Analysis of the performance and robustness of methods to detect base locations of individuals with geo-tagged social media data
Various methods have been proposed to detect the base locations of individuals, with their geo-tagged social media data. However, a common challenge relating to base-location detection methods (BDMs) is that, the rare availability of ground-truth data impedes the method assessment of accuracy and ro...
Saved in:
Published in | International journal of geographical information science : IJGIS Vol. 35; no. 3; pp. 609 - 627 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
04.03.2021
Taylor & Francis LLC |
Subjects | |
Online Access | Get full text |
ISSN | 1365-8816 1362-3087 1365-8824 |
DOI | 10.1080/13658816.2020.1847288 |
Cover
Loading…
Abstract | Various methods have been proposed to detect the base locations of individuals, with their geo-tagged social media data. However, a common challenge relating to base-location detection methods (BDMs) is that, the rare availability of ground-truth data impedes the method assessment of accuracy and robustness, thus undermining research validity and reliability. To address this challenge, we collect users' information from unstructured online content, and evaluate both the performance and robustness of BDMs. The evaluation consists of two tasks: the detection of base locations and also the differentiation between local residents and tourists. The results show BDMs can achieve high accuracies in base-location detection but tend to overestimate the number of tourists. Evaluation conducted in this study, also shows that BDMs' accuracy is subject to the intensity of user's activities and number of countries visited by the user but are insensitive to user's gender. Temporally, BDMs perform better during weekends and summertime than during other periods, but the best performances appear with datasets that cover the whole time periods (whole day, week, and year). To the best of knowledge, this study is the first work to evaluate the performance and robustness of BDMs at individual level. |
---|---|
AbstractList | Various methods have been proposed to detect the base locations of individuals, with their geo-tagged social media data. However, a common challenge relating to base-location detection methods (BDMs) is that, the rare availability of ground-truth data impedes the method assessment of accuracy and robustness, thus undermining research validity and reliability. To address this challenge, we collect users' information from unstructured online content, and evaluate both the performance and robustness of BDMs. The evaluation consists of two tasks: the detection of base locations and also the differentiation between local residents and tourists. The results show BDMs can achieve high accuracies in base-location detection but tend to overestimate the number of tourists. Evaluation conducted in this study, also shows that BDMs' accuracy is subject to the intensity of user's activities and number of countries visited by the user but are insensitive to user's gender. Temporally, BDMs perform better during weekends and summertime than during other periods, but the best performances appear with datasets that cover the whole time periods (whole day, week, and year). To the best of knowledge, this study is the first work to evaluate the performance and robustness of BDMs at individual level. |
Author | Liu, Zhewei Shi, Wenzhong Shen, Xiaoqi Zhang, Anshu Yao, Yepeng Huang, Xiao |
Author_xml | – sequence: 1 givenname: Zhewei orcidid: 0000-0002-4023-9142 surname: Liu fullname: Liu, Zhewei organization: The Hong Kong Polytechnic University – sequence: 2 givenname: Anshu orcidid: 0000-0001-7158-8292 surname: Zhang fullname: Zhang, Anshu organization: The Hong Kong Polytechnic University – sequence: 3 givenname: Yepeng surname: Yao fullname: Yao, Yepeng organization: The Hong Kong Polytechnic University – sequence: 4 givenname: Wenzhong orcidid: 0000-0002-3886-7027 surname: Shi fullname: Shi, Wenzhong email: lswzshi@polyu.edu.hk organization: The Hong Kong Polytechnic University – sequence: 5 givenname: Xiao orcidid: 0000-0002-4323-382X surname: Huang fullname: Huang, Xiao organization: University of Arkansas – sequence: 6 givenname: Xiaoqi orcidid: 0000-0002-6156-8906 surname: Shen fullname: Shen, Xiaoqi organization: China University of Mining and Technology |
BookMark | eNqFkU2LFDEQhoOs4LruTxACnnvNR6c7jReXxVVhwYueQ3VSmYn0JGOScZmTf91Mz3rxoKcKxfO-UE9ekouYIhLymrMbzjR7y-WgtObDjWCirXQ_Cq2fkcu2F51kerxY36o7QS_IdSlhZkLqSetRXZJftxGWYwmFJk_rFukes095B9EihehoTvOh1IhlJXZYt8kVWhN1WNFWOkNBuiQLNaS4MiG68DO4AyyFPoa6pRtMXYXNBh0tyQZYWo0LQB1UeEWe-wbi9dO8It_uP3y9-9Q9fPn4-e72obNSq9rxEeTEHVMIVvTT0FtpcWazVSAFm7xE5rWzcvRcKe57MQg7DH7yykvtuJJX5M25d5_TjwOWar6nQ263FyN63ayNk9CNUmfK5lRKRm_2OewgHw1n5qTb_NFtTrrNk-6We_dXzoa6GqkZwvLf9PtzOsRV_WPKizMVjkvKPrefCMXIf1f8BlfDnFw |
CitedBy_id | crossref_primary_10_1016_j_tust_2023_105388 crossref_primary_10_1016_j_jag_2023_103412 crossref_primary_10_1007_s11442_022_2054_x crossref_primary_10_1080_10095020_2024_2442088 crossref_primary_10_1007_s42421_024_00094_1 crossref_primary_10_1016_j_jag_2023_103340 crossref_primary_10_1016_j_compenvurbsys_2024_102096 crossref_primary_10_1021_acs_est_3c04691 crossref_primary_10_1080_15230406_2021_2023366 crossref_primary_10_3390_bs13040282 crossref_primary_10_1016_j_jtrangeo_2024_103901 crossref_primary_10_1016_j_jag_2023_103509 crossref_primary_10_1016_j_landusepol_2024_107116 crossref_primary_10_3389_fpubh_2022_999521 |
Cites_doi | 10.1016/j.scitotenv.2018.06.056 10.1109/BigData.2017.8258061 10.1016/j.physa.2019.121719 10.3389/fdata.2019.00012 10.1038/s41598-017-18007-4 10.1016/j.tourman.2016.06.013 10.2478/jos-2018-0046 10.1007/s11263-018-1140-0 10.1007/978-3-642-02172-5_57 10.1080/13658816.2019.1630630 10.1016/j.tourman.2017.11.001 10.1016/j.apgeog.2015.08.002 10.1007/978-3-030-03910-3_28 10.1109/HPCSim.2016.7568340 10.1007/978-3-319-44263-1_7 10.1371/journal.pone.0165753 10.1080/13658816.2019.1587616 10.1109/ICPR.2010.764 10.1140/epjds/s13688-017-0125-5 10.1007/978-3-319-27433-1_14 10.1145/2168752.2168770 10.1016/j.apgeog.2016.06.001 10.1016/j.compenvurbsys.2020.101478 10.1080/13658816.2019.1643024 10.1080/15230406.2014.890072 10.1080/13658816.2019.1643025 10.1111/tgis.12478 10.1371/journal.pone.0154885 10.1080/13658816.2017.1413192 10.1111/tgis.12042 10.1007/978-3-319-71470-7_16 10.1016/j.tourman.2014.07.003 10.1080/13658816.2016.1145225 10.1145/2505821.2505836 10.1080/24694452.2019.1694403 10.1145/2020408.2020579 10.1371/journal.pone.0200565 10.1016/j.jtrangeo.2019.05.010 |
ContentType | Journal Article |
Copyright | 2020 Informa UK Limited, trading as Taylor & Francis Group 2020 2020 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group 2020 – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1080/13658816.2020.1847288 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1362-3087 1365-8824 |
EndPage | 627 |
ExternalDocumentID | 10_1080_13658816_2020_1847288 1847288 |
Genre | Research article |
GroupedDBID | -~X ..I .4S .7F .DC .QJ 0BK 0R~ 29J 30N 4.4 5GY 5VS AAENE AAIKC AAJMT AALDU AAMIU AAMNW AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABLIJ ABPAQ ABPEM ABRLO ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACHQT ACIWK ACTIO ACUHS ADCVX ADGTB ADXPE AEISY AENEX AEOZL AFKVX AFRAH AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH ARCSS AVBZW AWYRJ BLEHA CAG CCCUG CE4 COF CS3 DGEBU DKSSO DU5 EAP EBO EBS EDO EMK EPL ESX E~A E~B F5P GTTXZ H13 HF~ HZ~ H~9 H~P I-F IPNFZ J.P KYCEM LJTGL M4Z MM- NA5 NX~ O9- PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEN TFL TFT TFW TH9 TNC TQWBC TTHFI TUROJ TUS TWF UT5 UU3 ZCA ZGOLN ~02 ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c385t-17a391d05eac24964c3ceb0bc5a3209f3e0f8dc37f1551f4262c66f9f5f38d153 |
ISSN | 1365-8816 |
IngestDate | Fri Jul 25 07:51:18 EDT 2025 Tue Jul 01 03:56:31 EDT 2025 Thu Apr 24 22:58:40 EDT 2025 Wed Dec 25 09:06:50 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c385t-17a391d05eac24964c3ceb0bc5a3209f3e0f8dc37f1551f4262c66f9f5f38d153 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4323-382X 0000-0002-3886-7027 0000-0002-4023-9142 0000-0002-6156-8906 0000-0001-7158-8292 |
OpenAccessLink | http://ira.lib.polyu.edu.hk/bitstream/10397/100683/1/Liu_Analysis_Performance_Performance.pdf |
PQID | 2488477928 |
PQPubID | 53147 |
PageCount | 19 |
ParticipantIDs | proquest_journals_2488477928 crossref_primary_10_1080_13658816_2020_1847288 informaworld_taylorfrancis_310_1080_13658816_2020_1847288 crossref_citationtrail_10_1080_13658816_2020_1847288 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-04 |
PublicationDateYYYYMMDD | 2021-03-04 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | International journal of geographical information science : IJGIS |
PublicationYear | 2021 |
Publisher | Taylor & Francis Taylor & Francis LLC |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis LLC |
References | cit0011 cit0033 cit0012 cit0034 cit0031 cit0010 cit0032 cit0030 cit0019 cit0017 cit0039 cit0018 cit0015 cit0037 cit0016 cit0038 cit0013 cit0035 cit0014 cit0036 cit0022 cit0001 cit0023 cit0020 cit0021 cit0040 cit0041 cit0008 cit0009 cit0006 cit0028 cit0007 cit0029 cit0004 cit0026 cit0005 cit0027 cit0002 cit0024 cit0003 cit0025 |
References_xml | – ident: cit0026 doi: 10.1016/j.scitotenv.2018.06.056 – ident: cit0027 doi: 10.1109/BigData.2017.8258061 – ident: cit0015 doi: 10.1016/j.physa.2019.121719 – ident: cit0024 doi: 10.3389/fdata.2019.00012 – ident: cit0030 doi: 10.1038/s41598-017-18007-4 – ident: cit0007 doi: 10.1016/j.tourman.2016.06.013 – ident: cit0031 doi: 10.2478/jos-2018-0046 – ident: cit0039 doi: 10.1007/s11263-018-1140-0 – ident: cit0010 doi: 10.1007/978-3-642-02172-5_57 – ident: cit0005 doi: 10.1080/13658816.2019.1630630 – ident: cit0023 doi: 10.1016/j.tourman.2017.11.001 – ident: cit0011 doi: 10.1016/j.apgeog.2015.08.002 – ident: cit0016 doi: 10.1007/978-3-030-03910-3_28 – ident: cit0004 doi: 10.1109/HPCSim.2016.7568340 – ident: cit0018 doi: 10.1007/978-3-319-44263-1_7 – ident: cit0022 doi: 10.1371/journal.pone.0165753 – ident: cit0012 – ident: cit0028 doi: 10.1080/13658816.2019.1587616 – ident: cit0003 doi: 10.1109/ICPR.2010.764 – ident: cit0008 doi: 10.1140/epjds/s13688-017-0125-5 – ident: cit0002 doi: 10.1007/978-3-319-27433-1_14 – ident: cit0038 doi: 10.1145/2168752.2168770 – ident: cit0029 doi: 10.1016/j.apgeog.2016.06.001 – ident: cit0037 doi: 10.1016/j.compenvurbsys.2020.101478 – ident: cit0001 – ident: cit0035 doi: 10.1080/13658816.2019.1643024 – ident: cit0013 doi: 10.1080/15230406.2014.890072 – ident: cit0019 doi: 10.1080/13658816.2019.1643025 – ident: cit0020 doi: 10.1111/tgis.12478 – ident: cit0032 – ident: cit0036 doi: 10.1371/journal.pone.0154885 – ident: cit0040 doi: 10.1080/13658816.2017.1413192 – ident: cit0009 doi: 10.1111/tgis.12042 – ident: cit0017 doi: 10.1007/978-3-319-71470-7_16 – ident: cit0033 doi: 10.1016/j.tourman.2014.07.003 – ident: cit0014 doi: 10.1080/13658816.2016.1145225 – ident: cit0025 doi: 10.1145/2505821.2505836 – ident: cit0041 doi: 10.1080/24694452.2019.1694403 – ident: cit0006 doi: 10.1145/2020408.2020579 – ident: cit0021 doi: 10.1371/journal.pone.0200565 – ident: cit0034 doi: 10.1016/j.jtrangeo.2019.05.010 |
SSID | ssib023898875 ssj0001015 ssib000159086 |
Score | 2.4153268 |
Snippet | Various methods have been proposed to detect the base locations of individuals, with their geo-tagged social media data. However, a common challenge relating... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 609 |
SubjectTerms | Base-location detection Digital media geo-tagged social media data Performance evaluation Reliability analysis Robustness smart tourism Social networks Tourists Unstructured data |
Title | Analysis of the performance and robustness of methods to detect base locations of individuals with geo-tagged social media data |
URI | https://www.tandfonline.com/doi/abs/10.1080/13658816.2020.1847288 https://www.proquest.com/docview/2488477928 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtswECVc59Beiq5omrTgoTdDrkyKWo5GlzhB25ODpL0IWkjbQGAVsYwiufT_-lWdISmajgOky0WwaW3wPM08jjhvCHkT8rpikmEPQKGCiCd1UAhRw9c0AnYQFUzrbH_-Ek9Oo5Nzcd7r_fJWLa3bclhd31pX8i9WhTGwK1bJ_oVl3UlhAD6DfWELFobtH9nYVxTRJU83qgAum3K9arUz06_RsVm0VnSoJb47GGAIG2A0c8vhFq4-y5a9zWQTtMVsJl16XdeaDGxNmyO225lFT49iZrqszzUYrEyrxlxXUIQ5ieOTo2PHSj8t1vqVyVz-kIudxPZ4uZqvna8qdKb3K3bynblkke5TPDiTy-t5Y4dtXoOZhV2bvOZ0p8WI56VxaV6ajqyGdjfGApQ39F27UUKxEOaen47DzAv5sZEn2IkmZvklXg0vNoS7hEEI58x0Irwh1G1_uUf2GExZWJ_sjSfvv515ZBr7yzvyB1wpAw-_mayBcxRdlSBer6s3S8O3t97CFpPa0tnd4RWaLE0fkYd2lkPHBrKPSU8un5D7RxYKV0_Jzw66tFEUoEs96FKALt1AF_ew0KVtQw10KUKXOujiPh50KUKXbqBLDXSphi5F6D4jpx8_TN9NAtsLJKh4KtpglBQ8G9WhAKLAoiyOKl7JMiwrUXAWZorLUKV1xROFcwCFfRaqOFaZEoqnNYT156S_bJbyBaGhEDwJ6yJWWOSZxWkZpVmpgJvHoQqjZJ9E3f-aV1YoH_u1XOQjq6fbmSNHc-TWHPtk6A77bpRi7jog842WtxrxyoA953cce9hZOLeP9CpnEIyjJMlY-vI_Tn1AHmwex0PSby_X8hUQ77Z8bRH9GwQe0d4 |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYDnBhR-z4wDXF9ZLYR4SoytYTSNysxEtBoKai6QEu_DqeLG0BIQ4cE3mRnfHM82TmDUInhFlDHYUagMJHnCU2SoWw4VHygA54Skue7dte3L3nVw_iYSYXBsIq4Q7tK6KIUlfD4QZndBMSdwqhWVK2IcKAhldBwVIp59GiUHECVQwY6c1AGKjqPTG5wUKpcK6mEDmIpGhys2DMJsvnt2m-2K8v7KY_tHlpojqryDSLqyJTnlvjImuZ92-8j_9b_RpaqREsPqtEbh3NucEGWqqLqT--baKPhugE5x4HfImH0-QEHKbFr3k2HhWgY6FFVcN6hIscWwe_NDBYVgxGtjwT0OZpkjY2wuA5xn2XR0Xa7zuLK68_LlNgMAS8bqH7zsXdeTeq6zxEhklRRO0kZaptiQhGINwGY26YcRnJjEgZJcozR7y0hiUe8J0HDn0Tx1554Zm0QWVvo4VBPnA7CBMhWEJsGntI4FOxzLhUmQ-4Kyae8GQX8ebraVOToEMtjhfdrrlSm93VsLu63t1d1Jp0G1YsIH91ULOioYvS_eKrWima_dH3oJEjXSuUkaZB0fIkUVTu_WPoY7TUvbu90TeXvet9tEwhPgfi6fgBWihex-4wAKwiOypP0CeiJRKN |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT-MwFLagSMBlhlUwFPCBa4rrJXGOo2Eq1ooDSNysxEtBoKYi6QEu_HX8krjAoBEHjom8yM7b7HzvewgdEGY0tRRqAAoXcZaYKBPC-EfJfXTAM1rzbF8M4-NrfnojApqwbGGVcIZ2DVFEbatBuSfGBUTcISCzpOwDwID6V96-Uinn0UIM5OGQxUGG7yIYKOo987jeQaVerd4iZC-RIqRmwZghyed_03xwXx_ITT8Z89pDDX6iPKytAabc96ZV3tPP_9A-fmvxK-hHG7_i343AraI5O15DS20p9dundfQSaE5w4bCPLvHkLTUB-1nxY5FPywosLLRoKliXuCqwsfBDA4NfxeBia42ANnezpLESw70xHtkiqrLRyBrc3PnjOgEGA9x1A10P_l79OY7aKg-RZlJUUT_JWNo3RHgX4M-CMddM25zkWmSMktQxS5w0miUOojsHDPo6jl3qhGPSeIO9iTrjYmy3ECZCsISYLHaQvpfGMucyzZ2PumLiCE-2EQ8fT-mWAh0qcTyofsuUGnZXwe6qdne3UW_WbdJwgHzVIX0vGaqqL19cUylFsS_6doMYqdaclIp6M8uTJKXy1zeG3keLl0cDdX4yPNtByxTAOQCm413UqR6ndtdHV1W-V-vPKyNGETE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+the+performance+and+robustness+of+methods+to+detect+base+locations+of+individuals+with+geo-tagged+social+media+data&rft.jtitle=International+journal+of+geographical+information+science+%3A+IJGIS&rft.au=Liu%2C+Zhewei&rft.au=Zhang%2C+Anshu&rft.au=Yao%2C+Yepeng&rft.au=Shi%2C+Wenzhong&rft.date=2021-03-04&rft.pub=Taylor+%26+Francis&rft.issn=1365-8816&rft.eissn=1362-3087&rft.volume=35&rft.issue=3&rft.spage=609&rft.epage=627&rft_id=info:doi/10.1080%2F13658816.2020.1847288&rft.externalDocID=1847288 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-8816&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-8816&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-8816&client=summon |