Proximity Forest: an effective and scalable distance-based classifier for time series
Research into the classification of time series has made enormous progress in the last decade. The UCR time series archive has played a significant role in challenging and guiding the development of new learners for time series classification. The largest dataset in the UCR archive holds 10,000 tim...
Saved in:
Published in | Data mining and knowledge discovery Vol. 33; no. 3; pp. 607 - 635 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.05.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Research into the classification of time series has made enormous progress in the last decade. The UCR time series archive has played a significant role in challenging and guiding the development of new learners for time series classification. The largest dataset in the UCR archive holds 10,000 time series only; which may explain why the primary research focus has been on creating algorithms that have high accuracy on relatively small datasets. This paper introduces Proximity Forest, an algorithm that learns accurate models from datasets with millions of time series, and classifies a time series in milliseconds. The models are ensembles of highly randomized Proximity Trees. Whereas conventional decision trees branch on attribute values (and usually perform poorly on time series), Proximity Trees branch on the proximity of time series to one exemplar time series or another; allowing us to leverage the decades of work into developing relevant measures for time series. Proximity Forest gains both efficiency and accuracy by stochastic selection of both exemplars and similarity measures. Our work is motivated by recent time series applications that provide orders of magnitude more time series than the UCR benchmarks. Our experiments demonstrate that Proximity Forest is highly competitive on the UCR archive: it ranks among the most accurate classifiers while being significantly faster. We demonstrate on a 1M time series Earth observation dataset that Proximity Forest retains this accuracy on datasets that are many orders of magnitude greater than those in the UCR repository, while learning its models at least 100,000 times faster than current state-of-the-art models Elastic Ensemble and COTE. |
---|---|
AbstractList | Research into the classification of time series has made enormous progress in the last decade. The UCR time series archive has played a significant role in challenging and guiding the development of new learners for time series classification. The largest dataset in the UCR archive holds 10,000 time series only; which may explain why the primary research focus has been on creating algorithms that have high accuracy on relatively small datasets. This paper introduces Proximity Forest, an algorithm that learns accurate models from datasets with millions of time series, and classifies a time series in milliseconds. The models are ensembles of highly randomized Proximity Trees. Whereas conventional decision trees branch on attribute values (and usually perform poorly on time series), Proximity Trees branch on the proximity of time series to one exemplar time series or another; allowing us to leverage the decades of work into developing relevant measures for time series. Proximity Forest gains both efficiency and accuracy by stochastic selection of both exemplars and similarity measures. Our work is motivated by recent time series applications that provide orders of magnitude more time series than the UCR benchmarks. Our experiments demonstrate that Proximity Forest is highly competitive on the UCR archive: it ranks among the most accurate classifiers while being significantly faster. We demonstrate on a 1M time series Earth observation dataset that Proximity Forest retains this accuracy on datasets that are many orders of magnitude greater than those in the UCR repository, while learning its models at least 100,000 times faster than current state-of-the-art models Elastic Ensemble and COTE. Research into the classification of time series has made enormous progress in the last decade. The UCR time series archive has played a significant role in challenging and guiding the development of new learners for time series classification. The largest dataset in the UCR archive holds 10,000 time series only; which may explain why the primary research focus has been on creating algorithms that have high accuracy on relatively small datasets. This paper introduces Proximity Forest, an algorithm that learns accurate models from datasets with millions of time series, and classifies a time series in milliseconds. The models are ensembles of highly randomized Proximity Trees. Whereas conventional decision trees branch on attribute values (and usually perform poorly on time series), Proximity Trees branch on the proximity of time series to one exemplar time series or another; allowing us to leverage the decades of work into developing relevant measures for time series. Proximity Forest gains both efficiency and accuracy by stochastic selection of both exemplars and similarity measures. Our work is motivated by recent time series applications that provide orders of magnitude more time series than the UCR benchmarks. Our experiments demonstrate that Proximity Forest is highly competitive on the UCR archive: it ranks among the most accurate classifiers while being significantly faster. We demonstrate on a 1M time series Earth observation dataset that Proximity Forest retains this accuracy on datasets that are many orders of magnitude greater than those in the UCR repository, while learning its models at least 100,000 times faster than current state-of-the-art models Elastic Ensemble and COTE. |
Author | Lucas, Benjamin Shifaz, Ahmed Webb, Geoffrey I. Petitjean, François Zaidi, Nayyar O’Neill, Lachlan Goethals, Bart Pelletier, Charlotte |
Author_xml | – sequence: 1 givenname: Benjamin orcidid: 0000-0002-2021-3076 surname: Lucas fullname: Lucas, Benjamin email: benjamin.lucas@monash.edu organization: Faculty of Information Technology, Monash University – sequence: 2 givenname: Ahmed orcidid: 0000-0002-4627-8935 surname: Shifaz fullname: Shifaz, Ahmed organization: Faculty of Information Technology, Monash University – sequence: 3 givenname: Charlotte orcidid: 0000-0002-4652-7778 surname: Pelletier fullname: Pelletier, Charlotte organization: Faculty of Information Technology, Monash University – sequence: 4 givenname: Lachlan surname: O’Neill fullname: O’Neill, Lachlan organization: Faculty of Information Technology, Monash University – sequence: 5 givenname: Nayyar surname: Zaidi fullname: Zaidi, Nayyar organization: Faculty of Information Technology, Monash University – sequence: 6 givenname: Bart orcidid: 0000-0001-9327-9554 surname: Goethals fullname: Goethals, Bart organization: Faculty of Information Technology, Monash University – sequence: 7 givenname: François orcidid: 0000-0001-5334-3574 surname: Petitjean fullname: Petitjean, François organization: Faculty of Information Technology, Monash University – sequence: 8 givenname: Geoffrey I. orcidid: 0000-0001-9963-5169 surname: Webb fullname: Webb, Geoffrey I. organization: Faculty of Information Technology, Monash University |
BookMark | eNp9kE9LAzEQxYNUsK1-AU8Bz9H8aXaz3qRYFQp6qOAtZLMTSdluapKK_fZGKwgePM0beL95w5ug0RAGQOic0UtGaX2VGK2YIpQ1hBZVE3GExkzWgtSyehkVLdSMSMXoCZqktKaUSi7oGD0_xfDhNz7v8SJESPkamwGDc2Czf4eydDhZ05u2B9z5lM1ggbQmQYdtb1LyzkPELkSc_QZwgughnaJjZ_oEZz9zilaL29X8niwf7x7mN0tihZKZMAaiclJZqbpGsLYT0HBZVdK2jjbcNUK2laxZ5_isVjMlODgjHDTCMsU7MUUXh7PbGN525Xm9Drs4lETNWV1IySkvLn5w2RhSiuD0NvqNiXvNqP5qTx_a06U9_d2eFgVSfyDrs8k-DDka3_-PigOaSs7wCvH3q3-oT-sdhdU |
CitedBy_id | crossref_primary_10_1080_19236026_2022_2072664 crossref_primary_10_1002_cpe_8234 crossref_primary_10_3390_e23081059 crossref_primary_10_1109_TKDE_2022_3186963 crossref_primary_10_1145_3694788 crossref_primary_10_1016_j_eswa_2021_115147 crossref_primary_10_1016_j_patrec_2022_01_023 crossref_primary_10_1016_j_eswa_2022_118463 crossref_primary_10_1016_j_patcog_2019_107024 crossref_primary_10_1007_s44196_024_00461_4 crossref_primary_10_1007_s10618_024_01006_1 crossref_primary_10_1016_j_asoc_2022_109494 crossref_primary_10_1109_JIOT_2020_2983207 crossref_primary_10_3389_fspas_2020_00055 crossref_primary_10_1007_s41060_021_00295_9 crossref_primary_10_1007_s41060_024_00708_5 crossref_primary_10_1007_s10618_023_00926_8 crossref_primary_10_1007_s10618_022_00898_1 crossref_primary_10_1007_s10618_021_00782_4 crossref_primary_10_1007_s41403_021_00230_1 crossref_primary_10_1016_j_jksuci_2023_101783 crossref_primary_10_1007_s10115_022_01784_4 crossref_primary_10_1016_j_asoc_2022_109458 crossref_primary_10_1109_TKDE_2022_3177724 crossref_primary_10_1007_s10618_022_00822_7 crossref_primary_10_1016_j_measurement_2024_115746 crossref_primary_10_1007_s10618_020_00679_8 crossref_primary_10_1016_j_patcog_2023_109334 crossref_primary_10_1109_TCYB_2021_3133597 crossref_primary_10_1016_j_patcog_2022_109036 crossref_primary_10_1007_s11063_024_11531_1 crossref_primary_10_1007_s10489_023_04859_z crossref_primary_10_1007_s10618_023_00978_w crossref_primary_10_1007_s10618_023_00939_3 crossref_primary_10_3389_ffutr_2021_683223 crossref_primary_10_1109_ACCESS_2022_3188393 crossref_primary_10_1145_3551643 crossref_primary_10_3233_JCM_237074 crossref_primary_10_1016_j_knosys_2024_112253 crossref_primary_10_1109_OJSP_2024_3435673 crossref_primary_10_3390_s20051484 crossref_primary_10_1016_j_ins_2023_119147 crossref_primary_10_1007_s10618_020_00701_z crossref_primary_10_1007_s44196_021_00036_7 crossref_primary_10_3390_app10124124 crossref_primary_10_1109_TAES_2024_3404360 crossref_primary_10_1007_s00607_022_01075_4 crossref_primary_10_1109_TNNLS_2021_3124300 crossref_primary_10_3390_en15176486 crossref_primary_10_1007_s10618_021_00745_9 crossref_primary_10_3390_app12178685 crossref_primary_10_1007_s10115_023_01835_4 crossref_primary_10_1109_TIM_2024_3440381 crossref_primary_10_1016_j_ins_2023_01_093 crossref_primary_10_1007_s10044_024_01292_x crossref_primary_10_3390_electronics12051188 crossref_primary_10_1145_3715702 crossref_primary_10_1016_j_eswa_2022_118923 crossref_primary_10_3390_app14020689 crossref_primary_10_1007_s10618_024_01022_1 crossref_primary_10_1007_s10618_024_01068_1 crossref_primary_10_1007_s10618_019_00663_x crossref_primary_10_1016_j_neucom_2025_129772 crossref_primary_10_1016_j_knosys_2023_110483 crossref_primary_10_1007_s10618_024_01085_0 crossref_primary_10_1109_ACCESS_2024_3397783 crossref_primary_10_1109_TFUZZ_2019_2917126 crossref_primary_10_1007_s00778_022_00771_z crossref_primary_10_1007_s10618_022_00844_1 crossref_primary_10_1016_j_ipm_2022_103044 crossref_primary_10_1109_TKDE_2025_3528023 crossref_primary_10_1016_j_inpa_2020_09_006 crossref_primary_10_1007_s10618_020_00690_z crossref_primary_10_1371_journal_pone_0277975 crossref_primary_10_1109_ACCESS_2023_3270493 crossref_primary_10_3390_app14093825 crossref_primary_10_1002_sam_11705 crossref_primary_10_1007_s10618_024_01036_9 crossref_primary_10_1016_j_rcim_2024_102839 crossref_primary_10_1016_j_eswa_2023_119942 crossref_primary_10_1007_s10994_021_06057_9 crossref_primary_10_1007_s10115_022_01827_w crossref_primary_10_1007_s10618_020_00710_y crossref_primary_10_1016_j_ins_2024_120478 crossref_primary_10_1016_j_knosys_2024_112231 crossref_primary_10_1145_3649448 |
Cites_doi | 10.1007/s10994-006-6226-1 10.1007/s10618-010-0179-5 10.1007/s10844-012-0196-5 10.1109/TASSP.1978.1163055 10.1016/j.patcog.2008.11.030 10.1109/TKDE.2015.2416723 10.1109/TPAMI.2008.76 10.1007/s10618-013-0322-1 10.1007/s10618-016-0483-9 10.1007/s10618-014-0377-7 10.1007/s10115-015-0905-9 10.1145/1862413.1862417 10.1023/A:1010933404324 10.1016/j.patcog.2005.06.012 10.1007/s10618-014-0361-2 10.1016/j.patcog.2011.08.018 10.1109/TKDE.2012.88 10.1007/s10618-016-0473-y 10.1007/s00778-004-0144-2 10.1007/s10618-012-0250-5 10.1016/j.patcog.2010.09.022 10.1016/j.tcs.2011.09.029 10.1016/j.ins.2013.02.030 10.1007/s10115-015-0878-8 10.1007/s10618-012-0251-4 10.1109/ICDM.2014.92 10.1109/ICDM.2014.27 10.1145/3097983.3098046 10.1109/ICDM.2013.52 10.1145/2247596.2247656 10.1137/1.9781611972832.74 10.1137/1.9781611974973.32 10.1016/B978-012088469-8.50070-X 10.1145/1066157.1066213 10.1137/1.9781611972719.1 10.1109/ICDM.2006.49 10.1145/3132847.3132980 10.1109/ICDM.2006.21 10.1145/2939672.2939779 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2019 Data Mining and Knowledge Discovery is a copyright of Springer, (2019). All Rights Reserved. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2019 – notice: Data Mining and Knowledge Discovery is a copyright of Springer, (2019). All Rights Reserved. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s10618-019-00617-3 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library (Alumni Edition) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Computer Science |
EISSN | 1573-756X |
EndPage | 635 |
ExternalDocumentID | 10_1007_s10618_019_00617_3 |
GrantInformation_xml | – fundername: Air Force Office of Scientific Research grantid: FA2386-16-1-4036 funderid: http://dx.doi.org/10.13039/100000181 – fundername: Australian Research Council grantid: DE170100037; DP140100087 funderid: http://dx.doi.org/10.13039/501100000923 |
GroupedDBID | -59 -5G -BR -EM -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 203 29F 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7WY 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CCPQU CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z J9A JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M2O M4Y MA- NB0 NPVJJ NQJWS NU0 O93 O9J OAM P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RNS ROL RPX RSV S16 S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR -Y2 1SB 2P1 2VQ AAPKM AARHV AAYXX ABBRH ABDBE ABFSG ABQSL ABULA ACBXY ACSTC ADHKG ADKFA AEBTG AEKMD AEZWR AFDZB AFGCZ AFHIU AFOHR AGGDS AGQPQ AHPBZ AHSBF AHWEU AIXLP AJBLW AMVHM ATHPR AYFIA CAG CITATION COF H13 N2Q O9- OVD PHGZM PHGZT RNI RZC RZE RZK S1Z TEORI 3V. 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c385t-11e36f58c58d931bd3e925665cbf092f935b6571df24784832efa3fe93c182d3 |
IEDL.DBID | BENPR |
ISSN | 1384-5810 |
IngestDate | Sat Aug 16 11:50:51 EDT 2025 Thu Apr 24 23:09:00 EDT 2025 Tue Jul 01 00:40:31 EDT 2025 Fri Feb 21 02:33:29 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Time series classification Scalable classification Time-warp similarity measures Ensemble |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-11e36f58c58d931bd3e925665cbf092f935b6571df24784832efa3fe93c182d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2021-3076 0000-0001-9327-9554 0000-0001-5334-3574 0000-0002-4627-8935 0000-0002-4652-7778 0000-0001-9963-5169 |
PQID | 2176575202 |
PQPubID | 43030 |
PageCount | 29 |
ParticipantIDs | proquest_journals_2176575202 crossref_primary_10_1007_s10618_019_00617_3 crossref_citationtrail_10_1007_s10618_019_00617_3 springer_journals_10_1007_s10618_019_00617_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-01 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Data mining and knowledge discovery |
PublicationTitleAbbrev | Data Min Knowl Disc |
PublicationYear | 2019 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Deng, Runger, Tuv, Vladimir (CR10) 2013; 239 CR38 Stefan, Athitsos, Das (CR44) 2013; 25 CR36 CR35 Petitjean, Gançarski (CR34) 2012; 414 Grabocka, Wistuba, Schmidt-Thieme (CR14) 2016; 49 Lines, Bagnall (CR27) 2015; 29 CR32 Vlachos, Hadjieleftheriou, Gunopulos, Keogh (CR48) 2006; 15 CR30 Jeong, Jeong, Omitaomu (CR20) 2011; 44 Lifshits (CR25) 2010; 2 Lemire (CR24) 2009; 42 CR4 CR3 Sakoe, Chiba (CR37) 1978; 26 CR6 CR8 CR7 Pękalska, Duin, Paclík (CR31) 2006; 39 Marteau (CR28) 2009; 31 CR47 CR46 CR45 Lin, Khade, Li (CR26) 2012; 39 CR43 CR42 Breiman (CR5) 2001; 45 CR41 Bagnall, Lines, Bostrom, Large, Keogh (CR1) 2017; 31 Douzal-Chouakria, Amblard (CR11) 2012; 45 CR19 CR17 CR16 CR15 Górecki, Łuczak (CR13) 2013; 26 Schäfer (CR39) 2015; 29 CR50 Demšar (CR9) 2006; 7 Ye, Keogh (CR51) 2011; 22 CR29 Karlsson, Papapetrou, Boström (CR21) 2016; 30 Wang, Mueen, Ding, Trajcevski, Scheuermann, Keogh (CR49) 2013; 26 CR23 CR22 Petitjean, Forestier, Webb, Nicholson, Chen, Keogh (CR33) 2016; 47 Bagnall, Lines, Hills, Bostrom (CR2) 2015; 27 Hills, Lines, Baranauskas, Mapp, Bagnall (CR18) 2014; 28 Schäfer (CR40) 2015; 2 Geurts, Ernst, Wehenkel (CR12) 2006; 63 A Stefan (617_CR44) 2013; 25 L Breiman (617_CR5) 2001; 45 617_CR50 YS Jeong (617_CR20) 2011; 44 M Vlachos (617_CR48) 2006; 15 P Geurts (617_CR12) 2006; 63 617_CR16 617_CR15 E Pękalska (617_CR31) 2006; 39 617_CR17 J Hills (617_CR18) 2014; 28 617_CR19 617_CR3 617_CR4 617_CR7 617_CR6 617_CR8 F Petitjean (617_CR34) 2012; 414 A Bagnall (617_CR1) 2017; 31 A Douzal-Chouakria (617_CR11) 2012; 45 617_CR23 T Górecki (617_CR13) 2013; 26 617_CR22 J Lines (617_CR27) 2015; 29 617_CR29 J Lin (617_CR26) 2012; 39 J Grabocka (617_CR14) 2016; 49 617_CR30 L Ye (617_CR51) 2011; 22 A Bagnall (617_CR2) 2015; 27 617_CR36 617_CR35 X Wang (617_CR49) 2013; 26 617_CR38 P Schäfer (617_CR40) 2015; 2 617_CR32 P Schäfer (617_CR39) 2015; 29 F Petitjean (617_CR33) 2016; 47 H Deng (617_CR10) 2013; 239 Y Lifshits (617_CR25) 2010; 2 I Karlsson (617_CR21) 2016; 30 617_CR41 D Lemire (617_CR24) 2009; 42 617_CR47 617_CR46 H Sakoe (617_CR37) 1978; 26 J Demšar (617_CR9) 2006; 7 617_CR43 617_CR42 617_CR45 PF Marteau (617_CR28) 2009; 31 |
References_xml | – volume: 63 start-page: 3 issue: 1 year: 2006 end-page: 42 ident: CR12 article-title: Extremely randomized trees publication-title: Mach Learn doi: 10.1007/s10994-006-6226-1 – ident: CR45 – ident: CR22 – volume: 22 start-page: 149 issue: 1 year: 2011 end-page: 182 ident: CR51 article-title: Time series shapelets: a novel technique that allows accurate, interpretable and fast classification publication-title: Data Min Knowl Discov doi: 10.1007/s10618-010-0179-5 – ident: CR4 – volume: 39 start-page: 287 issue: 2 year: 2012 end-page: 315 ident: CR26 article-title: Rotation-invariant similarity in time series using bag-of-patterns representation publication-title: J Intell Inf Syst doi: 10.1007/s10844-012-0196-5 – ident: CR16 – ident: CR35 – ident: CR29 – volume: 26 start-page: 43 issue: 1 year: 1978 end-page: 49 ident: CR37 article-title: Dynamic programming algorithm optimization for spoken word recognition publication-title: IEEE Trans Acoust Speech Signal Process doi: 10.1109/TASSP.1978.1163055 – volume: 42 start-page: 2169 issue: 9 year: 2009 end-page: 2180 ident: CR24 article-title: Faster retrieval with a two-pass dynamic-time-warping lower bound publication-title: Pattern Recognit doi: 10.1016/j.patcog.2008.11.030 – ident: CR8 – ident: CR42 – volume: 27 start-page: 2522 issue: 9 year: 2015 end-page: 2535 ident: CR2 article-title: Time-series classification with COTE: the collective of transformation-based ensembles publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2015.2416723 – ident: CR46 – ident: CR19 – volume: 31 start-page: 306 issue: 2 year: 2009 end-page: 318 ident: CR28 article-title: Time warp edit distance with stiffness adjustment for time series matching publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2008.76 – volume: 28 start-page: 851 issue: 4 year: 2014 end-page: 881 ident: CR18 article-title: Classification of time series by shapelet transformation publication-title: Data Min Knowl Discov doi: 10.1007/s10618-013-0322-1 – ident: CR15 – volume: 31 start-page: 606 issue: 3 year: 2017 end-page: 660 ident: CR1 article-title: The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances publication-title: Data Min Knowl Discov doi: 10.1007/s10618-016-0483-9 – ident: CR50 – volume: 29 start-page: 1505 issue: 6 year: 2015 end-page: 1530 ident: CR39 article-title: The BOSS is concerned with time series classification in the presence of noise publication-title: Data Min Knowl Discov doi: 10.1007/s10618-014-0377-7 – ident: CR32 – ident: CR36 – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: CR9 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J Mach Learn Res – volume: 49 start-page: 429 issue: 2 year: 2016 end-page: 454 ident: CR14 article-title: Fast classification of univariate and multivariate time series through shapelet discovery publication-title: Knowl Inf Syst doi: 10.1007/s10115-015-0905-9 – volume: 2 start-page: 12 issue: 2 year: 2010 end-page: 15 ident: CR25 article-title: Nearest neighbor search: algorithmic perspective publication-title: SIGSPATIAL Spec doi: 10.1145/1862413.1862417 – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 ident: CR5 article-title: Random forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – ident: CR43 – ident: CR47 – volume: 39 start-page: 189 issue: 2 year: 2006 end-page: 208 ident: CR31 article-title: Prototype selection for dissimilarity-based classifiers publication-title: Pattern Recognit doi: 10.1016/j.patcog.2005.06.012 – ident: CR30 – ident: CR6 – volume: 29 start-page: 565 issue: 3 year: 2015 ident: CR27 article-title: Time series classification with ensembles of elastic distance measures publication-title: Data Min Knowl Discov doi: 10.1007/s10618-014-0361-2 – volume: 45 start-page: 1076 issue: 3 year: 2012 end-page: 1091 ident: CR11 article-title: Classification trees for time series publication-title: Pattern Recognit doi: 10.1016/j.patcog.2011.08.018 – ident: CR23 – volume: 25 start-page: 1425 issue: 6 year: 2013 end-page: 1438 ident: CR44 article-title: The move-split-merge metric for time series publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2012.88 – volume: 30 start-page: 1053 issue: 5 year: 2016 end-page: 1085 ident: CR21 article-title: Generalized random shapelet forests publication-title: Data Min Knowl Discov doi: 10.1007/s10618-016-0473-y – ident: CR3 – ident: CR38 – ident: CR17 – volume: 15 start-page: 1 issue: 1 year: 2006 end-page: 20 ident: CR48 article-title: Indexing multidimensional time-series publication-title: Int J Very Large Data Bases doi: 10.1007/s00778-004-0144-2 – volume: 26 start-page: 275 issue: 2 year: 2013 end-page: 309 ident: CR49 article-title: Experimental comparison of representation methods and distance measures for time series data publication-title: Data Min Knowl Discov doi: 10.1007/s10618-012-0250-5 – volume: 44 start-page: 2231 issue: 9 year: 2011 end-page: 2240 ident: CR20 article-title: Weighted dynamic time warping for time series classification publication-title: Pattern Recognit doi: 10.1016/j.patcog.2010.09.022 – volume: 414 start-page: 76 issue: 1 year: 2012 end-page: 91 ident: CR34 article-title: Summarizing a set of time series by averaging: from Steiner sequence to compact multiple alignment publication-title: Theor Comput Sci doi: 10.1016/j.tcs.2011.09.029 – volume: 239 start-page: 142 year: 2013 end-page: 153 ident: CR10 article-title: A time series forest for classification and feature extraction publication-title: Inf Sci doi: 10.1016/j.ins.2013.02.030 – ident: CR7 – volume: 47 start-page: 1 issue: 1 year: 2016 end-page: 26 ident: CR33 article-title: Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm publication-title: Knowl Inf Syst doi: 10.1007/s10115-015-0878-8 – ident: CR41 – volume: 2 start-page: 1 year: 2015 end-page: 26 ident: CR40 article-title: Scalable time series classification publication-title: Data Min Knowl Discov – volume: 26 start-page: 310 issue: 2 year: 2013 end-page: 331 ident: CR13 article-title: Using derivatives in time series classification publication-title: Data Min Knowl Discov doi: 10.1007/s10618-012-0251-4 – volume: 47 start-page: 1 issue: 1 year: 2016 ident: 617_CR33 publication-title: Knowl Inf Syst doi: 10.1007/s10115-015-0878-8 – ident: 617_CR36 – volume: 414 start-page: 76 issue: 1 year: 2012 ident: 617_CR34 publication-title: Theor Comput Sci doi: 10.1016/j.tcs.2011.09.029 – volume: 26 start-page: 310 issue: 2 year: 2013 ident: 617_CR13 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-012-0251-4 – volume: 39 start-page: 287 issue: 2 year: 2012 ident: 617_CR26 publication-title: J Intell Inf Syst doi: 10.1007/s10844-012-0196-5 – volume: 26 start-page: 275 issue: 2 year: 2013 ident: 617_CR49 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-012-0250-5 – volume: 2 start-page: 12 issue: 2 year: 2010 ident: 617_CR25 publication-title: SIGSPATIAL Spec doi: 10.1145/1862413.1862417 – ident: 617_CR17 doi: 10.1109/ICDM.2014.92 – volume: 29 start-page: 1505 issue: 6 year: 2015 ident: 617_CR39 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-014-0377-7 – ident: 617_CR22 – ident: 617_CR32 doi: 10.1109/ICDM.2014.27 – ident: 617_CR16 – volume: 239 start-page: 142 year: 2013 ident: 617_CR10 publication-title: Inf Sci doi: 10.1016/j.ins.2013.02.030 – volume: 30 start-page: 1053 issue: 5 year: 2016 ident: 617_CR21 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-016-0473-y – volume: 26 start-page: 43 issue: 1 year: 1978 ident: 617_CR37 publication-title: IEEE Trans Acoust Speech Signal Process doi: 10.1109/TASSP.1978.1163055 – ident: 617_CR38 doi: 10.1145/3097983.3098046 – volume: 25 start-page: 1425 issue: 6 year: 2013 ident: 617_CR44 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2012.88 – volume: 31 start-page: 606 issue: 3 year: 2017 ident: 617_CR1 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-016-0483-9 – ident: 617_CR43 doi: 10.1109/ICDM.2013.52 – volume: 45 start-page: 1076 issue: 3 year: 2012 ident: 617_CR11 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2011.08.018 – volume: 28 start-page: 851 issue: 4 year: 2014 ident: 617_CR18 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-013-0322-1 – volume: 42 start-page: 2169 issue: 9 year: 2009 ident: 617_CR24 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2008.11.030 – ident: 617_CR41 doi: 10.1145/2247596.2247656 – ident: 617_CR35 doi: 10.1137/1.9781611972832.74 – ident: 617_CR15 – ident: 617_CR19 – volume: 7 start-page: 1 year: 2006 ident: 617_CR9 publication-title: J Mach Learn Res – ident: 617_CR45 doi: 10.1137/1.9781611974973.32 – ident: 617_CR6 doi: 10.1016/B978-012088469-8.50070-X – ident: 617_CR7 doi: 10.1145/1066157.1066213 – ident: 617_CR50 – volume: 15 start-page: 1 issue: 1 year: 2006 ident: 617_CR48 publication-title: Int J Very Large Data Bases doi: 10.1007/s00778-004-0144-2 – ident: 617_CR4 – volume: 49 start-page: 429 issue: 2 year: 2016 ident: 617_CR14 publication-title: Knowl Inf Syst doi: 10.1007/s10115-015-0905-9 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 617_CR5 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – ident: 617_CR23 doi: 10.1137/1.9781611972719.1 – ident: 617_CR8 – ident: 617_CR30 – ident: 617_CR3 doi: 10.1109/ICDM.2006.49 – volume: 44 start-page: 2231 issue: 9 year: 2011 ident: 617_CR20 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2010.09.022 – volume: 2 start-page: 1 year: 2015 ident: 617_CR40 publication-title: Data Min Knowl Discov – ident: 617_CR42 doi: 10.1145/3132847.3132980 – volume: 39 start-page: 189 issue: 2 year: 2006 ident: 617_CR31 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2005.06.012 – volume: 27 start-page: 2522 issue: 9 year: 2015 ident: 617_CR2 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2015.2416723 – volume: 29 start-page: 565 issue: 3 year: 2015 ident: 617_CR27 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-014-0361-2 – ident: 617_CR47 doi: 10.1109/ICDM.2006.21 – volume: 22 start-page: 149 issue: 1 year: 2011 ident: 617_CR51 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-010-0179-5 – ident: 617_CR29 – volume: 31 start-page: 306 issue: 2 year: 2009 ident: 617_CR28 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2008.76 – ident: 617_CR46 doi: 10.1145/2939672.2939779 – volume: 63 start-page: 3 issue: 1 year: 2006 ident: 617_CR12 publication-title: Mach Learn doi: 10.1007/s10994-006-6226-1 |
SSID | ssj0005230 |
Score | 2.606182 |
Snippet | Research into the classification of time series has made enormous progress in the last decade. The UCR time series archive has played a significant role in... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 607 |
SubjectTerms | Accuracy Algorithms Archives & records Artificial Intelligence Chemistry and Earth Sciences Classification Classifiers Computer Science Data Mining and Knowledge Discovery Datasets Decision trees Information Storage and Retrieval Physics Proximity State of the art Statistics for Engineering Time series |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66InjxsSqurpKDNw20nSRtvC2iLILiYRf2Vto8QJCubCvov3fSh7uKCh5LHoV5ZL6Q-WYIOVeJk1wDMB7bjHETWKa04UxwjuDaaG0izx2-f5DjKb-biVlLCiu7bPfuSbI-qVfIbjL0iVeK1XGXwTrZEP7ujlY8jUYriR3QcIMT_GUSBi1V5uc9voajJcb89ixaR5vbXbLdwkQ6avS6R9Zs0Sc7XQsG2npkn2zWGZy63CfTx8X8zbOV3qlvt1lWVzQraJOugScafhhaokI8VYoajxpxA-aDmKHaQ-gnhxGSIoalvt889aZpywMyub2ZXI9Z2zOBaUhExcLQgnQi0SIxCsLcgFWIaqTQuQtU5BSIXIo4NC7iccLRn63LwFkFGm8aBg5Jr5gX9ohQC0JnRkuMcZbnFjKcyWUAwuQyDiwMSNhJLtVtPXHf1uI5XVZC9tJOUdppLe0U11x8rnlpqmn8OXvYKSRtPatM8Qrl34pQ7wNy2SlpOfz7bsf_m35CtqLaTnxu45D0qsWrPUX8UeVntbl9AAXUz4o priority: 102 providerName: Springer Nature |
Title | Proximity Forest: an effective and scalable distance-based classifier for time series |
URI | https://link.springer.com/article/10.1007/s10618-019-00617-3 https://www.proquest.com/docview/2176575202 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA-6vfjitzidIw--abBtki71RabsA8UxZIP5VNokBUG2uU7Q_967LnUquMe2SQp3l7tfkrv8CDmPVBYKzTkTTZswYTzLIm0Ek0IAuDZamwBrhx_7YW8k7sdy7DbccpdWWfrEwlGbqcY98iuAznhGAGv1m9kbQ9YoPF11FBqbpAouWMHiq3rb7g-efiR58GWdsILfK99zZTOueC70MZErYkUcZ_x3aFrhzT9HpEXk6eySbQcZaWup4z2yYSf7ZKekY6Budh6Q0WA-_cB6pU-KhJv54pomE7pM2ACfBg-G5qASLJaiBnEjdGMYxgzVCKJfMoiRFFAsRcZ5isZp80My7LSHdz3mWBOY5koumO9bHmZSaalMxP3UcBsBrgmlTjMvCrKIyxQk6ZssEE0lYEbbLOGZjbiGtYbhR6QymU7sMaGWS50YHUKUsyK1PIGWIvS4NGnY9CyvEb-UV6zdjeJIbPEar-5CRhnHIOO4kHEMfS6--8yW92msbV0v1RC7uZXHK0uokctSNavP_492sn60U7IVFNaA2Yx1UlnM3-0ZII5F2iCbqtNtkGqr-_zQbjgjg7ejoPUF-zrUZQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQXKH2owLb4UE7UapKxs3Glqqpalt3yUA-LxM1KbEeqhHaBLIL9UfzHzuTRbSvBbY9RbEeZGc98tufzALw3WZkqhyhVP-RS-ShI47ySWikC1945nzB3-OQ0HZ6pH-f6fAXuOy4Mp1V2PrF21H7qeI_8I0FnPiOgtfqXyyvJVaP4dLUrodGYxVGY39KSrfo8-k763UuSwcH421C2VQWkw0zPZBwHTEudOZ15g3HhMRiK-6l2RRmZpDSoC_pS7MtE9TNFFh_KHMtg0BEW90jDPoE1hWh4QmWDw78ySrAhJWf0r1kctRydlqmXxpw1ZmQNGiT-GwcX4Pa_89g6zA2ew3qLT8XXxqA2YSVMXsBGV_tBtK7gJZz9vJ7eMTlqLri6ZzX7JPKJaLJDyIHSgxcV6Z-ZWcIzSKVukmOmF44R-6-SArIgyCy4vL3gmRCqVzBehjBfw-pkOglvQATULvcupZAaVBEwp5YqjVD7Iu1HAbcg7uRlXXt9OVfRuLCLi5dZxpZkbGsZW-qz_6fPZXN5x6Ote50abDuRK7swuy340Klm8frh0bYfH20Xng7HJ8f2eHR6tAPPktoyOI2yB6uz65vwlqDOrHhXG5gAu2SD_g0OsgsN |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BIiEuQKFVKY_6QE9gkcR2NqmEUAuseJTVCoHEzUr8kCqhXUq2Kvw0_l1nEocFJLhxjBI7yvjzzOd4xh_AZp75VBohuOy6gksbOZ4bK7mSEsm1NcYmVDt81k-PLuXJlbqagoe2FobSKlufWDtqOzL0j3wHqTPtEeBafceHtIjBQW_v5g8nBSnaaW3lNBqInLr7f7h8q3aPD3CsvyVJ7_Bi_4gHhQFuRKbGPI6dSL3KjMpsLuLSCpcjB0iVKX2UJz4XqsS3xtYnsptJRL_zhfAuFwZ5uRXY7TTMdHFRFHVg5udhf3D-JL9ENCXKGX55FkehYifU7aUx5ZDlvKYQXDyPihOq-2J3tg56vUWYD2yV_Wjg9QGm3HAJFlolCBYcwzJcDm5Hd1Qqdc9I67Maf2fFkDW5IuhO8cKyCtFAdVrMEmXFZpwiqGWG-Ptvj-GZIYFmJHbPaF646iNcvIc5P0FnOBq6z8CcUKawJsUA62TpRIFPyjQSypZpN3JiBeLWXtqEw8xJU-NaT45hJhtrtLGubayxzdZjm5vmKI83n15rh0GHaV3pCQhXYLsdmsnt13v78nZvX2EWwax_HfdPV2EuqYFBOZVr0Bnf_nXryHvG5UZAGAP9zpj-DyVwEJ8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proximity+Forest%3A+an+effective+and+scalable+distance-based+classifier+for+time+series&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Lucas%2C+Benjamin&rft.au=Shifaz%2C+Ahmed&rft.au=Pelletier%2C+Charlotte&rft.au=Lachlan+O%E2%80%99Neill&rft.date=2019-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=33&rft.issue=3&rft.spage=607&rft.epage=635&rft_id=info:doi/10.1007%2Fs10618-019-00617-3&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon |