Quantum approximate optimization of non-planar graph problems on a planar superconducting processor
Faster algorithms for combinatorial optimization could prove transformative for diverse areas such as logistics, finance and machine learning. Accordingly, the possibility of quantum enhanced optimization has driven much interest in quantum technologies. Here we demonstrate the application of the Go...
Saved in:
Published in | Nature physics Vol. 17; no. 3; pp. 332 - 336 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.03.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Faster algorithms for combinatorial optimization could prove transformative for diverse areas such as logistics, finance and machine learning. Accordingly, the possibility of quantum enhanced optimization has driven much interest in quantum technologies. Here we demonstrate the application of the Google Sycamore superconducting qubit quantum processor to combinatorial optimization problems with the quantum approximate optimization algorithm (QAOA). Like past QAOA experiments, we study performance for problems defined on the planar connectivity graph native to our hardware; however, we also apply the QAOA to the Sherrington–Kirkpatrick model and MaxCut, non-native problems that require extensive compilation to implement. For hardware-native problems, which are classically efficient to solve on average, we obtain an approximation ratio that is independent of problem size and observe that performance increases with circuit depth. For problems requiring compilation, performance decreases with problem size. Circuits involving several thousand gates still present an advantage over random guessing but not over some efficient classical algorithms. Our results suggest that it will be challenging to scale near-term implementations of the QAOA for problems on non-native graphs. As these graphs are closer to real-world instances, we suggest more emphasis should be placed on such problems when using the QAOA to benchmark quantum processors.
It is hoped that quantum computers may be faster than classical ones at solving optimization problems. Here the authors implement a quantum optimization algorithm over 23 qubits but find more limited performance when an optimization problem structure does not match the underlying hardware. |
---|---|
AbstractList | Faster algorithms for combinatorial optimization could prove transformative for diverse areas such as logistics, finance and machine learning. Accordingly, the possibility of quantum enhanced optimization has driven much interest in quantum technologies. Here we demonstrate the application of the Google Sycamore superconducting qubit quantum processor to combinatorial optimization problems with the quantum approximate optimization algorithm (QAOA). Like past QAOA experiments, we study performance for problems defined on the planar connectivity graph native to our hardware; however, we also apply the QAOA to the Sherrington–Kirkpatrick model and MaxCut, non-native problems that require extensive compilation to implement. For hardware-native problems, which are classically efficient to solve on average, we obtain an approximation ratio that is independent of problem size and observe that performance increases with circuit depth. For problems requiring compilation, performance decreases with problem size. Circuits involving several thousand gates still present an advantage over random guessing but not over some efficient classical algorithms. Our results suggest that it will be challenging to scale near-term implementations of the QAOA for problems on non-native graphs. As these graphs are closer to real-world instances, we suggest more emphasis should be placed on such problems when using the QAOA to benchmark quantum processors.
It is hoped that quantum computers may be faster than classical ones at solving optimization problems. Here the authors implement a quantum optimization algorithm over 23 qubits but find more limited performance when an optimization problem structure does not match the underlying hardware. Faster algorithms for combinatorial optimization could prove transformative for diverse areas such as logistics, finance and machine learning. Accordingly, the possibility of quantum enhanced optimization has driven much interest in quantum technologies. Here we demonstrate the application of the Google Sycamore superconducting qubit quantum processor to combinatorial optimization problems with the quantum approximate optimization algorithm (QAOA). Like past QAOA experiments, we study performance for problems defined on the planar connectivity graph native to our hardware; however, we also apply the QAOA to the Sherrington–Kirkpatrick model and MaxCut, non-native problems that require extensive compilation to implement. For hardware-native problems, which are classically efficient to solve on average, we obtain an approximation ratio that is independent of problem size and observe that performance increases with circuit depth. For problems requiring compilation, performance decreases with problem size. Circuits involving several thousand gates still present an advantage over random guessing but not over some efficient classical algorithms. Our results suggest that it will be challenging to scale near-term implementations of the QAOA for problems on non-native graphs. As these graphs are closer to real-world instances, we suggest more emphasis should be placed on such problems when using the QAOA to benchmark quantum processors.It is hoped that quantum computers may be faster than classical ones at solving optimization problems. Here the authors implement a quantum optimization algorithm over 23 qubits but find more limited performance when an optimization problem structure does not match the underlying hardware. |
Author | Boixo, Sergio Quintana, Chris Gidney, Craig Mi, Xiao Martinis, John M. Megrant, Anthony Buell, David A. Vainsencher, Amit Ho, Alan Smelyanskiy, Vadim Eppens, Daniel Klimov, Paul V. Isakov, Sergei V. Jiang, Zhang Graff, Rob Niu, Murphy Yuezhen Ioffe, L. B. Mutus, Josh Yao, Z. Jamie Ben Chiaro Collins, Roberto Lindmark, Mike McEwen, Matt Zalcman, Adam Kelly, Julian Rubin, Nicholas C. Sank, Daniel White, Theodore Neukart, Florian O’Gorman, Bryan Dunsworth, Andrew Skolik, Andrea Hong, Sabrina Jeffrey, Evan Arute, Frank Zhou, Leo Kafri, Dvir Ostby, Eric Farhi, Edward Landhuis, David Leib, Martin Kostritsa, Fedor Broughton, Michael Streif, Michael Buckley, Bob B. Fowler, Austin Roushan, Pedram Habegger, Steve Huang, Trent Foxen, Brooks Putterman, Harald Sung, Kevin J. Bacon, Dave Atalaya, Juan Satzinger, Kevin J. Martin, Orion Burkett, Brian Arya, Kunal Lucero, Erik Kim, Seon Strain, Doug Mruczkiewicz, Wojciech Courtney, William Petukhov, Andre Yeh, Ping Babbush, Ryan Neven, Hartmut Bushnell, Nicholas Chen, Yu O’Brien, Thomas E. Harrigan, Matthew P. Giustina, M |
Author_xml | – sequence: 1 givenname: Matthew P. orcidid: 0000-0001-9412-0553 surname: Harrigan fullname: Harrigan, Matthew P. email: mpharrigan@google.com organization: Google Research – sequence: 2 givenname: Kevin J. surname: Sung fullname: Sung, Kevin J. organization: Google Research, Department of Electrical Engineering and Computer Science, University of Michigan – sequence: 3 givenname: Matthew orcidid: 0000-0002-5548-0051 surname: Neeley fullname: Neeley, Matthew organization: Google Research – sequence: 4 givenname: Kevin J. orcidid: 0000-0001-5865-0813 surname: Satzinger fullname: Satzinger, Kevin J. organization: Google Research – sequence: 5 givenname: Frank surname: Arute fullname: Arute, Frank organization: Google Research – sequence: 6 givenname: Kunal surname: Arya fullname: Arya, Kunal organization: Google Research – sequence: 7 givenname: Juan surname: Atalaya fullname: Atalaya, Juan organization: Google Research – sequence: 8 givenname: Joseph C. orcidid: 0000-0002-6523-6730 surname: Bardin fullname: Bardin, Joseph C. organization: Google Research, Department of Electrical and Computer Engineering, University of Massachusetts – sequence: 9 givenname: Rami surname: Barends fullname: Barends, Rami organization: Google Research – sequence: 10 givenname: Sergio orcidid: 0000-0002-1090-7584 surname: Boixo fullname: Boixo, Sergio organization: Google Research – sequence: 11 givenname: Michael surname: Broughton fullname: Broughton, Michael organization: Google Research – sequence: 12 givenname: Bob B. surname: Buckley fullname: Buckley, Bob B. organization: Google Research – sequence: 13 givenname: David A. surname: Buell fullname: Buell, David A. organization: Google Research – sequence: 14 givenname: Brian orcidid: 0000-0001-8474-6317 surname: Burkett fullname: Burkett, Brian organization: Google Research – sequence: 15 givenname: Nicholas surname: Bushnell fullname: Bushnell, Nicholas organization: Google Research – sequence: 16 givenname: Yu surname: Chen fullname: Chen, Yu organization: Google Research – sequence: 17 givenname: Zijun surname: Chen fullname: Chen, Zijun organization: Google Research – sequence: 18 surname: Ben Chiaro fullname: Ben Chiaro organization: Google Research, Department of Physics, University of California – sequence: 19 givenname: Roberto surname: Collins fullname: Collins, Roberto organization: Google Research – sequence: 20 givenname: William surname: Courtney fullname: Courtney, William organization: Google Research – sequence: 21 givenname: Sean surname: Demura fullname: Demura, Sean organization: Google Research – sequence: 22 givenname: Andrew surname: Dunsworth fullname: Dunsworth, Andrew organization: Google Research – sequence: 23 givenname: Daniel orcidid: 0000-0001-7134-5733 surname: Eppens fullname: Eppens, Daniel organization: Google Research – sequence: 24 givenname: Austin surname: Fowler fullname: Fowler, Austin organization: Google Research – sequence: 25 givenname: Brooks surname: Foxen fullname: Foxen, Brooks organization: Google Research – sequence: 26 givenname: Craig surname: Gidney fullname: Gidney, Craig organization: Google Research – sequence: 27 givenname: Marissa surname: Giustina fullname: Giustina, Marissa organization: Google Research – sequence: 28 givenname: Rob surname: Graff fullname: Graff, Rob organization: Google Research – sequence: 29 givenname: Steve orcidid: 0000-0001-9867-2371 surname: Habegger fullname: Habegger, Steve organization: Google Research – sequence: 30 givenname: Alan surname: Ho fullname: Ho, Alan organization: Google Research – sequence: 31 givenname: Sabrina surname: Hong fullname: Hong, Sabrina organization: Google Research – sequence: 32 givenname: Trent surname: Huang fullname: Huang, Trent organization: Google Research – sequence: 33 givenname: L. B. surname: Ioffe fullname: Ioffe, L. B. organization: Google Research – sequence: 34 givenname: Sergei V. surname: Isakov fullname: Isakov, Sergei V. organization: Google Research – sequence: 35 givenname: Evan surname: Jeffrey fullname: Jeffrey, Evan organization: Google Research – sequence: 36 givenname: Zhang surname: Jiang fullname: Jiang, Zhang organization: Google Research – sequence: 37 givenname: Cody surname: Jones fullname: Jones, Cody organization: Google Research – sequence: 38 givenname: Dvir surname: Kafri fullname: Kafri, Dvir organization: Google Research – sequence: 39 givenname: Kostyantyn surname: Kechedzhi fullname: Kechedzhi, Kostyantyn organization: Google Research – sequence: 40 givenname: Julian surname: Kelly fullname: Kelly, Julian organization: Google Research – sequence: 41 givenname: Seon surname: Kim fullname: Kim, Seon organization: Google Research – sequence: 42 givenname: Paul V. surname: Klimov fullname: Klimov, Paul V. organization: Google Research – sequence: 43 givenname: Alexander N. surname: Korotkov fullname: Korotkov, Alexander N. organization: Google Research, Department of Electrical and Computer Engineering, University of California – sequence: 44 givenname: Fedor surname: Kostritsa fullname: Kostritsa, Fedor organization: Google Research – sequence: 45 givenname: David orcidid: 0000-0001-9804-2185 surname: Landhuis fullname: Landhuis, David organization: Google Research – sequence: 46 givenname: Pavel surname: Laptev fullname: Laptev, Pavel organization: Google Research – sequence: 47 givenname: Mike surname: Lindmark fullname: Lindmark, Mike organization: Google Research – sequence: 48 givenname: Martin orcidid: 0000-0001-5446-4677 surname: Leib fullname: Leib, Martin organization: Volkswagen Data:Lab – sequence: 49 givenname: Orion surname: Martin fullname: Martin, Orion organization: Google Research – sequence: 50 givenname: John M. surname: Martinis fullname: Martinis, John M. organization: Google Research, Department of Physics, University of California – sequence: 51 givenname: Jarrod R. surname: McClean fullname: McClean, Jarrod R. organization: Google Research – sequence: 52 givenname: Matt orcidid: 0000-0002-9544-141X surname: McEwen fullname: McEwen, Matt organization: Google Research, Department of Physics, University of California – sequence: 53 givenname: Anthony surname: Megrant fullname: Megrant, Anthony organization: Google Research – sequence: 54 givenname: Xiao surname: Mi fullname: Mi, Xiao organization: Google Research – sequence: 55 givenname: Masoud surname: Mohseni fullname: Mohseni, Masoud organization: Google Research – sequence: 56 givenname: Wojciech orcidid: 0000-0002-8497-6363 surname: Mruczkiewicz fullname: Mruczkiewicz, Wojciech organization: Google Research – sequence: 57 givenname: Josh surname: Mutus fullname: Mutus, Josh organization: Google Research – sequence: 58 givenname: Ofer orcidid: 0000-0002-7760-9186 surname: Naaman fullname: Naaman, Ofer organization: Google Research – sequence: 59 givenname: Charles surname: Neill fullname: Neill, Charles organization: Google Research – sequence: 60 givenname: Florian orcidid: 0000-0002-2562-1618 surname: Neukart fullname: Neukart, Florian organization: Volkswagen Data:Lab – sequence: 61 givenname: Murphy Yuezhen surname: Niu fullname: Niu, Murphy Yuezhen organization: Google Research – sequence: 62 givenname: Thomas E. surname: O’Brien fullname: O’Brien, Thomas E. organization: Google Research – sequence: 63 givenname: Bryan surname: O’Gorman fullname: O’Gorman, Bryan organization: NASA Ames Research Center, Department of Electrical Engineering and Computer Sciences, University of California – sequence: 64 givenname: Eric surname: Ostby fullname: Ostby, Eric organization: Google Research – sequence: 65 givenname: Andre surname: Petukhov fullname: Petukhov, Andre organization: Google Research – sequence: 66 givenname: Harald orcidid: 0000-0002-5841-181X surname: Putterman fullname: Putterman, Harald organization: Google Research – sequence: 67 givenname: Chris surname: Quintana fullname: Quintana, Chris organization: Google Research – sequence: 68 givenname: Pedram surname: Roushan fullname: Roushan, Pedram organization: Google Research – sequence: 69 givenname: Nicholas C. surname: Rubin fullname: Rubin, Nicholas C. organization: Google Research – sequence: 70 givenname: Daniel surname: Sank fullname: Sank, Daniel organization: Google Research – sequence: 71 givenname: Andrea surname: Skolik fullname: Skolik, Andrea organization: Volkswagen Data:Lab, Leiden University – sequence: 72 givenname: Vadim surname: Smelyanskiy fullname: Smelyanskiy, Vadim organization: Google Research – sequence: 73 givenname: Doug surname: Strain fullname: Strain, Doug organization: Google Research – sequence: 74 givenname: Michael surname: Streif fullname: Streif, Michael organization: Volkswagen Data:Lab, Department of Physics, Friedrich-Alexander University Erlangen-Nürnberg – sequence: 75 givenname: Marco surname: Szalay fullname: Szalay, Marco organization: Google Research – sequence: 76 givenname: Amit surname: Vainsencher fullname: Vainsencher, Amit organization: Google Research – sequence: 77 givenname: Theodore surname: White fullname: White, Theodore organization: Google Research – sequence: 78 givenname: Z. Jamie surname: Yao fullname: Yao, Z. Jamie organization: Google Research – sequence: 79 givenname: Ping orcidid: 0000-0003-0837-1028 surname: Yeh fullname: Yeh, Ping organization: Google Research – sequence: 80 givenname: Adam orcidid: 0000-0002-2585-2424 surname: Zalcman fullname: Zalcman, Adam organization: Google Research – sequence: 81 givenname: Leo orcidid: 0000-0001-7598-8621 surname: Zhou fullname: Zhou, Leo organization: Google Research, Department of Physics, Harvard University – sequence: 82 givenname: Hartmut surname: Neven fullname: Neven, Hartmut organization: Google Research – sequence: 83 givenname: Dave surname: Bacon fullname: Bacon, Dave organization: Google Research – sequence: 84 givenname: Erik surname: Lucero fullname: Lucero, Erik organization: Google Research – sequence: 85 givenname: Edward surname: Farhi fullname: Farhi, Edward organization: Google Research – sequence: 86 givenname: Ryan orcidid: 0000-0001-6979-9533 surname: Babbush fullname: Babbush, Ryan email: babbush@google.com organization: Google Research |
BookMark | eNp9kE9LxDAQxYOs4O7qF_AU8FxNmqRtjrL4DxZE0HNI02Tt0iY1ScH105vdioKHPc3AvN-8mbcAM-usBuASo2uMSHUTKGZFmaEcZQhjxLLdCZjjkrIspxWe_fYlOQOLELYI0bzAZA7UyyhtHHsoh8G7z7aXUUM3xLZvv2RsnYXOwGSWDZ200sONl8M7TNK6032AaS7hzyiMg_bK2WZUsbWbvUjpEJw_B6dGdkFf_NQleLu_e109Zuvnh6fV7TpTpGIxw41JNxkta00woWXDUWMMrZnJjSaccV4URc1KXUokS6YoIbwyhZG8YqqpNFmCq2lvcv4YdYhi60Zvk6XIKecU4fR2UuWTSnkXgtdGDD697XcCI7EPU0xhihSmOIQpdgmq_kGqjYd8opdtdxwlExqSj91o_3fVEeobmdWOgw |
CitedBy_id | crossref_primary_10_1103_PhysRevApplied_23_014045 crossref_primary_10_1002_qute_202300113 crossref_primary_10_1007_s11433_021_1844_7 crossref_primary_10_1103_PhysRevA_103_042612 crossref_primary_10_1103_PhysRevResearch_6_013071 crossref_primary_10_1103_RevModPhys_94_015004 crossref_primary_10_1109_ACCESS_2023_3324253 crossref_primary_10_1140_epjqt_s40507_023_00166_1 crossref_primary_10_3390_e24111685 crossref_primary_10_1103_PhysRevA_105_012402 crossref_primary_10_1016_j_mattod_2023_02_014 crossref_primary_10_1142_S2010324723500029 crossref_primary_10_1007_s11467_022_1249_z crossref_primary_10_1103_PhysRevA_108_022610 crossref_primary_10_1088_1367_2630_acd571 crossref_primary_10_1103_PhysRevE_109_015307 crossref_primary_10_1088_2058_9565_acf59c crossref_primary_10_3390_e25081238 crossref_primary_10_22331_q_2023_03_17_952 crossref_primary_10_1088_1612_202X_accf79 crossref_primary_10_1103_PhysRevLett_130_050601 crossref_primary_10_1103_PhysRevApplied_21_067001 crossref_primary_10_1103_PhysRevA_111_022618 crossref_primary_10_1088_1674_1056_ac9b32 crossref_primary_10_1016_j_rser_2022_112493 crossref_primary_10_1103_PhysRevA_105_012419 crossref_primary_10_1088_2058_9565_ac7ba3 crossref_primary_10_1103_PRXQuantum_3_030304 crossref_primary_10_1038_s41567_020_01126_7 crossref_primary_10_1038_s41598_022_14767_w crossref_primary_10_1103_PhysRevResearch_5_023147 crossref_primary_10_1145_3711935 crossref_primary_10_1109_TQE_2021_3090207 crossref_primary_10_1007_s42484_022_00069_x crossref_primary_10_1103_PhysRevA_110_012404 crossref_primary_10_1002_andp_202200531 crossref_primary_10_21468_SciPostPhys_17_1_004 crossref_primary_10_22331_q_2024_02_13_1253 crossref_primary_10_1098_rsta_2021_0416 crossref_primary_10_1103_PhysRevA_109_052441 crossref_primary_10_1103_PhysRevA_109_052440 crossref_primary_10_22331_q_2024_03_14_1281 crossref_primary_10_1103_PhysRevX_13_041057 crossref_primary_10_1287_ijoc_2024_0551 crossref_primary_10_1007_s11433_022_2057_y crossref_primary_10_1103_PhysRevX_13_041052 crossref_primary_10_1103_PhysRevA_104_L030401 crossref_primary_10_1126_sciadv_adi0487 crossref_primary_10_1007_s11433_022_2044_5 crossref_primary_10_1103_PhysRevResearch_4_033012 crossref_primary_10_1088_1674_1056_acce9a crossref_primary_10_1103_PhysRevResearch_5_023141 crossref_primary_10_1038_s41598_023_31980_3 crossref_primary_10_2139_ssrn_4652979 crossref_primary_10_1103_PhysRevResearch_7_013129 crossref_primary_10_1007_s11128_024_04438_2 crossref_primary_10_1103_PhysRevA_110_042606 crossref_primary_10_1109_TQE_2021_3063635 crossref_primary_10_1038_s42254_022_00440_8 crossref_primary_10_1038_s41534_024_00854_5 crossref_primary_10_1063_5_0224883 crossref_primary_10_1103_PhysRevResearch_5_L012021 crossref_primary_10_1103_PhysRevX_11_031057 crossref_primary_10_1103_PhysRevX_12_041022 crossref_primary_10_3390_e26070586 crossref_primary_10_1038_s41534_021_00478_z crossref_primary_10_1088_2058_9565_ad9cba crossref_primary_10_1103_PhysRevB_108_075131 crossref_primary_10_1016_j_scib_2023_08_040 crossref_primary_10_1103_PhysRevA_110_012428 crossref_primary_10_1088_2058_9565_ac6824 crossref_primary_10_1038_s41467_021_27045_6 crossref_primary_10_1103_PhysRevResearch_4_033140 crossref_primary_10_1145_3517340 crossref_primary_10_1103_PhysRevResearch_4_033142 crossref_primary_10_1109_JSSC_2021_3115988 crossref_primary_10_1098_rsif_2022_0541 crossref_primary_10_1103_PhysRevResearch_4_033028 crossref_primary_10_1103_PhysRevResearch_4_033149 crossref_primary_10_1103_PhysRevA_106_022606 crossref_primary_10_1103_PhysRevResearch_4_033029 crossref_primary_10_21468_SciPostPhysCore_4_4_031 crossref_primary_10_1016_j_physa_2024_129951 crossref_primary_10_1103_PhysRevA_105_042415 crossref_primary_10_1103_PhysRevLett_131_140601 crossref_primary_10_1103_PhysRevResearch_3_043088 crossref_primary_10_1140_epjqt_s40507_024_00262_w crossref_primary_10_1103_PhysRevX_11_041032 crossref_primary_10_1140_epjqt_s40507_022_00123_4 crossref_primary_10_1016_j_ejor_2023_03_013 crossref_primary_10_1103_PhysRevApplied_19_024027 crossref_primary_10_1103_PhysRevA_111_012619 crossref_primary_10_22331_q_2024_04_30_1323 crossref_primary_10_1103_PhysRevApplied_18_064046 crossref_primary_10_1016_j_jcp_2024_112756 crossref_primary_10_1103_PhysRevA_109_042426 crossref_primary_10_1103_PRXQuantum_4_020304 crossref_primary_10_1002_cbic_202300120 crossref_primary_10_1088_2058_9565_acb1d0 crossref_primary_10_21468_SciPostPhys_14_5_132 crossref_primary_10_22331_q_2023_01_04_892 crossref_primary_10_1088_2058_9565_ac3e54 crossref_primary_10_1103_PhysRevResearch_6_023129 crossref_primary_10_1145_3510857 crossref_primary_10_1038_s41467_024_46623_y crossref_primary_10_22331_q_2021_08_30_532 crossref_primary_10_1063_5_0251601 crossref_primary_10_1103_PhysRevApplied_20_044041 crossref_primary_10_1103_PhysRevA_106_062414 crossref_primary_10_1145_3620668 crossref_primary_10_22331_q_2023_01_19_899 crossref_primary_10_1109_TQE_2022_3203153 crossref_primary_10_3390_math10152601 crossref_primary_10_1016_j_physrep_2024_03_002 crossref_primary_10_1063_5_0060246 crossref_primary_10_1145_3584706 crossref_primary_10_1103_PhysRevA_106_022423 crossref_primary_10_1038_s41534_022_00592_6 crossref_primary_10_1002_aic_17651 crossref_primary_10_1587_transfun_2022EAP1159 crossref_primary_10_1073_pnas_2212323120 crossref_primary_10_1109_TWC_2024_3523135 crossref_primary_10_1103_PhysRevA_109_062603 crossref_primary_10_1134_S0021364023603056 crossref_primary_10_1038_s41534_023_00718_4 crossref_primary_10_1103_PhysRevA_109_062602 crossref_primary_10_1038_s41534_024_00849_2 crossref_primary_10_1126_science_abq3754 crossref_primary_10_1103_PhysRevLett_134_090601 crossref_primary_10_22331_q_2021_06_17_479 crossref_primary_10_22331_q_2022_11_17_861 crossref_primary_10_3390_data7030028 crossref_primary_10_1109_ACCESS_2025_3528443 crossref_primary_10_1016_j_gmod_2024_101237 crossref_primary_10_22331_q_2021_05_04_454 crossref_primary_10_1103_PhysRevApplied_22_044074 crossref_primary_10_1103_PRXQuantum_4_040335 crossref_primary_10_1103_PhysRevLett_127_180501 crossref_primary_10_1002_qute_202300055 crossref_primary_10_1109_ACCESS_2024_3432330 crossref_primary_10_1134_S0021364023604256 crossref_primary_10_1038_s41534_021_00452_9 crossref_primary_10_1103_PhysRevA_109_032420 crossref_primary_10_1088_1751_8121_ad00f0 crossref_primary_10_1103_PhysRevResearch_6_043297 crossref_primary_10_22331_q_2022_05_11_710 crossref_primary_10_1109_TWC_2024_3383101 crossref_primary_10_3389_frqst_2024_1321264 crossref_primary_10_1088_1674_1056_ad09ca crossref_primary_10_1140_epjc_s10052_022_10377_y crossref_primary_10_1103_PhysRevA_105_052414 crossref_primary_10_22331_q_2021_06_01_464 crossref_primary_10_1103_PhysRevResearch_5_023171 crossref_primary_10_1103_PhysRevA_104_032401 crossref_primary_10_1109_JETCAS_2022_3202870 crossref_primary_10_1103_PhysRevA_107_042418 crossref_primary_10_1103_PhysRevA_106_010101 crossref_primary_10_1103_PhysRevA_109_032413 crossref_primary_10_1109_TIT_2023_3250100 crossref_primary_10_1016_j_jfranklin_2022_10_027 crossref_primary_10_1103_PhysRevResearch_5_043285 crossref_primary_10_22331_q_2021_04_20_437 crossref_primary_10_1103_PhysRevA_104_012403 crossref_primary_10_3367_UFNr_2021_02_038934 crossref_primary_10_1103_PhysRevLett_131_073602 crossref_primary_10_3367_UFNe_2021_02_038934 crossref_primary_10_1098_rsta_2021_0282 crossref_primary_10_1088_2058_9565_ad895c crossref_primary_10_22331_q_2023_09_11_1106 crossref_primary_10_1103_PhysRevA_111_012416 crossref_primary_10_1103_PhysRevLett_133_173201 crossref_primary_10_1103_PhysRevResearch_6_013223 crossref_primary_10_1007_s12033_023_00863_3 crossref_primary_10_1103_PhysRevE_110_065306 crossref_primary_10_3390_e26121025 crossref_primary_10_1038_s41598_024_70649_3 crossref_primary_10_22331_q_2024_02_05_1242 crossref_primary_10_1103_PhysRevA_109_032408 crossref_primary_10_1038_s42254_024_00796_z crossref_primary_10_1103_PhysRevApplied_19_044001 crossref_primary_10_1109_TCOMM_2022_3185287 crossref_primary_10_1007_s00521_022_07438_4 crossref_primary_10_1109_TQE_2021_3066275 crossref_primary_10_1109_TQE_2023_3325167 crossref_primary_10_1137_22M1514581 crossref_primary_10_1038_s41534_021_00440_z crossref_primary_10_1038_s41566_022_01019_6 crossref_primary_10_1103_PhysRevA_104_L010401 crossref_primary_10_1021_acs_jctc_2c00910 crossref_primary_10_1360_SSPMA_2024_0531 crossref_primary_10_1007_s43673_022_00058_z crossref_primary_10_1109_LSP_2024_3480043 crossref_primary_10_1038_s41534_024_00825_w crossref_primary_10_1103_PRXQuantum_3_020365 crossref_primary_10_1088_2058_9565_ac26af crossref_primary_10_1103_PhysRevApplied_20_014024 crossref_primary_10_1103_PhysRevApplied_19_024043 crossref_primary_10_1088_2632_2153_ada0a4 crossref_primary_10_1109_ACCESS_2025_3550788 crossref_primary_10_1103_PhysRevA_108_042406 crossref_primary_10_22331_q_2021_03_22_415 crossref_primary_10_1063_5_0189374 crossref_primary_10_22331_q_2022_12_07_870 crossref_primary_10_1103_PhysRevResearch_6_023026 crossref_primary_10_1088_2058_9565_ac9013 crossref_primary_10_1103_PRXQuantum_2_030318 crossref_primary_10_1016_j_scib_2021_10_017 crossref_primary_10_1103_PhysRevA_110_032421 crossref_primary_10_22331_q_2023_11_21_1186 crossref_primary_10_1103_PhysRevResearch_6_023031 crossref_primary_10_1016_j_apenergy_2024_122878 crossref_primary_10_22331_q_2022_03_30_677 crossref_primary_10_1103_PhysRevB_108_L161301 crossref_primary_10_1109_MNET_012_2000770 crossref_primary_10_1103_PhysRevB_110_075302 crossref_primary_10_1103_PhysRevB_106_214429 crossref_primary_10_1038_s41598_024_67922_w crossref_primary_10_1103_PhysRevA_103_042412 crossref_primary_10_1103_PhysRevA_105_032454 crossref_primary_10_1007_s42484_023_00132_1 crossref_primary_10_1103_PhysRevResearch_5_043005 crossref_primary_10_1103_PhysRevResearch_5_043126 crossref_primary_10_1103_PhysRevResearch_5_033159 crossref_primary_10_1007_s11432_022_3511_5 crossref_primary_10_1103_PRXQuantum_2_030346 crossref_primary_10_1103_PhysRevX_11_021026 crossref_primary_10_1038_s44172_023_00061_8 crossref_primary_10_22331_q_2022_04_13_688 crossref_primary_10_22331_q_2022_04_13_687 crossref_primary_10_1109_TQE_2022_3175267 crossref_primary_10_1038_s41534_021_00496_x crossref_primary_10_1038_s41598_022_20853_w crossref_primary_10_3390_electronics11071033 crossref_primary_10_1103_PhysRevApplied_23_034022 crossref_primary_10_1088_1367_2630_acb22c crossref_primary_10_1103_PhysRevResearch_4_013141 crossref_primary_10_1038_s41598_023_45540_2 crossref_primary_10_1103_PhysRevA_106_042421 crossref_primary_10_1126_sciadv_abi8009 crossref_primary_10_1038_s41567_021_01356_3 crossref_primary_10_1103_PhysRevResearch_4_023249 crossref_primary_10_1088_2058_9565_ac91ef crossref_primary_10_1103_PhysRevApplied_22_054037 crossref_primary_10_1063_5_0068255 crossref_primary_10_22331_q_2024_07_03_1395 crossref_primary_10_1038_s41534_022_00596_2 crossref_primary_10_1016_j_neunet_2024_106508 crossref_primary_10_1103_PhysRevA_110_022441 crossref_primary_10_1103_PhysRevLett_127_212001 crossref_primary_10_1103_PRXQuantum_3_040339 crossref_primary_10_1038_s41534_024_00906_w crossref_primary_10_1103_PhysRevA_109_012429 crossref_primary_10_1103_PhysRevApplied_21_044035 crossref_primary_10_1103_PhysRevA_107_062406 crossref_primary_10_1103_PhysRevResearch_5_013097 crossref_primary_10_1109_TASC_2025_3540049 crossref_primary_10_1103_PhysRevA_105_032433 crossref_primary_10_1103_PhysRevApplied_16_054023 crossref_primary_10_1103_PhysRevA_110_032206 crossref_primary_10_1126_science_abo6587 crossref_primary_10_22331_q_2023_09_26_1121 crossref_primary_10_1038_s42005_024_01577_x crossref_primary_10_1103_PhysRevLett_130_190601 crossref_primary_10_1038_s41598_024_76967_w crossref_primary_10_1088_2058_9565_aca3ce crossref_primary_10_1038_s41598_022_10555_8 crossref_primary_10_1088_2058_9565_ad35e4 crossref_primary_10_1103_PhysRevResearch_3_013286 crossref_primary_10_1088_1361_6455_ac6366 crossref_primary_10_22331_q_2021_07_01_491 crossref_primary_10_1103_PRXQuantum_3_040326 crossref_primary_10_1007_s42484_024_00167_y crossref_primary_10_1103_PhysRevLett_127_110504 crossref_primary_10_1103_PhysRevApplied_20_034062 crossref_primary_10_1103_PhysRevApplied_20_064016 crossref_primary_10_1109_ACCESS_2023_3336989 crossref_primary_10_1103_PhysRevA_108_032409 crossref_primary_10_1103_PhysRevA_109_012436 crossref_primary_10_1103_PhysRevA_108_032408 crossref_primary_10_1038_s41467_022_33335_4 crossref_primary_10_1038_s41586_022_04603_6 crossref_primary_10_1631_jzus_A2400397 crossref_primary_10_3390_a15100356 crossref_primary_10_1007_s11433_024_2501_4 crossref_primary_10_1103_PhysRevA_104_062426 crossref_primary_10_1103_PhysRevX_11_021058 crossref_primary_10_1002_qute_202300461 crossref_primary_10_1038_s41534_023_00787_5 |
Cites_doi | 10.1126/science.1252319 10.3389/fphy.2014.00005 10.3390/a12020034 10.1007/s11128-020-02692-8 10.1038/s41566-018-0236-y 10.1103/PhysRevA.97.022304 10.1038/s41586-019-1666-5 10.1073/pnas.2006373117 10.1038/s41928-020-00498-1 10.1088/2058-9565/abb6d9 10.1103/PhysRevA.94.022309 10.1016/j.parco.2016.11.002 10.1103/PhysRevA.95.062317 10.1103/PhysRevApplied.14.034010 10.1103/PhysRevE.58.5355 10.1126/science.1057726 10.1145/227683.227684 10.1038/s41467-018-07090-4 10.1103/PhysRevLett.35.1792 10.1007/3-540-48523-6_17 10.5281/zenodo.3992332 10.1088/0305-4470/15/10/028 10.1007/s11128-008-0082-9 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2021 The Author(s), under exclusive licence to Springer Nature Limited 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021 – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021. |
DBID | AAYXX CITATION 3V. 7U5 7XB 88I 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ L7M M2P P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1038/s41567-020-01105-y |
DatabaseName | CrossRef ProQuest Central (Corporate) Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Advanced Technologies Database with Aerospace Science Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | ProQuest Central Student |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1745-2481 |
EndPage | 336 |
ExternalDocumentID | 10_1038_s41567_020_01105_y |
GrantInformation_xml | – fundername: Dave Bacon is a CIFAR Associate Fellow in the Quantum Information Science Program – fundername: EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020) grantid: 828826; 828826; 828826; 828826 funderid: https://doi.org/10.13039/100010661 |
GroupedDBID | 0R~ 123 29M 39C 3V. 4.4 5BI 5M7 6OB 70F 88I 8FE 8FG 8FH 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFO ACGFS ACGOD ACMJI ACUHS ADBBV ADFRT AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHOSX AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ CCPQU DB5 DU5 DWQXO EBS EE. EJD ESX EXGXG F5P FEDTE FQGFK FSGXE GNUQQ HCIFZ HVGLF HZ~ I-F LGEZI LK5 LOTEE M2P M7R N9A NADUK NNMJJ NXXTH O9- ODYON P2P P62 PCBAR PQQKQ PROAC Q2X RNS RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ TAOOD TBHMF TDRGL TSG TUS ~8M AAYXX ABFSG ACMFV ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT 7U5 7XB 8FD 8FK L7M PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c385t-1df261feabe31347d90dff4b5f2fe39599666b57e7a0a75c43398f6fa985cd8e3 |
IEDL.DBID | BENPR |
ISSN | 1745-2473 |
IngestDate | Sat Aug 23 13:29:06 EDT 2025 Tue Jul 01 00:25:40 EDT 2025 Thu Apr 24 23:07:18 EDT 2025 Fri Feb 21 02:37:13 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-1df261feabe31347d90dff4b5f2fe39599666b57e7a0a75c43398f6fa985cd8e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2562-1618 0000-0002-6523-6730 0000-0001-5446-4677 0000-0001-9867-2371 0000-0002-7760-9186 0000-0001-5865-0813 0000-0002-2585-2424 0000-0001-7134-5733 0000-0001-8474-6317 0000-0001-6979-9533 0000-0001-9412-0553 0000-0002-8497-6363 0000-0001-9804-2185 0000-0002-1090-7584 0000-0002-5841-181X 0000-0002-5548-0051 0000-0002-9544-141X 0000-0003-0837-1028 0000-0001-7598-8621 |
PQID | 2499401004 |
PQPubID | 27545 |
PageCount | 5 |
ParticipantIDs | proquest_journals_2499401004 crossref_primary_10_1038_s41567_020_01105_y crossref_citationtrail_10_1038_s41567_020_01105_y springer_journals_10_1038_s41567_020_01105_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature physics |
PublicationTitleAbbrev | Nat. Phys |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | WangZHadfieldSJiangZRieffelEGQuantum approximate optimization algorithm for MaxCut: a fermionic viewPhys. Rev. A2018970223042018PhRvA..97b2304W10.1103/PhysRevA.97.022304 BiswasRA NASA perspective on quantum computing: opportunities and challengesParallel Comput.2017648198365572610.1016/j.parco.2016.11.002 AruteFQuantum supremacy using a programmable superconducting processorNature20195745055102019Natur.574..505A10.1038/s41586-019-1666-5 Kelly, J., O’Malley, P., Neeley, M., Neven, H. & Martinis, J. M. Physical qubit calibration on a directed acyclic graph. Preprint at https://arxiv.org/abs/1803.03226 (2018). RønnowTFDefining and detecting quantum speedupScience20143454204242014Sci...345..420R10.1126/science.1252319 Sung, K. J. et al. Using models to improve optimizers for variational quantum algorithms. Quantum Sci. Technol.https://doi.org/10.1088/2058-9565/abb6d9 (2020). Google AI Quantum and collaborators. Sycamore QAOA experimental data. figsharehttps://figshare.com/articles/dataset/Sycamore_QAOA_experimental_data/12597590 (2020). PaganoGQuantum approximate optimization of the long-range Ising model with a trapped-ion quantum simulatorProc. Natl Acad. Sci. USA202011725396254012020PNAS..11725396P10.1073/pnas.2006373117 Cowtan, A. et al. On the qubit routing problem. In 14th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2019), Vol. 135 of Leibniz International Proc. Informatics (LIPIcs) (eds van Dam, W. & Mancinska, L.) 5:1–5:32 (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019); http://drops.dagstuhl.de/opus/volltexte/2019/10397 KadowakiTNishimoriHQuantum annealing in the transverse Ising modelPhys. Rev. E199858535553631998PhRvE..58.5355K10.1103/PhysRevE.58.5355 WillschMWillschDJinFDe RaedtHMichielsenKBenchmarking the quantum approximate optimization algorithmQuantum Inf. Process.2020192020QuIP...19..197W410865910.1007/s11128-020-02692-8 Klimov, P. V., Kelly, J., Martinis, J. M. & Neven, H. The snake optimizer for learning quantum processor control parameters. Preprint at https://arxiv.org/abs/2006.04594 (2020). Berman, P. & Karpinski, M. in Automata, Languages and Programming (eds Wiedermann, J. et al.) 200–209 (Springer, 1999). Google AI Quantum and collaborators Recirq. Zenodohttps://doi.org/10.5281/zenodo.3992332 (2020). Farhi, E. & Harrow, A. W. Quantum supremacy through the quantum approximate optimization algorithm. Preprint at https://arxiv.org/abs/1602.07674 (2016). HadfieldSFrom the quantum approximate optimization algorithm to a quantum alternating operator ansatzAlgorithms20171234393270710.3390/a12020034 BarahonaFOn the computational complexity of Ising spin glass modelsJ. Phys. A198215324132531982JPhA...15.3241B68459110.1088/0305-4470/15/10/028 ChoiVMinor-embedding in adiabatic quantum computation: I. The parameter setting problemQuantum Inf. Process.20087193209245360410.1007/s11128-008-0082-9 LucasAIsing formulations of many NP problemsFront. Phys.20142510.3389/fphy.2014.00005 FarhiEA quantum adiabatic evolution algorithm applied to random instances of an NP-complete problemScience20012924724752001Sci...292..472F183876110.1126/science.1057726 JiangZRieffelEGWangZNear-optimal quantum circuit for Grover’s unstructured search using a transverse fieldPhys. Rev. A2017950623172017PhRvA..95f2317J10.1103/PhysRevA.95.062317 Farhi, E., Goldstone, J. & Gutmann, S. A quantum approximate optimization algorithm. Preprint at https://arxiv.org/abs/1411.4028 (2014). McCleanJRBoixoSSmelyanskiyVNBabbushRNevenHBarren plateaus in quantum neural network training landscapesNat. Commun.201892018NatCo...9.4812M10.1038/s41467-018-07090-4 YangZ-CRahmaniAShabaniANevenHChamonCOptimizing variational quantum algorithms using Pontryagin’s minimum principlePhys. Rev. X20177021027 QiangXLarge-scale silicon quantum photonics implementing arbitrary two-qubit processingNat. Photon.2018125345392018NaPho..12..534Q10.1038/s41566-018-0236-y Montanari, A. Optimization of the Sherrington–Kirkpatrick Hamiltonian. Preprint at https://arxiv.org/abs/1812.10897 (2018). Farhi, E., Goldstone, J., Gutmann, S. & Zhou, L. The quantum approximate optimization algorithm and the Sherrington–Kirkpatrick model at infinite size. Preprint at https://arxiv.org/abs/1910.08187 (2019). Otterbach, J. S. et al. Unsupervised machine learning on a hybrid quantum computer. Preprint at https://arxiv.org/abs/1712.05771 (2017). BengtssonAImproved success probability with greater circuit depth for the quantum approximate optimization algorithmPhys. Rev. Appl.2020140340102020PhRvP..14c4010B10.1103/PhysRevApplied.14.034010 SherringtonDKirkpatrickSSolvable model of a spin-glassPhys. Rev. Lett.197535179217961975PhRvL..35.1792S10.1103/PhysRevLett.35.1792 The Cirq Developers Cirq: a python framework for creating, editing, and invoking noisy intermediate scale quantum (NISQ) circuits. GitHubhttps://github.com/quantumlib/Cirq (2020). GoemansMXWilliamsonDPImproved approximation algorithms for maximum cut and satisfiability problems using semidefinite programmingJ. Assoc. Comput. Mach.19954211151145141222810.1145/227683.227684 DenchevVSWhat is the computational value of finite-range tunneling?Phys. Rev. X20166031015 Lloyd, S. Quantum approximate optimization is computationally universal. Preprint at https://arxiv.org/abs/1812.11075 (2018). Farhi, E., Goldstone, J. & Gutmann, S. A quantum approximate optimization algorithm applied to a bounded occurrence constraint problem. Preprint at https://arxiv.org/abs/1412.6062 (2014). WeckerDHastingsMBTroyerMTraining a quantum optimizerPhys. Rev. A2016940223092016PhRvA..94b2309W10.1103/PhysRevA.94.022309 AbramsDMDidierNJohnsonBRda SilvaMPRyanCAImplementation of XY entangling gates with a single calibrated pulseNat. Electron.2020374475010.1038/s41928-020-00498-1 Halperin, E., Livnat, D. & Zwick, U. Max Cut in cubic graphs. In Proc. Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’02 506–513 (Society for Industrial and Applied Mathematics, 2002). HirataYNakanishiMYamashitaSNakashimaYAn efficient conversion of quantum circuits to a linear nearest neighbor architectureQuantum Inf. Comput.20111114216627970111237.81050 1105_CR33 1105_CR10 1105_CR37 1105_CR17 1105_CR39 1105_CR38 T Kadowaki (1105_CR14) 1998; 58 TF Rønnow (1105_CR27) 2014; 345 A Lucas (1105_CR11) 2014; 2 M Willsch (1105_CR18) 2020; 19 1105_CR31 1105_CR30 Z Jiang (1105_CR6) 2017; 95 DM Abrams (1105_CR19) 2020; 3 F Barahona (1105_CR12) 1982; 15 X Qiang (1105_CR22) 2018; 12 S Hadfield (1105_CR8) 2017; 12 VS Denchev (1105_CR16) 2016; 6 1105_CR1 1105_CR24 1105_CR2 1105_CR26 Z Wang (1105_CR7) 2018; 97 1105_CR25 1105_CR5 Y Hirata (1105_CR34) 2011; 11 MX Goemans (1105_CR28) 1995; 42 F Arute (1105_CR23) 2019; 574 A Bengtsson (1105_CR20) 2020; 14 D Sherrington (1105_CR32) 1975; 35 G Pagano (1105_CR21) 2020; 117 JR McClean (1105_CR36) 2018; 9 1105_CR29 1105_CR9 E Farhi (1105_CR15) 2001; 292 R Biswas (1105_CR3) 2017; 64 Z-C Yang (1105_CR35) 2017; 7 D Wecker (1105_CR4) 2016; 94 V Choi (1105_CR13) 2008; 7 |
References_xml | – reference: Farhi, E. & Harrow, A. W. Quantum supremacy through the quantum approximate optimization algorithm. Preprint at https://arxiv.org/abs/1602.07674 (2016). – reference: LucasAIsing formulations of many NP problemsFront. Phys.20142510.3389/fphy.2014.00005 – reference: Google AI Quantum and collaborators. Sycamore QAOA experimental data. figsharehttps://figshare.com/articles/dataset/Sycamore_QAOA_experimental_data/12597590 (2020). – reference: KadowakiTNishimoriHQuantum annealing in the transverse Ising modelPhys. Rev. E199858535553631998PhRvE..58.5355K10.1103/PhysRevE.58.5355 – reference: McCleanJRBoixoSSmelyanskiyVNBabbushRNevenHBarren plateaus in quantum neural network training landscapesNat. Commun.201892018NatCo...9.4812M10.1038/s41467-018-07090-4 – reference: AbramsDMDidierNJohnsonBRda SilvaMPRyanCAImplementation of XY entangling gates with a single calibrated pulseNat. Electron.2020374475010.1038/s41928-020-00498-1 – reference: Montanari, A. Optimization of the Sherrington–Kirkpatrick Hamiltonian. Preprint at https://arxiv.org/abs/1812.10897 (2018). – reference: ChoiVMinor-embedding in adiabatic quantum computation: I. The parameter setting problemQuantum Inf. Process.20087193209245360410.1007/s11128-008-0082-9 – reference: Klimov, P. V., Kelly, J., Martinis, J. M. & Neven, H. The snake optimizer for learning quantum processor control parameters. Preprint at https://arxiv.org/abs/2006.04594 (2020). – reference: FarhiEA quantum adiabatic evolution algorithm applied to random instances of an NP-complete problemScience20012924724752001Sci...292..472F183876110.1126/science.1057726 – reference: AruteFQuantum supremacy using a programmable superconducting processorNature20195745055102019Natur.574..505A10.1038/s41586-019-1666-5 – reference: JiangZRieffelEGWangZNear-optimal quantum circuit for Grover’s unstructured search using a transverse fieldPhys. Rev. A2017950623172017PhRvA..95f2317J10.1103/PhysRevA.95.062317 – reference: Sung, K. J. et al. Using models to improve optimizers for variational quantum algorithms. Quantum Sci. Technol.https://doi.org/10.1088/2058-9565/abb6d9 (2020). – reference: PaganoGQuantum approximate optimization of the long-range Ising model with a trapped-ion quantum simulatorProc. Natl Acad. Sci. USA202011725396254012020PNAS..11725396P10.1073/pnas.2006373117 – reference: Farhi, E., Goldstone, J., Gutmann, S. & Zhou, L. The quantum approximate optimization algorithm and the Sherrington–Kirkpatrick model at infinite size. Preprint at https://arxiv.org/abs/1910.08187 (2019). – reference: Google AI Quantum and collaborators Recirq. Zenodohttps://doi.org/10.5281/zenodo.3992332 (2020). – reference: Farhi, E., Goldstone, J. & Gutmann, S. A quantum approximate optimization algorithm applied to a bounded occurrence constraint problem. Preprint at https://arxiv.org/abs/1412.6062 (2014). – reference: BengtssonAImproved success probability with greater circuit depth for the quantum approximate optimization algorithmPhys. Rev. Appl.2020140340102020PhRvP..14c4010B10.1103/PhysRevApplied.14.034010 – reference: WillschMWillschDJinFDe RaedtHMichielsenKBenchmarking the quantum approximate optimization algorithmQuantum Inf. Process.2020192020QuIP...19..197W410865910.1007/s11128-020-02692-8 – reference: Halperin, E., Livnat, D. & Zwick, U. Max Cut in cubic graphs. In Proc. Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’02 506–513 (Society for Industrial and Applied Mathematics, 2002). – reference: RønnowTFDefining and detecting quantum speedupScience20143454204242014Sci...345..420R10.1126/science.1252319 – reference: BarahonaFOn the computational complexity of Ising spin glass modelsJ. Phys. A198215324132531982JPhA...15.3241B68459110.1088/0305-4470/15/10/028 – reference: Farhi, E., Goldstone, J. & Gutmann, S. A quantum approximate optimization algorithm. Preprint at https://arxiv.org/abs/1411.4028 (2014). – reference: YangZ-CRahmaniAShabaniANevenHChamonCOptimizing variational quantum algorithms using Pontryagin’s minimum principlePhys. Rev. X20177021027 – reference: HadfieldSFrom the quantum approximate optimization algorithm to a quantum alternating operator ansatzAlgorithms20171234393270710.3390/a12020034 – reference: QiangXLarge-scale silicon quantum photonics implementing arbitrary two-qubit processingNat. Photon.2018125345392018NaPho..12..534Q10.1038/s41566-018-0236-y – reference: Cowtan, A. et al. On the qubit routing problem. In 14th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2019), Vol. 135 of Leibniz International Proc. Informatics (LIPIcs) (eds van Dam, W. & Mancinska, L.) 5:1–5:32 (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019); http://drops.dagstuhl.de/opus/volltexte/2019/10397 – reference: BiswasRA NASA perspective on quantum computing: opportunities and challengesParallel Comput.2017648198365572610.1016/j.parco.2016.11.002 – reference: WangZHadfieldSJiangZRieffelEGQuantum approximate optimization algorithm for MaxCut: a fermionic viewPhys. Rev. A2018970223042018PhRvA..97b2304W10.1103/PhysRevA.97.022304 – reference: DenchevVSWhat is the computational value of finite-range tunneling?Phys. Rev. X20166031015 – reference: The Cirq Developers Cirq: a python framework for creating, editing, and invoking noisy intermediate scale quantum (NISQ) circuits. GitHubhttps://github.com/quantumlib/Cirq (2020). – reference: HirataYNakanishiMYamashitaSNakashimaYAn efficient conversion of quantum circuits to a linear nearest neighbor architectureQuantum Inf. Comput.20111114216627970111237.81050 – reference: GoemansMXWilliamsonDPImproved approximation algorithms for maximum cut and satisfiability problems using semidefinite programmingJ. Assoc. Comput. Mach.19954211151145141222810.1145/227683.227684 – reference: WeckerDHastingsMBTroyerMTraining a quantum optimizerPhys. Rev. A2016940223092016PhRvA..94b2309W10.1103/PhysRevA.94.022309 – reference: Berman, P. & Karpinski, M. in Automata, Languages and Programming (eds Wiedermann, J. et al.) 200–209 (Springer, 1999). – reference: SherringtonDKirkpatrickSSolvable model of a spin-glassPhys. Rev. Lett.197535179217961975PhRvL..35.1792S10.1103/PhysRevLett.35.1792 – reference: Lloyd, S. Quantum approximate optimization is computationally universal. Preprint at https://arxiv.org/abs/1812.11075 (2018). – reference: Kelly, J., O’Malley, P., Neeley, M., Neven, H. & Martinis, J. M. Physical qubit calibration on a directed acyclic graph. Preprint at https://arxiv.org/abs/1803.03226 (2018). – reference: Otterbach, J. S. et al. Unsupervised machine learning on a hybrid quantum computer. Preprint at https://arxiv.org/abs/1712.05771 (2017). – volume: 345 start-page: 420 year: 2014 ident: 1105_CR27 publication-title: Science doi: 10.1126/science.1252319 – ident: 1105_CR39 – volume: 7 start-page: 021027 year: 2017 ident: 1105_CR35 publication-title: Phys. Rev. X – ident: 1105_CR33 – ident: 1105_CR10 – volume: 2 start-page: 5 year: 2014 ident: 1105_CR11 publication-title: Front. Phys. doi: 10.3389/fphy.2014.00005 – ident: 1105_CR31 – ident: 1105_CR5 – volume: 12 start-page: 34 year: 2017 ident: 1105_CR8 publication-title: Algorithms doi: 10.3390/a12020034 – volume: 19 year: 2020 ident: 1105_CR18 publication-title: Quantum Inf. Process. doi: 10.1007/s11128-020-02692-8 – volume: 12 start-page: 534 year: 2018 ident: 1105_CR22 publication-title: Nat. Photon. doi: 10.1038/s41566-018-0236-y – ident: 1105_CR1 – volume: 97 start-page: 022304 year: 2018 ident: 1105_CR7 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.97.022304 – volume: 574 start-page: 505 year: 2019 ident: 1105_CR23 publication-title: Nature doi: 10.1038/s41586-019-1666-5 – ident: 1105_CR24 – ident: 1105_CR26 – ident: 1105_CR17 – volume: 117 start-page: 25396 year: 2020 ident: 1105_CR21 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2006373117 – volume: 3 start-page: 744 year: 2020 ident: 1105_CR19 publication-title: Nat. Electron. doi: 10.1038/s41928-020-00498-1 – ident: 1105_CR37 doi: 10.1088/2058-9565/abb6d9 – volume: 94 start-page: 022309 year: 2016 ident: 1105_CR4 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.94.022309 – ident: 1105_CR9 – volume: 64 start-page: 81 year: 2017 ident: 1105_CR3 publication-title: Parallel Comput. doi: 10.1016/j.parco.2016.11.002 – volume: 95 start-page: 062317 year: 2017 ident: 1105_CR6 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.95.062317 – volume: 14 start-page: 034010 year: 2020 ident: 1105_CR20 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.14.034010 – volume: 11 start-page: 142 year: 2011 ident: 1105_CR34 publication-title: Quantum Inf. Comput. – volume: 58 start-page: 5355 year: 1998 ident: 1105_CR14 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.58.5355 – ident: 1105_CR29 – ident: 1105_CR2 – volume: 292 start-page: 472 year: 2001 ident: 1105_CR15 publication-title: Science doi: 10.1126/science.1057726 – volume: 42 start-page: 1115 year: 1995 ident: 1105_CR28 publication-title: J. Assoc. Comput. Mach. doi: 10.1145/227683.227684 – volume: 9 year: 2018 ident: 1105_CR36 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07090-4 – volume: 35 start-page: 1792 year: 1975 ident: 1105_CR32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.35.1792 – ident: 1105_CR25 – ident: 1105_CR30 doi: 10.1007/3-540-48523-6_17 – ident: 1105_CR38 doi: 10.5281/zenodo.3992332 – volume: 15 start-page: 3241 year: 1982 ident: 1105_CR12 publication-title: J. Phys. A doi: 10.1088/0305-4470/15/10/028 – volume: 7 start-page: 193 year: 2008 ident: 1105_CR13 publication-title: Quantum Inf. Process. doi: 10.1007/s11128-008-0082-9 – volume: 6 start-page: 031015 year: 2016 ident: 1105_CR16 publication-title: Phys. Rev. X |
SSID | ssj0042613 |
Score | 2.7256267 |
Snippet | Faster algorithms for combinatorial optimization could prove transformative for diverse areas such as logistics, finance and machine learning. Accordingly, the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 332 |
SubjectTerms | 639/705/1042 639/766/483/481 Algorithms Atomic Classical and Continuum Physics Combinatorial analysis Complex Systems Condensed Matter Physics Gates (circuits) Graph theory Graphs Hardware Logistics Machine learning Mathematical and Computational Physics Microprocessors Molecular Optical and Plasma Physics Optimization Optimization algorithms Physics Physics and Astronomy Quantum computers Qubits (quantum computing) Superconductivity Theoretical |
Title | Quantum approximate optimization of non-planar graph problems on a planar superconducting processor |
URI | https://link.springer.com/article/10.1038/s41567-020-01105-y https://www.proquest.com/docview/2499401004 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90Q_BF_MT5MfLgmwa7JWnTJ3GyKYJDxYFvJU0TENxW1w3cf--lTR0K-tSHtKG9S-_ul9z9DuAsC2KJ0IfTwKU2cikCKlOuqOCGKXR_SisHFB-G4d2I37-KV7_hVvi0ytomloY6m2q3R36JMCFGLIA6vco_qOsa5U5XfQuNdWiiCZayAc1ef_j4XNtihw9YVRIpaJdHzJfNBExeFg66RNTBJ-cDBV3-dE2rePPXEWnpeQbbsOVDRnJd6XgH1sxkFzbK1E1d7IF-WqB0FmNS0oN_vmEIasgULcHYl1iSqSUI8mn-riZqRkqKauIbyRQExxXxQ8UiNzMEyI4DFl-F5FUVwXS2D6NB_-XmjvrWCVQzKea0k1n8dGtUapgrFs3iILOWp8J2rWGx42QJw1REJlKBioTmjMXShlbF0rEFGHYADXwzcwjEpl3LGEYOeOE6RkAVpR2lWMZTHWodt6BTSy3Rnlfctbd4T8rzbSaTStIJSjopJZ0sW3D-_UxesWr8e_dJrYzE_2FFsloPLbioFbQa_nu2o_9nO4bNrktbKdPMTqAxny3MKcYd87QN63Jw24bm9aDXG7b9UvsCX1TXuw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxKvqlgI-wAmsZmM7cQ4IIWDZ0oeE1Eq9uY5jS5XaTdjsquyf4jcy4ySsQKK3niLFiWXNTGbmy7wAXldJoRH6SJ5QaqPUKuG6lJYr6YVF82edJaB4dJxNT-W3M3W2Ab-GWhhKqxx0YlTUVe3oH_kewoQCsQDy9EPzg9PUKIquDiM0OrE48KtrhGzt-_3PyN83aTr5cvJpyvupAtwJrRZ8XAVEDcHb0guqo6yKpApBliqkwYuC2pVkWalyn9vE5spJIQodsmALTYX0XuC-d-Au3SawpydfB81PaER0BZiKpzIXfZFOIvReS0Ap5wTWyOIqvvrbEK69238CstHOTR7Bw95BZR87iXoMG372BO7FRFHXPgX3fYm8WF6x2Iz85wU6vJ7VqHeu-oJOVgc2q2e8ubQzO2exITbrx9a0DNct65faZePnCMep4ywehTVdzUI9fwant0LSLdjEk_ltYKFMgxDop-BFugLhW16OrRWVLF3mXDGC8UA14_ou5jRM49LEaLrQpqO0QUqbSGmzGsHbP-80XQ-PG5_eHZhh-u-5NWvpG8G7gUHr5f_vtnPzbq_g_vTk6NAc7h8fPIcHKSXMxAS3XdhczJf-BXo8i_JlFDMG57ct178BWYYRxA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcKp7q0hZ8gBNYm43tPA6oKrSrlsKqICr1ZhzHlpDaTdjsCvav8es6kzisQKK3nnJwbFkzE8988XwzAC_LKM8Q-kgeUWqjzFTEs0IarqQTBt2fsYaA4qdpcnwuP1yoiw343XNhKK2yPxPbg7qsLP0jHyFMyBELoE5HPqRFnB1O9usfnDpI0U1r306jM5FTt_qJ8K15e3KIun4Vx5Ojr--PeegwwK3I1IKPS48IwjtTOEGcyjKPSu9loXzsncipdEmSFCp1qYlMqqwUIs984k2eEaneCVz3DmymhIoGsPnuaHr2pfcDhE1ER8dUPJapCJSdSGSjhmBTygm6kf9VfPW3W1zHuv9cz7Zeb_IAtkK4yg46-3oIG272CO62aaO2eQz28xI1s7xibWnyX98x_HWswlPoKtA7WeXZrJrx-tLMzJy15bFZaGLTMBw3LAw1y9rNEZxT_VncCqs7BkM1fwLntyLUpzDAnbltYL6IvRAYteBD2hzBXFqMjRGlLGxibT6EcS81bUNNc2qtcanbu3WR6U7SGiWtW0nr1RBe_5lTdxU9bnx7t1eGDl93o9e2OIQ3vYLWw_9f7dnNq72Ae2jT-uPJ9HQH7seUPdNmu-3CYDFfuj0MfxbF82BnDL7dtmlfA5OdF1Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+approximate+optimization+of+non-planar+graph+problems+on+a+planar+superconducting+processor&rft.jtitle=Nature+physics&rft.au=Harrigan%2C+Matthew+P.&rft.au=Sung%2C+Kevin+J.&rft.au=Neeley%2C+Matthew&rft.au=Satzinger%2C+Kevin+J.&rft.date=2021-03-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=17&rft.issue=3&rft.spage=332&rft.epage=336&rft_id=info:doi/10.1038%2Fs41567-020-01105-y&rft.externalDocID=10_1038_s41567_020_01105_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon |