Analysing the requirements for an Open Research Knowledge Graph: use cases, quality requirements, and construction strategies
Current science communication has a number of drawbacks and bottlenecks which have been subject of discussion lately: Among others, the rising number of published articles makes it nearly impossible to get a full overview of the state of the art in a certain field, or reproducibility is hampered by...
Saved in:
Published in | International journal on digital libraries Vol. 23; no. 1; pp. 33 - 55 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin, Heidelberg
Springer
01.03.2022
Springer Berlin Heidelberg Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Current science communication has a number of drawbacks and bottlenecks which have been subject of discussion lately: Among others, the rising number of published articles makes it nearly impossible to get a full overview of the state of the art in a certain field, or reproducibility is hampered by fixed-length, document-based publications which normally cannot cover all details of a research work. Recently, several initiatives have proposed knowledge graphs (KG) for organising scientific information as a solution to many of the current issues. The focus of these proposals is, however, usually restricted to very specific use cases. In this paper, we aim to transcend this limited perspective and present a comprehensive analysis of requirements for an Open Research Knowledge Graph (ORKG) by (a) collecting and reviewing daily core tasks of a scientist, (b) establishing their consequential requirements for a KG-based system, (c) identifying overlaps and specificities, and their coverage in current solutions. As a result, we map necessary and desirable requirements for successful KG-based science communication, derive implications, and outline possible solutions. |
---|---|
AbstractList | Current science communication has a number of drawbacks and bottlenecks which have been subject of discussion lately: Among others, the rising number of published articles makes it nearly impossible to get a full overview of the state of the art in a certain field, or reproducibility is hampered by fixed-length, document-based publications which normally cannot cover all details of a research work. Recently, several initiatives have proposed knowledge graphs (KG) for organising scientific information as a solution to many of the current issues. The focus of these proposals is, however, usually restricted to very specific use cases. In this paper, we aim to transcend this limited perspective and present a comprehensive analysis of requirements for an Open Research Knowledge Graph (ORKG) by (a) collecting and reviewing daily core tasks of a scientist, (b) establishing their consequential requirements for a KG-based system, (c) identifying overlaps and specificities, and their coverage in current solutions. As a result, we map necessary and desirable requirements for successful KG-based science communication, derive implications, and outline possible solutions. |
Author | Brack, Arthur Ewerth, Ralph Stocker, Markus Hoppe, Anett Auer, Sören |
Author_xml | – sequence: 1 givenname: Arthur surname: Brack fullname: Brack, Arthur – sequence: 2 givenname: Anett surname: Hoppe fullname: Hoppe, Anett – sequence: 3 givenname: Markus surname: Stocker fullname: Stocker, Markus – sequence: 4 givenname: Sören surname: Auer fullname: Auer, Sören – sequence: 5 givenname: Ralph surname: Ewerth fullname: Ewerth, Ralph |
BookMark | eNp9kE1LHTEUhkNRqNr-gUIh0K3T5mtmku5EWlsqCGLXITdz5t7ImNybk0Hvov-90RH6sXCTnMX7vJzzHJODmCIQ8o6zj5yx_hPWx5iGCd4wJlnXPLwiR1xJ0XDJ2MFf82tyjHjLGOOa90fk11l00x5DXNOyAZphN4cMdxAL0jFl6iK92kKk14Dgst_QHzHdTzCsgV5kt918pjMC9Q4BT-ludlMo-39aTmvFQH2KWPLsS0iR1skVWAfAN-RwdBPC2-f_hPz8-uXm_FtzeXXx_fzssvFSt6XhrpOta_tRr4AbZvTgOBvGfiWU8kPbc-G5GtUwKuGlGgfNhemdWDkGRvt2kCfkw9K7zWk3AxZ7m-ZcL0crOqWEYKYzNaWXlM8JMcNofSjuceW6cJgsZ_ZRtl1k2yrbPsm2DxUV_6HbHO5c3r8MyQXCGo5ryH-2epF6v1BQpQa08OQ2ZSt0p5mRvwGkW6C2 |
CitedBy_id | crossref_primary_10_1108_EL_06_2023_0154 crossref_primary_10_1007_s00799_023_00392_z crossref_primary_10_5334_dsj_2024_052 crossref_primary_10_1108_IDD_06_2022_0054 crossref_primary_10_23919_JSEE_2024_000046 crossref_primary_10_3389_frma_2022_934930 crossref_primary_10_1016_j_aei_2024_103076 crossref_primary_10_1016_j_eswa_2023_121433 |
Cites_doi | 10.1162/dint_a_00055 10.1016/B978-0-12-381972-7.00002-6 10.1093/nar/gkh061 10.18653/v1/n19-1370 10.18653/v1/n19-1423 10.1007/978-3-319-67008-9_25 10.1177/0165551518801819 10.1186/s12859-017-1775-9 10.1080/24751839.2018.1460083 10.1007/978-3-642-20795-2_6 10.1145/2623330.2623623 10.1045/january2017-burton 10.18653/v1/s18-1111 10.1007/978-3-319-93935-3 10.18653/v1/p19-1513 10.1109/JPROC.2015.2483592 10.1007/978-3-030-30796-7_8 10.1007/978-3-540-72667-8_37 10.1007/978-3-030-06016-9_6 10.5281/zenodo.2643199 10.1145/3038912.3052558 10.1007/978-3-030-30760-8_37 10.1007/978-3-030-61244-3_6 10.3115/1699648.1699696 10.3233/SW-2012-0059 10.3389/fdata.2019.00038 10.3115/v1/W14-4807 10.1016/j.jbi.2013.12.006 10.1093/nar/gky1055 10.4230/OASIcs.LDK.2019.15 10.1016/j.future.2011.08.004 10.1093/bioinformatics/bts071 10.1007/978-3-642-25073-6_44 10.1080/0361526X.2019.1540272 10.18653/v1/S17-2091 10.1007/978-3-319-18714-3_9 10.1007/978-3-030-45439-5_17 10.3233/978-1-58603-923-3-208 10.18653/v1/d16-1264 10.1007/s00521-019-04334-2 10.1038/nbt1346 10.1007/978-3-030-30760-8_31 10.18653/v1/n18-3011 10.18653/v1/d18-1360 10.1145/1242572.1242667 10.1093/database/baw068 10.1145/2488388.2488425 10.2307/25148625 10.1002/asi.23329 10.18653/v1/2020.acl-main.670 10.1145/1376616.1376746 10.1186/1471-2105-12-S2-S5 10.1145/2629489 10.1504/IJMSO.2019.099833 10.1016/j.ipm.2020.102269 10.18653/v1/n19-1361 10.18653/v1/2020.emnlp-main.692 10.3233/SW-150177 10.1007/978-3-030-62466-8_9 10.7326/ACPJC-1995-123-3-A12 10.18653/v1/D19-1383 10.1145/3159652.3162011 10.1007/s00799-015-0156-0 10.1098/rsif.2006.0134 10.3233/SW-140134 10.1007/s00799-016-0169-3 10.1145/3018661.3018739 10.5220/0010111000640075 10.1093/database/bav123 10.1080/07421222.1996.11518099 10.1145/3383583.3398520 10.1007/s11192-018-2921-5 10.18653/v1/2020.acl-main.116 10.3233/SW-160213 10.3233/SW-170275 10.1007/978-3-319-58068-5_20 10.4225/03/58c696655af8a 10.1145/505248.506010 10.18653/v1/2020.coling-main.472 10.1007/978-3-030-00066-0_27 10.1007/978-3-030-54956-5_1 10.1007/978-3-540-24737-1_3 10.1016/j.websem.2012.08.001 10.18653/v1/2020.acl-main.447 10.3233/SW-150175 10.18653/v1/D19-1371 10.1007/978-3-030-72113-8_6 10.1093/nar/gkm791 10.18653/v1/w19-5006 10.1145/3132218.3132219 10.3115/v1/w15-1605 10.1145/3340531.3417439 10.18653/v1/k18-1050 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | OT2 C6C AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8FD 8FE 8FG 8FK 8G5 ABUWG AFKRA ALSLI ARAPS AZQEC BENPR BGLVJ CCPQU CNYFK DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- L7M L~C L~D M0N M1O M2O M2P MBDVC P5Z P62 PADUT PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRQQA Q9U |
DOI | 10.1007/s00799-021-00306-x |
DatabaseName | EconStor Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College Library & Information Science Collection ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Library Science Database Research Library Science Database (ProQuest) Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Research Library China ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Social Sciences ProQuest Central Basic |
DatabaseTitle | CrossRef Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Library Science ProQuest Central Korea Library & Information Science Collection ProQuest Research Library Research Library China ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection Social Science Premium Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest One Social Sciences ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Research Library Prep CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Library & Information Science Computer Science |
EISSN | 1432-1300 |
EndPage | 55 |
ExternalDocumentID | 10_1007_s00799_021_00306_x 286809 |
GrantInformation_xml | – fundername: Technische Informationsbibliothek (TIB) – Leibniz-Informationszentrum Technik und Naturwissenschaften (1051) |
GroupedDBID | -D7 -Y2 -~C .4I .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29J 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6IK 6NX 88I 8FE 8FG 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACSTC ACUHS ACWUS ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. B0M BA0 BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU CNYFK COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBLON EBS ECS EDO EIOEI EJD ELW EMK EPL ESBYG EST ESX FD6 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GUQSH GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KZ1 LAS LLZTM M1O M2O M2P M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OT2 P2P P62 P9O PADUT PF0 PHGZM PHGZT PQGLB PQQKQ PROAC PRQQA PT4 PT5 PUEGO Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~8M -59 -5G -BR -EM 3V. AAAVM ADINQ C6C GQ6 M0N RIG Z7Y Z81 Z83 Z88 AAYXX ACMFV CITATION 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D MBDVC PKEHL PQEST PQUKI Q9U |
ID | FETCH-LOGICAL-c385t-1a635a57f8be19098da10df7b244cd5712c14f4df42c34fd81297a2ba0e98c5d3 |
IEDL.DBID | BENPR |
ISSN | 1432-1300 1432-5012 |
IngestDate | Fri Jul 25 03:14:02 EDT 2025 Tue Jul 01 03:13:28 EDT 2025 Thu Apr 24 23:03:18 EDT 2025 Fri Feb 21 02:47:41 EST 2025 Fri Aug 29 12:22:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Research knowledge graph Requirements analysis Scholarly communication Design science research |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-1a635a57f8be19098da10df7b244cd5712c14f4df42c34fd81297a2ba0e98c5d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1452-9509 0000-0001-5492-3212 0000-0002-0698-2864 0000-0003-0918-6297 0000-0002-1428-5348 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s00799-021-00306-x |
PQID | 2644220969 |
PQPubID | 54113 |
PageCount | 23 |
ParticipantIDs | proquest_journals_2644220969 crossref_citationtrail_10_1007_s00799_021_00306_x crossref_primary_10_1007_s00799_021_00306_x springer_journals_10_1007_s00799_021_00306_x econis_econstor_286809 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin, Heidelberg |
PublicationPlace_xml | – name: Berlin, Heidelberg – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | International journal on digital libraries |
PublicationTitleAbbrev | Int J Digit Libr |
PublicationYear | 2022 |
Publisher | Springer Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Kardas, M., Czapla, P., Stenetorp, P., Ruder, S., Riedel, S., Taylor, R., Stojnic, R.: Axcell: Automatic extraction of results from machine learning papers. In: Webber, B., Cohn, T., He, Y., Liu, Y. (eds.) Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, 2020, pp. 8580–8594. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.emnlp-main.692 LehmannJIseleRJakobMJentzschAKontokostasDMendesPNHellmannSMorseyMvan KleefPAuerSBizerCDbpedia—a large-scale, multilingual knowledge base extracted from WikipediaSemant. Web20156216719510.3233/SW-140134 PipinoLLLeeYWWangRYData quality assessmentCommun. ACM200245421121810.1145/505248.506010 Jaradeh, M.Y., Oelen, A., Prinz, M., Stocker, M., Auer, S.: Open research knowledge graph: a system walkthrough. In: Doucet, A., Isaac, A., Golub, K., Aalberg, T., Jatowt, A. (eds.) Digital Libraries for Open Knowledge—23rd International Conference on Theory and Practice of Digital Libraries, TPDL 2019, Oslo, Norway, 2019, Proceedings, Lecture Notes in Computer Science, vol. 11799, pp. 348–351. Springer (2019). https://doi.org/10.1007/978-3-030-30760-8_31 Teufel, S., Siddharthan, A., Batchelor, C.R.: Towards domain-independent argumentative zoning: Evidence from chemistry and computational linguistics. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, EMNLP 2009, Singapore, A Meeting of SIGDAT, a Special Interest Group of the ACL, pp. 1493–1502. ACL (2009). https://www.aclweb.org/anthology/D09-1155 Friedrich, A., Adel, H., Tomazic, F., Hingerl, J., Benteau, R., Marusczyk, A., Lange, L.: The sofc-exp corpus and neural approaches to information extraction in the materials science domain. In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J.R. (eds.) Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, 2020, pp. 1255–1268. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.acl-main.116 Fathalla, S., Vahdati, S., Auer, S., Lange, C.: Towards a knowledge graph representing research findings by semantifying survey articles. In: Kamps, J., Tsakonas, G., Manolopoulos, Y., Iliadis, L.S., Karydis, I. (eds.) Research and Advanced Technology for Digital Libraries—21st International Conference on Theory and Practice of Digital Libraries, TPDL 2017, Thessaloniki, Greece, 2017, Proceedings, Lecture Notes in Computer Science, vol. 10450, pp. 315–327. Springer (2017). https://doi.org/10.1007/978-3-319-67008-9_25 Hoppe, A., Hagen, J., Holzmann, H., Kniesel, G., Ewerth, R.: An analytics tool for exploring scientific software and related publications. In: Méndez, E., Crestani, F., Ribeiro, C., David, G., Lopes, J.C. (eds.) Digital Libraries for Open Knowledge, 22nd International Conference on Theory and Practice of Digital Libraries, TPDL 2018, Porto, Portugal, 2018, Proceedings, Lecture Notes in Computer Science, vol. 11057, pp. 299–303. Springer (2018). https://doi.org/10.1007/978-3-030-00066-0_27 RichardsonSWilsonMNishikawaJHaywardRThe well-built clinical question: a key to evidence-based decisionsACP J. Club19951233A121310.7326/ACPJC-1995-123-3-A12 Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: Williamson, C.L., Zurko, M.E., Patel-Schneider, P.F., Shenoy, P.J. (eds.) Proceedings of the 16th International Conference on World Wide Web, WWW 2007, Banff, Alberta, Canada, 2007, pp. 697–706. ACM (2007). https://doi.org/10.1145/1242572.1242667 Waard, A., Tel, G.: The ABCDE format enabling semantic conference proceedings. In: Völkel, M., Schaffert, S. (eds.) SemWiki2006, First Workshop on Semantic Wikis—From Wiki to Semantics, Proceedings, Co-located with the ESWC2006, Budva, Montenegro, 2006, CEUR Workshop Proceedings, vol. 206. CEUR-WS.org (2006). http://ceur-ws.org/Vol-206/paper8.pdf BodenreiderOThe unified medical language system (UMLS): integrating biomedical terminologyNucl. Acids Res.20043226727010.1093/nar/gkh061 Jia, R., Wong, C., Poon, H.: Document-level n-ary relation extraction with multiscale representation learning. In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, 2019, vol. 1 (Long and Short Papers), pp. 3693–3704. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/n19-1370 Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Jr., E.R.H., Mitchell, T.M.: Toward an architecture for never-ending language learning. In: Fox, M., Poole, D. (eds.) Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, 2010. AAAI Press (2010). http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1879 Pujara, J., Singh, S.: Mining knowledge graphs from text. In: Chang, Y., Zhai, C., Liu, Y., Maarek, Y. (eds.) Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, WSDM 2018, Marina Del Rey, CA, USA, 2018, pp. 789–790. ACM (2018). https://doi.org/10.1145/3159652.3162011 Jain, S., van Zuylen, M., Hajishirzi, H., Beltagy, I.: Scirex: A challenge dataset for document-level information extraction. In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J.R. (eds.) Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, 2020, pp. 7506–7516. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.acl-main.670 Luan, Y., He, L., Ostendorf, M., Hajishirzi, H.: Multi-task identification of entities, relations, and coreference for scientific knowledge graph construction. In: Riloff, E., Chiang, D., Hockenmaier, J., Tsujii, J. (eds.) Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 2018, pp. 3219–3232. Association for Computational Linguistics (2018). https://doi.org/10.18653/v1/d18-1360 Oelen, A., Jaradeh, M.Y., Stocker, M., Auer, S.: Generate FAIR literature surveys with scholarly knowledge graphs. In: Huang, R., Wu, D., Marchionini, G., He, D., Cunningham, S.J., Hansen, P. (eds.) JCDL ’20: Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020, Virtual Event, China, 2020, pp. 97–106. ACM (2020). https://doi.org/10.1145/3383583.3398520 Talburt, J.R.: 2—principles of information quality. In: Talburt, J.R. (ed.) Entity Resolution and Information Quality, pp. 39–62. Morgan Kaufmann, Boston (2011). https://doi.org/10.1016/B978-0-12-381972-7.00002-6. http://www.sciencedirect.com/science/article/pii/B9780123819727000026 Galárraga, L., Razniewski, S., Amarilli, A., Suchanek, F.M.: Predicting completeness in knowledge bases. In: de Rijke, M., Shokouhi, M., Tomkins, A., Zhang, M. (eds.) Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, WSDM 2017, Cambridge, United Kingdom, 2017, pp. 375–383. ACM (2017). https://doi.org/10.1145/3018661.3018739 KimSMartínezDCavedonLYenckenLAutomatic classification of sentences to support evidence based medicineBMC Bioinform.2011122S510.1186/1471-2105-12-S2-S5 SalatinoAAThanapalasingamTMannocciABirukouAOsborneFMottaEThe computer science ontology: a comprehensive automatically-generated taxonomy of research areasData Intell.20202337941610.1162/dint_a_00055 Dessì, D., Osborne, F., Recupero, D.R., Buscaldi, D., Motta, E., Sack, H.: AI-KG: an automatically generated knowledge graph of artificial intelligence. In: Pan, J.Z., Tamma, V.A.M., d’Amato, C., Janowicz, K., Fu, B., Polleres, A., Seneviratne, O., Kagal, L. (eds.) The Semantic Web—ISWC 2020—19th International Semantic Web Conference, Athens, Greece, 2020, Proceedings, Part II, Lecture Notes in Computer Science, vol. 12507, pp. 127–143. Springer (2020). https://doi.org/10.1007/978-3-030-62466-8_9 HevnerARMarchSTParkJRamSDesign science in information systems researchMIS Q.20042817510510.2307/25148625 KlampanosIADavvetasAKoukourikosAKarkaletsisVANNETT-O: an ontology for describing artificial neural network evaluation, topology and trainingInt. J. Metadata Semant. Ontol.201913317919010.1504/IJMSO.2019.099833 LiakataMSahaSDobnikSBatchelorCRRebholz-SchuhmannDAutomatic recognition of conceptualization zones in scientific articles and two life science applicationsBioinformatics2012287991100010.1093/bioinformatics/bts071 Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad: 100, 000+ questions for machine comprehension of text. In: Su, J., Carreras, X., Duh, K. (eds.) Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, EMNLP 2016, Austin, Texas, USA, 2016, pp. 2383–2392. The Association for Computational Linguistics (2016). https://doi.org/10.18653/v1/d16-1264 SafderIHassanSVisviziANorasetTNawazRTuarobSDeep learning-based extraction of algorithmic metadata in full-text scholarly documentsInf. Process. Manag.202057610226910.1016/j.ipm.2020.102269 CohenKBLanfranchiAChoiMJBaumgartnerWAPanteleyevaNVerspoorKPalmerMHunterLECoreference annotation and resolution in the Colorado richly annotated full text (CRAFT) corpus of biomedical journal articlesBMC Bioinform.201718111410.1186/s12859-017-1775-9 Brodaric, B., Reitsma, F., Qiang, Y.: Skiing with DOLCE: toward an e-science knowledge infrastructure. In: Eschenbach, C., Grüninger, M. (eds.) Formal Ontology in Information Systems, Proceedings of the Fifth International Conference, FOIS 2008, Saarbrücken, Germany, 2008, Frontiers in Artificial Intelligence and Applications, vol. 183, pp. 208–219. IOS Press (2008). https://doi.org/10.3233/978-1-58603-923-3-208 AuerSMannSTowards an open research knowledge graphSer. Libr.2019761–4354110.1080/0361526X.2019.1540272 VrandecicDKrötzschMWikidata: a free collaborative knowledgebaseCommun. ACM20145710788510.1145/2629489 Brack, A., D’Souza, J., Hoppe, A., Auer, S., Ewerth, R.: Domain-independent extraction of scientific concepts from research articles. In: J Kringelum (306_CR64) 2016 B Smith (306_CR98) 2007; 25 306_CR71 306_CR70 O Bodenreider (306_CR11) 2004; 32 306_CR9 306_CR78 306_CR76 306_CR74 K Badie (306_CR5) 2018; 2 S Auer (306_CR3) 2019; 76 306_CR82 306_CR81 306_CR80 S Bechhofer (306_CR7) 2013; 29 V Pertsas (306_CR84) 2017; 18 306_CR89 306_CR88 306_CR4 306_CR86 306_CR85 306_CR1 IA Klampanos (306_CR62) 2019; 13 M Färber (306_CR39) 2018; 9 I Safder (306_CR94) 2020; 57 C Bizer (306_CR10) 2007 M Liakata (306_CR68) 2012; 28 306_CR93 A Constantin (306_CR27) 2016; 7 306_CR91 306_CR90 306_CR12 L Bornmann (306_CR14) 2015; 66 306_CR97 306_CR96 306_CR19 306_CR18 306_CR17 306_CR16 LN Soldatova (306_CR99) 2006; 3 306_CR15 KB Cohen (306_CR25) 2017; 18 306_CR24 306_CR23 306_CR22 306_CR21 TGO Consortium (306_CR26) 2019; 47 A Aryani (306_CR2) 2017 306_CR29 306_CR28 306_CR101 306_CR100 306_CR103 306_CR102 A Zaveri (306_CR114) 2016; 7 S Peroni (306_CR83) 2012; 17 G Booch (306_CR13) 2005 A Hars (306_CR50) 2003 306_CR34 306_CR33 306_CR32 306_CR31 C Okoli (306_CR79) 2015; 37 K Degtyarenko (306_CR30) 2008; 36 (306_CR41) 1998 P Vandenbussche (306_CR107) 2017; 8 306_CR38 306_CR37 306_CR36 306_CR112 306_CR111 Z Nasar (306_CR75) 2018; 117 306_CR113 M Lubani (306_CR72) 2019 RI Dogan (306_CR35) 2014; 47 S Kim (306_CR60) 2011; 12 306_CR46 M Nickel (306_CR77) 2016; 104 306_CR45 306_CR44 306_CR43 306_CR40 S Richardson (306_CR92) 1995; 123 D Vrandecic (306_CR108) 2014; 57 306_CR109 A Burton (306_CR20) 2017; 23 306_CR105 306_CR49 306_CR104 306_CR47 306_CR106 Y Zhang (306_CR115) 2019; 2 C Lange (306_CR65) 2013; 4 306_CR57 306_CR56 S Gonçalves (306_CR48) 2020; 32 306_CR55 RY Wang (306_CR110) 1996; 12 306_CR54 306_CR53 306_CR52 AR Hevner (306_CR51) 2004; 28 306_CR59 306_CR58 P Manghi (306_CR73) 2019 J Lehmann (306_CR66) 2015; 6 LL Pipino (306_CR87) 2002; 45 306_CR67 J Beel (306_CR8) 2016; 17 306_CR63 306_CR61 A Fink (306_CR42) 2014 K Balog (306_CR6) 2018 AA Salatino (306_CR95) 2020; 2 306_CR69 |
References_xml | – reference: Qasemi Zadeh, B., Handschuh, B.S.: The ACL RD-TEC: a dataset for benchmarking terminology extraction and classification in computational linguistics. In: Proceedings of the 4th International Workshop on Computational Terminology (Computerm), pp. 52–63. Association for Computational Linguistics and Dublin City University, Dublin, Ireland (2014). 10.3115/v1/W14-4807. https://www.aclweb.org/anthology/W14-4807 – reference: Pineau, J., Vincent-Lamarre, P., Sinha, K., Larivière, V., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Larochelle, H.: Improving reproducibility in machine learning research (a report from the neurips 2019 reproducibility program). CoRR abs/2003.12206 (2020). arXiv:2003.12206 – reference: Brack, A., D’Souza, J., Hoppe, A., Auer, S., Ewerth, R.: Domain-independent extraction of scientific concepts from research articles. In: Jose, J.M., Yilmaz, E., Magalhães, J., Castells, P., Ferro, N., Silva, M.J., Martins, F. (eds.) Advances in Information Retrieval—42nd European Conference on IR Research, ECIR 2020, Lisbon, Portugal, 2020, Proceedings, Part I, Lecture Notes in Computer Science, vol. 12035, pp. 251–266. Springer (2020). https://doi.org/10.1007/978-3-030-45439-5_17 – reference: Stocker, M., Prinz, M., Rostami, F., Kempf, T.: Towards research infrastructures that curate scientific information: a use case in life sciences. In: Auer, S., Vidal, M. (eds.) Data Integration in the Life Sciences—13th International Conference, DILS 2018, Hannover, Germany, 2018, Proceedings, Lecture Notes in Computer Science, vol. 11371, pp. 61–74. Springer (2018). https://doi.org/10.1007/978-3-030-06016-9_6 – reference: Gábor, K., Buscaldi, D., Schumann, A., Qasemi Zadeh, B., Zargayouna, H., Charnois, T.: Semeval-2018 task 7: Semantic relation extraction and classification in scientific papers. In: Apidianaki, M., Mohammad, S.M., May, J., Shutova, E., Bethard, S., Carpuat M. (eds.) Proceedings of The 12th International Workshop on Semantic Evaluation, SemEval@NAACL-HLT 2018, New Orleans, Louisiana, USA, 2018, pp. 679–688. Association for Computational Linguistics (2018). https://doi.org/10.18653/v1/s18-1111 – reference: BornmannLMutzRGrowth rates of modern science: a bibliometric analysis based on the number of publications and cited referencesJ. Assoc. Inf. Sci. Technol.201566112215222210.1002/asi.23329 – reference: Augenstein, I., Das, M., Riedel, S., Vikraman, L., McCallum, A.: Semeval 2017 task 10: Scienceie—xtracting keyphrases and relations from scientific publications. In: Bethard, S., Carpuat, M., Apidianaki, M., Mohammad, S.M., Cer, D.M., Jurgens, D. (eds.) Proceedings of the 11th International Workshop on Semantic Evaluation, SemEval@ACL 2017, Vancouver, Canada, 2017, pp. 546–555. Association for Computational Linguistics (2017). https://doi.org/10.18653/v1/S17-2091 – reference: OkoliCA guide to conducting a standalone systematic literature reviewCommun. Assoc. Inf. Syst.20153743 – reference: KimSMartínezDCavedonLYenckenLAutomatic classification of sentences to support evidence based medicineBMC Bioinform.2011122S510.1186/1471-2105-12-S2-S5 – reference: Ammar, W., Groeneveld, D., Bhagavatula, C., Beltagy, I., Crawford, M., Downey, D., Dunkelberger, J., Elgohary, A., Feldman, S., Ha, V., Kinney, R., Kohlmeier, S., Lo, K., Murray, T., Ooi, H., Peters, M.E., Power, J., Skjonsberg, S., Wang, L.L., Wilhelm, C., Yuan, Z., van Zuylen, M., Etzioni, O.: Construction of the literature graph in semantic scholar. In: Bangalore, S., Chu-Carroll, J., Li, Y. (eds.) Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2018, New Orleans, Louisiana, USA, June 1–6, 2018, vol. 3 (Industry Papers), pp. 84–91. Association for Computational Linguistics (2018). https://doi.org/10.18653/v1/n18-3011 – reference: BeelJGippBLangerSBreitingerCResearch-paper recommender systems: a literature surveyInt. J. Digit. Libr.201617430533810.1007/s00799-015-0156-0 – reference: Luan, Y., He, L., Ostendorf, M., Hajishirzi, H.: Multi-task identification of entities, relations, and coreference for scientific knowledge graph construction. In: Riloff, E., Chiang, D., Hockenmaier, J., Tsujii, J. (eds.) Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 2018, pp. 3219–3232. Association for Computational Linguistics (2018). https://doi.org/10.18653/v1/d18-1360 – reference: Vahdati, S., Fathalla, S., Auer, S., Lange, C., Vidal, M.: Semantic representation of scientific publications. In: Doucet, A., Isaac, A., Golub, K., Aalberg, T., Jatowt, A. (eds.) Digital Libraries for Open Knowledge—23rd International Conference on Theory and Practice of Digital Libraries, TPDL 2019, Oslo, Norway, 2019, Proceedings, Lecture Notes in Computer Science, vol. 11799, pp. 375–379. Springer (2019). https://doi.org/10.1007/978-3-030-30760-8_37 – reference: BalogKEntity-Oriented Search2018BerlinSpringer10.1007/978-3-319-93935-3 – reference: PeroniSShottonDMFabio and cito: ontologies for describing bibliographic resources and citationsJ. Web Semant.201217334310.1016/j.websem.2012.08.001 – reference: VandenbusschePAtemezingGPoveda-VillalónMVatantBLinked open vocabularies (LOV): a gateway to reusable semantic vocabularies on the webSemant. Web20178343745210.3233/SW-160213 – reference: AuerSMannSTowards an open research knowledge graphSer. Libr.2019761–4354110.1080/0361526X.2019.1540272 – reference: SmithBAshburnerMRosseCBardJBugWCeustersWGoldbergLJEilbeckKIrelandAMungallCJLeontisNRocca-SerraPRuttenbergASansoneSAScheuermannRHShahNWhetzelPLLewisSConsortiumTOThe obo foundry: coordinated evolution of ontologies to support biomedical data integrationNat. Biotechnol.200725111251125510.1038/nbt1346 – reference: Lo, K., Wang, L.L., Neumann, M., Kinney, R., Weld, D.S.: S2ORC: the semantic scholar open research corpus. In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J.R. (eds.) Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, 2020, pp. 4969–4983. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.acl-main.447 – reference: Li, J., Sun, Y., Johnson, R.J., Sciaky, D., Wei, C., Leaman, R., Davis, A.P., Mattingly, C.J., Wiegers, T.C., Lu, Z.: Biocreative V CDR task corpus: a resource for chemical disease relation extraction. Database J. Biol. Databases Curation 2016, (2016). https://doi.org/10.1093/database/baw068 – reference: Jain, S., van Zuylen, M., Hajishirzi, H., Beltagy, I.: Scirex: A challenge dataset for document-level information extraction. In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J.R. (eds.) Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, 2020, pp. 7506–7516. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.acl-main.670 – reference: Degbelo, A.: A snapshot of ontology evaluation criteria and strategies. In: Hoekstra, R., Faron-Zucker, C., Pellegrini, T., de Boer, V. (eds.) Proceedings of the 13th International Conference on Semantic Systems, SEMANTICS 2017, Amsterdam, The Netherlands, 2017, pp. 1–8. ACM (2017). https://doi.org/10.1145/3132218.3132219 – reference: KringelumJKjærulffSKBrunakSLundOOpreaTITaboureauOChemprot-3.0: a global chemical biology diseases mappingDatabase J. Biol. Databases Curation201610.1093/database/bav123 – reference: Dernoncourt, F., Lee, J.Y.: Pubmed 200k RCT: a dataset for sequential sentence classification in medical abstracts. In: Kondrak, G., Watanabe, T. (eds.) Proceedings of the Eighth International Joint Conference on Natural Language Processing, IJCNLP 2017, Taipei, Taiwan, 2017, Volume 2: Short Papers, pp. 308–313. Asian Federation of Natural Language Processing (2017). https://www.aclweb.org/anthology/I17-2052/ – reference: Kannan, A.V., Fradkin, D., Akrotirianakis, I., Kulahcioglu, T., Canedo, A., Roy, A., Yu, S., Malawade, A.V., Faruque, M.A.A.: Multimodal knowledge graph for deep learning papers and code. In: d’Aquin, M., Dietze, S., Hauff, C., Curry, E., Cudré-Mauroux, P. (eds.) CIKM ’20: The 29th ACM International Conference on Information and Knowledge Management, Virtual Event, Ireland, 2020, pp. 3417–3420. ACM (2020). https://doi.org/10.1145/3340531.3417439 – reference: Stead, C., Smith, S., Busch, P.A., Vatanasakdakul, S.: Emerald 110k: a multidisciplinary dataset for abstract sentence classification. In: Mistica, M., Piccardi, M., MacKinlay, A. (eds.) Proceedings of the The 17th Annual Workshop of the Australasian Language Technology Association, ALTA 2019, Sydney, Australia, 2019, pp. 120–125. Australasian Language Technology Association (2019). https://aclweb.org/anthology/papers/U/U19/U19-1016/ – reference: Liakata, M., Teufel, S., Siddharthan, A., Batchelor, C.R.: Corpora for the conceptualisation and zoning of scientific papers. In: Calzolari, N., Choukri, K., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S., Rosner, M., Tapias, D. (eds.) Proceedings of the International Conference on Language Resources and Evaluation, LREC 2010, 2010, Valletta, Malta. European Language Resources Association (2010). http://www.lrec-conf.org/proceedings/lrec2010/summaries/644.html – reference: Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad: 100, 000+ questions for machine comprehension of text. In: Su, J., Carreras, X., Duh, K. (eds.) Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, EMNLP 2016, Austin, Texas, USA, 2016, pp. 2383–2392. The Association for Computational Linguistics (2016). https://doi.org/10.18653/v1/d16-1264 – reference: Bollacker, K.D., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Wang, J.T. (ed.) Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, Vancouver, BC, Canada, 2008, pp. 1247–1250. ACM (2008). https://doi.org/10.1145/1376616.1376746 – reference: BadieKAsadiNMahmoudiMTZone identification based on features with high semantic richness and combining results of separate classifiersJ. Inf. Telecommun.20182441142710.1080/24751839.2018.1460083 – reference: Doerr, M., Kritsotaki, A., Rousakis, Y., Hiebel, G., Theodoridou, M.: Definition of the CRMsci: an extension of CIDOC-CRM to support scientific observation. Tech. rep., FORTH, Version 1.2.8. http://www.cidoc-crm.org/crmsci/ModelVersion/version-1.2.8 (2020) – reference: PertsasVConstantopoulosPScholarly ontology: modelling scholarly practicesInt. J. Digit. Libr.201718317319010.1007/s00799-016-0169-3 – reference: Petasis, G., Karkaletsis, V., Paliouras, G., Krithara, A., Zavitsanos, E.: Ontology population and enrichment: state of the art. In: Paliouras, G., Spyropoulos, C.D., Tsatsaronis, G. (eds.) Knowledge-Driven Multimedia Information Extraction and Ontology Evolution—Bridging the Semantic Gap, Lecture Notes in Computer Science, vol. 6050, pp. 134–166. Springer (2011). https://doi.org/10.1007/978-3-642-20795-2_6 – reference: Fisas, B., Saggion, H., Ronzano, F.: On the discoursive structure of computer graphics research papers. In: Meyers, A., Rehbein, I., Zinsmeister, H. (eds.) Proceedings of The 9th Linguistic Annotation Workshop, LAW@NAACL-HLT 2015, 2015, Denver, Colorado, USA, pp. 42–51. The Association for Computer Linguistics (2015). https://doi.org/10.3115/v1/w15-1605 – reference: Cohan, A., Ammar, W., van Zuylen, M., Cady, F.: Structural scaffolds for citation intent classification in scientific publications. In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, 2019, vol. 1 (Long and Short Papers), pp. 3586–3596. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/n19-1361 – reference: AryaniAWangJResearch graph: Building a distributed graph of scholarly works using research data switchboardOpen Repos. Conf.201710.4225/03/58c696655af8a – reference: Galárraga, L.A., Teflioudi, C., Hose, K., Suchanek, F.M.: AMIE: association rule mining under incomplete evidence in ontological knowledge bases. In: Schwabe, D., Almeida, V.A.F., Glaser, H., Baeza-Yates, R., Moon, S.B. (eds.) 22nd International World Wide Web Conference, WWW ’13, Rio de Janeiro, Brazil, 2013, pp. 413–422. International World Wide Web Conferences Steering Committee. ACM (2013). https://doi.org/10.1145/2488388.2488425 – reference: Jaradeh, M.Y., Oelen, A., Prinz, M., Stocker, M., Auer, S.: Open research knowledge graph: a system walkthrough. In: Doucet, A., Isaac, A., Golub, K., Aalberg, T., Jatowt, A. (eds.) Digital Libraries for Open Knowledge—23rd International Conference on Theory and Practice of Digital Libraries, TPDL 2019, Oslo, Norway, 2019, Proceedings, Lecture Notes in Computer Science, vol. 11799, pp. 348–351. Springer (2019). https://doi.org/10.1007/978-3-030-30760-8_31 – reference: SalatinoAAThanapalasingamTMannocciABirukouAOsborneFMottaEThe computer science ontology: a comprehensive automatically-generated taxonomy of research areasData Intell.20202337941610.1162/dint_a_00055 – reference: Say, A., Fathalla, S., Vahdati, S., Lehmann, J., Auer, S.: Semantic representation of physics research data. In: Aveiro, D., Dietz, J.L.G., Filipe, J. (eds.) Proceedings of the 12th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, IC3K 2020, vol. 2: KEOD, Budapest, Hungary, 2020, pp. 64–75. SCITEPRESS (2020). https://doi.org/10.5220/0010111000640075 – reference: Dessì, D., Osborne, F., Recupero, D.R., Buscaldi, D., Motta, E., Sack, H.: AI-KG: an automatically generated knowledge graph of artificial intelligence. In: Pan, J.Z., Tamma, V.A.M., d’Amato, C., Janowicz, K., Fu, B., Polleres, A., Seneviratne, O., Kagal, L. (eds.) The Semantic Web—ISWC 2020—19th International Semantic Web Conference, Athens, Greece, 2020, Proceedings, Part II, Lecture Notes in Computer Science, vol. 12507, pp. 127–143. Springer (2020). https://doi.org/10.1007/978-3-030-62466-8_9 – reference: Pujara, J., Singh, S.: Mining knowledge graphs from text. In: Chang, Y., Zhai, C., Liu, Y., Maarek, Y. (eds.) Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, WSDM 2018, Marina Del Rey, CA, USA, 2018, pp. 789–790. ACM (2018). https://doi.org/10.1145/3159652.3162011 – reference: Cohan, A., Beltagy, I., King, D., Dalvi, B., Weld, D.S.: Pretrained language models for sequential sentence classification. In: Inui, K., Jiang, J., Ng, V., Wan, X. (eds.) Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, 2019, pp. 3691–3697. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/D19-1383 – reference: Brodaric, B., Reitsma, F., Qiang, Y.: Skiing with DOLCE: toward an e-science knowledge infrastructure. In: Eschenbach, C., Grüninger, M. (eds.) Formal Ontology in Information Systems, Proceedings of the Fifth International Conference, FOIS 2008, Saarbrücken, Germany, 2008, Frontiers in Artificial Intelligence and Applications, vol. 183, pp. 208–219. IOS Press (2008). https://doi.org/10.3233/978-1-58603-923-3-208 – reference: Yaman, B., Pasin, M., Freudenberg, M.: Interlinking scigraph and dbpedia datasets using link discovery and named entity recognition techniques. In: Eskevich, M., de Melo, G., Fäth, C., McCrae, J.P., Buitelaar, P., Chiarcos, C., Klimek, B., Dojchinovski, M. (eds.) 2nd Conference on Language, Data and Knowledge, LDK 2019, Leipzig, Germany, OASICS, vol. 70, pp. 15:1–15:8. Schloss Dagstuhl–Leibniz–Zentrum für Informatik (2019). https://doi.org/10.4230/OASIcs.LDK.2019.15 – reference: WangRYStrongDMBeyond accuracy: what data quality means to data consumersJ. Manag. Inf. Syst.199612453310.1080/07421222.1996.11518099 – reference: D’Souza, J., Hoppe, A., Brack, A., Jaradeh, M.Y., Auer, S., Ewerth, R.: The STEM-ECR dataset: grounding scientific entity references in STEM scholarly content to authoritative encyclopedic and lexicographic sources. In: Calzolari, N., Béchet, F., Blache, P., Choukri, K., Cieri, C., Declerck, T., Goggi, S., Isahara, H., Maegaard, B., Mariani, J., Mazo, H., Moreno, A., Odijk, J., Piperidis, S. (eds.) Proceedings of The 12th Language Resources and Evaluation Conference, LREC 2020, Marseille, France, 2020, pp. 2192–2203. European Language Resources Association (2020). https://www.aclweb.org/anthology/2020.lrec-1.268/ – reference: Hou, Y., Jochim, C., Gleize, M., Bonin, F., Ganguly, D.: Identification of tasks, datasets, evaluation metrics, and numeric scores for scientific leaderboards construction. In: Korhonen, A., Traum, D.R., Màrquez, L. (eds.) Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, 2019, vol. 1: Long Papers, pp. 5203–5213. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/p19-1513 – reference: KlampanosIADavvetasAKoukourikosAKarkaletsisVANNETT-O: an ontology for describing artificial neural network evaluation, topology and trainingInt. J. Metadata Semant. Ontol.201913317919010.1504/IJMSO.2019.099833 – reference: Oelen, A., Jaradeh, M.Y., Stocker, M., Auer, S.: Generate FAIR literature surveys with scholarly knowledge graphs. In: Huang, R., Wu, D., Marchionini, G., He, D., Cunningham, S.J., Hansen, P. (eds.) JCDL ’20: Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020, Virtual Event, China, 2020, pp. 97–106. ACM (2020). https://doi.org/10.1145/3383583.3398520 – reference: FellbaumCWordNet: An Electronic Lexical Database. Language, Speech, and Communication1998CambridgeMIT Press0913.68054 – reference: Friedrich, A., Adel, H., Tomazic, F., Hingerl, J., Benteau, R., Marusczyk, A., Lange, L.: The sofc-exp corpus and neural approaches to information extraction in the materials science domain. In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J.R. (eds.) Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, 2020, pp. 1255–1268. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.acl-main.116 – reference: Hoppe, A., Hagen, J., Holzmann, H., Kniesel, G., Ewerth, R.: An analytics tool for exploring scientific software and related publications. In: Méndez, E., Crestani, F., Ribeiro, C., David, G., Lopes, J.C. (eds.) Digital Libraries for Open Knowledge, 22nd International Conference on Theory and Practice of Digital Libraries, TPDL 2018, Porto, Portugal, 2018, Proceedings, Lecture Notes in Computer Science, vol. 11057, pp. 299–303. Springer (2018). https://doi.org/10.1007/978-3-030-00066-0_27 – reference: LubaniMNoahSAMMahmudROntology population: approaches and design aspectsJ. Inf. Sci.201910.1177/0165551518801819 – reference: NasarZJaffrySWMalikMKInformation extraction from scientific articles: a surveyScientometrics201811731931199010.1007/s11192-018-2921-5 – reference: Brack, A., Müller, D.U., Hoppe, A., Ewerth, R.: Coreference resolution in research papers from multiple domains. In: Hiemstra, D., Moens, M., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds.) Advances in Information Retrieval—43rd European Conference on IR Research, ECIR 2021, Virtual Event, 2021, Proceedings, Part I, Lecture Notes in Computer Science, vol. 12656, pp. 79–97. Springer (2021). https://doi.org/10.1007/978-3-030-72113-8_6 – reference: BechhoferSBuchanIERoureDDMissierPAinsworthJDBhagatJCouchPACruickshankDDelderfieldMDunlopIGambleMMichaelidesDTOwenSNewmanDRSufiSGobleCAWhy linked data is not enough for scientistsFuture Gener. Comput. Syst.201329259961110.1016/j.future.2011.08.004 – reference: Mesbah, S., Fragkeskos, K., Lofi, C., Bozzon, A., Houben, G.: Semantic annotation of data processing pipelines in scientific publications. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) The Semantic Web—14th International Conference, ESWC 2017, Portorož, Slovenia, 2017, Proceedings, Part I, Lecture Notes in Computer Science, vol. 10249, pp. 321–336 (2017). https://doi.org/10.1007/978-3-319-58068-5_20 – reference: Braun, R., Benedict, M., Wendler, H., Esswein, W.: Proposal for requirements driven design science research. In: Donnellan, B., Helfert, M., Kenneally, J., VanderMeer, D.E., Rothenberger, M.A., Winter, R. (eds.) New Horizons in Design Science: Broadening the Research Agenda—10th International Conference, DESRIST 2015, Dublin, Ireland, 2015, Proceedings, Lecture Notes in Computer Science, vol. 9073, pp. 135–151. Springer (2015). https://doi.org/10.1007/978-3-319-18714-3_9 – reference: DoganRILeamanRLuZNCBI disease corpus: a resource for disease name recognition and concept normalizationJ. Biomed. Inform.20144711010.1016/j.jbi.2013.12.006 – reference: Kitchenham, B.A., Charters, S.: Guidelines for performing systematic literature reviews in software engineering. Tech. Rep. EBSE 2007-001, Keele University and Durham University Joint Report. https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf (2007) – reference: LangeCOntologies and languages for representing mathematical knowledge on the semantic webSemant. Web20134211915810.3233/SW-2012-0059 – reference: Papers with code. https://paperswithcode.com/. Accessed 04 Oct 2021 – reference: Beltagy, I., Lo, K., Cohan, A.: SciBERT: a pretrained language model for scientific text. In: Inui, K., Jiang, J., Ng, V., Wan, X. (eds.) Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, 2019, pp. 3613–3618. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/D19-1371 – reference: HevnerARMarchSTParkJRamSDesign science in information systems researchMIS Q.20042817510510.2307/25148625 – reference: CohenKBLanfranchiAChoiMJBaumgartnerWAPanteleyevaNVerspoorKPalmerMHunterLECoreference annotation and resolution in the Colorado richly annotated full text (CRAFT) corpus of biomedical journal articlesBMC Bioinform.201718111410.1186/s12859-017-1775-9 – reference: FinkAConducting Research Literature Reviews: From the Internet to Paper2014Thousand OaksSAGE Publications – reference: FärberMBartschererFMenneCRettingerALinked data quality of DBpedia, Freebase, Opencyc, Wikidata, and YAGOSemant. Web2018917712910.3233/SW-170275 – reference: Xiong, C., Power, R., Callan, J.: Explicit semantic ranking for academic search via knowledge graph embedding. In: Barrett, R., Cummings, R., Agichtein, E., Gabrilovich, E. (eds.) Proceedings of the 26th International Conference on World Wide Web, WWW 2017, Perth, Australia, 2017, pp. 1271–1279. ACM (2017). https://doi.org/10.1145/3038912.3052558 – reference: Brack, A., Hoppe, A., Stocker, M., Auer, S., Ewerth, R.: Requirements analysis for an open research knowledge graph. In: Hall, M.M., Mercun, T., Risse, T., Duchateau, F. (eds.) Digital Libraries for Open Knowledge—24th International Conference on Theory and Practice of Digital Libraries, TPDL 2020, Lyon, France, 2020, Proceedings, Lecture Notes in Computer Science, vol. 12246, pp. 3–18. Springer (2020). https://doi.org/10.1007/978-3-030-54956-5_1 – reference: DegtyarenkoKde MatosPEnnisMHastingsJZbindenMMcNaughtAAlcántaraRDarsowMGuedjMAshburnerMChebi: a database and ontology for chemical entities of biological interestNucl. Acids Res.20083634435010.1093/nar/gkm791 – reference: SafderIHassanSVisviziANorasetTNawazRTuarobSDeep learning-based extraction of algorithmic metadata in full-text scholarly documentsInf. Process. Manag.202057610226910.1016/j.ipm.2020.102269 – reference: Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, 2019, vol. 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/n19-1423 – reference: Waard, A., Tel, G.: The ABCDE format enabling semantic conference proceedings. In: Völkel, M., Schaffert, S. (eds.) SemWiki2006, First Workshop on Semantic Wikis—From Wiki to Semantics, Proceedings, Co-located with the ESWC2006, Budva, Montenegro, 2006, CEUR Workshop Proceedings, vol. 206. CEUR-WS.org (2006). http://ceur-ws.org/Vol-206/paper8.pdf – reference: Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann, T., Sun, S., Zhang, W.: Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: Macskassy, S.A., Perlich, C., Leskovec, J., Wang, W., Ghani, R. (eds.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’14, New York, NY, USA-2014, pp. 601–610. ACM (2014). https://doi.org/10.1145/2623330.2623623 – reference: Peng, Y., Yan, S., Lu, Z.: Transfer learning in biomedical natural language processing: an evaluation of BERT and ELMo on ten benchmarking datasets. In: Demner-Fushman, D., Cohen, K.B., Ananiadou, S., Tsujii, J. (eds.) Proceedings of the 18th BioNLP Workshop and Shared Task, BioNLP@ACL 2019, Florence, Italy, 2019, pp. 58–65. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/w19-5006 – reference: Jia, R., Wong, C., Poon, H.: Document-level n-ary relation extraction with multiscale representation learning. In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, 2019, vol. 1 (Long and Short Papers), pp. 3693–3704. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/n19-1370 – reference: Singh, M., Barua, B., Palod, P., Garg, M., Satapathy, S., Bushi, S., Ayush, K., Rohith, K.S., Gamidi, T., Goyal, P., Mukherjee, A.: OCR++: a robust framework for information extraction from scholarly articles. In: Calzolari, N., Matsumoto, Y., Prasad, R. (eds.) COLING 2016, 26th International Conference on Computational Linguistics, Proceedings of the Conference: Technical Papers, 2016, Osaka, Japan, pp. 3390–3400. ACL (2016). https://www.aclweb.org/anthology/C16-1320/ – reference: LiakataMSahaSDobnikSBatchelorCRRebholz-SchuhmannDAutomatic recognition of conceptualization zones in scientific articles and two life science applicationsBioinformatics2012287991100010.1093/bioinformatics/bts071 – reference: Galárraga, L., Razniewski, S., Amarilli, A., Suchanek, F.M.: Predicting completeness in knowledge bases. In: de Rijke, M., Shokouhi, M., Tomkins, A., Zhang, M. (eds.) Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, WSDM 2017, Cambridge, United Kingdom, 2017, pp. 375–383. ACM (2017). https://doi.org/10.1145/3018661.3018739 – reference: Nguyen, V.B., Svátek, V., Rabby, G., Corcho, Ó.: Ontologies supporting research-related information foraging using knowledge graphs: literature survey and holistic model mapping. In: Keet, C.M., Dumontier, M. (eds.) Knowledge Engineering and Knowledge Management—22nd International Conference, EKAW 2020, Bolzano, Italy, 2020, Proceedings, Lecture Notes in Computer Science, vol. 12387, pp. 88–103. Springer (2020). https://doi.org/10.1007/978-3-030-61244-3_6 – reference: ZhangYWangMSaberiMChangEFrom big scholarly data to solution-oriented knowledge repositoryFront. Big Data201923810.3389/fdata.2019.00038 – reference: ManghiPBardiAAtzoriCBaglioniMManolaNSchirrwagenJPrincipePThe OpenAIRE research graph data modelZenodo201910.5281/zenodo.2643199 – reference: BodenreiderOThe unified medical language system (UMLS): integrating biomedical terminologyNucl. Acids Res.20043226727010.1093/nar/gkh061 – reference: SoldatovaLNKingRDAn ontology of scientific experimentsJ. R. Soc. Interface200631179580310.1098/rsif.2006.0134 – reference: ConstantinAPeroniSPettiferSShottonDMVitaliFThe document components ontology (DoCo)Semant. Web20167216718110.3233/SW-150177 – reference: GonçalvesSCortezPMoroSA deep learning classifier for sentence classification in biomedical and computer science abstractsNeural Comput. Appl.202032116793680710.1007/s00521-019-04334-2 – reference: Groza, T., Handschuh, S., Möller, K., Decker, S.: SALT—semantically annotated latex for scientific publications. In: Franconi, E., Kifer, M., May, W. (eds.) The Semantic Web: Research and Applications, 4th European Semantic Web Conference, ESWC 2007, Innsbruck, Austria, 2007, Proceedings, Lecture Notes in Computer Science, vol. 4519, pp. 518–532. Springer (2007). https://doi.org/10.1007/978-3-540-72667-8_37 – reference: BurtonAAryaniAKoersHManghiPBruzzoSLStockerMDiepenbroekMSchindlerUFennerMThe scholix framework for interoperability in data-literature information exchangeD-Lib Mag.2017231/212010.1045/january2017-burton – reference: VrandecicDKrötzschMWikidata: a free collaborative knowledgebaseCommun. ACM20145710788510.1145/2629489 – reference: Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: Williamson, C.L., Zurko, M.E., Patel-Schneider, P.F., Shenoy, P.J. (eds.) Proceedings of the 16th International Conference on World Wide Web, WWW 2007, Banff, Alberta, Canada, 2007, pp. 697–706. ACM (2007). https://doi.org/10.1145/1242572.1242667 – reference: Fathalla, S., Vahdati, S., Auer, S., Lange, C.: Towards a knowledge graph representing research findings by semantifying survey articles. In: Kamps, J., Tsakonas, G., Manolopoulos, Y., Iliadis, L.S., Karydis, I. (eds.) Research and Advanced Technology for Digital Libraries—21st International Conference on Theory and Practice of Digital Libraries, TPDL 2017, Thessaloniki, Greece, 2017, Proceedings, Lecture Notes in Computer Science, vol. 10450, pp. 315–327. Springer (2017). https://doi.org/10.1007/978-3-319-67008-9_25 – reference: NickelMMurphyKTrespVGabrilovichEA review of relational machine learning for knowledge graphsProc. IEEE20161041113310.1109/JPROC.2015.2483592 – reference: Suchanek, F.M., Gross-Amblard, D., Abiteboul, S.: Watermarking for ontologies. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N.F., Blomqvist, E. (eds.) The Semantic Web—ISWC 2011—10th International Semantic Web Conference, Bonn, Germany, 2011, Proceedings, Part I, Lecture Notes in Computer Science, vol. 7031, pp. 697–713. Springer (2011). https://doi.org/10.1007/978-3-642-25073-6_44 – reference: ConsortiumTGOConsortiumThe gene ontology resource: 20 years and still going strongNucl. Acids Res.201947D330D33810.1093/nar/gky1055 – reference: CB Insights: The data flywheel: how enlightened self-interest drives data network effects. https://www.cbinsights.com/research/team-blog/data-network-effects/ (2020) – reference: Teufel, S., Siddharthan, A., Batchelor, C.R.: Towards domain-independent argumentative zoning: Evidence from chemistry and computational linguistics. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, EMNLP 2009, Singapore, A Meeting of SIGDAT, a Special Interest Group of the ACL, pp. 1493–1502. ACL (2009). https://www.aclweb.org/anthology/D09-1155/ – reference: HarsAStructure of Scientific Knowledge2003BerlinSpringer8318510.1007/978-3-540-24737-1_3 – reference: Ruiz-Iniesta, A., Corcho, Ó.: A review of ontologies for describing scholarly and scientific documents. In: Castro, A.G., Lange, C., Lord, P.W., Stevens, R. (eds.) Proceedings of the 4th Workshop on Semantic Publishing Co-located with the 11th Extended Semantic Web Conference (ESWC 2014), Anissaras, Greece, 2014, CEUR Workshop Proceedings, vol. 1155. CEUR-WS.org (2014). http://ceur-ws.org/Vol-1155/paper-07.pdf – reference: Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Jr., E.R.H., Mitchell, T.M.: Toward an architecture for never-ending language learning. In: Fox, M., Poole, D. (eds.) Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, 2010. AAAI Press (2010). http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1879 – reference: Weikum, G., Dong, L., Razniewski, S., Suchanek, F.M.: Machine knowledge: creation and curation of comprehensive knowledge bases. CoRR abs/2009.11564 (2020). arXiv:2009.11564 – reference: Färber, M.: The microsoft academic knowledge graph: A linked data source with 8 billion triples of scholarly data. In: Ghidini, C., Hartig, O., Maleshkova, M., Svátek, V., Cruz, I.F., Hogan, A., Song, J., Lefrançois, M., Gandon, F. (eds.) The Semantic Web—ISWC 2019—18th International Semantic Web Conference, Auckland, New Zealand,, 2019, Proceedings, Part II, Lecture Notes in Computer Science, vol. 11779, pp. 113–129. Springer (2019). https://doi.org/10.1007/978-3-030-30796-7_8 – reference: PipinoLLLeeYWWangRYData quality assessmentCommun. ACM200245421121810.1145/505248.506010 – reference: Kolitsas, N., Ganea, O., Hofmann, T.: End-to-end neural entity linking. In: Korhonen, A., Titov, I. (eds.) Proceedings of the 22nd Conference on Computational Natural Language Learning, CoNLL 2018, Brussels, Belgium, 2018, pp. 519–529. Association for Computational Linguistics (2018). https://doi.org/10.18653/v1/k18-1050 – reference: ZaveriARulaAMaurinoAPietrobonRLehmannJAuerSQuality assessment for linked data: a surveySemant. Web201671639310.3233/SW-150175 – reference: BizerCQuality-Driven Information Filtering—In the Context of Web-Based Information Systems2007SaarbrückenVDM Verlag – reference: Horvath, I.: Comparison of three methodological approaches of design research. In: S.N. (ed.) Proceedings of the 16th International Conference on Engineering Design, ICED’07, pp. 1–11. Ecole Central Paris (2007). Null; Conference date: 28-08-2007 through 30-08-2007 – reference: Qasemi Zadeh, B., Schumann, A.: The ACL RD-TEC 2.0: a language resource for evaluating term extraction and entity recognition methods. In: Calzolari, N., Choukri, K., Declerck, T., Goggi, S., Grobelnik, M., Maegaard, B., Mariani, J., Mazo, H., Moreno, A., Odijk, J., Piperidis, S. (eds.) Proceedings of the Tenth International Conference on Language Resources and Evaluation LREC 2016, Portorož, Slovenia, 2016. European Language Resources Association (ELRA) (2016). http://www.lrec-conf.org/proceedings/lrec2016/summaries/681.html – reference: LehmannJIseleRJakobMJentzschAKontokostasDMendesPNHellmannSMorseyMvan KleefPAuerSBizerCDbpedia—a large-scale, multilingual knowledge base extracted from WikipediaSemant. Web20156216719510.3233/SW-140134 – reference: BoochGRumbaughJJacobsonIUnified Modeling Language User Guide, The (2nd Edition) (Addison-Wesley Object Technology Series)2005BostonAddison-Wesley Professional – reference: Dayrell, C., Jr., A.C., Lima, G., Jr., D.M., Copestake, A.A., Feltrim, V.D., Tagnin, S.E.O., Aluísio, S.M.: Rhetorical move detection in english abstracts: multi-label sentence classifiers and their annotated corpora. In: Calzolari, N., Choukri, K., Declerck, T., Dogan, M.U., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S. (eds.) Proceedings of the Eighth International Conference on Language Resources and Evaluation, LREC 2012, Istanbul, Turkey, 2012, pp. 1604–1609. European Language Resources Association (ELRA) (2012). http://www.lrec-conf.org/proceedings/lrec2012/summaries/734.html – reference: RichardsonSWilsonMNishikawaJHaywardRThe well-built clinical question: a key to evidence-based decisionsACP J. Club19951233A121310.7326/ACPJC-1995-123-3-A12 – reference: Park, S., Caragea, C.: Scientific keyphrase identification and classification by pre-trained language models intermediate task transfer learning. In: Scott, D., Bel, N., Zong, C. (eds.) Proceedings of the 28th International Conference on Computational Linguistics, COLING 2020, Barcelona, Spain (Online), 2020, pp. 5409–5419. International Committee on Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.coling-main.472 – reference: Kardas, M., Czapla, P., Stenetorp, P., Ruder, S., Riedel, S., Taylor, R., Stojnic, R.: Axcell: Automatic extraction of results from machine learning papers. In: Webber, B., Cohn, T., He, Y., Liu, Y. (eds.) Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, 2020, pp. 8580–8594. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.emnlp-main.692 – reference: Talburt, J.R.: 2—principles of information quality. In: Talburt, J.R. (ed.) Entity Resolution and Information Quality, pp. 39–62. Morgan Kaufmann, Boston (2011). https://doi.org/10.1016/B978-0-12-381972-7.00002-6. http://www.sciencedirect.com/science/article/pii/B9780123819727000026 – volume: 2 start-page: 379 issue: 3 year: 2020 ident: 306_CR95 publication-title: Data Intell. doi: 10.1162/dint_a_00055 – ident: 306_CR104 doi: 10.1016/B978-0-12-381972-7.00002-6 – volume: 32 start-page: 267 year: 2004 ident: 306_CR11 publication-title: Nucl. Acids Res. doi: 10.1093/nar/gkh061 – ident: 306_CR57 doi: 10.18653/v1/n19-1370 – ident: 306_CR33 doi: 10.18653/v1/n19-1423 – ident: 306_CR40 doi: 10.1007/978-3-319-67008-9_25 – ident: 306_CR31 – year: 2019 ident: 306_CR72 publication-title: J. Inf. Sci. doi: 10.1177/0165551518801819 – volume: 18 start-page: 1 issue: 1 year: 2017 ident: 306_CR25 publication-title: BMC Bioinform. doi: 10.1186/s12859-017-1775-9 – volume: 2 start-page: 411 issue: 4 year: 2018 ident: 306_CR5 publication-title: J. Inf. Telecommun. doi: 10.1080/24751839.2018.1460083 – volume-title: WordNet: An Electronic Lexical Database. Language, Speech, and Communication year: 1998 ident: 306_CR41 – ident: 306_CR85 doi: 10.1007/978-3-642-20795-2_6 – ident: 306_CR36 doi: 10.1145/2623330.2623623 – volume: 23 start-page: 1 issue: 1/2 year: 2017 ident: 306_CR20 publication-title: D-Lib Mag. doi: 10.1045/january2017-burton – ident: 306_CR45 doi: 10.18653/v1/s18-1111 – ident: 306_CR80 – volume-title: Entity-Oriented Search year: 2018 ident: 306_CR6 doi: 10.1007/978-3-319-93935-3 – ident: 306_CR54 doi: 10.18653/v1/p19-1513 – volume: 104 start-page: 11 issue: 1 year: 2016 ident: 306_CR77 publication-title: Proc. IEEE doi: 10.1109/JPROC.2015.2483592 – ident: 306_CR38 doi: 10.1007/978-3-030-30796-7_8 – ident: 306_CR49 doi: 10.1007/978-3-540-72667-8_37 – ident: 306_CR101 doi: 10.1007/978-3-030-06016-9_6 – year: 2019 ident: 306_CR73 publication-title: Zenodo doi: 10.5281/zenodo.2643199 – ident: 306_CR112 doi: 10.1145/3038912.3052558 – ident: 306_CR106 doi: 10.1007/978-3-030-30760-8_37 – ident: 306_CR76 doi: 10.1007/978-3-030-61244-3_6 – ident: 306_CR111 – ident: 306_CR22 – ident: 306_CR37 – ident: 306_CR105 doi: 10.3115/1699648.1699696 – volume: 4 start-page: 119 issue: 2 year: 2013 ident: 306_CR65 publication-title: Semant. Web doi: 10.3233/SW-2012-0059 – volume: 2 start-page: 38 year: 2019 ident: 306_CR115 publication-title: Front. Big Data doi: 10.3389/fdata.2019.00038 – volume: 37 start-page: 43 year: 2015 ident: 306_CR79 publication-title: Commun. Assoc. Inf. Syst. – ident: 306_CR89 doi: 10.3115/v1/W14-4807 – volume: 47 start-page: 1 year: 2014 ident: 306_CR35 publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2013.12.006 – volume: 47 start-page: D330 year: 2019 ident: 306_CR26 publication-title: Nucl. Acids Res. doi: 10.1093/nar/gky1055 – ident: 306_CR113 doi: 10.4230/OASIcs.LDK.2019.15 – volume: 29 start-page: 599 issue: 2 year: 2013 ident: 306_CR7 publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2011.08.004 – volume: 28 start-page: 991 issue: 7 year: 2012 ident: 306_CR68 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts071 – ident: 306_CR102 doi: 10.1007/978-3-642-25073-6_44 – volume: 76 start-page: 35 issue: 1–4 year: 2019 ident: 306_CR3 publication-title: Ser. Libr. doi: 10.1080/0361526X.2019.1540272 – ident: 306_CR4 doi: 10.18653/v1/S17-2091 – ident: 306_CR34 – ident: 306_CR18 doi: 10.1007/978-3-319-18714-3_9 – ident: 306_CR90 – ident: 306_CR15 doi: 10.1007/978-3-030-45439-5_17 – ident: 306_CR19 doi: 10.3233/978-1-58603-923-3-208 – ident: 306_CR91 doi: 10.18653/v1/d16-1264 – ident: 306_CR28 – ident: 306_CR93 – volume: 32 start-page: 6793 issue: 11 year: 2020 ident: 306_CR48 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04334-2 – volume: 25 start-page: 1251 issue: 11 year: 2007 ident: 306_CR98 publication-title: Nat. Biotechnol. doi: 10.1038/nbt1346 – ident: 306_CR56 doi: 10.1007/978-3-030-30760-8_31 – ident: 306_CR1 doi: 10.18653/v1/n18-3011 – ident: 306_CR71 doi: 10.18653/v1/d18-1360 – volume-title: Unified Modeling Language User Guide, The (2nd Edition) (Addison-Wesley Object Technology Series) year: 2005 ident: 306_CR13 – ident: 306_CR103 doi: 10.1145/1242572.1242667 – ident: 306_CR67 doi: 10.1093/database/baw068 – ident: 306_CR47 doi: 10.1145/2488388.2488425 – volume: 28 start-page: 75 issue: 1 year: 2004 ident: 306_CR51 publication-title: MIS Q. doi: 10.2307/25148625 – volume: 66 start-page: 2215 issue: 11 year: 2015 ident: 306_CR14 publication-title: J. Assoc. Inf. Sci. Technol. doi: 10.1002/asi.23329 – ident: 306_CR55 doi: 10.18653/v1/2020.acl-main.670 – ident: 306_CR12 doi: 10.1145/1376616.1376746 – volume: 12 start-page: S5 issue: 2 year: 2011 ident: 306_CR60 publication-title: BMC Bioinform. doi: 10.1186/1471-2105-12-S2-S5 – volume: 57 start-page: 78 issue: 10 year: 2014 ident: 306_CR108 publication-title: Commun. ACM doi: 10.1145/2629489 – volume: 13 start-page: 179 issue: 3 year: 2019 ident: 306_CR62 publication-title: Int. J. Metadata Semant. Ontol. doi: 10.1504/IJMSO.2019.099833 – volume: 57 start-page: 102269 issue: 6 year: 2020 ident: 306_CR94 publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2020.102269 – volume-title: Conducting Research Literature Reviews: From the Internet to Paper year: 2014 ident: 306_CR42 – ident: 306_CR23 doi: 10.18653/v1/n19-1361 – ident: 306_CR59 doi: 10.18653/v1/2020.emnlp-main.692 – ident: 306_CR21 – volume: 7 start-page: 167 issue: 2 year: 2016 ident: 306_CR27 publication-title: Semant. Web doi: 10.3233/SW-150177 – ident: 306_CR32 doi: 10.1007/978-3-030-62466-8_9 – ident: 306_CR100 – volume-title: Quality-Driven Information Filtering—In the Context of Web-Based Information Systems year: 2007 ident: 306_CR10 – volume: 123 start-page: A12 issue: 3 year: 1995 ident: 306_CR92 publication-title: ACP J. Club doi: 10.7326/ACPJC-1995-123-3-A12 – ident: 306_CR24 doi: 10.18653/v1/D19-1383 – ident: 306_CR53 – ident: 306_CR88 doi: 10.1145/3159652.3162011 – volume: 17 start-page: 305 issue: 4 year: 2016 ident: 306_CR8 publication-title: Int. J. Digit. Libr. doi: 10.1007/s00799-015-0156-0 – volume: 3 start-page: 795 issue: 11 year: 2006 ident: 306_CR99 publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2006.0134 – volume: 6 start-page: 167 issue: 2 year: 2015 ident: 306_CR66 publication-title: Semant. Web doi: 10.3233/SW-140134 – volume: 18 start-page: 173 issue: 3 year: 2017 ident: 306_CR84 publication-title: Int. J. Digit. Libr. doi: 10.1007/s00799-016-0169-3 – ident: 306_CR109 – ident: 306_CR46 doi: 10.1145/3018661.3018739 – ident: 306_CR96 doi: 10.5220/0010111000640075 – year: 2016 ident: 306_CR64 publication-title: Database J. Biol. Databases Curation doi: 10.1093/database/bav123 – volume: 12 start-page: 5 issue: 4 year: 1996 ident: 306_CR110 publication-title: J. Manag. Inf. Syst. doi: 10.1080/07421222.1996.11518099 – ident: 306_CR78 doi: 10.1145/3383583.3398520 – volume: 117 start-page: 1931 issue: 3 year: 2018 ident: 306_CR75 publication-title: Scientometrics doi: 10.1007/s11192-018-2921-5 – ident: 306_CR44 doi: 10.18653/v1/2020.acl-main.116 – volume: 8 start-page: 437 issue: 3 year: 2017 ident: 306_CR107 publication-title: Semant. Web doi: 10.3233/SW-160213 – volume: 9 start-page: 77 issue: 1 year: 2018 ident: 306_CR39 publication-title: Semant. Web doi: 10.3233/SW-170275 – ident: 306_CR74 doi: 10.1007/978-3-319-58068-5_20 – ident: 306_CR69 – year: 2017 ident: 306_CR2 publication-title: Open Repos. Conf. doi: 10.4225/03/58c696655af8a – ident: 306_CR61 – volume: 45 start-page: 211 issue: 4 year: 2002 ident: 306_CR87 publication-title: Commun. ACM doi: 10.1145/505248.506010 – ident: 306_CR81 doi: 10.18653/v1/2020.coling-main.472 – ident: 306_CR86 – ident: 306_CR52 doi: 10.1007/978-3-030-00066-0_27 – ident: 306_CR16 doi: 10.1007/978-3-030-54956-5_1 – start-page: 83 volume-title: Structure of Scientific Knowledge year: 2003 ident: 306_CR50 doi: 10.1007/978-3-540-24737-1_3 – volume: 17 start-page: 33 year: 2012 ident: 306_CR83 publication-title: J. Web Semant. doi: 10.1016/j.websem.2012.08.001 – ident: 306_CR70 doi: 10.18653/v1/2020.acl-main.447 – volume: 7 start-page: 63 issue: 1 year: 2016 ident: 306_CR114 publication-title: Semant. Web doi: 10.3233/SW-150175 – ident: 306_CR9 doi: 10.18653/v1/D19-1371 – ident: 306_CR97 – ident: 306_CR17 doi: 10.1007/978-3-030-72113-8_6 – volume: 36 start-page: 344 year: 2008 ident: 306_CR30 publication-title: Nucl. Acids Res. doi: 10.1093/nar/gkm791 – ident: 306_CR82 doi: 10.18653/v1/w19-5006 – ident: 306_CR29 doi: 10.1145/3132218.3132219 – ident: 306_CR43 doi: 10.3115/v1/w15-1605 – ident: 306_CR58 doi: 10.1145/3340531.3417439 – ident: 306_CR63 doi: 10.18653/v1/k18-1050 |
SSID | ssj0001817 |
Score | 2.3465915 |
Snippet | Current science communication has a number of drawbacks and bottlenecks which have been subject of discussion lately: Among others, the rising number of... |
SourceID | proquest crossref springer econis |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 33 |
SubjectTerms | Citations Computer Science Database Management Datasets Design science research Digital libraries Digital Object Identifier Documents Information Systems and Communication Service Keywords Knowledge representation Literature reviews Machine learning Metadata Ontology R&D Reproducibility Requirements analysis Research & development Research knowledge graph Scholarly communication Science Search engines Semantics State-of-the-art reviews |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS-wwFD7I6OJurm_u-OIsxI1TadPWtu5EfKDoygFdhTSPiygdsSPcK_jfPUmTkREV3HTRpGmbx8l3kvN9AdjOFY2gwqgojU0ZZaw2kcgVGcNSalXUdCO2fOfLq_2zYXZ-k994Ulgbot3DlqSz1BOyG10sY56R-2uBbkTIcZbwR5z1YPbw9PbieGKBadZyh6pkKTlaZIE9WebzUqYmpDnrhd61U3Dzww6pm3hO5mEYPrmLN7nfex7Xe_Llg5rjT_9pAX57JIqHXddZhBndLMF8OOUB_aBfgk1PbcAd9Nwl25YhfRleva5J8xcJTOKTtrHFbtGxRcqOokEbtYIhxg8vwjIenlq17AN8bjVKmk3bAXYcz_9TpQyoCIVy9K51i-04KFyswPDk-ProLPKHOkQyLfNxlAiCOCIvTFlraryqVCKJlSlqwhlS5UXCZJKZTJmMyTQzigBIVQhWi1hXpcxVugq9ZtToP4CprMhhFVLnpiBTJGsmjXASg5rKknEfktCyXHrFc3vwxgOfaDW7-udU_9zVP__Xh93JM4-d3se3uVe7DsO1q4XRE2flfhlXfdgIHYh7o9Byiz0ZI5-RkgehP7wnf_2atZ9lX4dfzJI0XKTcBvSocfQmQadxveVHyhsImhDz priority: 102 providerName: Springer Nature |
Title | Analysing the requirements for an Open Research Knowledge Graph: use cases, quality requirements, and construction strategies |
URI | https://www.econstor.eu/handle/10419/286809 https://link.springer.com/article/10.1007/s00799-021-00306-x https://www.proquest.com/docview/2644220969 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_WZg97Gd1HWbo23EPpy2Jmy3Ys96U0IUlpaTbGCt2TkPUxBsXp6gzah_7vPSlyQgbtiwyWLINOuvvd6T4ADnNNJ6iwOkpjy6OMVTaSuSZmyJXRRUUvYhfvfDkbnF1l59f5dTC4NcGtsuWJnlHruXI28q9OcDNGgLs8uf0buapR7nY1lNDYgg6xYE7KV2c4nn3_seLFJL98eZUsJZWLeHEIm_HBc9S4CHxG6rQDztH9hmh67fTRP80G8PzvrtSLoMkOvA3YEU-XxH4Hr0z9Hg5C5AEeYQgtckuN4cx-gMeQdqT-jYT18M44119vE2yQhqOs0TmVYOuChxetlQ2nLpn1Mf5rDCoSdk0flyGYDxuz9GkKjWq-TkWLzaJNQPERribjn6OzKNRciFTK80WUSEIgMi8srwxhhZJrmcTaFhXBAKXzImEqyWymbcZUmllN-KAsJKtkbEqucp3uwnY9r80nwFSVpE9KZXJbEKdQFVNW-gyAhuZScReSdrmFCgnJXV2MG7FKpexJJIhEwpNI3Hfhy-qb22U6jhdH7y6pKIxfhfmdYHzA47IL-y1VRTizjVjvsC70W0qvu5__zd7Ls32GN8zFTHjHtX3YJmKYA0Iyi6oHW3wy7UHndDIcztxz-uti3AubmHpHgxG1l8m3J37I9x8 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2VggQXVD6qBlqYA3AhFvbartdIFUJAmpK2p1bqbVnvR1UJOaUOoj30L_U3MrveTRQkeuslh8SeSH6782bW82YA3pSadlBldZKnlicFa2wiS03OkCujq4a-SJ3e-eBwe3xcfD8pT1bgJmphXFll9IneUeupcmfkHxxxM0YBd_3p_Ffipka5t6txhEa_LCbm6g-lbN3O3lfC9y1jo29HX8ZJmCqQqJyXsySTxLGyrCxvDLFhzbXMUm2rhohO6bLKmMoKW2hbMJUXVhMD1pVkjUxNzVWpc7J7D-4XeV67HcVHu3PPT2zph7kUOSV45PmDSMdL9ejD6f0ZJe8uTE8ul4jwgct-z7qlMPefN7Oe8EZr8DhEqvi5X1pPYMW0T2Er6BzwHQYhkwMWg4d4BtehyUl7ihRZ4oVxhcb-BLJDuhxli66EBWPBH07imR7uutbZH_F3Z1ARtXZD7AWfV0tWhmRCo5ouGt9iN4vtLp7D8Z1gsQ6r7bQ1G4C5qil7lcqUtiK_pBqmrPT9Bg3ZUukAsvi4hQrtz90Ujp9i3rjZQyQIIuEhEpcDeD-_57xv_nHr1es9isL4pzC9EIxv87QewGZEVQQP0YnFeh7AMCK9-Pn_f_Pidmuv4eH46GBf7O8dTl7CI-bUGr5kbhNWCRizRTHUrHnlFy7Cj7veKX8BCr0tDw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VghAXvisCLcwBuBC39tqO15UQQpTQElo4UKm3rb0fCIGcUqeirdQ_1r_Cn2F2vZsoleitBy45JPZEWr-dN7OeNwPwPFe0gwqjojQ2PMpYbaIqV-QMudSqqOmL2Oqdt3cGm7vZx718bwHOgxbGllUGn-gctRpLe0a-ZombMQq4yzXjyyK-bAzfHPyK7AQp-6Y1jNPoIDLSJ78pfWtfb23Qs37B2PD913ebkZ8wEMmU55MoqYhvq7wwvNbEjCVXVRIrU9REelLlRcJkkplMmYzJNDOK2LAsKlZXsS65zFVKdq_B9SIbcFtOuJ18nrIAMacb7JKllOwRC3jBjpPt0YfV_jNK5G3IHh3PkeINmwl_b-dC3gtvaR35De_An7BsXc3Lj9WjSb0qTy90lPw_1_Uu3PYxOb7tNtE9WNDNfVjxig58iV6yZSGM3hc-gDPfzqX5hhRD46G2JdXurLVFuhyrBm2xDobSRhyF00v8YJuEr-NRq1FSENH2sZO2nsxZ6ZMJhXI8a_GL7SQ09ngIu1eyIkuw2Iwb_QgwlSXl6ZXUuSnIA8uaSVO5zoqabMm4B0kAk5C-0budN_JTTFtUOwAKAqBwABTHPXg1veega3Ny6dVLHUaFdqswPhSMD3hc9mA5gEx4X9iKGcJ60A84nv387795fLm1Z3CTkCo-be2MnsAtZmUprjZwGRbpuegVChYn9VO3KxH2rxqufwG5hXjo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysing+the+requirements+for+an+Open+Research+Knowledge+Graph%3A+use+cases%2C+quality+requirements%2C+and+construction+strategies&rft.jtitle=International+journal+on+digital+libraries&rft.au=Brack%2C+Arthur&rft.au=Hoppe%2C+Anett&rft.au=Stocker%2C+Markus&rft.au=Auer%2C+S%C3%B6ren&rft.date=2022-03-01&rft.issn=1432-5012&rft.eissn=1432-1300&rft.volume=23&rft.issue=1&rft.spage=33&rft.epage=55&rft_id=info:doi/10.1007%2Fs00799-021-00306-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00799_021_00306_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-1300&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-1300&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-1300&client=summon |