Proximity Forest: an effective and scalable distance-based classifier for time series

Research into the classification of time series has made enormous progress in the last decade. The UCR time series archive has played a significant role in challenging and guiding the development of new learners for time series classification. The largest dataset in the UCR archive holds 10,000  tim...

Full description

Saved in:
Bibliographic Details
Published inData mining and knowledge discovery Vol. 33; no. 3; pp. 607 - 635
Main Authors Lucas, Benjamin, Shifaz, Ahmed, Pelletier, Charlotte, O’Neill, Lachlan, Zaidi, Nayyar, Goethals, Bart, Petitjean, François, Webb, Geoffrey I.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Research into the classification of time series has made enormous progress in the last decade. The UCR time series archive has played a significant role in challenging and guiding the development of new learners for time series classification. The largest dataset in the UCR archive holds 10,000  time series only; which may explain why the primary research focus has been on creating algorithms that have high accuracy on relatively small datasets. This paper introduces Proximity Forest, an algorithm that learns accurate models from datasets with millions of time series, and classifies a time series in milliseconds. The models are ensembles of highly randomized Proximity Trees. Whereas conventional decision trees branch on attribute values (and usually perform poorly on time series), Proximity Trees branch on the proximity of time series to one exemplar time series or another; allowing us to leverage the decades of work into developing relevant measures for time series. Proximity Forest gains both efficiency and accuracy by stochastic selection of both exemplars and similarity measures. Our work is motivated by recent time series applications that provide orders of magnitude more time series than the UCR benchmarks. Our experiments demonstrate that Proximity Forest is highly competitive on the UCR archive: it ranks among the most accurate classifiers while being significantly faster. We demonstrate on a 1M time series Earth observation dataset that Proximity Forest retains this accuracy on datasets that are many orders of magnitude greater than those in the UCR repository, while learning its models at least 100,000 times faster than current state-of-the-art models Elastic Ensemble and COTE.
AbstractList Research into the classification of time series has made enormous progress in the last decade. The UCR time series archive has played a significant role in challenging and guiding the development of new learners for time series classification. The largest dataset in the UCR archive holds 10,000 time series only; which may explain why the primary research focus has been on creating algorithms that have high accuracy on relatively small datasets. This paper introduces Proximity Forest, an algorithm that learns accurate models from datasets with millions of time series, and classifies a time series in milliseconds. The models are ensembles of highly randomized Proximity Trees. Whereas conventional decision trees branch on attribute values (and usually perform poorly on time series), Proximity Trees branch on the proximity of time series to one exemplar time series or another; allowing us to leverage the decades of work into developing relevant measures for time series. Proximity Forest gains both efficiency and accuracy by stochastic selection of both exemplars and similarity measures. Our work is motivated by recent time series applications that provide orders of magnitude more time series than the UCR benchmarks. Our experiments demonstrate that Proximity Forest is highly competitive on the UCR archive: it ranks among the most accurate classifiers while being significantly faster. We demonstrate on a 1M time series Earth observation dataset that Proximity Forest retains this accuracy on datasets that are many orders of magnitude greater than those in the UCR repository, while learning its models at least 100,000 times faster than current state-of-the-art models Elastic Ensemble and COTE.
Research into the classification of time series has made enormous progress in the last decade. The UCR time series archive has played a significant role in challenging and guiding the development of new learners for time series classification. The largest dataset in the UCR archive holds 10,000  time series only; which may explain why the primary research focus has been on creating algorithms that have high accuracy on relatively small datasets. This paper introduces Proximity Forest, an algorithm that learns accurate models from datasets with millions of time series, and classifies a time series in milliseconds. The models are ensembles of highly randomized Proximity Trees. Whereas conventional decision trees branch on attribute values (and usually perform poorly on time series), Proximity Trees branch on the proximity of time series to one exemplar time series or another; allowing us to leverage the decades of work into developing relevant measures for time series. Proximity Forest gains both efficiency and accuracy by stochastic selection of both exemplars and similarity measures. Our work is motivated by recent time series applications that provide orders of magnitude more time series than the UCR benchmarks. Our experiments demonstrate that Proximity Forest is highly competitive on the UCR archive: it ranks among the most accurate classifiers while being significantly faster. We demonstrate on a 1M time series Earth observation dataset that Proximity Forest retains this accuracy on datasets that are many orders of magnitude greater than those in the UCR repository, while learning its models at least 100,000 times faster than current state-of-the-art models Elastic Ensemble and COTE.
Author Lucas, Benjamin
Shifaz, Ahmed
Webb, Geoffrey I.
Petitjean, François
Zaidi, Nayyar
O’Neill, Lachlan
Goethals, Bart
Pelletier, Charlotte
Author_xml – sequence: 1
  givenname: Benjamin
  orcidid: 0000-0002-2021-3076
  surname: Lucas
  fullname: Lucas, Benjamin
  email: benjamin.lucas@monash.edu
  organization: Faculty of Information Technology, Monash University
– sequence: 2
  givenname: Ahmed
  orcidid: 0000-0002-4627-8935
  surname: Shifaz
  fullname: Shifaz, Ahmed
  organization: Faculty of Information Technology, Monash University
– sequence: 3
  givenname: Charlotte
  orcidid: 0000-0002-4652-7778
  surname: Pelletier
  fullname: Pelletier, Charlotte
  organization: Faculty of Information Technology, Monash University
– sequence: 4
  givenname: Lachlan
  surname: O’Neill
  fullname: O’Neill, Lachlan
  organization: Faculty of Information Technology, Monash University
– sequence: 5
  givenname: Nayyar
  surname: Zaidi
  fullname: Zaidi, Nayyar
  organization: Faculty of Information Technology, Monash University
– sequence: 6
  givenname: Bart
  orcidid: 0000-0001-9327-9554
  surname: Goethals
  fullname: Goethals, Bart
  organization: Faculty of Information Technology, Monash University
– sequence: 7
  givenname: François
  orcidid: 0000-0001-5334-3574
  surname: Petitjean
  fullname: Petitjean, François
  organization: Faculty of Information Technology, Monash University
– sequence: 8
  givenname: Geoffrey I.
  orcidid: 0000-0001-9963-5169
  surname: Webb
  fullname: Webb, Geoffrey I.
  organization: Faculty of Information Technology, Monash University
BookMark eNp9kE9LAzEQxYNUsK1-AU8Bz9H8aXaz3qRYFQp6qOAtZLMTSdluapKK_fZGKwgePM0beL95w5ug0RAGQOic0UtGaX2VGK2YIpQ1hBZVE3GExkzWgtSyehkVLdSMSMXoCZqktKaUSi7oGD0_xfDhNz7v8SJESPkamwGDc2Czf4eydDhZ05u2B9z5lM1ggbQmQYdtb1LyzkPELkSc_QZwgughnaJjZ_oEZz9zilaL29X8niwf7x7mN0tihZKZMAaiclJZqbpGsLYT0HBZVdK2jjbcNUK2laxZ5_isVjMlODgjHDTCMsU7MUUXh7PbGN525Xm9Drs4lETNWV1IySkvLn5w2RhSiuD0NvqNiXvNqP5qTx_a06U9_d2eFgVSfyDrs8k-DDka3_-PigOaSs7wCvH3q3-oT-sdhdU
CitedBy_id crossref_primary_10_1080_19236026_2022_2072664
crossref_primary_10_1002_cpe_8234
crossref_primary_10_3390_e23081059
crossref_primary_10_1109_TKDE_2022_3186963
crossref_primary_10_1145_3694788
crossref_primary_10_1016_j_eswa_2021_115147
crossref_primary_10_1016_j_patrec_2022_01_023
crossref_primary_10_1016_j_eswa_2022_118463
crossref_primary_10_1016_j_patcog_2019_107024
crossref_primary_10_1007_s44196_024_00461_4
crossref_primary_10_1007_s10618_024_01006_1
crossref_primary_10_1016_j_asoc_2022_109494
crossref_primary_10_1109_JIOT_2020_2983207
crossref_primary_10_3389_fspas_2020_00055
crossref_primary_10_1007_s41060_021_00295_9
crossref_primary_10_1007_s41060_024_00708_5
crossref_primary_10_1007_s10618_023_00926_8
crossref_primary_10_1007_s10618_022_00898_1
crossref_primary_10_1007_s10618_021_00782_4
crossref_primary_10_1007_s41403_021_00230_1
crossref_primary_10_1016_j_jksuci_2023_101783
crossref_primary_10_1007_s10115_022_01784_4
crossref_primary_10_1016_j_asoc_2022_109458
crossref_primary_10_1109_TKDE_2022_3177724
crossref_primary_10_1007_s10618_022_00822_7
crossref_primary_10_1016_j_measurement_2024_115746
crossref_primary_10_1007_s10618_020_00679_8
crossref_primary_10_1016_j_patcog_2023_109334
crossref_primary_10_1109_TCYB_2021_3133597
crossref_primary_10_1016_j_patcog_2022_109036
crossref_primary_10_1007_s11063_024_11531_1
crossref_primary_10_1007_s10489_023_04859_z
crossref_primary_10_1007_s10618_023_00978_w
crossref_primary_10_1007_s10618_023_00939_3
crossref_primary_10_3389_ffutr_2021_683223
crossref_primary_10_1109_ACCESS_2022_3188393
crossref_primary_10_1145_3551643
crossref_primary_10_3233_JCM_237074
crossref_primary_10_1016_j_knosys_2024_112253
crossref_primary_10_1109_OJSP_2024_3435673
crossref_primary_10_3390_s20051484
crossref_primary_10_1016_j_ins_2023_119147
crossref_primary_10_1007_s10618_020_00701_z
crossref_primary_10_1007_s44196_021_00036_7
crossref_primary_10_3390_app10124124
crossref_primary_10_1109_TAES_2024_3404360
crossref_primary_10_1007_s00607_022_01075_4
crossref_primary_10_1109_TNNLS_2021_3124300
crossref_primary_10_3390_en15176486
crossref_primary_10_1007_s10618_021_00745_9
crossref_primary_10_3390_app12178685
crossref_primary_10_1007_s10115_023_01835_4
crossref_primary_10_1109_TIM_2024_3440381
crossref_primary_10_1016_j_ins_2023_01_093
crossref_primary_10_1007_s10044_024_01292_x
crossref_primary_10_3390_electronics12051188
crossref_primary_10_1145_3715702
crossref_primary_10_1016_j_eswa_2022_118923
crossref_primary_10_3390_app14020689
crossref_primary_10_1007_s10618_024_01022_1
crossref_primary_10_1007_s10618_024_01068_1
crossref_primary_10_1007_s10618_019_00663_x
crossref_primary_10_1016_j_neucom_2025_129772
crossref_primary_10_1016_j_knosys_2023_110483
crossref_primary_10_1007_s10618_024_01085_0
crossref_primary_10_1109_ACCESS_2024_3397783
crossref_primary_10_1109_TFUZZ_2019_2917126
crossref_primary_10_1007_s00778_022_00771_z
crossref_primary_10_1007_s10618_022_00844_1
crossref_primary_10_1016_j_ipm_2022_103044
crossref_primary_10_1109_TKDE_2025_3528023
crossref_primary_10_1016_j_inpa_2020_09_006
crossref_primary_10_1007_s10618_020_00690_z
crossref_primary_10_1371_journal_pone_0277975
crossref_primary_10_1109_ACCESS_2023_3270493
crossref_primary_10_3390_app14093825
crossref_primary_10_1002_sam_11705
crossref_primary_10_1007_s10618_024_01036_9
crossref_primary_10_1016_j_rcim_2024_102839
crossref_primary_10_1016_j_eswa_2023_119942
crossref_primary_10_1007_s10994_021_06057_9
crossref_primary_10_1007_s10115_022_01827_w
crossref_primary_10_1007_s10618_020_00710_y
crossref_primary_10_1016_j_ins_2024_120478
crossref_primary_10_1016_j_knosys_2024_112231
crossref_primary_10_1145_3649448
Cites_doi 10.1007/s10994-006-6226-1
10.1007/s10618-010-0179-5
10.1007/s10844-012-0196-5
10.1109/TASSP.1978.1163055
10.1016/j.patcog.2008.11.030
10.1109/TKDE.2015.2416723
10.1109/TPAMI.2008.76
10.1007/s10618-013-0322-1
10.1007/s10618-016-0483-9
10.1007/s10618-014-0377-7
10.1007/s10115-015-0905-9
10.1145/1862413.1862417
10.1023/A:1010933404324
10.1016/j.patcog.2005.06.012
10.1007/s10618-014-0361-2
10.1016/j.patcog.2011.08.018
10.1109/TKDE.2012.88
10.1007/s10618-016-0473-y
10.1007/s00778-004-0144-2
10.1007/s10618-012-0250-5
10.1016/j.patcog.2010.09.022
10.1016/j.tcs.2011.09.029
10.1016/j.ins.2013.02.030
10.1007/s10115-015-0878-8
10.1007/s10618-012-0251-4
10.1109/ICDM.2014.92
10.1109/ICDM.2014.27
10.1145/3097983.3098046
10.1109/ICDM.2013.52
10.1145/2247596.2247656
10.1137/1.9781611972832.74
10.1137/1.9781611974973.32
10.1016/B978-012088469-8.50070-X
10.1145/1066157.1066213
10.1137/1.9781611972719.1
10.1109/ICDM.2006.49
10.1145/3132847.3132980
10.1109/ICDM.2006.21
10.1145/2939672.2939779
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2019
Data Mining and Knowledge Discovery is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2019
– notice: Data Mining and Knowledge Discovery is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s10618-019-00617-3
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1573-756X
EndPage 635
ExternalDocumentID 10_1007_s10618_019_00617_3
GrantInformation_xml – fundername: Air Force Office of Scientific Research
  grantid: FA2386-16-1-4036
  funderid: http://dx.doi.org/10.13039/100000181
– fundername: Australian Research Council
  grantid: DE170100037; DP140100087
  funderid: http://dx.doi.org/10.13039/501100000923
GroupedDBID -59
-5G
-BR
-EM
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
-Y2
1SB
2P1
2VQ
AAPKM
AARHV
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABULA
ACBXY
ACSTC
ADHKG
ADKFA
AEBTG
AEKMD
AEZWR
AFDZB
AFGCZ
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHSBF
AHWEU
AIXLP
AJBLW
AMVHM
ATHPR
AYFIA
CAG
CITATION
COF
H13
N2Q
O9-
OVD
PHGZM
PHGZT
RNI
RZC
RZE
RZK
S1Z
TEORI
3V.
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c385t-11e36f58c58d931bd3e925665cbf092f935b6571df24784832efa3fe93c182d3
IEDL.DBID BENPR
ISSN 1384-5810
IngestDate Sat Aug 16 11:50:51 EDT 2025
Thu Apr 24 23:09:00 EDT 2025
Tue Jul 01 00:40:31 EDT 2025
Fri Feb 21 02:33:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Time series classification
Scalable classification
Time-warp similarity measures
Ensemble
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-11e36f58c58d931bd3e925665cbf092f935b6571df24784832efa3fe93c182d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2021-3076
0000-0001-9327-9554
0000-0001-5334-3574
0000-0002-4627-8935
0000-0002-4652-7778
0000-0001-9963-5169
PQID 2176575202
PQPubID 43030
PageCount 29
ParticipantIDs proquest_journals_2176575202
crossref_primary_10_1007_s10618_019_00617_3
crossref_citationtrail_10_1007_s10618_019_00617_3
springer_journals_10_1007_s10618_019_00617_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Data mining and knowledge discovery
PublicationTitleAbbrev Data Min Knowl Disc
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Deng, Runger, Tuv, Vladimir (CR10) 2013; 239
CR38
Stefan, Athitsos, Das (CR44) 2013; 25
CR36
CR35
Petitjean, Gançarski (CR34) 2012; 414
Grabocka, Wistuba, Schmidt-Thieme (CR14) 2016; 49
Lines, Bagnall (CR27) 2015; 29
CR32
Vlachos, Hadjieleftheriou, Gunopulos, Keogh (CR48) 2006; 15
CR30
Jeong, Jeong, Omitaomu (CR20) 2011; 44
Lifshits (CR25) 2010; 2
Lemire (CR24) 2009; 42
CR4
CR3
Sakoe, Chiba (CR37) 1978; 26
CR6
CR8
CR7
Pękalska, Duin, Paclík (CR31) 2006; 39
Marteau (CR28) 2009; 31
CR47
CR46
CR45
Lin, Khade, Li (CR26) 2012; 39
CR43
CR42
Breiman (CR5) 2001; 45
CR41
Bagnall, Lines, Bostrom, Large, Keogh (CR1) 2017; 31
Douzal-Chouakria, Amblard (CR11) 2012; 45
CR19
CR17
CR16
CR15
Górecki, Łuczak (CR13) 2013; 26
Schäfer (CR39) 2015; 29
CR50
Demšar (CR9) 2006; 7
Ye, Keogh (CR51) 2011; 22
CR29
Karlsson, Papapetrou, Boström (CR21) 2016; 30
Wang, Mueen, Ding, Trajcevski, Scheuermann, Keogh (CR49) 2013; 26
CR23
CR22
Petitjean, Forestier, Webb, Nicholson, Chen, Keogh (CR33) 2016; 47
Bagnall, Lines, Hills, Bostrom (CR2) 2015; 27
Hills, Lines, Baranauskas, Mapp, Bagnall (CR18) 2014; 28
Schäfer (CR40) 2015; 2
Geurts, Ernst, Wehenkel (CR12) 2006; 63
A Stefan (617_CR44) 2013; 25
L Breiman (617_CR5) 2001; 45
617_CR50
YS Jeong (617_CR20) 2011; 44
M Vlachos (617_CR48) 2006; 15
P Geurts (617_CR12) 2006; 63
617_CR16
617_CR15
E Pękalska (617_CR31) 2006; 39
617_CR17
J Hills (617_CR18) 2014; 28
617_CR19
617_CR3
617_CR4
617_CR7
617_CR6
617_CR8
F Petitjean (617_CR34) 2012; 414
A Bagnall (617_CR1) 2017; 31
A Douzal-Chouakria (617_CR11) 2012; 45
617_CR23
T Górecki (617_CR13) 2013; 26
617_CR22
J Lines (617_CR27) 2015; 29
617_CR29
J Lin (617_CR26) 2012; 39
J Grabocka (617_CR14) 2016; 49
617_CR30
L Ye (617_CR51) 2011; 22
A Bagnall (617_CR2) 2015; 27
617_CR36
617_CR35
X Wang (617_CR49) 2013; 26
617_CR38
P Schäfer (617_CR40) 2015; 2
617_CR32
P Schäfer (617_CR39) 2015; 29
F Petitjean (617_CR33) 2016; 47
H Deng (617_CR10) 2013; 239
Y Lifshits (617_CR25) 2010; 2
I Karlsson (617_CR21) 2016; 30
617_CR41
D Lemire (617_CR24) 2009; 42
617_CR47
617_CR46
H Sakoe (617_CR37) 1978; 26
J Demšar (617_CR9) 2006; 7
617_CR43
617_CR42
617_CR45
PF Marteau (617_CR28) 2009; 31
References_xml – volume: 63
  start-page: 3
  issue: 1
  year: 2006
  end-page: 42
  ident: CR12
  article-title: Extremely randomized trees
  publication-title: Mach Learn
  doi: 10.1007/s10994-006-6226-1
– ident: CR45
– ident: CR22
– volume: 22
  start-page: 149
  issue: 1
  year: 2011
  end-page: 182
  ident: CR51
  article-title: Time series shapelets: a novel technique that allows accurate, interpretable and fast classification
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-010-0179-5
– ident: CR4
– volume: 39
  start-page: 287
  issue: 2
  year: 2012
  end-page: 315
  ident: CR26
  article-title: Rotation-invariant similarity in time series using bag-of-patterns representation
  publication-title: J Intell Inf Syst
  doi: 10.1007/s10844-012-0196-5
– ident: CR16
– ident: CR35
– ident: CR29
– volume: 26
  start-page: 43
  issue: 1
  year: 1978
  end-page: 49
  ident: CR37
  article-title: Dynamic programming algorithm optimization for spoken word recognition
  publication-title: IEEE Trans Acoust Speech Signal Process
  doi: 10.1109/TASSP.1978.1163055
– volume: 42
  start-page: 2169
  issue: 9
  year: 2009
  end-page: 2180
  ident: CR24
  article-title: Faster retrieval with a two-pass dynamic-time-warping lower bound
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2008.11.030
– ident: CR8
– ident: CR42
– volume: 27
  start-page: 2522
  issue: 9
  year: 2015
  end-page: 2535
  ident: CR2
  article-title: Time-series classification with COTE: the collective of transformation-based ensembles
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2015.2416723
– ident: CR46
– ident: CR19
– volume: 31
  start-page: 306
  issue: 2
  year: 2009
  end-page: 318
  ident: CR28
  article-title: Time warp edit distance with stiffness adjustment for time series matching
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2008.76
– volume: 28
  start-page: 851
  issue: 4
  year: 2014
  end-page: 881
  ident: CR18
  article-title: Classification of time series by shapelet transformation
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-013-0322-1
– ident: CR15
– volume: 31
  start-page: 606
  issue: 3
  year: 2017
  end-page: 660
  ident: CR1
  article-title: The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-016-0483-9
– ident: CR50
– volume: 29
  start-page: 1505
  issue: 6
  year: 2015
  end-page: 1530
  ident: CR39
  article-title: The BOSS is concerned with time series classification in the presence of noise
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-014-0377-7
– ident: CR32
– ident: CR36
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: CR9
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J Mach Learn Res
– volume: 49
  start-page: 429
  issue: 2
  year: 2016
  end-page: 454
  ident: CR14
  article-title: Fast classification of univariate and multivariate time series through shapelet discovery
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-015-0905-9
– volume: 2
  start-page: 12
  issue: 2
  year: 2010
  end-page: 15
  ident: CR25
  article-title: Nearest neighbor search: algorithmic perspective
  publication-title: SIGSPATIAL Spec
  doi: 10.1145/1862413.1862417
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  ident: CR5
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– ident: CR43
– ident: CR47
– volume: 39
  start-page: 189
  issue: 2
  year: 2006
  end-page: 208
  ident: CR31
  article-title: Prototype selection for dissimilarity-based classifiers
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2005.06.012
– ident: CR30
– ident: CR6
– volume: 29
  start-page: 565
  issue: 3
  year: 2015
  ident: CR27
  article-title: Time series classification with ensembles of elastic distance measures
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-014-0361-2
– volume: 45
  start-page: 1076
  issue: 3
  year: 2012
  end-page: 1091
  ident: CR11
  article-title: Classification trees for time series
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2011.08.018
– ident: CR23
– volume: 25
  start-page: 1425
  issue: 6
  year: 2013
  end-page: 1438
  ident: CR44
  article-title: The move-split-merge metric for time series
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2012.88
– volume: 30
  start-page: 1053
  issue: 5
  year: 2016
  end-page: 1085
  ident: CR21
  article-title: Generalized random shapelet forests
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-016-0473-y
– ident: CR3
– ident: CR38
– ident: CR17
– volume: 15
  start-page: 1
  issue: 1
  year: 2006
  end-page: 20
  ident: CR48
  article-title: Indexing multidimensional time-series
  publication-title: Int J Very Large Data Bases
  doi: 10.1007/s00778-004-0144-2
– volume: 26
  start-page: 275
  issue: 2
  year: 2013
  end-page: 309
  ident: CR49
  article-title: Experimental comparison of representation methods and distance measures for time series data
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-012-0250-5
– volume: 44
  start-page: 2231
  issue: 9
  year: 2011
  end-page: 2240
  ident: CR20
  article-title: Weighted dynamic time warping for time series classification
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2010.09.022
– volume: 414
  start-page: 76
  issue: 1
  year: 2012
  end-page: 91
  ident: CR34
  article-title: Summarizing a set of time series by averaging: from Steiner sequence to compact multiple alignment
  publication-title: Theor Comput Sci
  doi: 10.1016/j.tcs.2011.09.029
– volume: 239
  start-page: 142
  year: 2013
  end-page: 153
  ident: CR10
  article-title: A time series forest for classification and feature extraction
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2013.02.030
– ident: CR7
– volume: 47
  start-page: 1
  issue: 1
  year: 2016
  end-page: 26
  ident: CR33
  article-title: Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-015-0878-8
– ident: CR41
– volume: 2
  start-page: 1
  year: 2015
  end-page: 26
  ident: CR40
  article-title: Scalable time series classification
  publication-title: Data Min Knowl Discov
– volume: 26
  start-page: 310
  issue: 2
  year: 2013
  end-page: 331
  ident: CR13
  article-title: Using derivatives in time series classification
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-012-0251-4
– volume: 47
  start-page: 1
  issue: 1
  year: 2016
  ident: 617_CR33
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-015-0878-8
– ident: 617_CR36
– volume: 414
  start-page: 76
  issue: 1
  year: 2012
  ident: 617_CR34
  publication-title: Theor Comput Sci
  doi: 10.1016/j.tcs.2011.09.029
– volume: 26
  start-page: 310
  issue: 2
  year: 2013
  ident: 617_CR13
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-012-0251-4
– volume: 39
  start-page: 287
  issue: 2
  year: 2012
  ident: 617_CR26
  publication-title: J Intell Inf Syst
  doi: 10.1007/s10844-012-0196-5
– volume: 26
  start-page: 275
  issue: 2
  year: 2013
  ident: 617_CR49
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-012-0250-5
– volume: 2
  start-page: 12
  issue: 2
  year: 2010
  ident: 617_CR25
  publication-title: SIGSPATIAL Spec
  doi: 10.1145/1862413.1862417
– ident: 617_CR17
  doi: 10.1109/ICDM.2014.92
– volume: 29
  start-page: 1505
  issue: 6
  year: 2015
  ident: 617_CR39
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-014-0377-7
– ident: 617_CR22
– ident: 617_CR32
  doi: 10.1109/ICDM.2014.27
– ident: 617_CR16
– volume: 239
  start-page: 142
  year: 2013
  ident: 617_CR10
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2013.02.030
– volume: 30
  start-page: 1053
  issue: 5
  year: 2016
  ident: 617_CR21
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-016-0473-y
– volume: 26
  start-page: 43
  issue: 1
  year: 1978
  ident: 617_CR37
  publication-title: IEEE Trans Acoust Speech Signal Process
  doi: 10.1109/TASSP.1978.1163055
– ident: 617_CR38
  doi: 10.1145/3097983.3098046
– volume: 25
  start-page: 1425
  issue: 6
  year: 2013
  ident: 617_CR44
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2012.88
– volume: 31
  start-page: 606
  issue: 3
  year: 2017
  ident: 617_CR1
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-016-0483-9
– ident: 617_CR43
  doi: 10.1109/ICDM.2013.52
– volume: 45
  start-page: 1076
  issue: 3
  year: 2012
  ident: 617_CR11
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2011.08.018
– volume: 28
  start-page: 851
  issue: 4
  year: 2014
  ident: 617_CR18
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-013-0322-1
– volume: 42
  start-page: 2169
  issue: 9
  year: 2009
  ident: 617_CR24
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2008.11.030
– ident: 617_CR41
  doi: 10.1145/2247596.2247656
– ident: 617_CR35
  doi: 10.1137/1.9781611972832.74
– ident: 617_CR15
– ident: 617_CR19
– volume: 7
  start-page: 1
  year: 2006
  ident: 617_CR9
  publication-title: J Mach Learn Res
– ident: 617_CR45
  doi: 10.1137/1.9781611974973.32
– ident: 617_CR6
  doi: 10.1016/B978-012088469-8.50070-X
– ident: 617_CR7
  doi: 10.1145/1066157.1066213
– ident: 617_CR50
– volume: 15
  start-page: 1
  issue: 1
  year: 2006
  ident: 617_CR48
  publication-title: Int J Very Large Data Bases
  doi: 10.1007/s00778-004-0144-2
– ident: 617_CR4
– volume: 49
  start-page: 429
  issue: 2
  year: 2016
  ident: 617_CR14
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-015-0905-9
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 617_CR5
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– ident: 617_CR23
  doi: 10.1137/1.9781611972719.1
– ident: 617_CR8
– ident: 617_CR30
– ident: 617_CR3
  doi: 10.1109/ICDM.2006.49
– volume: 44
  start-page: 2231
  issue: 9
  year: 2011
  ident: 617_CR20
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2010.09.022
– volume: 2
  start-page: 1
  year: 2015
  ident: 617_CR40
  publication-title: Data Min Knowl Discov
– ident: 617_CR42
  doi: 10.1145/3132847.3132980
– volume: 39
  start-page: 189
  issue: 2
  year: 2006
  ident: 617_CR31
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2005.06.012
– volume: 27
  start-page: 2522
  issue: 9
  year: 2015
  ident: 617_CR2
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2015.2416723
– volume: 29
  start-page: 565
  issue: 3
  year: 2015
  ident: 617_CR27
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-014-0361-2
– ident: 617_CR47
  doi: 10.1109/ICDM.2006.21
– volume: 22
  start-page: 149
  issue: 1
  year: 2011
  ident: 617_CR51
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-010-0179-5
– ident: 617_CR29
– volume: 31
  start-page: 306
  issue: 2
  year: 2009
  ident: 617_CR28
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2008.76
– ident: 617_CR46
  doi: 10.1145/2939672.2939779
– volume: 63
  start-page: 3
  issue: 1
  year: 2006
  ident: 617_CR12
  publication-title: Mach Learn
  doi: 10.1007/s10994-006-6226-1
SSID ssj0005230
Score 2.606182
Snippet Research into the classification of time series has made enormous progress in the last decade. The UCR time series archive has played a significant role in...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 607
SubjectTerms Accuracy
Algorithms
Archives & records
Artificial Intelligence
Chemistry and Earth Sciences
Classification
Classifiers
Computer Science
Data Mining and Knowledge Discovery
Datasets
Decision trees
Information Storage and Retrieval
Physics
Proximity
State of the art
Statistics for Engineering
Time series
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66InjxsSqurpKDNw20nSRtvC2iLILiYRf2Vto8QJCubCvov3fSh7uKCh5LHoV5ZL6Q-WYIOVeJk1wDMB7bjHETWKa04UxwjuDaaG0izx2-f5DjKb-biVlLCiu7bPfuSbI-qVfIbjL0iVeK1XGXwTrZEP7ujlY8jUYriR3QcIMT_GUSBi1V5uc9voajJcb89ixaR5vbXbLdwkQ6avS6R9Zs0Sc7XQsG2npkn2zWGZy63CfTx8X8zbOV3qlvt1lWVzQraJOugScafhhaokI8VYoajxpxA-aDmKHaQ-gnhxGSIoalvt889aZpywMyub2ZXI9Z2zOBaUhExcLQgnQi0SIxCsLcgFWIaqTQuQtU5BSIXIo4NC7iccLRn63LwFkFGm8aBg5Jr5gX9ohQC0JnRkuMcZbnFjKcyWUAwuQyDiwMSNhJLtVtPXHf1uI5XVZC9tJOUdppLe0U11x8rnlpqmn8OXvYKSRtPatM8Qrl34pQ7wNy2SlpOfz7bsf_m35CtqLaTnxu45D0qsWrPUX8UeVntbl9AAXUz4o
  priority: 102
  providerName: Springer Nature
Title Proximity Forest: an effective and scalable distance-based classifier for time series
URI https://link.springer.com/article/10.1007/s10618-019-00617-3
https://www.proquest.com/docview/2176575202
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA-6vfjitzidIw--abBtki71RabsA8UxZIP5VNokBUG2uU7Q_967LnUquMe2SQp3l7tfkrv8CDmPVBYKzTkTTZswYTzLIm0Ek0IAuDZamwBrhx_7YW8k7sdy7DbccpdWWfrEwlGbqcY98iuAznhGAGv1m9kbQ9YoPF11FBqbpAouWMHiq3rb7g-efiR58GWdsILfK99zZTOueC70MZErYkUcZ_x3aFrhzT9HpEXk6eySbQcZaWup4z2yYSf7ZKekY6Budh6Q0WA-_cB6pU-KhJv54pomE7pM2ACfBg-G5qASLJaiBnEjdGMYxgzVCKJfMoiRFFAsRcZ5isZp80My7LSHdz3mWBOY5koumO9bHmZSaalMxP3UcBsBrgmlTjMvCrKIyxQk6ZssEE0lYEbbLOGZjbiGtYbhR6QymU7sMaGWS50YHUKUsyK1PIGWIvS4NGnY9CyvEb-UV6zdjeJIbPEar-5CRhnHIOO4kHEMfS6--8yW92msbV0v1RC7uZXHK0uokctSNavP_492sn60U7IVFNaA2Yx1UlnM3-0ZII5F2iCbqtNtkGqr-_zQbjgjg7ejoPUF-zrUZQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQXKH2owLb4UE7UapKxs3Glqqpalt3yUA-LxM1KbEeqhHaBLIL9UfzHzuTRbSvBbY9RbEeZGc98tufzALw3WZkqhyhVP-RS-ShI47ySWikC1945nzB3-OQ0HZ6pH-f6fAXuOy4Mp1V2PrF21H7qeI_8I0FnPiOgtfqXyyvJVaP4dLUrodGYxVGY39KSrfo8-k763UuSwcH421C2VQWkw0zPZBwHTEudOZ15g3HhMRiK-6l2RRmZpDSoC_pS7MtE9TNFFh_KHMtg0BEW90jDPoE1hWh4QmWDw78ySrAhJWf0r1kctRydlqmXxpw1ZmQNGiT-GwcX4Pa_89g6zA2ew3qLT8XXxqA2YSVMXsBGV_tBtK7gJZz9vJ7eMTlqLri6ZzX7JPKJaLJDyIHSgxcV6Z-ZWcIzSKVukmOmF44R-6-SArIgyCy4vL3gmRCqVzBehjBfw-pkOglvQATULvcupZAaVBEwp5YqjVD7Iu1HAbcg7uRlXXt9OVfRuLCLi5dZxpZkbGsZW-qz_6fPZXN5x6Ote50abDuRK7swuy340Klm8frh0bYfH20Xng7HJ8f2eHR6tAPPktoyOI2yB6uz65vwlqDOrHhXG5gAu2SD_g0OsgsN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BIiEuQKFVKY_6QE9gkcR2NqmEUAuseJTVCoHEzUr8kCqhXUq2Kvw0_l1nEocFJLhxjBI7yvjzzOd4xh_AZp75VBohuOy6gksbOZ4bK7mSEsm1NcYmVDt81k-PLuXJlbqagoe2FobSKlufWDtqOzL0j3wHqTPtEeBafceHtIjBQW_v5g8nBSnaaW3lNBqInLr7f7h8q3aPD3CsvyVJ7_Bi_4gHhQFuRKbGPI6dSL3KjMpsLuLSCpcjB0iVKX2UJz4XqsS3xtYnsptJRL_zhfAuFwZ5uRXY7TTMdHFRFHVg5udhf3D-JL9ENCXKGX55FkehYifU7aUx5ZDlvKYQXDyPihOq-2J3tg56vUWYD2yV_Wjg9QGm3HAJFlolCBYcwzJcDm5Hd1Qqdc9I67Maf2fFkDW5IuhO8cKyCtFAdVrMEmXFZpwiqGWG-Ptvj-GZIYFmJHbPaF646iNcvIc5P0FnOBq6z8CcUKawJsUA62TpRIFPyjQSypZpN3JiBeLWXtqEw8xJU-NaT45hJhtrtLGubayxzdZjm5vmKI83n15rh0GHaV3pCQhXYLsdmsnt13v78nZvX2EWwax_HfdPV2EuqYFBOZVr0Bnf_nXryHvG5UZAGAP9zpj-DyVwEJ8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proximity+Forest%3A+an+effective+and+scalable+distance-based+classifier+for+time+series&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Lucas%2C+Benjamin&rft.au=Shifaz%2C+Ahmed&rft.au=Pelletier%2C+Charlotte&rft.au=Lachlan+O%E2%80%99Neill&rft.date=2019-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=33&rft.issue=3&rft.spage=607&rft.epage=635&rft_id=info:doi/10.1007%2Fs10618-019-00617-3&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon