamore superconducting qubit quantum processor to combinatorial optimization problems with the quantum approximate optimization algorithm (QAOA). Like past QAOA experiments, we study performance for problems defined on the planar connectivity graph native to our hardware; however, we also apply the QAOA to the Sherrington–Kirkpatrick model and MaxCut, non-native problems that require extensive compilation to implement. For hardware-native problems, which are classically efficient to solve on average, we obtain an approximation ratio that is independent of problem size and observe that performance increases with circuit depth. For problems requiring compilation, performance decreases with problem size. Circuits involving several thousand gates still present an advantage over random guessing but not over some efficient classical algorithms. Our results suggest that it will be challenging to scale near-term implementations of the QAOA for problems on non-native graphs. As these graphs are closer to real-world instances, we suggest more emphasis should be placed on such problems when using the QAOA to benchmark quantum processors. It is hoped that quantum computers may be faster than classical ones at solving optimization problems. Here the authors implement a quantum optimization algorithm over 23 qubits but find more limited performance when an optimization problem structure does not match the underlying hardware.
AbstractList Faster algorithms for combinatorial optimization could prove transformative for diverse areas such as logistics, finance and machine learning. Accordingly, the possibility of quantum enhanced optimization has driven much interest in quantum technologies. Here we demonstrate the application of the Google Sycamore superconducting qubit quantum processor to combinatorial optimization problems with the quantum approximate optimization algorithm (QAOA). Like past QAOA experiments, we study performance for problems defined on the planar connectivity graph native to our hardware; however, we also apply the QAOA to the Sherrington–Kirkpatrick model and MaxCut, non-native problems that require extensive compilation to implement. For hardware-native problems, which are classically efficient to solve on average, we obtain an approximation ratio that is independent of problem size and observe that performance increases with circuit depth. For problems requiring compilation, performance decreases with problem size. Circuits involving several thousand gates still present an advantage over random guessing but not over some efficient classical algorithms. Our results suggest that it will be challenging to scale near-term implementations of the QAOA for problems on non-native graphs. As these graphs are closer to real-world instances, we suggest more emphasis should be placed on such problems when using the QAOA to benchmark quantum processors. It is hoped that quantum computers may be faster than classical ones at solving optimization problems. Here the authors implement a quantum optimization algorithm over 23 qubits but find more limited performance when an optimization problem structure does not match the underlying hardware.
Faster algorithms for combinatorial optimization could prove transformative for diverse areas such as logistics, finance and machine learning. Accordingly, the possibility of quantum enhanced optimization has driven much interest in quantum technologies. Here we demonstrate the application of the Google Sycamore superconducting qubit quantum processor to combinatorial optimization problems with the quantum approximate optimization algorithm (QAOA). Like past QAOA experiments, we study performance for problems defined on the planar connectivity graph native to our hardware; however, we also apply the QAOA to the Sherrington–Kirkpatrick model and MaxCut, non-native problems that require extensive compilation to implement. For hardware-native problems, which are classically efficient to solve on average, we obtain an approximation ratio that is independent of problem size and observe that performance increases with circuit depth. For problems requiring compilation, performance decreases with problem size. Circuits involving several thousand gates still present an advantage over random guessing but not over some efficient classical algorithms. Our results suggest that it will be challenging to scale near-term implementations of the QAOA for problems on non-native graphs. As these graphs are closer to real-world instances, we suggest more emphasis should be placed on such problems when using the QAOA to benchmark quantum processors.It is hoped that quantum computers may be faster than classical ones at solving optimization problems. Here the authors implement a quantum optimization algorithm over 23 qubits but find more limited performance when an optimization problem structure does not match the underlying hardware.
Author Boixo, Sergio
Quintana, Chris
Gidney, Craig
Mi, Xiao
Martinis, John M.
Megrant, Anthony
Buell, David A.
Vainsencher, Amit
Ho, Alan
Smelyanskiy, Vadim
Eppens, Daniel
Klimov, Paul V.
Isakov, Sergei V.
Jiang, Zhang
Graff, Rob
Niu, Murphy Yuezhen
Ioffe, L. B.
Mutus, Josh
Yao, Z. Jamie
Ben Chiaro
Collins, Roberto
Lindmark, Mike
McEwen, Matt
Zalcman, Adam
Kelly, Julian
Rubin, Nicholas C.
Sank, Daniel
White, Theodore
Neukart, Florian
O’Gorman, Bryan
Dunsworth, Andrew
Skolik, Andrea
Hong, Sabrina
Jeffrey, Evan
Arute, Frank
Zhou, Leo
Kafri, Dvir
Ostby, Eric
Farhi, Edward
Landhuis, David
Leib, Martin
Kostritsa, Fedor
Broughton, Michael
Streif, Michael
Buckley, Bob B.
Fowler, Austin
Roushan, Pedram
Habegger, Steve
Huang, Trent
Foxen, Brooks
Putterman, Harald
Sung, Kevin J.
Bacon, Dave
Atalaya, Juan
Satzinger, Kevin J.
Martin, Orion
Burkett, Brian
Arya, Kunal
Lucero, Erik
Kim, Seon
Strain, Doug
Mruczkiewicz, Wojciech
Courtney, William
Petukhov, Andre
Yeh, Ping
Babbush, Ryan
Neven, Hartmut
Bushnell, Nicholas
Chen, Yu
O’Brien, Thomas E.
Harrigan, Matthew P.
Giustina, M
Author_xml – sequence: 1
  givenname: Matthew P.
  orcidid: 0000-0001-9412-0553
  surname: Harrigan
  fullname: Harrigan, Matthew P.
  email: mpharrigan@google.com
  organization: Google Research
– sequence: 2
  givenname: Kevin J.
  surname: Sung
  fullname: Sung, Kevin J.
  organization: Google Research, Department of Electrical Engineering and Computer Science, University of Michigan
– sequence: 3
  givenname: Matthew
  orcidid: 0000-0002-5548-0051
  surname: Neeley
  fullname: Neeley, Matthew
  organization: Google Research
– sequence: 4
  givenname: Kevin J.
  orcidid: 0000-0001-5865-0813
  surname: Satzinger
  fullname: Satzinger, Kevin J.
  organization: Google Research
– sequence: 5
  givenname: Frank
  surname: Arute
  fullname: Arute, Frank
  organization: Google Research
– sequence: 6
  givenname: Kunal
  surname: Arya
  fullname: Arya, Kunal
  organization: Google Research
– sequence: 7
  givenname: Juan
  surname: Atalaya
  fullname: Atalaya, Juan
  organization: Google Research
– sequence: 8
  givenname: Joseph C.
  orcidid: 0000-0002-6523-6730
  surname: Bardin
  fullname: Bardin, Joseph C.
  organization: Google Research, Department of Electrical and Computer Engineering, University of Massachusetts
– sequence: 9
  givenname: Rami
  surname: Barends
  fullname: Barends, Rami
  organization: Google Research
– sequence: 10
  givenname: Sergio
  orcidid: 0000-0002-1090-7584
  surname: Boixo
  fullname: Boixo, Sergio
  organization: Google Research
– sequence: 11
  givenname: Michael
  surname: Broughton
  fullname: Broughton, Michael
  organization: Google Research
– sequence: 12
  givenname: Bob B.
  surname: Buckley
  fullname: Buckley, Bob B.
  organization: Google Research
– sequence: 13
  givenname: David A.
  surname: Buell
  fullname: Buell, David A.
  organization: Google Research
– sequence: 14
  givenname: Brian
  orcidid: 0000-0001-8474-6317
  surname: Burkett
  fullname: Burkett, Brian
  organization: Google Research
– sequence: 15
  givenname: Nicholas
  surname: Bushnell
  fullname: Bushnell, Nicholas
  organization: Google Research
– sequence: 16
  givenname: Yu
  surname: Chen
  fullname: Chen, Yu
  organization: Google Research
– sequence: 17
  givenname: Zijun
  surname: Chen
  fullname: Chen, Zijun
  organization: Google Research
– sequence: 18
  surname: Ben Chiaro
  fullname: Ben Chiaro
  organization: Google Research, Department of Physics, University of California
– sequence: 19
  givenname: Roberto
  surname: Collins
  fullname: Collins, Roberto
  organization: Google Research
– sequence: 20
  givenname: William
  surname: Courtney
  fullname: Courtney, William
  organization: Google Research
– sequence: 21
  givenname: Sean
  surname: Demura
  fullname: Demura, Sean
  organization: Google Research
– sequence: 22
  givenname: Andrew
  surname: Dunsworth
  fullname: Dunsworth, Andrew
  organization: Google Research
– sequence: 23
  givenname: Daniel
  orcidid: 0000-0001-7134-5733
  surname: Eppens
  fullname: Eppens, Daniel
  organization: Google Research
– sequence: 24
  givenname: Austin
  surname: Fowler
  fullname: Fowler, Austin
  organization: Google Research
– sequence: 25
  givenname: Brooks
  surname: Foxen
  fullname: Foxen, Brooks
  organization: Google Research
– sequence: 26
  givenname: Craig
  surname: Gidney
  fullname: Gidney, Craig
  organization: Google Research
– sequence: 27
  givenname: Marissa
  surname: Giustina
  fullname: Giustina, Marissa
  organization: Google Research
– sequence: 28
  givenname: Rob
  surname: Graff
  fullname: Graff, Rob
  organization: Google Research
– sequence: 29
  givenname: Steve
  orcidid: 0000-0001-9867-2371
  surname: Habegger
  fullname: Habegger, Steve
  organization: Google Research
– sequence: 30
  givenname: Alan
  surname: Ho
  fullname: Ho, Alan
  organization: Google Research
– sequence: 31
  givenname: Sabrina
  surname: Hong
  fullname: Hong, Sabrina
  organization: Google Research
– sequence: 32
  givenname: Trent
  surname: Huang
  fullname: Huang, Trent
  organization: Google Research
– sequence: 33
  givenname: L. B.
  surname: Ioffe
  fullname: Ioffe, L. B.
  organization: Google Research
– sequence: 34
  givenname: Sergei V.
  surname: Isakov
  fullname: Isakov, Sergei V.
  organization: Google Research
– sequence: 35
  givenname: Evan
  surname: Jeffrey
  fullname: Jeffrey, Evan
  organization: Google Research
– sequence: 36
  givenname: Zhang
  surname: Jiang
  fullname: Jiang, Zhang
  organization: Google Research
– sequence: 37
  givenname: Cody
  surname: Jones
  fullname: Jones, Cody
  organization: Google Research
– sequence: 38
  givenname: Dvir
  surname: Kafri
  fullname: Kafri, Dvir
  organization: Google Research
– sequence: 39
  givenname: Kostyantyn
  surname: Kechedzhi
  fullname: Kechedzhi, Kostyantyn
  organization: Google Research
– sequence: 40
  givenname: Julian
  surname: Kelly
  fullname: Kelly, Julian
  organization: Google Research
– sequence: 41
  givenname: Seon
  surname: Kim
  fullname: Kim, Seon
  organization: Google Research
– sequence: 42
  givenname: Paul V.
  surname: Klimov
  fullname: Klimov, Paul V.
  organization: Google Research
– sequence: 43
  givenname: Alexander N.
  surname: Korotkov
  fullname: Korotkov, Alexander N.
  organization: Google Research, Department of Electrical and Computer Engineering, University of California
– sequence: 44
  givenname: Fedor
  surname: Kostritsa
  fullname: Kostritsa, Fedor
  organization: Google Research
– sequence: 45
  givenname: David
  orcidid: 0000-0001-9804-2185
  surname: Landhuis
  fullname: Landhuis, David
  organization: Google Research
– sequence: 46
  givenname: Pavel
  surname: Laptev
  fullname: Laptev, Pavel
  organization: Google Research
– sequence: 47
  givenname: Mike
  surname: Lindmark
  fullname: Lindmark, Mike
  organization: Google Research
– sequence: 48
  givenname: Martin
  orcidid: 0000-0001-5446-4677
  surname: Leib
  fullname: Leib, Martin
  organization: Volkswagen Data:Lab
– sequence: 49
  givenname: Orion
  surname: Martin
  fullname: Martin, Orion
  organization: Google Research
– sequence: 50
  givenname: John M.
  surname: Martinis
  fullname: Martinis, John M.
  organization: Google Research, Department of Physics, University of California
– sequence: 51
  givenname: Jarrod R.
  surname: McClean
  fullname: McClean, Jarrod R.
  organization: Google Research
– sequence: 52
  givenname: Matt
  orcidid: 0000-0002-9544-141X
  surname: McEwen
  fullname: McEwen, Matt
  organization: Google Research, Department of Physics, University of California
– sequence: 53
  givenname: Anthony
  surname: Megrant
  fullname: Megrant, Anthony
  organization: Google Research
– sequence: 54
  givenname: Xiao
  surname: Mi
  fullname: Mi, Xiao
  organization: Google Research
– sequence: 55
  givenname: Masoud
  surname: Mohseni
  fullname: Mohseni, Masoud
  organization: Google Research
– sequence: 56
  givenname: Wojciech
  orcidid: 0000-0002-8497-6363
  surname: Mruczkiewicz
  fullname: Mruczkiewicz, Wojciech
  organization: Google Research
– sequence: 57
  givenname: Josh
  surname: Mutus
  fullname: Mutus, Josh
  organization: Google Research
– sequence: 58
  givenname: Ofer
  orcidid: 0000-0002-7760-9186
  surname: Naaman
  fullname: Naaman, Ofer
  organization: Google Research
– sequence: 59
  givenname: Charles
  surname: Neill
  fullname: Neill, Charles
  organization: Google Research
– sequence: 60
  givenname: Florian
  orcidid: 0000-0002-2562-1618
  surname: Neukart
  fullname: Neukart, Florian
  organization: Volkswagen Data:Lab
– sequence: 61
  givenname: Murphy Yuezhen
  surname: Niu
  fullname: Niu, Murphy Yuezhen
  organization: Google Research
– sequence: 62
  givenname: Thomas E.
  surname: O’Brien
  fullname: O’Brien, Thomas E.
  organization: Google Research
– sequence: 63
  givenname: Bryan
  surname: O’Gorman
  fullname: O’Gorman, Bryan
  organization: NASA Ames Research Center, Department of Electrical Engineering and Computer Sciences, University of California
– sequence: 64
  givenname: Eric
  surname: Ostby
  fullname: Ostby, Eric
  organization: Google Research
– sequence: 65
  givenname: Andre
  surname: Petukhov
  fullname: Petukhov, Andre
  organization: Google Research
– sequence: 66
  givenname: Harald
  orcidid: 0000-0002-5841-181X
  surname: Putterman
  fullname: Putterman, Harald
  organization: Google Research
– sequence: 67
  givenname: Chris
  surname: Quintana
  fullname: Quintana, Chris
  organization: Google Research
– sequence: 68
  givenname: Pedram
  surname: Roushan
  fullname: Roushan, Pedram
  organization: Google Research
– sequence: 69
  givenname: Nicholas C.
  surname: Rubin
  fullname: Rubin, Nicholas C.
  organization: Google Research
– sequence: 70
  givenname: Daniel
  surname: Sank
  fullname: Sank, Daniel
  organization: Google Research
– sequence: 71
  givenname: Andrea
  surname: Skolik
  fullname: Skolik, Andrea
  organization: Volkswagen Data:Lab, Leiden University
– sequence: 72
  givenname: Vadim
  surname: Smelyanskiy
  fullname: Smelyanskiy, Vadim
  organization: Google Research
– sequence: 73
  givenname: Doug
  surname: Strain
  fullname: Strain, Doug
  organization: Google Research
– sequence: 74
  givenname: Michael
  surname: Streif
  fullname: Streif, Michael
  organization: Volkswagen Data:Lab, Department of Physics, Friedrich-Alexander University Erlangen-Nürnberg
– sequence: 75
  givenname: Marco
  surname: Szalay
  fullname: Szalay, Marco
  organization: Google Research
– sequence: 76
  givenname: Amit
  surname: Vainsencher
  fullname: Vainsencher, Amit
  organization: Google Research
– sequence: 77
  givenname: Theodore
  surname: White
  fullname: White, Theodore
  organization: Google Research
– sequence: 78
  givenname: Z. Jamie
  surname: Yao
  fullname: Yao, Z. Jamie
  organization: Google Research
– sequence: 79
  givenname: Ping
  orcidid: 0000-0003-0837-1028
  surname: Yeh
  fullname: Yeh, Ping
  organization: Google Research
– sequence: 80
  givenname: Adam
  orcidid: 0000-0002-2585-2424
  surname: Zalcman
  fullname: Zalcman, Adam
  organization: Google Research
– sequence: 81
  givenname: Leo
  orcidid: 0000-0001-7598-8621
  surname: Zhou
  fullname: Zhou, Leo
  organization: Google Research, Department of Physics, Harvard University
– sequence: 82
  givenname: Hartmut
  surname: Neven
  fullname: Neven, Hartmut
  organization: Google Research
– sequence: 83
  givenname: Dave
  surname: Bacon
  fullname: Bacon, Dave
  organization: Google Research
– sequence: 84
  givenname: Erik
  surname: Lucero
  fullname: Lucero, Erik
  organization: Google Research
– sequence: 85
  givenname: Edward
  surname: Farhi
  fullname: Farhi, Edward
  organization: Google Research
– sequence: 86
  givenname: Ryan
  orcidid: 0000-0001-6979-9533
  surname: Babbush
  fullname: Babbush, Ryan
  email: babbush@google.com
  organization: Google Research
BookMark eNp9kE9LxDAQxYOs4O7qF_AU8FxNmqRtjrL4DxZE0HNI02Tt0iY1ScH105vdioKHPc3AvN-8mbcAM-usBuASo2uMSHUTKGZFmaEcZQhjxLLdCZjjkrIspxWe_fYlOQOLELYI0bzAZA7UyyhtHHsoh8G7z7aXUUM3xLZvv2RsnYXOwGSWDZ200sONl8M7TNK6032AaS7hzyiMg_bK2WZUsbWbvUjpEJw_B6dGdkFf_NQleLu_e109Zuvnh6fV7TpTpGIxw41JNxkta00woWXDUWMMrZnJjSaccV4URc1KXUokS6YoIbwyhZG8YqqpNFmCq2lvcv4YdYhi60Zvk6XIKecU4fR2UuWTSnkXgtdGDD697XcCI7EPU0xhihSmOIQpdgmq_kGqjYd8opdtdxwlExqSj91o_3fVEeobmdWOgw
CitedBy_id crossref_primary_10_1103_PhysRevApplied_23_014045
crossref_primary_10_1002_qute_202300113
crossref_primary_10_1007_s11433_021_1844_7
crossref_primary_10_1103_PhysRevA_103_042612
crossref_primary_10_1103_PhysRevResearch_6_013071
crossref_primary_10_1103_RevModPhys_94_015004
crossref_primary_10_1109_ACCESS_2023_3324253
crossref_primary_10_1140_epjqt_s40507_023_00166_1
crossref_primary_10_3390_e24111685
crossref_primary_10_1103_PhysRevA_105_012402
crossref_primary_10_1016_j_mattod_2023_02_014
crossref_primary_10_1142_S2010324723500029
crossref_primary_10_1007_s11467_022_1249_z
crossref_primary_10_1103_PhysRevA_108_022610
crossref_primary_10_1088_1367_2630_acd571
crossref_primary_10_1103_PhysRevE_109_015307
crossref_primary_10_1088_2058_9565_acf59c
crossref_primary_10_3390_e25081238
crossref_primary_10_22331_q_2023_03_17_952
crossref_primary_10_1088_1612_202X_accf79
crossref_primary_10_1103_PhysRevLett_130_050601
crossref_primary_10_1103_PhysRevApplied_21_067001
crossref_primary_10_1103_PhysRevA_111_022618
crossref_primary_10_1088_1674_1056_ac9b32
crossref_primary_10_1016_j_rser_2022_112493
crossref_primary_10_1103_PhysRevA_105_012419
crossref_primary_10_1088_2058_9565_ac7ba3
crossref_primary_10_1103_PRXQuantum_3_030304
crossref_primary_10_1038_s41567_020_01126_7
crossref_primary_10_1038_s41598_022_14767_w
crossref_primary_10_1103_PhysRevResearch_5_023147
crossref_primary_10_1145_3711935
crossref_primary_10_1109_TQE_2021_3090207
crossref_primary_10_1007_s42484_022_00069_x
crossref_primary_10_1103_PhysRevA_110_012404
crossref_primary_10_1002_andp_202200531
crossref_primary_10_21468_SciPostPhys_17_1_004
crossref_primary_10_22331_q_2024_02_13_1253
crossref_primary_10_1098_rsta_2021_0416
crossref_primary_10_1103_PhysRevA_109_052441
crossref_primary_10_1103_PhysRevA_109_052440
crossref_primary_10_22331_q_2024_03_14_1281
crossref_primary_10_1103_PhysRevX_13_041057
crossref_primary_10_1287_ijoc_2024_0551
crossref_primary_10_1007_s11433_022_2057_y
crossref_primary_10_1103_PhysRevX_13_041052
crossref_primary_10_1103_PhysRevA_104_L030401
crossref_primary_10_1126_sciadv_adi0487
crossref_primary_10_1007_s11433_022_2044_5
crossref_primary_10_1103_PhysRevResearch_4_033012
crossref_primary_10_1088_1674_1056_acce9a
crossref_primary_10_1103_PhysRevResearch_5_023141
crossref_primary_10_1038_s41598_023_31980_3
crossref_primary_10_2139_ssrn_4652979
crossref_primary_10_1103_PhysRevResearch_7_013129
crossref_primary_10_1007_s11128_024_04438_2
crossref_primary_10_1103_PhysRevA_110_042606
crossref_primary_10_1109_TQE_2021_3063635
crossref_primary_10_1038_s42254_022_00440_8
crossref_primary_10_1038_s41534_024_00854_5
crossref_primary_10_1063_5_0224883
crossref_primary_10_1103_PhysRevResearch_5_L012021
crossref_primary_10_1103_PhysRevX_11_031057
crossref_primary_10_1103_PhysRevX_12_041022
crossref_primary_10_3390_e26070586
crossref_primary_10_1038_s41534_021_00478_z
crossref_primary_10_1088_2058_9565_ad9cba
crossref_primary_10_1103_PhysRevB_108_075131
crossref_primary_10_1016_j_scib_2023_08_040
crossref_primary_10_1103_PhysRevA_110_012428
crossref_primary_10_1088_2058_9565_ac6824
crossref_primary_10_1038_s41467_021_27045_6
crossref_primary_10_1103_PhysRevResearch_4_033140
crossref_primary_10_1145_3517340
crossref_primary_10_1103_PhysRevResearch_4_033142
crossref_primary_10_1109_JSSC_2021_3115988
crossref_primary_10_1098_rsif_2022_0541
crossref_primary_10_1103_PhysRevResearch_4_033028
crossref_primary_10_1103_PhysRevResearch_4_033149
crossref_primary_10_1103_PhysRevA_106_022606
crossref_primary_10_1103_PhysRevResearch_4_033029
crossref_primary_10_21468_SciPostPhysCore_4_4_031
crossref_primary_10_1016_j_physa_2024_129951
crossref_primary_10_1103_PhysRevA_105_042415
crossref_primary_10_1103_PhysRevLett_131_140601
crossref_primary_10_1103_PhysRevResearch_3_043088
crossref_primary_10_1140_epjqt_s40507_024_00262_w
crossref_primary_10_1103_PhysRevX_11_041032
crossref_primary_10_1140_epjqt_s40507_022_00123_4
crossref_primary_10_1016_j_ejor_2023_03_013
crossref_primary_10_1103_PhysRevApplied_19_024027
crossref_primary_10_1103_PhysRevA_111_012619
crossref_primary_10_22331_q_2024_04_30_1323
crossref_primary_10_1103_PhysRevApplied_18_064046
crossref_primary_10_1016_j_jcp_2024_112756
crossref_primary_10_1103_PhysRevA_109_042426
crossref_primary_10_1103_PRXQuantum_4_020304
crossref_primary_10_1002_cbic_202300120
crossref_primary_10_1088_2058_9565_acb1d0
crossref_primary_10_21468_SciPostPhys_14_5_132
crossref_primary_10_22331_q_2023_01_04_892
crossref_primary_10_1088_2058_9565_ac3e54
crossref_primary_10_1103_PhysRevResearch_6_023129
crossref_primary_10_1145_3510857
crossref_primary_10_1038_s41467_024_46623_y
crossref_primary_10_22331_q_2021_08_30_532
crossref_primary_10_1063_5_0251601
crossref_primary_10_1103_PhysRevApplied_20_044041
crossref_primary_10_1103_PhysRevA_106_062414
crossref_primary_10_1145_3620668
crossref_primary_10_22331_q_2023_01_19_899
crossref_primary_10_1109_TQE_2022_3203153
crossref_primary_10_3390_math10152601
crossref_primary_10_1016_j_physrep_2024_03_002
crossref_primary_10_1063_5_0060246
crossref_primary_10_1145_3584706
crossref_primary_10_1103_PhysRevA_106_022423
crossref_primary_10_1038_s41534_022_00592_6
crossref_primary_10_1002_aic_17651
crossref_primary_10_1587_transfun_2022EAP1159
crossref_primary_10_1073_pnas_2212323120
crossref_primary_10_1109_TWC_2024_3523135
crossref_primary_10_1103_PhysRevA_109_062603
crossref_primary_10_1134_S0021364023603056
crossref_primary_10_1038_s41534_023_00718_4
crossref_primary_10_1103_PhysRevA_109_062602
crossref_primary_10_1038_s41534_024_00849_2
crossref_primary_10_1126_science_abq3754
crossref_primary_10_1103_PhysRevLett_134_090601
crossref_primary_10_22331_q_2021_06_17_479
crossref_primary_10_22331_q_2022_11_17_861
crossref_primary_10_3390_data7030028
crossref_primary_10_1109_ACCESS_2025_3528443
crossref_primary_10_1016_j_gmod_2024_101237
crossref_primary_10_22331_q_2021_05_04_454
crossref_primary_10_1103_PhysRevApplied_22_044074
crossref_primary_10_1103_PRXQuantum_4_040335
crossref_primary_10_1103_PhysRevLett_127_180501
crossref_primary_10_1002_qute_202300055
crossref_primary_10_1109_ACCESS_2024_3432330
crossref_primary_10_1134_S0021364023604256
crossref_primary_10_1038_s41534_021_00452_9
crossref_primary_10_1103_PhysRevA_109_032420
crossref_primary_10_1088_1751_8121_ad00f0
crossref_primary_10_1103_PhysRevResearch_6_043297
crossref_primary_10_22331_q_2022_05_11_710
crossref_primary_10_1109_TWC_2024_3383101
crossref_primary_10_3389_frqst_2024_1321264
crossref_primary_10_1088_1674_1056_ad09ca
crossref_primary_10_1140_epjc_s10052_022_10377_y
crossref_primary_10_1103_PhysRevA_105_052414
crossref_primary_10_22331_q_2021_06_01_464
crossref_primary_10_1103_PhysRevResearch_5_023171
crossref_primary_10_1103_PhysRevA_104_032401
crossref_primary_10_1109_JETCAS_2022_3202870
crossref_primary_10_1103_PhysRevA_107_042418
crossref_primary_10_1103_PhysRevA_106_010101
crossref_primary_10_1103_PhysRevA_109_032413
crossref_primary_10_1109_TIT_2023_3250100
crossref_primary_10_1016_j_jfranklin_2022_10_027
crossref_primary_10_1103_PhysRevResearch_5_043285
crossref_primary_10_22331_q_2021_04_20_437
crossref_primary_10_1103_PhysRevA_104_012403
crossref_primary_10_3367_UFNr_2021_02_038934
crossref_primary_10_1103_PhysRevLett_131_073602
crossref_primary_10_3367_UFNe_2021_02_038934
crossref_primary_10_1098_rsta_2021_0282
crossref_primary_10_1088_2058_9565_ad895c
crossref_primary_10_22331_q_2023_09_11_1106
crossref_primary_10_1103_PhysRevA_111_012416
crossref_primary_10_1103_PhysRevLett_133_173201
crossref_primary_10_1103_PhysRevResearch_6_013223
crossref_primary_10_1007_s12033_023_00863_3
crossref_primary_10_1103_PhysRevE_110_065306
crossref_primary_10_3390_e26121025
crossref_primary_10_1038_s41598_024_70649_3
crossref_primary_10_22331_q_2024_02_05_1242
crossref_primary_10_1103_PhysRevA_109_032408
crossref_primary_10_1038_s42254_024_00796_z
crossref_primary_10_1103_PhysRevApplied_19_044001
crossref_primary_10_1109_TCOMM_2022_3185287
crossref_primary_10_1007_s00521_022_07438_4
crossref_primary_10_1109_TQE_2021_3066275
crossref_primary_10_1109_TQE_2023_3325167
crossref_primary_10_1137_22M1514581
crossref_primary_10_1038_s41534_021_00440_z
crossref_primary_10_1038_s41566_022_01019_6
crossref_primary_10_1103_PhysRevA_104_L010401
crossref_primary_10_1021_acs_jctc_2c00910
crossref_primary_10_1360_SSPMA_2024_0531
crossref_primary_10_1007_s43673_022_00058_z
crossref_primary_10_1109_LSP_2024_3480043
crossref_primary_10_1038_s41534_024_00825_w
crossref_primary_10_1103_PRXQuantum_3_020365
crossref_primary_10_1088_2058_9565_ac26af
crossref_primary_10_1103_PhysRevApplied_20_014024
crossref_primary_10_1103_PhysRevApplied_19_024043
crossref_primary_10_1088_2632_2153_ada0a4
crossref_primary_10_1109_ACCESS_2025_3550788
crossref_primary_10_1103_PhysRevA_108_042406
crossref_primary_10_22331_q_2021_03_22_415
crossref_primary_10_1063_5_0189374
crossref_primary_10_22331_q_2022_12_07_870
crossref_primary_10_1103_PhysRevResearch_6_023026
crossref_primary_10_1088_2058_9565_ac9013
crossref_primary_10_1103_PRXQuantum_2_030318
crossref_primary_10_1016_j_scib_2021_10_017
crossref_primary_10_1103_PhysRevA_110_032421
crossref_primary_10_22331_q_2023_11_21_1186
crossref_primary_10_1103_PhysRevResearch_6_023031
crossref_primary_10_1016_j_apenergy_2024_122878
crossref_primary_10_22331_q_2022_03_30_677
crossref_primary_10_1103_PhysRevB_108_L161301
crossref_primary_10_1109_MNET_012_2000770
crossref_primary_10_1103_PhysRevB_110_075302
crossref_primary_10_1103_PhysRevB_106_214429
crossref_primary_10_1038_s41598_024_67922_w
crossref_primary_10_1103_PhysRevA_103_042412
crossref_primary_10_1103_PhysRevA_105_032454
crossref_primary_10_1007_s42484_023_00132_1
crossref_primary_10_1103_PhysRevResearch_5_043005
crossref_primary_10_1103_PhysRevResearch_5_043126
crossref_primary_10_1103_PhysRevResearch_5_033159
crossref_primary_10_1007_s11432_022_3511_5
crossref_primary_10_1103_PRXQuantum_2_030346
crossref_primary_10_1103_PhysRevX_11_021026
crossref_primary_10_1038_s44172_023_00061_8
crossref_primary_10_22331_q_2022_04_13_688
crossref_primary_10_22331_q_2022_04_13_687
crossref_primary_10_1109_TQE_2022_3175267
crossref_primary_10_1038_s41534_021_00496_x
crossref_primary_10_1038_s41598_022_20853_w
crossref_primary_10_3390_electronics11071033
crossref_primary_10_1103_PhysRevApplied_23_034022
crossref_primary_10_1088_1367_2630_acb22c
crossref_primary_10_1103_PhysRevResearch_4_013141
crossref_primary_10_1038_s41598_023_45540_2
crossref_primary_10_1103_PhysRevA_106_042421
crossref_primary_10_1126_sciadv_abi8009
crossref_primary_10_1038_s41567_021_01356_3
crossref_primary_10_1103_PhysRevResearch_4_023249
crossref_primary_10_1088_2058_9565_ac91ef
crossref_primary_10_1103_PhysRevApplied_22_054037
crossref_primary_10_1063_5_0068255
crossref_primary_10_22331_q_2024_07_03_1395
crossref_primary_10_1038_s41534_022_00596_2
crossref_primary_10_1016_j_neunet_2024_106508
crossref_primary_10_1103_PhysRevA_110_022441
crossref_primary_10_1103_PhysRevLett_127_212001
crossref_primary_10_1103_PRXQuantum_3_040339
crossref_primary_10_1038_s41534_024_00906_w
crossref_primary_10_1103_PhysRevA_109_012429
crossref_primary_10_1103_PhysRevApplied_21_044035
crossref_primary_10_1103_PhysRevA_107_062406
crossref_primary_10_1103_PhysRevResearch_5_013097
crossref_primary_10_1109_TASC_2025_3540049
crossref_primary_10_1103_PhysRevA_105_032433
crossref_primary_10_1103_PhysRevApplied_16_054023
crossref_primary_10_1103_PhysRevA_110_032206
crossref_primary_10_1126_science_abo6587
crossref_primary_10_22331_q_2023_09_26_1121
crossref_primary_10_1038_s42005_024_01577_x
crossref_primary_10_1103_PhysRevLett_130_190601
crossref_primary_10_1038_s41598_024_76967_w
crossref_primary_10_1088_2058_9565_aca3ce
crossref_primary_10_1038_s41598_022_10555_8
crossref_primary_10_1088_2058_9565_ad35e4
crossref_primary_10_1103_PhysRevResearch_3_013286
crossref_primary_10_1088_1361_6455_ac6366
crossref_primary_10_22331_q_2021_07_01_491
crossref_primary_10_1103_PRXQuantum_3_040326
crossref_primary_10_1007_s42484_024_00167_y
crossref_primary_10_1103_PhysRevLett_127_110504
crossref_primary_10_1103_PhysRevApplied_20_034062
crossref_primary_10_1103_PhysRevApplied_20_064016
crossref_primary_10_1109_ACCESS_2023_3336989
crossref_primary_10_1103_PhysRevA_108_032409
crossref_primary_10_1103_PhysRevA_109_012436
crossref_primary_10_1103_PhysRevA_108_032408
crossref_primary_10_1038_s41467_022_33335_4
crossref_primary_10_1038_s41586_022_04603_6
crossref_primary_10_1631_jzus_A2400397
crossref_primary_10_3390_a15100356
crossref_primary_10_1007_s11433_024_2501_4
crossref_primary_10_1103_PhysRevA_104_062426
crossref_primary_10_1103_PhysRevX_11_021058
crossref_primary_10_1002_qute_202300461
crossref_primary_10_1038_s41534_023_00787_5
Cites_doi 10.1126/science.1252319
10.3389/fphy.2014.00005
10.3390/a12020034
10.1007/s11128-020-02692-8
10.1038/s41566-018-0236-y
10.1103/PhysRevA.97.022304
10.1038/s41586-019-1666-5
10.1073/pnas.2006373117
10.1038/s41928-020-00498-1
10.1088/2058-9565/abb6d9
10.1103/PhysRevA.94.022309
10.1016/j.parco.2016.11.002
10.1103/PhysRevA.95.062317
10.1103/PhysRevApplied.14.034010
10.1103/PhysRevE.58.5355
10.1126/science.1057726
10.1145/227683.227684
10.1038/s41467-018-07090-4
10.1103/PhysRevLett.35.1792
10.1007/3-540-48523-6_17
10.5281/zenodo.3992332
10.1088/0305-4470/15/10/028
10.1007/s11128-008-0082-9
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2021
The Author(s), under exclusive licence to Springer Nature Limited 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2021.
DBID AAYXX
CITATION
3V.
7U5
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
L7M
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1038/s41567-020-01105-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
ProQuest Central Student
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1745-2481
EndPage 336
ExternalDocumentID 10_1038_s41567_020_01105_y
GrantInformation_xml – fundername: Dave Bacon is a CIFAR Associate Fellow in the Quantum Information Science Program
– fundername: EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
  grantid: 828826; 828826; 828826; 828826
  funderid: https://doi.org/10.13039/100010661
GroupedDBID 0R~
123
29M
39C
3V.
4.4
5BI
5M7
6OB
70F
88I
8FE
8FG
8FH
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFO
ACGFS
ACGOD
ACMJI
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
CCPQU
DB5
DU5
DWQXO
EBS
EE.
EJD
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
GNUQQ
HCIFZ
HVGLF
HZ~
I-F
LGEZI
LK5
LOTEE
M2P
M7R
N9A
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
P62
PCBAR
PQQKQ
PROAC
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
TUS
~8M
AAYXX
ABFSG
ACMFV
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
7U5
7XB
8FD
8FK
L7M
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c385t-1df261feabe31347d90dff4b5f2fe39599666b57e7a0a75c43398f6fa985cd8e3
IEDL.DBID BENPR
ISSN 1745-2473
IngestDate Sat Aug 23 13:29:06 EDT 2025
Tue Jul 01 00:25:40 EDT 2025
Thu Apr 24 23:07:18 EDT 2025
Fri Feb 21 02:37:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-1df261feabe31347d90dff4b5f2fe39599666b57e7a0a75c43398f6fa985cd8e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2562-1618
0000-0002-6523-6730
0000-0001-5446-4677
0000-0001-9867-2371
0000-0002-7760-9186
0000-0001-5865-0813
0000-0002-2585-2424
0000-0001-7134-5733
0000-0001-8474-6317
0000-0001-6979-9533
0000-0001-9412-0553
0000-0002-8497-6363
0000-0001-9804-2185
0000-0002-1090-7584
0000-0002-5841-181X
0000-0002-5548-0051
0000-0002-9544-141X
0000-0003-0837-1028
0000-0001-7598-8621
PQID 2499401004
PQPubID 27545
PageCount 5
ParticipantIDs proquest_journals_2499401004
crossref_primary_10_1038_s41567_020_01105_y
crossref_citationtrail_10_1038_s41567_020_01105_y
springer_journals_10_1038_s41567_020_01105_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature physics
PublicationTitleAbbrev Nat. Phys
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References WangZHadfieldSJiangZRieffelEGQuantum approximate optimization algorithm for MaxCut: a fermionic viewPhys. Rev. A2018970223042018PhRvA..97b2304W10.1103/PhysRevA.97.022304
BiswasRA NASA perspective on quantum computing: opportunities and challengesParallel Comput.2017648198365572610.1016/j.parco.2016.11.002
AruteFQuantum supremacy using a programmable superconducting processorNature20195745055102019Natur.574..505A10.1038/s41586-019-1666-5
Kelly, J., O’Malley, P., Neeley, M., Neven, H. & Martinis, J. M. Physical qubit calibration on a directed acyclic graph. Preprint at https://arxiv.org/abs/1803.03226 (2018).
RønnowTFDefining and detecting quantum speedupScience20143454204242014Sci...345..420R10.1126/science.1252319
Sung, K. J. et al. Using models to improve optimizers for variational quantum algorithms. Quantum Sci. Technol.https://doi.org/10.1088/2058-9565/abb6d9 (2020).
Google AI Quantum and collaborators. Sycamore QAOA experimental data. figsharehttps://figshare.com/articles/dataset/Sycamore_QAOA_experimental_data/12597590 (2020).
PaganoGQuantum approximate optimization of the long-range Ising model with a trapped-ion quantum simulatorProc. Natl Acad. Sci. USA202011725396254012020PNAS..11725396P10.1073/pnas.2006373117
Cowtan, A. et al. On the qubit routing problem. In 14th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2019), Vol. 135 of Leibniz International Proc. Informatics (LIPIcs) (eds van Dam, W. & Mancinska, L.) 5:1–5:32 (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019); http://drops.dagstuhl.de/opus/volltexte/2019/10397
KadowakiTNishimoriHQuantum annealing in the transverse Ising modelPhys. Rev. E199858535553631998PhRvE..58.5355K10.1103/PhysRevE.58.5355
WillschMWillschDJinFDe RaedtHMichielsenKBenchmarking the quantum approximate optimization algorithmQuantum Inf. Process.2020192020QuIP...19..197W410865910.1007/s11128-020-02692-8
Klimov, P. V., Kelly, J., Martinis, J. M. & Neven, H. The snake optimizer for learning quantum processor control parameters. Preprint at https://arxiv.org/abs/2006.04594 (2020).
Berman, P. & Karpinski, M. in Automata, Languages and Programming (eds Wiedermann, J. et al.) 200–209 (Springer, 1999).
Google AI Quantum and collaborators Recirq. Zenodohttps://doi.org/10.5281/zenodo.3992332 (2020).
Farhi, E. & Harrow, A. W. Quantum supremacy through the quantum approximate optimization algorithm. Preprint at https://arxiv.org/abs/1602.07674 (2016).
HadfieldSFrom the quantum approximate optimization algorithm to a quantum alternating operator ansatzAlgorithms20171234393270710.3390/a12020034
BarahonaFOn the computational complexity of Ising spin glass modelsJ. Phys. A198215324132531982JPhA...15.3241B68459110.1088/0305-4470/15/10/028
ChoiVMinor-embedding in adiabatic quantum computation: I. The parameter setting problemQuantum Inf. Process.20087193209245360410.1007/s11128-008-0082-9
LucasAIsing formulations of many NP problemsFront. Phys.20142510.3389/fphy.2014.00005
FarhiEA quantum adiabatic evolution algorithm applied to random instances of an NP-complete problemScience20012924724752001Sci...292..472F183876110.1126/science.1057726
JiangZRieffelEGWangZNear-optimal quantum circuit for Grover’s unstructured search using a transverse fieldPhys. Rev. A2017950623172017PhRvA..95f2317J10.1103/PhysRevA.95.062317
Farhi, E., Goldstone, J. & Gutmann, S. A quantum approximate optimization algorithm. Preprint at https://arxiv.org/abs/1411.4028 (2014).
McCleanJRBoixoSSmelyanskiyVNBabbushRNevenHBarren plateaus in quantum neural network training landscapesNat. Commun.201892018NatCo...9.4812M10.1038/s41467-018-07090-4
YangZ-CRahmaniAShabaniANevenHChamonCOptimizing variational quantum algorithms using Pontryagin’s minimum principlePhys. Rev. X20177021027
QiangXLarge-scale silicon quantum photonics implementing arbitrary two-qubit processingNat. Photon.2018125345392018NaPho..12..534Q10.1038/s41566-018-0236-y
Montanari, A. Optimization of the Sherrington–Kirkpatrick Hamiltonian. Preprint at https://arxiv.org/abs/1812.10897 (2018).
Farhi, E., Goldstone, J., Gutmann, S. & Zhou, L. The quantum approximate optimization algorithm and the Sherrington–Kirkpatrick model at infinite size. Preprint at https://arxiv.org/abs/1910.08187 (2019).
Otterbach, J. S. et al. Unsupervised machine learning on a hybrid quantum computer. Preprint at https://arxiv.org/abs/1712.05771 (2017).
BengtssonAImproved success probability with greater circuit depth for the quantum approximate optimization algorithmPhys. Rev. Appl.2020140340102020PhRvP..14c4010B10.1103/PhysRevApplied.14.034010
SherringtonDKirkpatrickSSolvable model of a spin-glassPhys. Rev. Lett.197535179217961975PhRvL..35.1792S10.1103/PhysRevLett.35.1792
The Cirq Developers Cirq: a python framework for creating, editing, and invoking noisy intermediate scale quantum (NISQ) circuits. GitHubhttps://github.com/quantumlib/Cirq (2020).
GoemansMXWilliamsonDPImproved approximation algorithms for maximum cut and satisfiability problems using semidefinite programmingJ. Assoc. Comput. Mach.19954211151145141222810.1145/227683.227684
DenchevVSWhat is the computational value of finite-range tunneling?Phys. Rev. X20166031015
Lloyd, S. Quantum approximate optimization is computationally universal. Preprint at https://arxiv.org/abs/1812.11075 (2018).
Farhi, E., Goldstone, J. & Gutmann, S. A quantum approximate optimization algorithm applied to a bounded occurrence constraint problem. Preprint at https://arxiv.org/abs/1412.6062 (2014).
WeckerDHastingsMBTroyerMTraining a quantum optimizerPhys. Rev. A2016940223092016PhRvA..94b2309W10.1103/PhysRevA.94.022309
AbramsDMDidierNJohnsonBRda SilvaMPRyanCAImplementation of XY entangling gates with a single calibrated pulseNat. Electron.2020374475010.1038/s41928-020-00498-1
Halperin, E., Livnat, D. & Zwick, U. Max Cut in cubic graphs. In Proc. Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’02 506–513 (Society for Industrial and Applied Mathematics, 2002).
HirataYNakanishiMYamashitaSNakashimaYAn efficient conversion of quantum circuits to a linear nearest neighbor architectureQuantum Inf. Comput.20111114216627970111237.81050
1105_CR33
1105_CR10
1105_CR37
1105_CR17
1105_CR39
1105_CR38
T Kadowaki (1105_CR14) 1998; 58
TF Rønnow (1105_CR27) 2014; 345
A Lucas (1105_CR11) 2014; 2
M Willsch (1105_CR18) 2020; 19
1105_CR31
1105_CR30
Z Jiang (1105_CR6) 2017; 95
DM Abrams (1105_CR19) 2020; 3
F Barahona (1105_CR12) 1982; 15
X Qiang (1105_CR22) 2018; 12
S Hadfield (1105_CR8) 2017; 12
VS Denchev (1105_CR16) 2016; 6
1105_CR1
1105_CR24
1105_CR2
1105_CR26
Z Wang (1105_CR7) 2018; 97
1105_CR25
1105_CR5
Y Hirata (1105_CR34) 2011; 11
MX Goemans (1105_CR28) 1995; 42
F Arute (1105_CR23) 2019; 574
A Bengtsson (1105_CR20) 2020; 14
D Sherrington (1105_CR32) 1975; 35
G Pagano (1105_CR21) 2020; 117
JR McClean (1105_CR36) 2018; 9
1105_CR29
1105_CR9
E Farhi (1105_CR15) 2001; 292
R Biswas (1105_CR3) 2017; 64
Z-C Yang (1105_CR35) 2017; 7
D Wecker (1105_CR4) 2016; 94
V Choi (1105_CR13) 2008; 7
References_xml – reference: Farhi, E. & Harrow, A. W. Quantum supremacy through the quantum approximate optimization algorithm. Preprint at https://arxiv.org/abs/1602.07674 (2016).
– reference: LucasAIsing formulations of many NP problemsFront. Phys.20142510.3389/fphy.2014.00005
– reference: Google AI Quantum and collaborators. Sycamore QAOA experimental data. figsharehttps://figshare.com/articles/dataset/Sycamore_QAOA_experimental_data/12597590 (2020).
– reference: KadowakiTNishimoriHQuantum annealing in the transverse Ising modelPhys. Rev. E199858535553631998PhRvE..58.5355K10.1103/PhysRevE.58.5355
– reference: McCleanJRBoixoSSmelyanskiyVNBabbushRNevenHBarren plateaus in quantum neural network training landscapesNat. Commun.201892018NatCo...9.4812M10.1038/s41467-018-07090-4
– reference: AbramsDMDidierNJohnsonBRda SilvaMPRyanCAImplementation of XY entangling gates with a single calibrated pulseNat. Electron.2020374475010.1038/s41928-020-00498-1
– reference: Montanari, A. Optimization of the Sherrington–Kirkpatrick Hamiltonian. Preprint at https://arxiv.org/abs/1812.10897 (2018).
– reference: ChoiVMinor-embedding in adiabatic quantum computation: I. The parameter setting problemQuantum Inf. Process.20087193209245360410.1007/s11128-008-0082-9
– reference: Klimov, P. V., Kelly, J., Martinis, J. M. & Neven, H. The snake optimizer for learning quantum processor control parameters. Preprint at https://arxiv.org/abs/2006.04594 (2020).
– reference: FarhiEA quantum adiabatic evolution algorithm applied to random instances of an NP-complete problemScience20012924724752001Sci...292..472F183876110.1126/science.1057726
– reference: AruteFQuantum supremacy using a programmable superconducting processorNature20195745055102019Natur.574..505A10.1038/s41586-019-1666-5
– reference: JiangZRieffelEGWangZNear-optimal quantum circuit for Grover’s unstructured search using a transverse fieldPhys. Rev. A2017950623172017PhRvA..95f2317J10.1103/PhysRevA.95.062317
– reference: Sung, K. J. et al. Using models to improve optimizers for variational quantum algorithms. Quantum Sci. Technol.https://doi.org/10.1088/2058-9565/abb6d9 (2020).
– reference: PaganoGQuantum approximate optimization of the long-range Ising model with a trapped-ion quantum simulatorProc. Natl Acad. Sci. USA202011725396254012020PNAS..11725396P10.1073/pnas.2006373117
– reference: Farhi, E., Goldstone, J., Gutmann, S. & Zhou, L. The quantum approximate optimization algorithm and the Sherrington–Kirkpatrick model at infinite size. Preprint at https://arxiv.org/abs/1910.08187 (2019).
– reference: Google AI Quantum and collaborators Recirq. Zenodohttps://doi.org/10.5281/zenodo.3992332 (2020).
– reference: Farhi, E., Goldstone, J. & Gutmann, S. A quantum approximate optimization algorithm applied to a bounded occurrence constraint problem. Preprint at https://arxiv.org/abs/1412.6062 (2014).
– reference: BengtssonAImproved success probability with greater circuit depth for the quantum approximate optimization algorithmPhys. Rev. Appl.2020140340102020PhRvP..14c4010B10.1103/PhysRevApplied.14.034010
– reference: WillschMWillschDJinFDe RaedtHMichielsenKBenchmarking the quantum approximate optimization algorithmQuantum Inf. Process.2020192020QuIP...19..197W410865910.1007/s11128-020-02692-8
– reference: Halperin, E., Livnat, D. & Zwick, U. Max Cut in cubic graphs. In Proc. Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’02 506–513 (Society for Industrial and Applied Mathematics, 2002).
– reference: RønnowTFDefining and detecting quantum speedupScience20143454204242014Sci...345..420R10.1126/science.1252319
– reference: BarahonaFOn the computational complexity of Ising spin glass modelsJ. Phys. A198215324132531982JPhA...15.3241B68459110.1088/0305-4470/15/10/028
– reference: Farhi, E., Goldstone, J. & Gutmann, S. A quantum approximate optimization algorithm. Preprint at https://arxiv.org/abs/1411.4028 (2014).
– reference: YangZ-CRahmaniAShabaniANevenHChamonCOptimizing variational quantum algorithms using Pontryagin’s minimum principlePhys. Rev. X20177021027
– reference: HadfieldSFrom the quantum approximate optimization algorithm to a quantum alternating operator ansatzAlgorithms20171234393270710.3390/a12020034
– reference: QiangXLarge-scale silicon quantum photonics implementing arbitrary two-qubit processingNat. Photon.2018125345392018NaPho..12..534Q10.1038/s41566-018-0236-y
– reference: Cowtan, A. et al. On the qubit routing problem. In 14th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2019), Vol. 135 of Leibniz International Proc. Informatics (LIPIcs) (eds van Dam, W. & Mancinska, L.) 5:1–5:32 (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019); http://drops.dagstuhl.de/opus/volltexte/2019/10397
– reference: BiswasRA NASA perspective on quantum computing: opportunities and challengesParallel Comput.2017648198365572610.1016/j.parco.2016.11.002
– reference: WangZHadfieldSJiangZRieffelEGQuantum approximate optimization algorithm for MaxCut: a fermionic viewPhys. Rev. A2018970223042018PhRvA..97b2304W10.1103/PhysRevA.97.022304
– reference: DenchevVSWhat is the computational value of finite-range tunneling?Phys. Rev. X20166031015
– reference: The Cirq Developers Cirq: a python framework for creating, editing, and invoking noisy intermediate scale quantum (NISQ) circuits. GitHubhttps://github.com/quantumlib/Cirq (2020).
– reference: HirataYNakanishiMYamashitaSNakashimaYAn efficient conversion of quantum circuits to a linear nearest neighbor architectureQuantum Inf. Comput.20111114216627970111237.81050
– reference: GoemansMXWilliamsonDPImproved approximation algorithms for maximum cut and satisfiability problems using semidefinite programmingJ. Assoc. Comput. Mach.19954211151145141222810.1145/227683.227684
– reference: WeckerDHastingsMBTroyerMTraining a quantum optimizerPhys. Rev. A2016940223092016PhRvA..94b2309W10.1103/PhysRevA.94.022309
– reference: Berman, P. & Karpinski, M. in Automata, Languages and Programming (eds Wiedermann, J. et al.) 200–209 (Springer, 1999).
– reference: SherringtonDKirkpatrickSSolvable model of a spin-glassPhys. Rev. Lett.197535179217961975PhRvL..35.1792S10.1103/PhysRevLett.35.1792
– reference: Lloyd, S. Quantum approximate optimization is computationally universal. Preprint at https://arxiv.org/abs/1812.11075 (2018).
– reference: Kelly, J., O’Malley, P., Neeley, M., Neven, H. & Martinis, J. M. Physical qubit calibration on a directed acyclic graph. Preprint at https://arxiv.org/abs/1803.03226 (2018).
– reference: Otterbach, J. S. et al. Unsupervised machine learning on a hybrid quantum computer. Preprint at https://arxiv.org/abs/1712.05771 (2017).
– volume: 345
  start-page: 420
  year: 2014
  ident: 1105_CR27
  publication-title: Science
  doi: 10.1126/science.1252319
– ident: 1105_CR39
– volume: 7
  start-page: 021027
  year: 2017
  ident: 1105_CR35
  publication-title: Phys. Rev. X
– ident: 1105_CR33
– ident: 1105_CR10
– volume: 2
  start-page: 5
  year: 2014
  ident: 1105_CR11
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2014.00005
– ident: 1105_CR31
– ident: 1105_CR5
– volume: 12
  start-page: 34
  year: 2017
  ident: 1105_CR8
  publication-title: Algorithms
  doi: 10.3390/a12020034
– volume: 19
  year: 2020
  ident: 1105_CR18
  publication-title: Quantum Inf. Process.
  doi: 10.1007/s11128-020-02692-8
– volume: 12
  start-page: 534
  year: 2018
  ident: 1105_CR22
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-018-0236-y
– ident: 1105_CR1
– volume: 97
  start-page: 022304
  year: 2018
  ident: 1105_CR7
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.97.022304
– volume: 574
  start-page: 505
  year: 2019
  ident: 1105_CR23
  publication-title: Nature
  doi: 10.1038/s41586-019-1666-5
– ident: 1105_CR24
– ident: 1105_CR26
– ident: 1105_CR17
– volume: 117
  start-page: 25396
  year: 2020
  ident: 1105_CR21
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2006373117
– volume: 3
  start-page: 744
  year: 2020
  ident: 1105_CR19
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-020-00498-1
– ident: 1105_CR37
  doi: 10.1088/2058-9565/abb6d9
– volume: 94
  start-page: 022309
  year: 2016
  ident: 1105_CR4
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.94.022309
– ident: 1105_CR9
– volume: 64
  start-page: 81
  year: 2017
  ident: 1105_CR3
  publication-title: Parallel Comput.
  doi: 10.1016/j.parco.2016.11.002
– volume: 95
  start-page: 062317
  year: 2017
  ident: 1105_CR6
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.95.062317
– volume: 14
  start-page: 034010
  year: 2020
  ident: 1105_CR20
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.14.034010
– volume: 11
  start-page: 142
  year: 2011
  ident: 1105_CR34
  publication-title: Quantum Inf. Comput.
– volume: 58
  start-page: 5355
  year: 1998
  ident: 1105_CR14
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.58.5355
– ident: 1105_CR29
– ident: 1105_CR2
– volume: 292
  start-page: 472
  year: 2001
  ident: 1105_CR15
  publication-title: Science
  doi: 10.1126/science.1057726
– volume: 42
  start-page: 1115
  year: 1995
  ident: 1105_CR28
  publication-title: J. Assoc. Comput. Mach.
  doi: 10.1145/227683.227684
– volume: 9
  year: 2018
  ident: 1105_CR36
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07090-4
– volume: 35
  start-page: 1792
  year: 1975
  ident: 1105_CR32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.35.1792
– ident: 1105_CR25
– ident: 1105_CR30
  doi: 10.1007/3-540-48523-6_17
– ident: 1105_CR38
  doi: 10.5281/zenodo.3992332
– volume: 15
  start-page: 3241
  year: 1982
  ident: 1105_CR12
  publication-title: J. Phys. A
  doi: 10.1088/0305-4470/15/10/028
– volume: 7
  start-page: 193
  year: 2008
  ident: 1105_CR13
  publication-title: Quantum Inf. Process.
  doi: 10.1007/s11128-008-0082-9
– volume: 6
  start-page: 031015
  year: 2016
  ident: 1105_CR16
  publication-title: Phys. Rev. X
SSID ssj0042613
Score 2.7256267
Snippet Faster algorithms for combinatorial optimization could prove transformative for diverse areas such as logistics, finance and machine learning. Accordingly, the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 332
SubjectTerms 639/705/1042
639/766/483/481
Algorithms
Atomic
Classical and Continuum Physics
Combinatorial analysis
Complex Systems
Condensed Matter Physics
Gates (circuits)
Graph theory
Graphs
Hardware
Logistics
Machine learning
Mathematical and Computational Physics
Microprocessors
Molecular
Optical and Plasma Physics
Optimization
Optimization algorithms
Physics
Physics and Astronomy
Quantum computers
Qubits (quantum computing)
Superconductivity
Theoretical
Title Quantum approximate optimization of non-planar graph problems on a planar superconducting processor
URI https://link.springer.com/article/10.1038/s41567-020-01105-y
https://www.proquest.com/docview/2499401004
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90Q_BF_MT5MfLgmwa7JWnTJ3GyKYJDxYFvJU0TENxW1w3cf--lTR0K-tSHtKG9S-_ul9z9DuAsC2KJ0IfTwKU2cikCKlOuqOCGKXR_SisHFB-G4d2I37-KV7_hVvi0ytomloY6m2q3R36JMCFGLIA6vco_qOsa5U5XfQuNdWiiCZayAc1ef_j4XNtihw9YVRIpaJdHzJfNBExeFg66RNTBJ-cDBV3-dE2rePPXEWnpeQbbsOVDRnJd6XgH1sxkFzbK1E1d7IF-WqB0FmNS0oN_vmEIasgULcHYl1iSqSUI8mn-riZqRkqKauIbyRQExxXxQ8UiNzMEyI4DFl-F5FUVwXS2D6NB_-XmjvrWCVQzKea0k1n8dGtUapgrFs3iILOWp8J2rWGx42QJw1REJlKBioTmjMXShlbF0rEFGHYADXwzcwjEpl3LGEYOeOE6RkAVpR2lWMZTHWodt6BTSy3Rnlfctbd4T8rzbSaTStIJSjopJZ0sW3D-_UxesWr8e_dJrYzE_2FFsloPLbioFbQa_nu2o_9nO4bNrktbKdPMTqAxny3MKcYd87QN63Jw24bm9aDXG7b9UvsCX1TXuw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxKvqlgI-wAmsZmM7cQ4IIWDZ0oeE1Eq9uY5jS5XaTdjsquyf4jcy4ySsQKK3niLFiWXNTGbmy7wAXldJoRH6SJ5QaqPUKuG6lJYr6YVF82edJaB4dJxNT-W3M3W2Ab-GWhhKqxx0YlTUVe3oH_kewoQCsQDy9EPzg9PUKIquDiM0OrE48KtrhGzt-_3PyN83aTr5cvJpyvupAtwJrRZ8XAVEDcHb0guqo6yKpApBliqkwYuC2pVkWalyn9vE5spJIQodsmALTYX0XuC-d-Au3SawpydfB81PaER0BZiKpzIXfZFOIvReS0Ap5wTWyOIqvvrbEK69238CstHOTR7Bw95BZR87iXoMG372BO7FRFHXPgX3fYm8WF6x2Iz85wU6vJ7VqHeu-oJOVgc2q2e8ubQzO2exITbrx9a0DNct65faZePnCMep4ywehTVdzUI9fwant0LSLdjEk_ltYKFMgxDop-BFugLhW16OrRWVLF3mXDGC8UA14_ou5jRM49LEaLrQpqO0QUqbSGmzGsHbP-80XQ-PG5_eHZhh-u-5NWvpG8G7gUHr5f_vtnPzbq_g_vTk6NAc7h8fPIcHKSXMxAS3XdhczJf-BXo8i_JlFDMG57ct178BWYYRxA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcKp7q0hZ8gBNYm43tPA6oKrSrlsKqICr1ZhzHlpDaTdjsCvav8es6kzisQKK3nnJwbFkzE8988XwzAC_LKM8Q-kgeUWqjzFTEs0IarqQTBt2fsYaA4qdpcnwuP1yoiw343XNhKK2yPxPbg7qsLP0jHyFMyBELoE5HPqRFnB1O9usfnDpI0U1r306jM5FTt_qJ8K15e3KIun4Vx5Ojr--PeegwwK3I1IKPS48IwjtTOEGcyjKPSu9loXzsncipdEmSFCp1qYlMqqwUIs984k2eEaneCVz3DmymhIoGsPnuaHr2pfcDhE1ER8dUPJapCJSdSGSjhmBTygm6kf9VfPW3W1zHuv9cz7Zeb_IAtkK4yg46-3oIG272CO62aaO2eQz28xI1s7xibWnyX98x_HWswlPoKtA7WeXZrJrx-tLMzJy15bFZaGLTMBw3LAw1y9rNEZxT_VncCqs7BkM1fwLntyLUpzDAnbltYL6IvRAYteBD2hzBXFqMjRGlLGxibT6EcS81bUNNc2qtcanbu3WR6U7SGiWtW0nr1RBe_5lTdxU9bnx7t1eGDl93o9e2OIQ3vYLWw_9f7dnNq72Ae2jT-uPJ9HQH7seUPdNmu-3CYDFfuj0MfxbF82BnDL7dtmlfA5OdF1Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+approximate+optimization+of+non-planar+graph+problems+on+a+planar+superconducting+processor&rft.jtitle=Nature+physics&rft.au=Harrigan%2C+Matthew+P.&rft.au=Sung%2C+Kevin+J.&rft.au=Neeley%2C+Matthew&rft.au=Satzinger%2C+Kevin+J.&rft.date=2021-03-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=17&rft.issue=3&rft.spage=332&rft.epage=336&rft_id=info:doi/10.1038%2Fs41567-020-01105-y&rft.externalDocID=10_1038_s41567_020_01105_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon