Analysing the requirements for an Open Research Knowledge Graph: use cases, quality requirements, and construction strategies

Current science communication has a number of drawbacks and bottlenecks which have been subject of discussion lately: Among others, the rising number of published articles makes it nearly impossible to get a full overview of the state of the art in a certain field, or reproducibility is hampered by...

Full description

Saved in:
Bibliographic Details
Published inInternational journal on digital libraries Vol. 23; no. 1; pp. 33 - 55
Main Authors Brack, Arthur, Hoppe, Anett, Stocker, Markus, Auer, Sören, Ewerth, Ralph
Format Journal Article
LanguageEnglish
Published Berlin, Heidelberg Springer 01.03.2022
Springer Berlin Heidelberg
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Current science communication has a number of drawbacks and bottlenecks which have been subject of discussion lately: Among others, the rising number of published articles makes it nearly impossible to get a full overview of the state of the art in a certain field, or reproducibility is hampered by fixed-length, document-based publications which normally cannot cover all details of a research work. Recently, several initiatives have proposed knowledge graphs (KG) for organising scientific information as a solution to many of the current issues. The focus of these proposals is, however, usually restricted to very specific use cases. In this paper, we aim to transcend this limited perspective and present a comprehensive analysis of requirements for an Open Research Knowledge Graph (ORKG) by (a) collecting and reviewing daily core tasks of a scientist, (b) establishing their consequential requirements for a KG-based system, (c) identifying overlaps and specificities, and their coverage in current solutions. As a result, we map necessary and desirable requirements for successful KG-based science communication, derive implications, and outline possible solutions.
AbstractList Current science communication has a number of drawbacks and bottlenecks which have been subject of discussion lately: Among others, the rising number of published articles makes it nearly impossible to get a full overview of the state of the art in a certain field, or reproducibility is hampered by fixed-length, document-based publications which normally cannot cover all details of a research work. Recently, several initiatives have proposed knowledge graphs (KG) for organising scientific information as a solution to many of the current issues. The focus of these proposals is, however, usually restricted to very specific use cases. In this paper, we aim to transcend this limited perspective and present a comprehensive analysis of requirements for an Open Research Knowledge Graph (ORKG) by (a) collecting and reviewing daily core tasks of a scientist, (b) establishing their consequential requirements for a KG-based system, (c) identifying overlaps and specificities, and their coverage in current solutions. As a result, we map necessary and desirable requirements for successful KG-based science communication, derive implications, and outline possible solutions.
Author Brack, Arthur
Ewerth, Ralph
Stocker, Markus
Hoppe, Anett
Auer, Sören
Author_xml – sequence: 1
  givenname: Arthur
  surname: Brack
  fullname: Brack, Arthur
– sequence: 2
  givenname: Anett
  surname: Hoppe
  fullname: Hoppe, Anett
– sequence: 3
  givenname: Markus
  surname: Stocker
  fullname: Stocker, Markus
– sequence: 4
  givenname: Sören
  surname: Auer
  fullname: Auer, Sören
– sequence: 5
  givenname: Ralph
  surname: Ewerth
  fullname: Ewerth, Ralph
BookMark eNp9kE1LHTEUhkNRqNr-gUIh0K3T5mtmku5EWlsqCGLXITdz5t7ImNybk0Hvov-90RH6sXCTnMX7vJzzHJODmCIQ8o6zj5yx_hPWx5iGCd4wJlnXPLwiR1xJ0XDJ2MFf82tyjHjLGOOa90fk11l00x5DXNOyAZphN4cMdxAL0jFl6iK92kKk14Dgst_QHzHdTzCsgV5kt918pjMC9Q4BT-ludlMo-39aTmvFQH2KWPLsS0iR1skVWAfAN-RwdBPC2-f_hPz8-uXm_FtzeXXx_fzssvFSt6XhrpOta_tRr4AbZvTgOBvGfiWU8kPbc-G5GtUwKuGlGgfNhemdWDkGRvt2kCfkw9K7zWk3AxZ7m-ZcL0crOqWEYKYzNaWXlM8JMcNofSjuceW6cJgsZ_ZRtl1k2yrbPsm2DxUV_6HbHO5c3r8MyQXCGo5ryH-2epF6v1BQpQa08OQ2ZSt0p5mRvwGkW6C2
CitedBy_id crossref_primary_10_1108_EL_06_2023_0154
crossref_primary_10_1007_s00799_023_00392_z
crossref_primary_10_5334_dsj_2024_052
crossref_primary_10_1108_IDD_06_2022_0054
crossref_primary_10_23919_JSEE_2024_000046
crossref_primary_10_3389_frma_2022_934930
crossref_primary_10_1016_j_aei_2024_103076
crossref_primary_10_1016_j_eswa_2023_121433
Cites_doi 10.1162/dint_a_00055
10.1016/B978-0-12-381972-7.00002-6
10.1093/nar/gkh061
10.18653/v1/n19-1370
10.18653/v1/n19-1423
10.1007/978-3-319-67008-9_25
10.1177/0165551518801819
10.1186/s12859-017-1775-9
10.1080/24751839.2018.1460083
10.1007/978-3-642-20795-2_6
10.1145/2623330.2623623
10.1045/january2017-burton
10.18653/v1/s18-1111
10.1007/978-3-319-93935-3
10.18653/v1/p19-1513
10.1109/JPROC.2015.2483592
10.1007/978-3-030-30796-7_8
10.1007/978-3-540-72667-8_37
10.1007/978-3-030-06016-9_6
10.5281/zenodo.2643199
10.1145/3038912.3052558
10.1007/978-3-030-30760-8_37
10.1007/978-3-030-61244-3_6
10.3115/1699648.1699696
10.3233/SW-2012-0059
10.3389/fdata.2019.00038
10.3115/v1/W14-4807
10.1016/j.jbi.2013.12.006
10.1093/nar/gky1055
10.4230/OASIcs.LDK.2019.15
10.1016/j.future.2011.08.004
10.1093/bioinformatics/bts071
10.1007/978-3-642-25073-6_44
10.1080/0361526X.2019.1540272
10.18653/v1/S17-2091
10.1007/978-3-319-18714-3_9
10.1007/978-3-030-45439-5_17
10.3233/978-1-58603-923-3-208
10.18653/v1/d16-1264
10.1007/s00521-019-04334-2
10.1038/nbt1346
10.1007/978-3-030-30760-8_31
10.18653/v1/n18-3011
10.18653/v1/d18-1360
10.1145/1242572.1242667
10.1093/database/baw068
10.1145/2488388.2488425
10.2307/25148625
10.1002/asi.23329
10.18653/v1/2020.acl-main.670
10.1145/1376616.1376746
10.1186/1471-2105-12-S2-S5
10.1145/2629489
10.1504/IJMSO.2019.099833
10.1016/j.ipm.2020.102269
10.18653/v1/n19-1361
10.18653/v1/2020.emnlp-main.692
10.3233/SW-150177
10.1007/978-3-030-62466-8_9
10.7326/ACPJC-1995-123-3-A12
10.18653/v1/D19-1383
10.1145/3159652.3162011
10.1007/s00799-015-0156-0
10.1098/rsif.2006.0134
10.3233/SW-140134
10.1007/s00799-016-0169-3
10.1145/3018661.3018739
10.5220/0010111000640075
10.1093/database/bav123
10.1080/07421222.1996.11518099
10.1145/3383583.3398520
10.1007/s11192-018-2921-5
10.18653/v1/2020.acl-main.116
10.3233/SW-160213
10.3233/SW-170275
10.1007/978-3-319-58068-5_20
10.4225/03/58c696655af8a
10.1145/505248.506010
10.18653/v1/2020.coling-main.472
10.1007/978-3-030-00066-0_27
10.1007/978-3-030-54956-5_1
10.1007/978-3-540-24737-1_3
10.1016/j.websem.2012.08.001
10.18653/v1/2020.acl-main.447
10.3233/SW-150175
10.18653/v1/D19-1371
10.1007/978-3-030-72113-8_6
10.1093/nar/gkm791
10.18653/v1/w19-5006
10.1145/3132218.3132219
10.3115/v1/w15-1605
10.1145/3340531.3417439
10.18653/v1/k18-1050
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID OT2
C6C
AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8FD
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CNYFK
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M1O
M2O
M2P
MBDVC
P5Z
P62
PADUT
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRQQA
Q9U
DOI 10.1007/s00799-021-00306-x
DatabaseName EconStor
Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
Library & Information Science Collection
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Library Science Database
Research Library
Science Database (ProQuest)
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Research Library China
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Social Sciences
ProQuest Central Basic
DatabaseTitle CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Library Science
ProQuest Central Korea
Library & Information Science Collection
ProQuest Research Library
Research Library China
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
Social Science Premium Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest One Social Sciences
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Research Library Prep
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Library & Information Science
Computer Science
EISSN 1432-1300
EndPage 55
ExternalDocumentID 10_1007_s00799_021_00306_x
286809
GrantInformation_xml – fundername: Technische Informationsbibliothek (TIB) – Leibniz-Informationszentrum Technik und Naturwissenschaften (1051)
GroupedDBID -D7
-Y2
-~C
.4I
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29J
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6IK
6NX
88I
8FE
8FG
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACSTC
ACUHS
ACWUS
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
CNYFK
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
ELW
EMK
EPL
ESBYG
EST
ESX
FD6
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GUQSH
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KZ1
LAS
LLZTM
M1O
M2O
M2P
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OT2
P2P
P62
P9O
PADUT
PF0
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PRQQA
PT4
PT5
PUEGO
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~8M
-59
-5G
-BR
-EM
3V.
AAAVM
ADINQ
C6C
GQ6
M0N
RIG
Z7Y
Z81
Z83
Z88
AAYXX
ACMFV
CITATION
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c385t-1a635a57f8be19098da10df7b244cd5712c14f4df42c34fd81297a2ba0e98c5d3
IEDL.DBID BENPR
ISSN 1432-1300
1432-5012
IngestDate Fri Jul 25 03:14:02 EDT 2025
Tue Jul 01 03:13:28 EDT 2025
Thu Apr 24 23:03:18 EDT 2025
Fri Feb 21 02:47:41 EST 2025
Fri Aug 29 12:22:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Research knowledge graph
Requirements analysis
Scholarly communication
Design science research
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-1a635a57f8be19098da10df7b244cd5712c14f4df42c34fd81297a2ba0e98c5d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1452-9509
0000-0001-5492-3212
0000-0002-0698-2864
0000-0003-0918-6297
0000-0002-1428-5348
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s00799-021-00306-x
PQID 2644220969
PQPubID 54113
PageCount 23
ParticipantIDs proquest_journals_2644220969
crossref_citationtrail_10_1007_s00799_021_00306_x
crossref_primary_10_1007_s00799_021_00306_x
springer_journals_10_1007_s00799_021_00306_x
econis_econstor_286809
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin, Heidelberg
PublicationPlace_xml – name: Berlin, Heidelberg
– name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle International journal on digital libraries
PublicationTitleAbbrev Int J Digit Libr
PublicationYear 2022
Publisher Springer
Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer
– name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Kardas, M., Czapla, P., Stenetorp, P., Ruder, S., Riedel, S., Taylor, R., Stojnic, R.: Axcell: Automatic extraction of results from machine learning papers. In: Webber, B., Cohn, T., He, Y., Liu, Y. (eds.) Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, 2020, pp. 8580–8594. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.emnlp-main.692
LehmannJIseleRJakobMJentzschAKontokostasDMendesPNHellmannSMorseyMvan KleefPAuerSBizerCDbpedia—a large-scale, multilingual knowledge base extracted from WikipediaSemant. Web20156216719510.3233/SW-140134
PipinoLLLeeYWWangRYData quality assessmentCommun. ACM200245421121810.1145/505248.506010
Jaradeh, M.Y., Oelen, A., Prinz, M., Stocker, M., Auer, S.: Open research knowledge graph: a system walkthrough. In: Doucet, A., Isaac, A., Golub, K., Aalberg, T., Jatowt, A. (eds.) Digital Libraries for Open Knowledge—23rd International Conference on Theory and Practice of Digital Libraries, TPDL 2019, Oslo, Norway, 2019, Proceedings, Lecture Notes in Computer Science, vol. 11799, pp. 348–351. Springer (2019). https://doi.org/10.1007/978-3-030-30760-8_31
Teufel, S., Siddharthan, A., Batchelor, C.R.: Towards domain-independent argumentative zoning: Evidence from chemistry and computational linguistics. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, EMNLP 2009, Singapore, A Meeting of SIGDAT, a Special Interest Group of the ACL, pp. 1493–1502. ACL (2009). https://www.aclweb.org/anthology/D09-1155
Friedrich, A., Adel, H., Tomazic, F., Hingerl, J., Benteau, R., Marusczyk, A., Lange, L.: The sofc-exp corpus and neural approaches to information extraction in the materials science domain. In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J.R. (eds.) Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, 2020, pp. 1255–1268. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.acl-main.116
Fathalla, S., Vahdati, S., Auer, S., Lange, C.: Towards a knowledge graph representing research findings by semantifying survey articles. In: Kamps, J., Tsakonas, G., Manolopoulos, Y., Iliadis, L.S., Karydis, I. (eds.) Research and Advanced Technology for Digital Libraries—21st International Conference on Theory and Practice of Digital Libraries, TPDL 2017, Thessaloniki, Greece, 2017, Proceedings, Lecture Notes in Computer Science, vol. 10450, pp. 315–327. Springer (2017). https://doi.org/10.1007/978-3-319-67008-9_25
Hoppe, A., Hagen, J., Holzmann, H., Kniesel, G., Ewerth, R.: An analytics tool for exploring scientific software and related publications. In: Méndez, E., Crestani, F., Ribeiro, C., David, G., Lopes, J.C. (eds.) Digital Libraries for Open Knowledge, 22nd International Conference on Theory and Practice of Digital Libraries, TPDL 2018, Porto, Portugal, 2018, Proceedings, Lecture Notes in Computer Science, vol. 11057, pp. 299–303. Springer (2018). https://doi.org/10.1007/978-3-030-00066-0_27
RichardsonSWilsonMNishikawaJHaywardRThe well-built clinical question: a key to evidence-based decisionsACP J. Club19951233A121310.7326/ACPJC-1995-123-3-A12
Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: Williamson, C.L., Zurko, M.E., Patel-Schneider, P.F., Shenoy, P.J. (eds.) Proceedings of the 16th International Conference on World Wide Web, WWW 2007, Banff, Alberta, Canada, 2007, pp. 697–706. ACM (2007). https://doi.org/10.1145/1242572.1242667
Waard, A., Tel, G.: The ABCDE format enabling semantic conference proceedings. In: Völkel, M., Schaffert, S. (eds.) SemWiki2006, First Workshop on Semantic Wikis—From Wiki to Semantics, Proceedings, Co-located with the ESWC2006, Budva, Montenegro, 2006, CEUR Workshop Proceedings, vol. 206. CEUR-WS.org (2006). http://ceur-ws.org/Vol-206/paper8.pdf
BodenreiderOThe unified medical language system (UMLS): integrating biomedical terminologyNucl. Acids Res.20043226727010.1093/nar/gkh061
Jia, R., Wong, C., Poon, H.: Document-level n-ary relation extraction with multiscale representation learning. In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, 2019, vol. 1 (Long and Short Papers), pp. 3693–3704. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/n19-1370
Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Jr., E.R.H., Mitchell, T.M.: Toward an architecture for never-ending language learning. In: Fox, M., Poole, D. (eds.) Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, 2010. AAAI Press (2010). http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1879
Pujara, J., Singh, S.: Mining knowledge graphs from text. In: Chang, Y., Zhai, C., Liu, Y., Maarek, Y. (eds.) Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, WSDM 2018, Marina Del Rey, CA, USA, 2018, pp. 789–790. ACM (2018). https://doi.org/10.1145/3159652.3162011
Jain, S., van Zuylen, M., Hajishirzi, H., Beltagy, I.: Scirex: A challenge dataset for document-level information extraction. In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J.R. (eds.) Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, 2020, pp. 7506–7516. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.acl-main.670
Luan, Y., He, L., Ostendorf, M., Hajishirzi, H.: Multi-task identification of entities, relations, and coreference for scientific knowledge graph construction. In: Riloff, E., Chiang, D., Hockenmaier, J., Tsujii, J. (eds.) Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 2018, pp. 3219–3232. Association for Computational Linguistics (2018). https://doi.org/10.18653/v1/d18-1360
Oelen, A., Jaradeh, M.Y., Stocker, M., Auer, S.: Generate FAIR literature surveys with scholarly knowledge graphs. In: Huang, R., Wu, D., Marchionini, G., He, D., Cunningham, S.J., Hansen, P. (eds.) JCDL ’20: Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020, Virtual Event, China, 2020, pp. 97–106. ACM (2020). https://doi.org/10.1145/3383583.3398520
Talburt, J.R.: 2—principles of information quality. In: Talburt, J.R. (ed.) Entity Resolution and Information Quality, pp. 39–62. Morgan Kaufmann, Boston (2011). https://doi.org/10.1016/B978-0-12-381972-7.00002-6. http://www.sciencedirect.com/science/article/pii/B9780123819727000026
Galárraga, L., Razniewski, S., Amarilli, A., Suchanek, F.M.: Predicting completeness in knowledge bases. In: de Rijke, M., Shokouhi, M., Tomkins, A., Zhang, M. (eds.) Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, WSDM 2017, Cambridge, United Kingdom, 2017, pp. 375–383. ACM (2017). https://doi.org/10.1145/3018661.3018739
KimSMartínezDCavedonLYenckenLAutomatic classification of sentences to support evidence based medicineBMC Bioinform.2011122S510.1186/1471-2105-12-S2-S5
SalatinoAAThanapalasingamTMannocciABirukouAOsborneFMottaEThe computer science ontology: a comprehensive automatically-generated taxonomy of research areasData Intell.20202337941610.1162/dint_a_00055
Dessì, D., Osborne, F., Recupero, D.R., Buscaldi, D., Motta, E., Sack, H.: AI-KG: an automatically generated knowledge graph of artificial intelligence. In: Pan, J.Z., Tamma, V.A.M., d’Amato, C., Janowicz, K., Fu, B., Polleres, A., Seneviratne, O., Kagal, L. (eds.) The Semantic Web—ISWC 2020—19th International Semantic Web Conference, Athens, Greece, 2020, Proceedings, Part II, Lecture Notes in Computer Science, vol. 12507, pp. 127–143. Springer (2020). https://doi.org/10.1007/978-3-030-62466-8_9
HevnerARMarchSTParkJRamSDesign science in information systems researchMIS Q.20042817510510.2307/25148625
KlampanosIADavvetasAKoukourikosAKarkaletsisVANNETT-O: an ontology for describing artificial neural network evaluation, topology and trainingInt. J. Metadata Semant. Ontol.201913317919010.1504/IJMSO.2019.099833
LiakataMSahaSDobnikSBatchelorCRRebholz-SchuhmannDAutomatic recognition of conceptualization zones in scientific articles and two life science applicationsBioinformatics2012287991100010.1093/bioinformatics/bts071
Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad: 100, 000+ questions for machine comprehension of text. In: Su, J., Carreras, X., Duh, K. (eds.) Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, EMNLP 2016, Austin, Texas, USA, 2016, pp. 2383–2392. The Association for Computational Linguistics (2016). https://doi.org/10.18653/v1/d16-1264
SafderIHassanSVisviziANorasetTNawazRTuarobSDeep learning-based extraction of algorithmic metadata in full-text scholarly documentsInf. Process. Manag.202057610226910.1016/j.ipm.2020.102269
CohenKBLanfranchiAChoiMJBaumgartnerWAPanteleyevaNVerspoorKPalmerMHunterLECoreference annotation and resolution in the Colorado richly annotated full text (CRAFT) corpus of biomedical journal articlesBMC Bioinform.201718111410.1186/s12859-017-1775-9
Brodaric, B., Reitsma, F., Qiang, Y.: Skiing with DOLCE: toward an e-science knowledge infrastructure. In: Eschenbach, C., Grüninger, M. (eds.) Formal Ontology in Information Systems, Proceedings of the Fifth International Conference, FOIS 2008, Saarbrücken, Germany, 2008, Frontiers in Artificial Intelligence and Applications, vol. 183, pp. 208–219. IOS Press (2008). https://doi.org/10.3233/978-1-58603-923-3-208
AuerSMannSTowards an open research knowledge graphSer. Libr.2019761–4354110.1080/0361526X.2019.1540272
VrandecicDKrötzschMWikidata: a free collaborative knowledgebaseCommun. ACM20145710788510.1145/2629489
Brack, A., D’Souza, J., Hoppe, A., Auer, S., Ewerth, R.: Domain-independent extraction of scientific concepts from research articles. In:
J Kringelum (306_CR64) 2016
B Smith (306_CR98) 2007; 25
306_CR71
306_CR70
O Bodenreider (306_CR11) 2004; 32
306_CR9
306_CR78
306_CR76
306_CR74
K Badie (306_CR5) 2018; 2
S Auer (306_CR3) 2019; 76
306_CR82
306_CR81
306_CR80
S Bechhofer (306_CR7) 2013; 29
V Pertsas (306_CR84) 2017; 18
306_CR89
306_CR88
306_CR4
306_CR86
306_CR85
306_CR1
IA Klampanos (306_CR62) 2019; 13
M Färber (306_CR39) 2018; 9
I Safder (306_CR94) 2020; 57
C Bizer (306_CR10) 2007
M Liakata (306_CR68) 2012; 28
306_CR93
A Constantin (306_CR27) 2016; 7
306_CR91
306_CR90
306_CR12
L Bornmann (306_CR14) 2015; 66
306_CR97
306_CR96
306_CR19
306_CR18
306_CR17
306_CR16
LN Soldatova (306_CR99) 2006; 3
306_CR15
KB Cohen (306_CR25) 2017; 18
306_CR24
306_CR23
306_CR22
306_CR21
TGO Consortium (306_CR26) 2019; 47
A Aryani (306_CR2) 2017
306_CR29
306_CR28
306_CR101
306_CR100
306_CR103
306_CR102
A Zaveri (306_CR114) 2016; 7
S Peroni (306_CR83) 2012; 17
G Booch (306_CR13) 2005
A Hars (306_CR50) 2003
306_CR34
306_CR33
306_CR32
306_CR31
C Okoli (306_CR79) 2015; 37
K Degtyarenko (306_CR30) 2008; 36
(306_CR41) 1998
P Vandenbussche (306_CR107) 2017; 8
306_CR38
306_CR37
306_CR36
306_CR112
306_CR111
Z Nasar (306_CR75) 2018; 117
306_CR113
M Lubani (306_CR72) 2019
RI Dogan (306_CR35) 2014; 47
S Kim (306_CR60) 2011; 12
306_CR46
M Nickel (306_CR77) 2016; 104
306_CR45
306_CR44
306_CR43
306_CR40
S Richardson (306_CR92) 1995; 123
D Vrandecic (306_CR108) 2014; 57
306_CR109
A Burton (306_CR20) 2017; 23
306_CR105
306_CR49
306_CR104
306_CR47
306_CR106
Y Zhang (306_CR115) 2019; 2
C Lange (306_CR65) 2013; 4
306_CR57
306_CR56
S Gonçalves (306_CR48) 2020; 32
306_CR55
RY Wang (306_CR110) 1996; 12
306_CR54
306_CR53
306_CR52
AR Hevner (306_CR51) 2004; 28
306_CR59
306_CR58
P Manghi (306_CR73) 2019
J Lehmann (306_CR66) 2015; 6
LL Pipino (306_CR87) 2002; 45
306_CR67
J Beel (306_CR8) 2016; 17
306_CR63
306_CR61
A Fink (306_CR42) 2014
K Balog (306_CR6) 2018
AA Salatino (306_CR95) 2020; 2
306_CR69
References_xml – reference: Qasemi Zadeh, B., Handschuh, B.S.: The ACL RD-TEC: a dataset for benchmarking terminology extraction and classification in computational linguistics. In: Proceedings of the 4th International Workshop on Computational Terminology (Computerm), pp. 52–63. Association for Computational Linguistics and Dublin City University, Dublin, Ireland (2014). 10.3115/v1/W14-4807. https://www.aclweb.org/anthology/W14-4807
– reference: Pineau, J., Vincent-Lamarre, P., Sinha, K., Larivière, V., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Larochelle, H.: Improving reproducibility in machine learning research (a report from the neurips 2019 reproducibility program). CoRR abs/2003.12206 (2020). arXiv:2003.12206
– reference: Brack, A., D’Souza, J., Hoppe, A., Auer, S., Ewerth, R.: Domain-independent extraction of scientific concepts from research articles. In: Jose, J.M., Yilmaz, E., Magalhães, J., Castells, P., Ferro, N., Silva, M.J., Martins, F. (eds.) Advances in Information Retrieval—42nd European Conference on IR Research, ECIR 2020, Lisbon, Portugal, 2020, Proceedings, Part I, Lecture Notes in Computer Science, vol. 12035, pp. 251–266. Springer (2020). https://doi.org/10.1007/978-3-030-45439-5_17
– reference: Stocker, M., Prinz, M., Rostami, F., Kempf, T.: Towards research infrastructures that curate scientific information: a use case in life sciences. In: Auer, S., Vidal, M. (eds.) Data Integration in the Life Sciences—13th International Conference, DILS 2018, Hannover, Germany, 2018, Proceedings, Lecture Notes in Computer Science, vol. 11371, pp. 61–74. Springer (2018). https://doi.org/10.1007/978-3-030-06016-9_6
– reference: Gábor, K., Buscaldi, D., Schumann, A., Qasemi Zadeh, B., Zargayouna, H., Charnois, T.: Semeval-2018 task 7: Semantic relation extraction and classification in scientific papers. In: Apidianaki, M., Mohammad, S.M., May, J., Shutova, E., Bethard, S., Carpuat M. (eds.) Proceedings of The 12th International Workshop on Semantic Evaluation, SemEval@NAACL-HLT 2018, New Orleans, Louisiana, USA, 2018, pp. 679–688. Association for Computational Linguistics (2018). https://doi.org/10.18653/v1/s18-1111
– reference: BornmannLMutzRGrowth rates of modern science: a bibliometric analysis based on the number of publications and cited referencesJ. Assoc. Inf. Sci. Technol.201566112215222210.1002/asi.23329
– reference: Augenstein, I., Das, M., Riedel, S., Vikraman, L., McCallum, A.: Semeval 2017 task 10: Scienceie—xtracting keyphrases and relations from scientific publications. In: Bethard, S., Carpuat, M., Apidianaki, M., Mohammad, S.M., Cer, D.M., Jurgens, D. (eds.) Proceedings of the 11th International Workshop on Semantic Evaluation, SemEval@ACL 2017, Vancouver, Canada, 2017, pp. 546–555. Association for Computational Linguistics (2017). https://doi.org/10.18653/v1/S17-2091
– reference: OkoliCA guide to conducting a standalone systematic literature reviewCommun. Assoc. Inf. Syst.20153743
– reference: KimSMartínezDCavedonLYenckenLAutomatic classification of sentences to support evidence based medicineBMC Bioinform.2011122S510.1186/1471-2105-12-S2-S5
– reference: Ammar, W., Groeneveld, D., Bhagavatula, C., Beltagy, I., Crawford, M., Downey, D., Dunkelberger, J., Elgohary, A., Feldman, S., Ha, V., Kinney, R., Kohlmeier, S., Lo, K., Murray, T., Ooi, H., Peters, M.E., Power, J., Skjonsberg, S., Wang, L.L., Wilhelm, C., Yuan, Z., van Zuylen, M., Etzioni, O.: Construction of the literature graph in semantic scholar. In: Bangalore, S., Chu-Carroll, J., Li, Y. (eds.) Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2018, New Orleans, Louisiana, USA, June 1–6, 2018, vol. 3 (Industry Papers), pp. 84–91. Association for Computational Linguistics (2018). https://doi.org/10.18653/v1/n18-3011
– reference: BeelJGippBLangerSBreitingerCResearch-paper recommender systems: a literature surveyInt. J. Digit. Libr.201617430533810.1007/s00799-015-0156-0
– reference: Luan, Y., He, L., Ostendorf, M., Hajishirzi, H.: Multi-task identification of entities, relations, and coreference for scientific knowledge graph construction. In: Riloff, E., Chiang, D., Hockenmaier, J., Tsujii, J. (eds.) Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 2018, pp. 3219–3232. Association for Computational Linguistics (2018). https://doi.org/10.18653/v1/d18-1360
– reference: Vahdati, S., Fathalla, S., Auer, S., Lange, C., Vidal, M.: Semantic representation of scientific publications. In: Doucet, A., Isaac, A., Golub, K., Aalberg, T., Jatowt, A. (eds.) Digital Libraries for Open Knowledge—23rd International Conference on Theory and Practice of Digital Libraries, TPDL 2019, Oslo, Norway, 2019, Proceedings, Lecture Notes in Computer Science, vol. 11799, pp. 375–379. Springer (2019). https://doi.org/10.1007/978-3-030-30760-8_37
– reference: BalogKEntity-Oriented Search2018BerlinSpringer10.1007/978-3-319-93935-3
– reference: PeroniSShottonDMFabio and cito: ontologies for describing bibliographic resources and citationsJ. Web Semant.201217334310.1016/j.websem.2012.08.001
– reference: VandenbusschePAtemezingGPoveda-VillalónMVatantBLinked open vocabularies (LOV): a gateway to reusable semantic vocabularies on the webSemant. Web20178343745210.3233/SW-160213
– reference: AuerSMannSTowards an open research knowledge graphSer. Libr.2019761–4354110.1080/0361526X.2019.1540272
– reference: SmithBAshburnerMRosseCBardJBugWCeustersWGoldbergLJEilbeckKIrelandAMungallCJLeontisNRocca-SerraPRuttenbergASansoneSAScheuermannRHShahNWhetzelPLLewisSConsortiumTOThe obo foundry: coordinated evolution of ontologies to support biomedical data integrationNat. Biotechnol.200725111251125510.1038/nbt1346
– reference: Lo, K., Wang, L.L., Neumann, M., Kinney, R., Weld, D.S.: S2ORC: the semantic scholar open research corpus. In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J.R. (eds.) Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, 2020, pp. 4969–4983. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.acl-main.447
– reference: Li, J., Sun, Y., Johnson, R.J., Sciaky, D., Wei, C., Leaman, R., Davis, A.P., Mattingly, C.J., Wiegers, T.C., Lu, Z.: Biocreative V CDR task corpus: a resource for chemical disease relation extraction. Database J. Biol. Databases Curation 2016, (2016). https://doi.org/10.1093/database/baw068
– reference: Jain, S., van Zuylen, M., Hajishirzi, H., Beltagy, I.: Scirex: A challenge dataset for document-level information extraction. In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J.R. (eds.) Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, 2020, pp. 7506–7516. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.acl-main.670
– reference: Degbelo, A.: A snapshot of ontology evaluation criteria and strategies. In: Hoekstra, R., Faron-Zucker, C., Pellegrini, T., de Boer, V. (eds.) Proceedings of the 13th International Conference on Semantic Systems, SEMANTICS 2017, Amsterdam, The Netherlands, 2017, pp. 1–8. ACM (2017). https://doi.org/10.1145/3132218.3132219
– reference: KringelumJKjærulffSKBrunakSLundOOpreaTITaboureauOChemprot-3.0: a global chemical biology diseases mappingDatabase J. Biol. Databases Curation201610.1093/database/bav123
– reference: Dernoncourt, F., Lee, J.Y.: Pubmed 200k RCT: a dataset for sequential sentence classification in medical abstracts. In: Kondrak, G., Watanabe, T. (eds.) Proceedings of the Eighth International Joint Conference on Natural Language Processing, IJCNLP 2017, Taipei, Taiwan, 2017, Volume 2: Short Papers, pp. 308–313. Asian Federation of Natural Language Processing (2017). https://www.aclweb.org/anthology/I17-2052/
– reference: Kannan, A.V., Fradkin, D., Akrotirianakis, I., Kulahcioglu, T., Canedo, A., Roy, A., Yu, S., Malawade, A.V., Faruque, M.A.A.: Multimodal knowledge graph for deep learning papers and code. In: d’Aquin, M., Dietze, S., Hauff, C., Curry, E., Cudré-Mauroux, P. (eds.) CIKM ’20: The 29th ACM International Conference on Information and Knowledge Management, Virtual Event, Ireland, 2020, pp. 3417–3420. ACM (2020). https://doi.org/10.1145/3340531.3417439
– reference: Stead, C., Smith, S., Busch, P.A., Vatanasakdakul, S.: Emerald 110k: a multidisciplinary dataset for abstract sentence classification. In: Mistica, M., Piccardi, M., MacKinlay, A. (eds.) Proceedings of the The 17th Annual Workshop of the Australasian Language Technology Association, ALTA 2019, Sydney, Australia, 2019, pp. 120–125. Australasian Language Technology Association (2019). https://aclweb.org/anthology/papers/U/U19/U19-1016/
– reference: Liakata, M., Teufel, S., Siddharthan, A., Batchelor, C.R.: Corpora for the conceptualisation and zoning of scientific papers. In: Calzolari, N., Choukri, K., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S., Rosner, M., Tapias, D. (eds.) Proceedings of the International Conference on Language Resources and Evaluation, LREC 2010, 2010, Valletta, Malta. European Language Resources Association (2010). http://www.lrec-conf.org/proceedings/lrec2010/summaries/644.html
– reference: Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad: 100, 000+ questions for machine comprehension of text. In: Su, J., Carreras, X., Duh, K. (eds.) Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, EMNLP 2016, Austin, Texas, USA, 2016, pp. 2383–2392. The Association for Computational Linguistics (2016). https://doi.org/10.18653/v1/d16-1264
– reference: Bollacker, K.D., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Wang, J.T. (ed.) Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, Vancouver, BC, Canada, 2008, pp. 1247–1250. ACM (2008). https://doi.org/10.1145/1376616.1376746
– reference: BadieKAsadiNMahmoudiMTZone identification based on features with high semantic richness and combining results of separate classifiersJ. Inf. Telecommun.20182441142710.1080/24751839.2018.1460083
– reference: Doerr, M., Kritsotaki, A., Rousakis, Y., Hiebel, G., Theodoridou, M.: Definition of the CRMsci: an extension of CIDOC-CRM to support scientific observation. Tech. rep., FORTH, Version 1.2.8. http://www.cidoc-crm.org/crmsci/ModelVersion/version-1.2.8 (2020)
– reference: PertsasVConstantopoulosPScholarly ontology: modelling scholarly practicesInt. J. Digit. Libr.201718317319010.1007/s00799-016-0169-3
– reference: Petasis, G., Karkaletsis, V., Paliouras, G., Krithara, A., Zavitsanos, E.: Ontology population and enrichment: state of the art. In: Paliouras, G., Spyropoulos, C.D., Tsatsaronis, G. (eds.) Knowledge-Driven Multimedia Information Extraction and Ontology Evolution—Bridging the Semantic Gap, Lecture Notes in Computer Science, vol. 6050, pp. 134–166. Springer (2011). https://doi.org/10.1007/978-3-642-20795-2_6
– reference: Fisas, B., Saggion, H., Ronzano, F.: On the discoursive structure of computer graphics research papers. In: Meyers, A., Rehbein, I., Zinsmeister, H. (eds.) Proceedings of The 9th Linguistic Annotation Workshop, LAW@NAACL-HLT 2015, 2015, Denver, Colorado, USA, pp. 42–51. The Association for Computer Linguistics (2015). https://doi.org/10.3115/v1/w15-1605
– reference: Cohan, A., Ammar, W., van Zuylen, M., Cady, F.: Structural scaffolds for citation intent classification in scientific publications. In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, 2019, vol. 1 (Long and Short Papers), pp. 3586–3596. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/n19-1361
– reference: AryaniAWangJResearch graph: Building a distributed graph of scholarly works using research data switchboardOpen Repos. Conf.201710.4225/03/58c696655af8a
– reference: Galárraga, L.A., Teflioudi, C., Hose, K., Suchanek, F.M.: AMIE: association rule mining under incomplete evidence in ontological knowledge bases. In: Schwabe, D., Almeida, V.A.F., Glaser, H., Baeza-Yates, R., Moon, S.B. (eds.) 22nd International World Wide Web Conference, WWW ’13, Rio de Janeiro, Brazil, 2013, pp. 413–422. International World Wide Web Conferences Steering Committee. ACM (2013). https://doi.org/10.1145/2488388.2488425
– reference: Jaradeh, M.Y., Oelen, A., Prinz, M., Stocker, M., Auer, S.: Open research knowledge graph: a system walkthrough. In: Doucet, A., Isaac, A., Golub, K., Aalberg, T., Jatowt, A. (eds.) Digital Libraries for Open Knowledge—23rd International Conference on Theory and Practice of Digital Libraries, TPDL 2019, Oslo, Norway, 2019, Proceedings, Lecture Notes in Computer Science, vol. 11799, pp. 348–351. Springer (2019). https://doi.org/10.1007/978-3-030-30760-8_31
– reference: SalatinoAAThanapalasingamTMannocciABirukouAOsborneFMottaEThe computer science ontology: a comprehensive automatically-generated taxonomy of research areasData Intell.20202337941610.1162/dint_a_00055
– reference: Say, A., Fathalla, S., Vahdati, S., Lehmann, J., Auer, S.: Semantic representation of physics research data. In: Aveiro, D., Dietz, J.L.G., Filipe, J. (eds.) Proceedings of the 12th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, IC3K 2020, vol. 2: KEOD, Budapest, Hungary, 2020, pp. 64–75. SCITEPRESS (2020). https://doi.org/10.5220/0010111000640075
– reference: Dessì, D., Osborne, F., Recupero, D.R., Buscaldi, D., Motta, E., Sack, H.: AI-KG: an automatically generated knowledge graph of artificial intelligence. In: Pan, J.Z., Tamma, V.A.M., d’Amato, C., Janowicz, K., Fu, B., Polleres, A., Seneviratne, O., Kagal, L. (eds.) The Semantic Web—ISWC 2020—19th International Semantic Web Conference, Athens, Greece, 2020, Proceedings, Part II, Lecture Notes in Computer Science, vol. 12507, pp. 127–143. Springer (2020). https://doi.org/10.1007/978-3-030-62466-8_9
– reference: Pujara, J., Singh, S.: Mining knowledge graphs from text. In: Chang, Y., Zhai, C., Liu, Y., Maarek, Y. (eds.) Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, WSDM 2018, Marina Del Rey, CA, USA, 2018, pp. 789–790. ACM (2018). https://doi.org/10.1145/3159652.3162011
– reference: Cohan, A., Beltagy, I., King, D., Dalvi, B., Weld, D.S.: Pretrained language models for sequential sentence classification. In: Inui, K., Jiang, J., Ng, V., Wan, X. (eds.) Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, 2019, pp. 3691–3697. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/D19-1383
– reference: Brodaric, B., Reitsma, F., Qiang, Y.: Skiing with DOLCE: toward an e-science knowledge infrastructure. In: Eschenbach, C., Grüninger, M. (eds.) Formal Ontology in Information Systems, Proceedings of the Fifth International Conference, FOIS 2008, Saarbrücken, Germany, 2008, Frontiers in Artificial Intelligence and Applications, vol. 183, pp. 208–219. IOS Press (2008). https://doi.org/10.3233/978-1-58603-923-3-208
– reference: Yaman, B., Pasin, M., Freudenberg, M.: Interlinking scigraph and dbpedia datasets using link discovery and named entity recognition techniques. In: Eskevich, M., de Melo, G., Fäth, C., McCrae, J.P., Buitelaar, P., Chiarcos, C., Klimek, B., Dojchinovski, M. (eds.) 2nd Conference on Language, Data and Knowledge, LDK 2019, Leipzig, Germany, OASICS, vol. 70, pp. 15:1–15:8. Schloss Dagstuhl–Leibniz–Zentrum für Informatik (2019). https://doi.org/10.4230/OASIcs.LDK.2019.15
– reference: WangRYStrongDMBeyond accuracy: what data quality means to data consumersJ. Manag. Inf. Syst.199612453310.1080/07421222.1996.11518099
– reference: D’Souza, J., Hoppe, A., Brack, A., Jaradeh, M.Y., Auer, S., Ewerth, R.: The STEM-ECR dataset: grounding scientific entity references in STEM scholarly content to authoritative encyclopedic and lexicographic sources. In: Calzolari, N., Béchet, F., Blache, P., Choukri, K., Cieri, C., Declerck, T., Goggi, S., Isahara, H., Maegaard, B., Mariani, J., Mazo, H., Moreno, A., Odijk, J., Piperidis, S. (eds.) Proceedings of The 12th Language Resources and Evaluation Conference, LREC 2020, Marseille, France, 2020, pp. 2192–2203. European Language Resources Association (2020). https://www.aclweb.org/anthology/2020.lrec-1.268/
– reference: Hou, Y., Jochim, C., Gleize, M., Bonin, F., Ganguly, D.: Identification of tasks, datasets, evaluation metrics, and numeric scores for scientific leaderboards construction. In: Korhonen, A., Traum, D.R., Màrquez, L. (eds.) Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, 2019, vol. 1: Long Papers, pp. 5203–5213. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/p19-1513
– reference: KlampanosIADavvetasAKoukourikosAKarkaletsisVANNETT-O: an ontology for describing artificial neural network evaluation, topology and trainingInt. J. Metadata Semant. Ontol.201913317919010.1504/IJMSO.2019.099833
– reference: Oelen, A., Jaradeh, M.Y., Stocker, M., Auer, S.: Generate FAIR literature surveys with scholarly knowledge graphs. In: Huang, R., Wu, D., Marchionini, G., He, D., Cunningham, S.J., Hansen, P. (eds.) JCDL ’20: Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020, Virtual Event, China, 2020, pp. 97–106. ACM (2020). https://doi.org/10.1145/3383583.3398520
– reference: FellbaumCWordNet: An Electronic Lexical Database. Language, Speech, and Communication1998CambridgeMIT Press0913.68054
– reference: Friedrich, A., Adel, H., Tomazic, F., Hingerl, J., Benteau, R., Marusczyk, A., Lange, L.: The sofc-exp corpus and neural approaches to information extraction in the materials science domain. In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J.R. (eds.) Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, 2020, pp. 1255–1268. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.acl-main.116
– reference: Hoppe, A., Hagen, J., Holzmann, H., Kniesel, G., Ewerth, R.: An analytics tool for exploring scientific software and related publications. In: Méndez, E., Crestani, F., Ribeiro, C., David, G., Lopes, J.C. (eds.) Digital Libraries for Open Knowledge, 22nd International Conference on Theory and Practice of Digital Libraries, TPDL 2018, Porto, Portugal, 2018, Proceedings, Lecture Notes in Computer Science, vol. 11057, pp. 299–303. Springer (2018). https://doi.org/10.1007/978-3-030-00066-0_27
– reference: LubaniMNoahSAMMahmudROntology population: approaches and design aspectsJ. Inf. Sci.201910.1177/0165551518801819
– reference: NasarZJaffrySWMalikMKInformation extraction from scientific articles: a surveyScientometrics201811731931199010.1007/s11192-018-2921-5
– reference: Brack, A., Müller, D.U., Hoppe, A., Ewerth, R.: Coreference resolution in research papers from multiple domains. In: Hiemstra, D., Moens, M., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds.) Advances in Information Retrieval—43rd European Conference on IR Research, ECIR 2021, Virtual Event, 2021, Proceedings, Part I, Lecture Notes in Computer Science, vol. 12656, pp. 79–97. Springer (2021). https://doi.org/10.1007/978-3-030-72113-8_6
– reference: BechhoferSBuchanIERoureDDMissierPAinsworthJDBhagatJCouchPACruickshankDDelderfieldMDunlopIGambleMMichaelidesDTOwenSNewmanDRSufiSGobleCAWhy linked data is not enough for scientistsFuture Gener. Comput. Syst.201329259961110.1016/j.future.2011.08.004
– reference: Mesbah, S., Fragkeskos, K., Lofi, C., Bozzon, A., Houben, G.: Semantic annotation of data processing pipelines in scientific publications. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) The Semantic Web—14th International Conference, ESWC 2017, Portorož, Slovenia, 2017, Proceedings, Part I, Lecture Notes in Computer Science, vol. 10249, pp. 321–336 (2017). https://doi.org/10.1007/978-3-319-58068-5_20
– reference: Braun, R., Benedict, M., Wendler, H., Esswein, W.: Proposal for requirements driven design science research. In: Donnellan, B., Helfert, M., Kenneally, J., VanderMeer, D.E., Rothenberger, M.A., Winter, R. (eds.) New Horizons in Design Science: Broadening the Research Agenda—10th International Conference, DESRIST 2015, Dublin, Ireland, 2015, Proceedings, Lecture Notes in Computer Science, vol. 9073, pp. 135–151. Springer (2015). https://doi.org/10.1007/978-3-319-18714-3_9
– reference: DoganRILeamanRLuZNCBI disease corpus: a resource for disease name recognition and concept normalizationJ. Biomed. Inform.20144711010.1016/j.jbi.2013.12.006
– reference: Kitchenham, B.A., Charters, S.: Guidelines for performing systematic literature reviews in software engineering. Tech. Rep. EBSE 2007-001, Keele University and Durham University Joint Report. https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf (2007)
– reference: LangeCOntologies and languages for representing mathematical knowledge on the semantic webSemant. Web20134211915810.3233/SW-2012-0059
– reference: Papers with code. https://paperswithcode.com/. Accessed 04 Oct 2021
– reference: Beltagy, I., Lo, K., Cohan, A.: SciBERT: a pretrained language model for scientific text. In: Inui, K., Jiang, J., Ng, V., Wan, X. (eds.) Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, 2019, pp. 3613–3618. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/D19-1371
– reference: HevnerARMarchSTParkJRamSDesign science in information systems researchMIS Q.20042817510510.2307/25148625
– reference: CohenKBLanfranchiAChoiMJBaumgartnerWAPanteleyevaNVerspoorKPalmerMHunterLECoreference annotation and resolution in the Colorado richly annotated full text (CRAFT) corpus of biomedical journal articlesBMC Bioinform.201718111410.1186/s12859-017-1775-9
– reference: FinkAConducting Research Literature Reviews: From the Internet to Paper2014Thousand OaksSAGE Publications
– reference: FärberMBartschererFMenneCRettingerALinked data quality of DBpedia, Freebase, Opencyc, Wikidata, and YAGOSemant. Web2018917712910.3233/SW-170275
– reference: Xiong, C., Power, R., Callan, J.: Explicit semantic ranking for academic search via knowledge graph embedding. In: Barrett, R., Cummings, R., Agichtein, E., Gabrilovich, E. (eds.) Proceedings of the 26th International Conference on World Wide Web, WWW 2017, Perth, Australia, 2017, pp. 1271–1279. ACM (2017). https://doi.org/10.1145/3038912.3052558
– reference: Brack, A., Hoppe, A., Stocker, M., Auer, S., Ewerth, R.: Requirements analysis for an open research knowledge graph. In: Hall, M.M., Mercun, T., Risse, T., Duchateau, F. (eds.) Digital Libraries for Open Knowledge—24th International Conference on Theory and Practice of Digital Libraries, TPDL 2020, Lyon, France, 2020, Proceedings, Lecture Notes in Computer Science, vol. 12246, pp. 3–18. Springer (2020). https://doi.org/10.1007/978-3-030-54956-5_1
– reference: DegtyarenkoKde MatosPEnnisMHastingsJZbindenMMcNaughtAAlcántaraRDarsowMGuedjMAshburnerMChebi: a database and ontology for chemical entities of biological interestNucl. Acids Res.20083634435010.1093/nar/gkm791
– reference: SafderIHassanSVisviziANorasetTNawazRTuarobSDeep learning-based extraction of algorithmic metadata in full-text scholarly documentsInf. Process. Manag.202057610226910.1016/j.ipm.2020.102269
– reference: Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, 2019, vol. 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/n19-1423
– reference: Waard, A., Tel, G.: The ABCDE format enabling semantic conference proceedings. In: Völkel, M., Schaffert, S. (eds.) SemWiki2006, First Workshop on Semantic Wikis—From Wiki to Semantics, Proceedings, Co-located with the ESWC2006, Budva, Montenegro, 2006, CEUR Workshop Proceedings, vol. 206. CEUR-WS.org (2006). http://ceur-ws.org/Vol-206/paper8.pdf
– reference: Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann, T., Sun, S., Zhang, W.: Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: Macskassy, S.A., Perlich, C., Leskovec, J., Wang, W., Ghani, R. (eds.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’14, New York, NY, USA-2014, pp. 601–610. ACM (2014). https://doi.org/10.1145/2623330.2623623
– reference: Peng, Y., Yan, S., Lu, Z.: Transfer learning in biomedical natural language processing: an evaluation of BERT and ELMo on ten benchmarking datasets. In: Demner-Fushman, D., Cohen, K.B., Ananiadou, S., Tsujii, J. (eds.) Proceedings of the 18th BioNLP Workshop and Shared Task, BioNLP@ACL 2019, Florence, Italy, 2019, pp. 58–65. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/w19-5006
– reference: Jia, R., Wong, C., Poon, H.: Document-level n-ary relation extraction with multiscale representation learning. In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, 2019, vol. 1 (Long and Short Papers), pp. 3693–3704. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/n19-1370
– reference: Singh, M., Barua, B., Palod, P., Garg, M., Satapathy, S., Bushi, S., Ayush, K., Rohith, K.S., Gamidi, T., Goyal, P., Mukherjee, A.: OCR++: a robust framework for information extraction from scholarly articles. In: Calzolari, N., Matsumoto, Y., Prasad, R. (eds.) COLING 2016, 26th International Conference on Computational Linguistics, Proceedings of the Conference: Technical Papers, 2016, Osaka, Japan, pp. 3390–3400. ACL (2016). https://www.aclweb.org/anthology/C16-1320/
– reference: LiakataMSahaSDobnikSBatchelorCRRebholz-SchuhmannDAutomatic recognition of conceptualization zones in scientific articles and two life science applicationsBioinformatics2012287991100010.1093/bioinformatics/bts071
– reference: Galárraga, L., Razniewski, S., Amarilli, A., Suchanek, F.M.: Predicting completeness in knowledge bases. In: de Rijke, M., Shokouhi, M., Tomkins, A., Zhang, M. (eds.) Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, WSDM 2017, Cambridge, United Kingdom, 2017, pp. 375–383. ACM (2017). https://doi.org/10.1145/3018661.3018739
– reference: Nguyen, V.B., Svátek, V., Rabby, G., Corcho, Ó.: Ontologies supporting research-related information foraging using knowledge graphs: literature survey and holistic model mapping. In: Keet, C.M., Dumontier, M. (eds.) Knowledge Engineering and Knowledge Management—22nd International Conference, EKAW 2020, Bolzano, Italy, 2020, Proceedings, Lecture Notes in Computer Science, vol. 12387, pp. 88–103. Springer (2020). https://doi.org/10.1007/978-3-030-61244-3_6
– reference: ZhangYWangMSaberiMChangEFrom big scholarly data to solution-oriented knowledge repositoryFront. Big Data201923810.3389/fdata.2019.00038
– reference: ManghiPBardiAAtzoriCBaglioniMManolaNSchirrwagenJPrincipePThe OpenAIRE research graph data modelZenodo201910.5281/zenodo.2643199
– reference: BodenreiderOThe unified medical language system (UMLS): integrating biomedical terminologyNucl. Acids Res.20043226727010.1093/nar/gkh061
– reference: SoldatovaLNKingRDAn ontology of scientific experimentsJ. R. Soc. Interface200631179580310.1098/rsif.2006.0134
– reference: ConstantinAPeroniSPettiferSShottonDMVitaliFThe document components ontology (DoCo)Semant. Web20167216718110.3233/SW-150177
– reference: GonçalvesSCortezPMoroSA deep learning classifier for sentence classification in biomedical and computer science abstractsNeural Comput. Appl.202032116793680710.1007/s00521-019-04334-2
– reference: Groza, T., Handschuh, S., Möller, K., Decker, S.: SALT—semantically annotated latex for scientific publications. In: Franconi, E., Kifer, M., May, W. (eds.) The Semantic Web: Research and Applications, 4th European Semantic Web Conference, ESWC 2007, Innsbruck, Austria, 2007, Proceedings, Lecture Notes in Computer Science, vol. 4519, pp. 518–532. Springer (2007). https://doi.org/10.1007/978-3-540-72667-8_37
– reference: BurtonAAryaniAKoersHManghiPBruzzoSLStockerMDiepenbroekMSchindlerUFennerMThe scholix framework for interoperability in data-literature information exchangeD-Lib Mag.2017231/212010.1045/january2017-burton
– reference: VrandecicDKrötzschMWikidata: a free collaborative knowledgebaseCommun. ACM20145710788510.1145/2629489
– reference: Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: Williamson, C.L., Zurko, M.E., Patel-Schneider, P.F., Shenoy, P.J. (eds.) Proceedings of the 16th International Conference on World Wide Web, WWW 2007, Banff, Alberta, Canada, 2007, pp. 697–706. ACM (2007). https://doi.org/10.1145/1242572.1242667
– reference: Fathalla, S., Vahdati, S., Auer, S., Lange, C.: Towards a knowledge graph representing research findings by semantifying survey articles. In: Kamps, J., Tsakonas, G., Manolopoulos, Y., Iliadis, L.S., Karydis, I. (eds.) Research and Advanced Technology for Digital Libraries—21st International Conference on Theory and Practice of Digital Libraries, TPDL 2017, Thessaloniki, Greece, 2017, Proceedings, Lecture Notes in Computer Science, vol. 10450, pp. 315–327. Springer (2017). https://doi.org/10.1007/978-3-319-67008-9_25
– reference: NickelMMurphyKTrespVGabrilovichEA review of relational machine learning for knowledge graphsProc. IEEE20161041113310.1109/JPROC.2015.2483592
– reference: Suchanek, F.M., Gross-Amblard, D., Abiteboul, S.: Watermarking for ontologies. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N.F., Blomqvist, E. (eds.) The Semantic Web—ISWC 2011—10th International Semantic Web Conference, Bonn, Germany, 2011, Proceedings, Part I, Lecture Notes in Computer Science, vol. 7031, pp. 697–713. Springer (2011). https://doi.org/10.1007/978-3-642-25073-6_44
– reference: ConsortiumTGOConsortiumThe gene ontology resource: 20 years and still going strongNucl. Acids Res.201947D330D33810.1093/nar/gky1055
– reference: CB Insights: The data flywheel: how enlightened self-interest drives data network effects. https://www.cbinsights.com/research/team-blog/data-network-effects/ (2020)
– reference: Teufel, S., Siddharthan, A., Batchelor, C.R.: Towards domain-independent argumentative zoning: Evidence from chemistry and computational linguistics. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, EMNLP 2009, Singapore, A Meeting of SIGDAT, a Special Interest Group of the ACL, pp. 1493–1502. ACL (2009). https://www.aclweb.org/anthology/D09-1155/
– reference: HarsAStructure of Scientific Knowledge2003BerlinSpringer8318510.1007/978-3-540-24737-1_3
– reference: Ruiz-Iniesta, A., Corcho, Ó.: A review of ontologies for describing scholarly and scientific documents. In: Castro, A.G., Lange, C., Lord, P.W., Stevens, R. (eds.) Proceedings of the 4th Workshop on Semantic Publishing Co-located with the 11th Extended Semantic Web Conference (ESWC 2014), Anissaras, Greece, 2014, CEUR Workshop Proceedings, vol. 1155. CEUR-WS.org (2014). http://ceur-ws.org/Vol-1155/paper-07.pdf
– reference: Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Jr., E.R.H., Mitchell, T.M.: Toward an architecture for never-ending language learning. In: Fox, M., Poole, D. (eds.) Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, 2010. AAAI Press (2010). http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1879
– reference: Weikum, G., Dong, L., Razniewski, S., Suchanek, F.M.: Machine knowledge: creation and curation of comprehensive knowledge bases. CoRR abs/2009.11564 (2020). arXiv:2009.11564
– reference: Färber, M.: The microsoft academic knowledge graph: A linked data source with 8 billion triples of scholarly data. In: Ghidini, C., Hartig, O., Maleshkova, M., Svátek, V., Cruz, I.F., Hogan, A., Song, J., Lefrançois, M., Gandon, F. (eds.) The Semantic Web—ISWC 2019—18th International Semantic Web Conference, Auckland, New Zealand,, 2019, Proceedings, Part II, Lecture Notes in Computer Science, vol. 11779, pp. 113–129. Springer (2019). https://doi.org/10.1007/978-3-030-30796-7_8
– reference: PipinoLLLeeYWWangRYData quality assessmentCommun. ACM200245421121810.1145/505248.506010
– reference: Kolitsas, N., Ganea, O., Hofmann, T.: End-to-end neural entity linking. In: Korhonen, A., Titov, I. (eds.) Proceedings of the 22nd Conference on Computational Natural Language Learning, CoNLL 2018, Brussels, Belgium, 2018, pp. 519–529. Association for Computational Linguistics (2018). https://doi.org/10.18653/v1/k18-1050
– reference: ZaveriARulaAMaurinoAPietrobonRLehmannJAuerSQuality assessment for linked data: a surveySemant. Web201671639310.3233/SW-150175
– reference: BizerCQuality-Driven Information Filtering—In the Context of Web-Based Information Systems2007SaarbrückenVDM Verlag
– reference: Horvath, I.: Comparison of three methodological approaches of design research. In: S.N. (ed.) Proceedings of the 16th International Conference on Engineering Design, ICED’07, pp. 1–11. Ecole Central Paris (2007). Null; Conference date: 28-08-2007 through 30-08-2007
– reference: Qasemi Zadeh, B., Schumann, A.: The ACL RD-TEC 2.0: a language resource for evaluating term extraction and entity recognition methods. In: Calzolari, N., Choukri, K., Declerck, T., Goggi, S., Grobelnik, M., Maegaard, B., Mariani, J., Mazo, H., Moreno, A., Odijk, J., Piperidis, S. (eds.) Proceedings of the Tenth International Conference on Language Resources and Evaluation LREC 2016, Portorož, Slovenia, 2016. European Language Resources Association (ELRA) (2016). http://www.lrec-conf.org/proceedings/lrec2016/summaries/681.html
– reference: LehmannJIseleRJakobMJentzschAKontokostasDMendesPNHellmannSMorseyMvan KleefPAuerSBizerCDbpedia—a large-scale, multilingual knowledge base extracted from WikipediaSemant. Web20156216719510.3233/SW-140134
– reference: BoochGRumbaughJJacobsonIUnified Modeling Language User Guide, The (2nd Edition) (Addison-Wesley Object Technology Series)2005BostonAddison-Wesley Professional
– reference: Dayrell, C., Jr., A.C., Lima, G., Jr., D.M., Copestake, A.A., Feltrim, V.D., Tagnin, S.E.O., Aluísio, S.M.: Rhetorical move detection in english abstracts: multi-label sentence classifiers and their annotated corpora. In: Calzolari, N., Choukri, K., Declerck, T., Dogan, M.U., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S. (eds.) Proceedings of the Eighth International Conference on Language Resources and Evaluation, LREC 2012, Istanbul, Turkey, 2012, pp. 1604–1609. European Language Resources Association (ELRA) (2012). http://www.lrec-conf.org/proceedings/lrec2012/summaries/734.html
– reference: RichardsonSWilsonMNishikawaJHaywardRThe well-built clinical question: a key to evidence-based decisionsACP J. Club19951233A121310.7326/ACPJC-1995-123-3-A12
– reference: Park, S., Caragea, C.: Scientific keyphrase identification and classification by pre-trained language models intermediate task transfer learning. In: Scott, D., Bel, N., Zong, C. (eds.) Proceedings of the 28th International Conference on Computational Linguistics, COLING 2020, Barcelona, Spain (Online), 2020, pp. 5409–5419. International Committee on Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.coling-main.472
– reference: Kardas, M., Czapla, P., Stenetorp, P., Ruder, S., Riedel, S., Taylor, R., Stojnic, R.: Axcell: Automatic extraction of results from machine learning papers. In: Webber, B., Cohn, T., He, Y., Liu, Y. (eds.) Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, 2020, pp. 8580–8594. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.emnlp-main.692
– reference: Talburt, J.R.: 2—principles of information quality. In: Talburt, J.R. (ed.) Entity Resolution and Information Quality, pp. 39–62. Morgan Kaufmann, Boston (2011). https://doi.org/10.1016/B978-0-12-381972-7.00002-6. http://www.sciencedirect.com/science/article/pii/B9780123819727000026
– volume: 2
  start-page: 379
  issue: 3
  year: 2020
  ident: 306_CR95
  publication-title: Data Intell.
  doi: 10.1162/dint_a_00055
– ident: 306_CR104
  doi: 10.1016/B978-0-12-381972-7.00002-6
– volume: 32
  start-page: 267
  year: 2004
  ident: 306_CR11
  publication-title: Nucl. Acids Res.
  doi: 10.1093/nar/gkh061
– ident: 306_CR57
  doi: 10.18653/v1/n19-1370
– ident: 306_CR33
  doi: 10.18653/v1/n19-1423
– ident: 306_CR40
  doi: 10.1007/978-3-319-67008-9_25
– ident: 306_CR31
– year: 2019
  ident: 306_CR72
  publication-title: J. Inf. Sci.
  doi: 10.1177/0165551518801819
– volume: 18
  start-page: 1
  issue: 1
  year: 2017
  ident: 306_CR25
  publication-title: BMC Bioinform.
  doi: 10.1186/s12859-017-1775-9
– volume: 2
  start-page: 411
  issue: 4
  year: 2018
  ident: 306_CR5
  publication-title: J. Inf. Telecommun.
  doi: 10.1080/24751839.2018.1460083
– volume-title: WordNet: An Electronic Lexical Database. Language, Speech, and Communication
  year: 1998
  ident: 306_CR41
– ident: 306_CR85
  doi: 10.1007/978-3-642-20795-2_6
– ident: 306_CR36
  doi: 10.1145/2623330.2623623
– volume: 23
  start-page: 1
  issue: 1/2
  year: 2017
  ident: 306_CR20
  publication-title: D-Lib Mag.
  doi: 10.1045/january2017-burton
– ident: 306_CR45
  doi: 10.18653/v1/s18-1111
– ident: 306_CR80
– volume-title: Entity-Oriented Search
  year: 2018
  ident: 306_CR6
  doi: 10.1007/978-3-319-93935-3
– ident: 306_CR54
  doi: 10.18653/v1/p19-1513
– volume: 104
  start-page: 11
  issue: 1
  year: 2016
  ident: 306_CR77
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2483592
– ident: 306_CR38
  doi: 10.1007/978-3-030-30796-7_8
– ident: 306_CR49
  doi: 10.1007/978-3-540-72667-8_37
– ident: 306_CR101
  doi: 10.1007/978-3-030-06016-9_6
– year: 2019
  ident: 306_CR73
  publication-title: Zenodo
  doi: 10.5281/zenodo.2643199
– ident: 306_CR112
  doi: 10.1145/3038912.3052558
– ident: 306_CR106
  doi: 10.1007/978-3-030-30760-8_37
– ident: 306_CR76
  doi: 10.1007/978-3-030-61244-3_6
– ident: 306_CR111
– ident: 306_CR22
– ident: 306_CR37
– ident: 306_CR105
  doi: 10.3115/1699648.1699696
– volume: 4
  start-page: 119
  issue: 2
  year: 2013
  ident: 306_CR65
  publication-title: Semant. Web
  doi: 10.3233/SW-2012-0059
– volume: 2
  start-page: 38
  year: 2019
  ident: 306_CR115
  publication-title: Front. Big Data
  doi: 10.3389/fdata.2019.00038
– volume: 37
  start-page: 43
  year: 2015
  ident: 306_CR79
  publication-title: Commun. Assoc. Inf. Syst.
– ident: 306_CR89
  doi: 10.3115/v1/W14-4807
– volume: 47
  start-page: 1
  year: 2014
  ident: 306_CR35
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2013.12.006
– volume: 47
  start-page: D330
  year: 2019
  ident: 306_CR26
  publication-title: Nucl. Acids Res.
  doi: 10.1093/nar/gky1055
– ident: 306_CR113
  doi: 10.4230/OASIcs.LDK.2019.15
– volume: 29
  start-page: 599
  issue: 2
  year: 2013
  ident: 306_CR7
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2011.08.004
– volume: 28
  start-page: 991
  issue: 7
  year: 2012
  ident: 306_CR68
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts071
– ident: 306_CR102
  doi: 10.1007/978-3-642-25073-6_44
– volume: 76
  start-page: 35
  issue: 1–4
  year: 2019
  ident: 306_CR3
  publication-title: Ser. Libr.
  doi: 10.1080/0361526X.2019.1540272
– ident: 306_CR4
  doi: 10.18653/v1/S17-2091
– ident: 306_CR34
– ident: 306_CR18
  doi: 10.1007/978-3-319-18714-3_9
– ident: 306_CR90
– ident: 306_CR15
  doi: 10.1007/978-3-030-45439-5_17
– ident: 306_CR19
  doi: 10.3233/978-1-58603-923-3-208
– ident: 306_CR91
  doi: 10.18653/v1/d16-1264
– ident: 306_CR28
– ident: 306_CR93
– volume: 32
  start-page: 6793
  issue: 11
  year: 2020
  ident: 306_CR48
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04334-2
– volume: 25
  start-page: 1251
  issue: 11
  year: 2007
  ident: 306_CR98
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1346
– ident: 306_CR56
  doi: 10.1007/978-3-030-30760-8_31
– ident: 306_CR1
  doi: 10.18653/v1/n18-3011
– ident: 306_CR71
  doi: 10.18653/v1/d18-1360
– volume-title: Unified Modeling Language User Guide, The (2nd Edition) (Addison-Wesley Object Technology Series)
  year: 2005
  ident: 306_CR13
– ident: 306_CR103
  doi: 10.1145/1242572.1242667
– ident: 306_CR67
  doi: 10.1093/database/baw068
– ident: 306_CR47
  doi: 10.1145/2488388.2488425
– volume: 28
  start-page: 75
  issue: 1
  year: 2004
  ident: 306_CR51
  publication-title: MIS Q.
  doi: 10.2307/25148625
– volume: 66
  start-page: 2215
  issue: 11
  year: 2015
  ident: 306_CR14
  publication-title: J. Assoc. Inf. Sci. Technol.
  doi: 10.1002/asi.23329
– ident: 306_CR55
  doi: 10.18653/v1/2020.acl-main.670
– ident: 306_CR12
  doi: 10.1145/1376616.1376746
– volume: 12
  start-page: S5
  issue: 2
  year: 2011
  ident: 306_CR60
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-12-S2-S5
– volume: 57
  start-page: 78
  issue: 10
  year: 2014
  ident: 306_CR108
  publication-title: Commun. ACM
  doi: 10.1145/2629489
– volume: 13
  start-page: 179
  issue: 3
  year: 2019
  ident: 306_CR62
  publication-title: Int. J. Metadata Semant. Ontol.
  doi: 10.1504/IJMSO.2019.099833
– volume: 57
  start-page: 102269
  issue: 6
  year: 2020
  ident: 306_CR94
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2020.102269
– volume-title: Conducting Research Literature Reviews: From the Internet to Paper
  year: 2014
  ident: 306_CR42
– ident: 306_CR23
  doi: 10.18653/v1/n19-1361
– ident: 306_CR59
  doi: 10.18653/v1/2020.emnlp-main.692
– ident: 306_CR21
– volume: 7
  start-page: 167
  issue: 2
  year: 2016
  ident: 306_CR27
  publication-title: Semant. Web
  doi: 10.3233/SW-150177
– ident: 306_CR32
  doi: 10.1007/978-3-030-62466-8_9
– ident: 306_CR100
– volume-title: Quality-Driven Information Filtering—In the Context of Web-Based Information Systems
  year: 2007
  ident: 306_CR10
– volume: 123
  start-page: A12
  issue: 3
  year: 1995
  ident: 306_CR92
  publication-title: ACP J. Club
  doi: 10.7326/ACPJC-1995-123-3-A12
– ident: 306_CR24
  doi: 10.18653/v1/D19-1383
– ident: 306_CR53
– ident: 306_CR88
  doi: 10.1145/3159652.3162011
– volume: 17
  start-page: 305
  issue: 4
  year: 2016
  ident: 306_CR8
  publication-title: Int. J. Digit. Libr.
  doi: 10.1007/s00799-015-0156-0
– volume: 3
  start-page: 795
  issue: 11
  year: 2006
  ident: 306_CR99
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2006.0134
– volume: 6
  start-page: 167
  issue: 2
  year: 2015
  ident: 306_CR66
  publication-title: Semant. Web
  doi: 10.3233/SW-140134
– volume: 18
  start-page: 173
  issue: 3
  year: 2017
  ident: 306_CR84
  publication-title: Int. J. Digit. Libr.
  doi: 10.1007/s00799-016-0169-3
– ident: 306_CR109
– ident: 306_CR46
  doi: 10.1145/3018661.3018739
– ident: 306_CR96
  doi: 10.5220/0010111000640075
– year: 2016
  ident: 306_CR64
  publication-title: Database J. Biol. Databases Curation
  doi: 10.1093/database/bav123
– volume: 12
  start-page: 5
  issue: 4
  year: 1996
  ident: 306_CR110
  publication-title: J. Manag. Inf. Syst.
  doi: 10.1080/07421222.1996.11518099
– ident: 306_CR78
  doi: 10.1145/3383583.3398520
– volume: 117
  start-page: 1931
  issue: 3
  year: 2018
  ident: 306_CR75
  publication-title: Scientometrics
  doi: 10.1007/s11192-018-2921-5
– ident: 306_CR44
  doi: 10.18653/v1/2020.acl-main.116
– volume: 8
  start-page: 437
  issue: 3
  year: 2017
  ident: 306_CR107
  publication-title: Semant. Web
  doi: 10.3233/SW-160213
– volume: 9
  start-page: 77
  issue: 1
  year: 2018
  ident: 306_CR39
  publication-title: Semant. Web
  doi: 10.3233/SW-170275
– ident: 306_CR74
  doi: 10.1007/978-3-319-58068-5_20
– ident: 306_CR69
– year: 2017
  ident: 306_CR2
  publication-title: Open Repos. Conf.
  doi: 10.4225/03/58c696655af8a
– ident: 306_CR61
– volume: 45
  start-page: 211
  issue: 4
  year: 2002
  ident: 306_CR87
  publication-title: Commun. ACM
  doi: 10.1145/505248.506010
– ident: 306_CR81
  doi: 10.18653/v1/2020.coling-main.472
– ident: 306_CR86
– ident: 306_CR52
  doi: 10.1007/978-3-030-00066-0_27
– ident: 306_CR16
  doi: 10.1007/978-3-030-54956-5_1
– start-page: 83
  volume-title: Structure of Scientific Knowledge
  year: 2003
  ident: 306_CR50
  doi: 10.1007/978-3-540-24737-1_3
– volume: 17
  start-page: 33
  year: 2012
  ident: 306_CR83
  publication-title: J. Web Semant.
  doi: 10.1016/j.websem.2012.08.001
– ident: 306_CR70
  doi: 10.18653/v1/2020.acl-main.447
– volume: 7
  start-page: 63
  issue: 1
  year: 2016
  ident: 306_CR114
  publication-title: Semant. Web
  doi: 10.3233/SW-150175
– ident: 306_CR9
  doi: 10.18653/v1/D19-1371
– ident: 306_CR97
– ident: 306_CR17
  doi: 10.1007/978-3-030-72113-8_6
– volume: 36
  start-page: 344
  year: 2008
  ident: 306_CR30
  publication-title: Nucl. Acids Res.
  doi: 10.1093/nar/gkm791
– ident: 306_CR82
  doi: 10.18653/v1/w19-5006
– ident: 306_CR29
  doi: 10.1145/3132218.3132219
– ident: 306_CR43
  doi: 10.3115/v1/w15-1605
– ident: 306_CR58
  doi: 10.1145/3340531.3417439
– ident: 306_CR63
  doi: 10.18653/v1/k18-1050
SSID ssj0001817
Score 2.3465915
Snippet Current science communication has a number of drawbacks and bottlenecks which have been subject of discussion lately: Among others, the rising number of...
SourceID proquest
crossref
springer
econis
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 33
SubjectTerms Citations
Computer Science
Database Management
Datasets
Design science research
Digital libraries
Digital Object Identifier
Documents
Information Systems and Communication Service
Keywords
Knowledge representation
Literature reviews
Machine learning
Metadata
Ontology
R&D
Reproducibility
Requirements analysis
Research & development
Research knowledge graph
Scholarly communication
Science
Search engines
Semantics
State-of-the-art reviews
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS-wwFD7I6OJurm_u-OIsxI1TadPWtu5EfKDoygFdhTSPiygdsSPcK_jfPUmTkREV3HTRpGmbx8l3kvN9AdjOFY2gwqgojU0ZZaw2kcgVGcNSalXUdCO2fOfLq_2zYXZ-k994Ulgbot3DlqSz1BOyG10sY56R-2uBbkTIcZbwR5z1YPbw9PbieGKBadZyh6pkKTlaZIE9WebzUqYmpDnrhd61U3Dzww6pm3hO5mEYPrmLN7nfex7Xe_Llg5rjT_9pAX57JIqHXddZhBndLMF8OOUB_aBfgk1PbcAd9Nwl25YhfRleva5J8xcJTOKTtrHFbtGxRcqOokEbtYIhxg8vwjIenlq17AN8bjVKmk3bAXYcz_9TpQyoCIVy9K51i-04KFyswPDk-ProLPKHOkQyLfNxlAiCOCIvTFlraryqVCKJlSlqwhlS5UXCZJKZTJmMyTQzigBIVQhWi1hXpcxVugq9ZtToP4CprMhhFVLnpiBTJGsmjXASg5rKknEfktCyXHrFc3vwxgOfaDW7-udU_9zVP__Xh93JM4-d3se3uVe7DsO1q4XRE2flfhlXfdgIHYh7o9Byiz0ZI5-RkgehP7wnf_2atZ9lX4dfzJI0XKTcBvSocfQmQadxveVHyhsImhDz
  priority: 102
  providerName: Springer Nature
Title Analysing the requirements for an Open Research Knowledge Graph: use cases, quality requirements, and construction strategies
URI https://www.econstor.eu/handle/10419/286809
https://link.springer.com/article/10.1007/s00799-021-00306-x
https://www.proquest.com/docview/2644220969
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_WZg97Gd1HWbo23EPpy2Jmy3Ys96U0IUlpaTbGCt2TkPUxBsXp6gzah_7vPSlyQgbtiwyWLINOuvvd6T4ADnNNJ6iwOkpjy6OMVTaSuSZmyJXRRUUvYhfvfDkbnF1l59f5dTC4NcGtsuWJnlHruXI28q9OcDNGgLs8uf0buapR7nY1lNDYgg6xYE7KV2c4nn3_seLFJL98eZUsJZWLeHEIm_HBc9S4CHxG6rQDztH9hmh67fTRP80G8PzvrtSLoMkOvA3YEU-XxH4Hr0z9Hg5C5AEeYQgtckuN4cx-gMeQdqT-jYT18M44119vE2yQhqOs0TmVYOuChxetlQ2nLpn1Mf5rDCoSdk0flyGYDxuz9GkKjWq-TkWLzaJNQPERribjn6OzKNRciFTK80WUSEIgMi8srwxhhZJrmcTaFhXBAKXzImEqyWymbcZUmllN-KAsJKtkbEqucp3uwnY9r80nwFSVpE9KZXJbEKdQFVNW-gyAhuZScReSdrmFCgnJXV2MG7FKpexJJIhEwpNI3Hfhy-qb22U6jhdH7y6pKIxfhfmdYHzA47IL-y1VRTizjVjvsC70W0qvu5__zd7Ls32GN8zFTHjHtX3YJmKYA0Iyi6oHW3wy7UHndDIcztxz-uti3AubmHpHgxG1l8m3J37I9x8
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2VggQXVD6qBlqYA3AhFvbartdIFUJAmpK2p1bqbVnvR1UJOaUOoj30L_U3MrveTRQkeuslh8SeSH6782bW82YA3pSadlBldZKnlicFa2wiS03OkCujq4a-SJ3e-eBwe3xcfD8pT1bgJmphXFll9IneUeupcmfkHxxxM0YBd_3p_Ffipka5t6txhEa_LCbm6g-lbN3O3lfC9y1jo29HX8ZJmCqQqJyXsySTxLGyrCxvDLFhzbXMUm2rhohO6bLKmMoKW2hbMJUXVhMD1pVkjUxNzVWpc7J7D-4XeV67HcVHu3PPT2zph7kUOSV45PmDSMdL9ejD6f0ZJe8uTE8ul4jwgct-z7qlMPefN7Oe8EZr8DhEqvi5X1pPYMW0T2Er6BzwHQYhkwMWg4d4BtehyUl7ihRZ4oVxhcb-BLJDuhxli66EBWPBH07imR7uutbZH_F3Z1ARtXZD7AWfV0tWhmRCo5ouGt9iN4vtLp7D8Z1gsQ6r7bQ1G4C5qil7lcqUtiK_pBqmrPT9Bg3ZUukAsvi4hQrtz90Ujp9i3rjZQyQIIuEhEpcDeD-_57xv_nHr1es9isL4pzC9EIxv87QewGZEVQQP0YnFeh7AMCK9-Pn_f_Pidmuv4eH46GBf7O8dTl7CI-bUGr5kbhNWCRizRTHUrHnlFy7Cj7veKX8BCr0tDw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VghAXvisCLcwBuBC39tqO15UQQpTQElo4UKm3rb0fCIGcUqeirdQ_1r_Cn2F2vZsoleitBy45JPZEWr-dN7OeNwPwPFe0gwqjojQ2PMpYbaIqV-QMudSqqOmL2Oqdt3cGm7vZx718bwHOgxbGllUGn-gctRpLe0a-ZombMQq4yzXjyyK-bAzfHPyK7AQp-6Y1jNPoIDLSJ78pfWtfb23Qs37B2PD913ebkZ8wEMmU55MoqYhvq7wwvNbEjCVXVRIrU9REelLlRcJkkplMmYzJNDOK2LAsKlZXsS65zFVKdq_B9SIbcFtOuJ18nrIAMacb7JKllOwRC3jBjpPt0YfV_jNK5G3IHh3PkeINmwl_b-dC3gtvaR35De_An7BsXc3Lj9WjSb0qTy90lPw_1_Uu3PYxOb7tNtE9WNDNfVjxig58iV6yZSGM3hc-gDPfzqX5hhRD46G2JdXurLVFuhyrBm2xDobSRhyF00v8YJuEr-NRq1FSENH2sZO2nsxZ6ZMJhXI8a_GL7SQ09ngIu1eyIkuw2Iwb_QgwlSXl6ZXUuSnIA8uaSVO5zoqabMm4B0kAk5C-0budN_JTTFtUOwAKAqBwABTHPXg1veega3Ny6dVLHUaFdqswPhSMD3hc9mA5gEx4X9iKGcJ60A84nv387795fLm1Z3CTkCo-be2MnsAtZmUprjZwGRbpuegVChYn9VO3KxH2rxqufwG5hXjo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysing+the+requirements+for+an+Open+Research+Knowledge+Graph%3A+use+cases%2C+quality+requirements%2C+and+construction+strategies&rft.jtitle=International+journal+on+digital+libraries&rft.au=Brack%2C+Arthur&rft.au=Hoppe%2C+Anett&rft.au=Stocker%2C+Markus&rft.au=Auer%2C+S%C3%B6ren&rft.date=2022-03-01&rft.issn=1432-5012&rft.eissn=1432-1300&rft.volume=23&rft.issue=1&rft.spage=33&rft.epage=55&rft_id=info:doi/10.1007%2Fs00799-021-00306-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00799_021_00306_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-1300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-1300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-1300&client=summon