Cyclic growth of hierarchical structures in the aluminum-silicate system

Background Biological structures grow spontaneously from a seed, using materials supplied by the environment. These structures are hierarchical, with the ‘building blocks’ on each level constructed from those on the lower level. To understand and model the processes that occur on many levels, and la...

Full description

Saved in:
Bibliographic Details
Published inJournal of systems chemistry Vol. 6; no. 1; p. 3
Main Authors Dyonizy, Agnieszka, Kaminker, Vitaliy, Wieckowska, Joanna, Krzywicki, Tomasz, Pantaleone, Jim, Nowak, Piotr, Maselko, Jerzy
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 06.03.2015
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background Biological structures grow spontaneously from a seed, using materials supplied by the environment. These structures are hierarchical, with the ‘building blocks’ on each level constructed from those on the lower level. To understand and model the processes that occur on many levels, and later construct them, is a difficult task. However interest in this subject is growing. It is now possible to study the spontaneous growth of hierarchical structures in simple, two component chemical systems. Results Aluminum-silicate systems have been observed to grow into structures that are approximately conical. These structures are composed of multiple smaller cones with several hierarchical levels of complexity. On the highest level the system resembles a metropolis, with a horizontal resource distribution network connecting vertical, conical structures. The cones are made from many smaller cones that are connected together forming a whole with unusual behavior. The growth is observed to switch periodically between the vertical and horizontal directions. Conclusion A structure grown in a dish is observed to have many similarities to other hierarchical systems such as biological organisms or cities. This system may provide a simple model system to search for universal laws governing the growth of complex hierarchical structures. Graphical Abstract Side view of the chemical structure made from many vertical cones to form a chemical metropolis. The tallest structure is 17 cm high.
AbstractList Background Biological structures grow spontaneously from a seed, using materials supplied by the environment. These structures are hierarchical, with the ‘building blocks’ on each level constructed from those on the lower level. To understand and model the processes that occur on many levels, and later construct them, is a difficult task. However interest in this subject is growing. It is now possible to study the spontaneous growth of hierarchical structures in simple, two component chemical systems. Results Aluminum-silicate systems have been observed to grow into structures that are approximately conical. These structures are composed of multiple smaller cones with several hierarchical levels of complexity. On the highest level the system resembles a metropolis, with a horizontal resource distribution network connecting vertical, conical structures. The cones are made from many smaller cones that are connected together forming a whole with unusual behavior. The growth is observed to switch periodically between the vertical and horizontal directions. Conclusion A structure grown in a dish is observed to have many similarities to other hierarchical systems such as biological organisms or cities. This system may provide a simple model system to search for universal laws governing the growth of complex hierarchical structures. Graphical Abstract Side view of the chemical structure made from many vertical cones to form a chemical metropolis. The tallest structure is 17 cm high.
BACKGROUNDBiological structures grow spontaneously from a seed, using materials supplied by the environment. These structures are hierarchical, with the 'building blocks' on each level constructed from those on the lower level. To understand and model the processes that occur on many levels, and later construct them, is a difficult task. However interest in this subject is growing. It is now possible to study the spontaneous growth of hierarchical structures in simple, two component chemical systems.RESULTSAluminum-silicate systems have been observed to grow into structures that are approximately conical. These structures are composed of multiple smaller cones with several hierarchical levels of complexity. On the highest level the system resembles a metropolis, with a horizontal resource distribution network connecting vertical, conical structures. The cones are made from many smaller cones that are connected together forming a whole with unusual behavior. The growth is observed to switch periodically between the vertical and horizontal directions.CONCLUSIONA structure grown in a dish is observed to have many similarities to other hierarchical systems such as biological organisms or cities. This system may provide a simple model system to search for universal laws governing the growth of complex hierarchical structures. Graphical AbstractSide view of the chemical structure made from many vertical cones to form a chemical metropolis. The tallest structure is 17 cm high.
Background Biological structures grow spontaneously from a seed, using materials supplied by the environment. These structures are hierarchical, with the 'building blocks' on each level constructed from those on the lower level. To understand and model the processes that occur on many levels, and later construct them, is a difficult task. However interest in this subject is growing. It is now possible to study the spontaneous growth of hierarchical structures in simple, two component chemical systems. Results Aluminum-silicate systems have been observed to grow into structures that are approximately conical. These structures are composed of multiple smaller cones with several hierarchical levels of complexity. On the highest level the system resembles a metropolis, with a horizontal resource distribution network connecting vertical, conical structures. The cones are made from many smaller cones that are connected together forming a whole with unusual behavior. The growth is observed to switch periodically between the vertical and horizontal directions. Conclusion A structure grown in a dish is observed to have many similarities to other hierarchical systems such as biological organisms or cities. This system may provide a simple model system to search for universal laws governing the growth of complex hierarchical structures. [Figure not available: see fulltext.]
Biological structures grow spontaneously from a seed, using materials supplied by the environment. These structures are hierarchical, with the 'building blocks' on each level constructed from those on the lower level. To understand and model the processes that occur on many levels, and later construct them, is a difficult task. However interest in this subject is growing. It is now possible to study the spontaneous growth of hierarchical structures in simple, two component chemical systems. Aluminum-silicate systems have been observed to grow into structures that are approximately conical. These structures are composed of multiple smaller cones with several hierarchical levels of complexity. On the highest level the system resembles a metropolis, with a horizontal resource distribution network connecting vertical, conical structures. The cones are made from many smaller cones that are connected together forming a whole with unusual behavior. The growth is observed to switch periodically between the vertical and horizontal directions. A structure grown in a dish is observed to have many similarities to other hierarchical systems such as biological organisms or cities. This system may provide a simple model system to search for universal laws governing the growth of complex hierarchical structures. Graphical AbstractSide view of the chemical structure made from many vertical cones to form a chemical metropolis. The tallest structure is 17 cm high.
ArticleNumber 3
Author Maselko, Jerzy
Pantaleone, Jim
Kaminker, Vitaliy
Wieckowska, Joanna
Krzywicki, Tomasz
Dyonizy, Agnieszka
Nowak, Piotr
Author_xml – sequence: 1
  givenname: Agnieszka
  surname: Dyonizy
  fullname: Dyonizy, Agnieszka
  organization: Department of Chemistry, Technical University
– sequence: 2
  givenname: Vitaliy
  surname: Kaminker
  fullname: Kaminker, Vitaliy
  organization: Department of Physics, University of Alaska Anchorage
– sequence: 3
  givenname: Joanna
  surname: Wieckowska
  fullname: Wieckowska, Joanna
  organization: Department of Chemistry, Technical University
– sequence: 4
  givenname: Tomasz
  surname: Krzywicki
  fullname: Krzywicki, Tomasz
  organization: Department of Chemistry, Technical University
– sequence: 5
  givenname: Jim
  surname: Pantaleone
  fullname: Pantaleone, Jim
  organization: Department of Physics, University of Alaska Anchorage
– sequence: 6
  givenname: Piotr
  surname: Nowak
  fullname: Nowak, Piotr
  organization: Department of Chemistry, Technical University
– sequence: 7
  givenname: Jerzy
  surname: Maselko
  fullname: Maselko, Jerzy
  email: jmaselko2@uaa.alaska.edu
  organization: Department of Chemistry, University of Alaska Anchorage
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25834644$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9r3DAQxUVJaZJtPkAvxdBLLm71x7akS6EsaVMI9JKchTw7XivYUirJLfvtq2WTsA20IBjB_N7wZt45OfHBIyHvGP3ImOo-JSYE5zVlbU0plbV-Rc6YbHXNOVUnR_9TcpHSfWFoW57Ub8gpb5VouqY5I9frHUwOqm0Mv_NYhaEaHUYbYXRgpyrluEBeIqbK-SqPWNlpmZ1f5jq5orMZq7RLGee35PVgp4QXj3VF7r5e3a6v65sf376vv9zUIFQxhAAKBBVC0B7kwBTVbd_ooVPFDmeoEHvaQaf5Zijr0XYDgKL0aKdlP1ixIp8Pcx-WfsYNoM_RTuYhutnGnQnWmb873o1mG36ZRsiGlZutyOXjgBh-LpiymV0CnCbrMSzJMMW7jrWSyYJ-eIHehyX6sp5hkuuGUdHSQr0_dvRs5enIBZAHAGJIKeJgwGWbXdgbdJNh1OwTNYdETUnU7BM1uijZC-XT8P9p-EGTCuu3GI9M_1P0BwuWsiY
CitedBy_id crossref_primary_10_1021_acs_langmuir_3c00079
Cites_doi 10.1038/nature01671
10.1002/anie.201006633
10.1144/gsjgs.154.3.0377
10.1002/anie.200903292
10.1007/BF00550628
10.1002/ange.201107754
10.1242/jeb.01487
10.1073/pnas.0404544101
10.1073/pnas.051011198
10.1063/1.4762828
10.1021/jp036417j
10.1002/anie.200702986
10.7551/mitpress/9780262026215.003.0020
10.1259/arr.1911.0008
10.1021/ja0298343
10.1103/PhysRevE.79.056221
10.1006/jcis.2002.8620
10.1038/nchem.113
10.1063/1.2335152
10.1016/0162-0134(91)84026-6
10.1162/106454601317296988
10.1103/PhysRevE.77.046207
10.1016/S0010-8545(01)00362-9
10.1162/106454605774270598
10.1021/cr040095d
10.1162/artl.2007.13.4.319
10.1007/s11631-010-0107-9
10.1039/c2cc31194a
10.1126/science.1234621
10.1016/0079-6565(89)80001-9
10.7551/mitpress/9412.001.0001
10.1162/artl.2008.14.2.189
10.1038/nchem.1123
10.1103/PhysRevLett.59.381
10.1002/(SICI)1521-3773(20000204)39:3<511::AID-ANIE511>3.0.CO;2-N
10.1063/1.451473
10.1038/467912a
10.1039/b310882a
ContentType Journal Article
Copyright Dyonizy et al.; licensee Springer. 2015. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
The Author(s) 2015
Dyonizy et al.; licensee Springer. 2015
Copyright_xml – notice: Dyonizy et al.; licensee Springer. 2015. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
– notice: The Author(s) 2015
– notice: Dyonizy et al.; licensee Springer. 2015
DBID C6C
AAYXX
CITATION
NPM
8FE
8FG
8FH
ABJCF
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
LK8
M7P
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1186/s13322-015-0007-9
DatabaseName SpringerOpen
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Materials Science Database
Biological Sciences
Biological Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
ProQuest Central Student
PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1759-2208
EndPage 3
ExternalDocumentID PMC4374113
3856330221
25834644
10_1186_s13322_015_0007_9
Genre Journal Article
GroupedDBID -58
-5G
-A0
-BR
4.4
40G
8FE
8FG
8FH
AAKKN
ABDBF
ABEEZ
ABJCF
ACACY
ACGFS
ACIWK
ACPRK
ACUHS
ACULB
ADBBV
ADINQ
AFGXO
AFKRA
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
BAPOH
BBNVY
BENPR
BGLVJ
BHPHI
C24
C6C
CCPQU
D1I
EBS
EJD
ESX
GX1
HCIFZ
HH5
IAO
IEA
IGS
IHR
KB.
LK8
M7P
ML-
M~E
OK1
PDBOC
RBZ
RNS
ROL
RSV
RVI
SCM
SOJ
TUS
AAYXX
CITATION
PHGZM
PHGZT
2VQ
H13
ISR
ITC
NPM
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
0R~
5PM
ID FETCH-LOGICAL-c3859-ecc8c303330bc7f18095b49f6864421e8eeb06c692df32205dcce36440697bfa3
IEDL.DBID BENPR
ISSN 1759-2208
IngestDate Thu Aug 21 14:07:29 EDT 2025
Fri Jul 11 07:30:17 EDT 2025
Fri Jul 25 11:09:16 EDT 2025
Wed Feb 19 02:08:31 EST 2025
Thu Apr 24 23:01:27 EDT 2025
Tue Jul 01 02:49:22 EDT 2025
Fri Feb 21 02:26:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Chemical garden
Hierarchy
Self-construction
Complex systems
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3859-ecc8c303330bc7f18095b49f6864421e8eeb06c692df32205dcce36440697bfa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doi.org/10.1186/s13322-015-0007-9
PMID 25834644
PQID 1729410350
PQPubID 2034702
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4374113
proquest_miscellaneous_1826615717
proquest_journals_1729410350
pubmed_primary_25834644
crossref_citationtrail_10_1186_s13322_015_0007_9
crossref_primary_10_1186_s13322_015_0007_9
springer_journals_10_1186_s13322_015_0007_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20150306
PublicationDateYYYYMMDD 2015-03-06
PublicationDate_xml – month: 3
  year: 2015
  text: 20150306
  day: 6
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: England
– name: London
PublicationTitle Journal of systems chemistry
PublicationTitleAbbrev J Syst Chem
PublicationTitleAlternate J Syst Chem
PublicationYear 2015
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References ChandranDSauroHHierarchical modeling for synthetic BiologyACS Synth Biol20128135364
Holland, John H. Signals and boundaries: building blocks for complex adaptive systems. MIT Press; 2012.
BejanAShape and structure, from engineering to nature2000CambridgeUniversity Press
CoatmanRDThomasNLDoubleDDStudies of growth of silicate gardens and related phenomenaJ Mater Sci19801520172610.1007/BF005506281:CAS:528:DyaL3cXlvFGmt7w%3D
StoneDAGoldsteinRETubular precipitation and redox gradients on a bubbling templateProc Natl Acad Sci USA2004101115374110.1073/pnas.04045441011:CAS:528:DC%2BD2cXntVektLg%3D
Rasmussen S, Bass NA, Mayers B & Nillson M. Anzatz for dynamical hierarchies in emergence: contemporary reading in philosophy and science. Bedau M, Humphreys P, editors. Cambridge: MIT Press. 2008.
MartinBRFe+3 and Al3+, hydrolysis equilibria: cooperativity in Al3+ hydrolysis reactionsJ Inorg Biochem199144141710.1016/0162-0134(91)84026-61:CAS:528:DyaK3MXmvVynsrk%3D
BenjanAThe constructual law of organization in nature: tree-shaped flows and body sizeJ Exp Biol200520816778610.1242/jeb.01487
O’LearyLFallasJBakotaEKangMHartgerinkJMulti-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibbre and hydrogelNat Chem20113821810.1038/nchem.1123
JingLFunghuaZStructural changes and mineralization transformation mechanism of aluminum hydroxide gels from forced hydrolysis Al(III) solution containing Al4Al12(OH)24(H2O)127+ polyoxycation during agingChin J Geochem2010291071210.1007/s11631-010-0107-9
MaselkoJSegalNMultiplicity of stationary patterns in an array of chemical oscillatorsModel Chem19951327571:CAS:528:DyaK28Xht1Ortr8%3D
BakPTangCWiesenfeldKSelf-organized criticality: an explanation of 1/ƒ noisePhys Rev Lett1987594381410.1103/PhysRevLett.59.381
MaselkoJSwinneyHComplex periodic oscillation in the Belousov-Zhabotinskii reactionJ Chem Phys198685643010.1063/1.4514731:CAS:528:DyaL2sXjvFWlsQ%3D%3D
FellermannHRasmussenSZiockHJSoléRVLife cycle of a minimal protocell - a dissipative particle dynamics studyArtif Life2007133194510.1162/artl.2007.13.4.319
PantaleoneJTothAHorvathDRother McMahanJSmithRButkiDOscillations of a chemical gardenPhys Rev E20087704620710.1103/PhysRevE.77.0462071:STN:280:DC%2BD1czlsVWqtQ%3D%3D
PantaleoneJTothAHorvathDRoseFiguraLMorganWMaselkoJPressure oscillations in chemical gardenPhys Rev E2009790562110.1103/PhysRevE.79.056221
RussellMJHallAJFrom geochemistry to biochemistry: chemiosmotic coupling and transition element clusters in the onset of life and photosynthesisGeochemical News2002113612
AskeyIBaerESarikayaMTirrellDHierarchically structured materialsMaterial Research Society Pittsburg1992
KnightCTBalecRKinradeSThe structure of silicate anions in aqueous alkaline solutionAngew Chem Int Ed20074681485210.1002/anie.2007029861:CAS:528:DC%2BD2sXhtlCktrvM
BoulayAGCooperGTCroninLMorphogenesis of amorphous polymetalic cluster-based materials to microtubular network architectureChem Commun20124850889010.1039/c2cc31194a1:CAS:528:DC%2BC38Xmt1ygtrc%3D
AlloucheLGerardinCLoiseauTFereyGTaulleFAl30: a giant aluminum polycationAngew Chem200039512410.1002/(SICI)1521-3773(20000204)39:3<511::AID-ANIE511>3.0.CO;2-N
DamuthJScaling of growth: plants and animals are not so differentProc Natl Acad Sci USA20019852113410.1073/pnas.0510111981:CAS:528:DC%2BD3MXhslKntr4%3D
Thouvenel-RomansSSteinbockOOscillatory growth of silica tubes in chemical gardensJ Am Chem Soc200312543384110.1021/ja02983431:CAS:528:DC%2BD3sXhvF2lsbY%3D
RasmussenSBaasNAMayerBNilssonMOlesenMWAnsatz for dynamical hierarchiesArtif Life200173295310.1162/1064546013172969881:STN:280:DC%2BD387nvFansw%3D%3D
NoorduinWGrinthalAMahadevanLAizanbergJRationally designed complex hierarchical microarchitecturesSciences2013340832710.1126/science.12346211:CAS:528:DC%2BC3sXnsFSmsLs%3D
MaselkoJStrizhakPSpontaneous formation of cellular chemical system that sustains itself far from thermodynamic equilibriumJ Phys Chem2004B1084937910.1021/jp036417j
GlaabFKellerrmeierMKunzWMorallonEGarcia-RuizJMFormation and evolution of chemical gradients and potential difference across self-assembling inorganic membranesAngew Chemie20121244393710.1002/ange.201107754
KnutsonCBenköGRocheleauTMouffoukFMaselkoJChenLMetabolic photofragmentation kinetics for a minimal protocell: rate-limiting factors, efficiency, and implications for evolutionArtif Life20081418920110.1162/artl.2008.14.2.189
KaminkerVMaselkoJPantaleoneJChemical precipitation structures formed by drops impacting on a deep poolJ Chem Physics20121371847110.1063/1.4762828
RitchieCCooperGJSongYFStrebCYinHParentyASpontaneous assembly and real time growth of micrometer-scale tubular structures from polyoxometalate-based inorganic solidsNature Chem20091475210.1038/nchem.1131:CAS:528:DC%2BD1MXktlSlsbw%3D
RussellMJHallAJThe emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH frontsJ Geol Soc Lond199715437740210.1144/gsjgs.154.3.03771:CAS:528:DyaK2sXjvF2jsbw%3D
AkitJWMultinuclear studies of aluminum compoundsProg Nucl Magn Reson Spectrosc19892115010.1016/0079-6565(89)80001-9
CaseyWLarge aqueous aluminum hydroxide moleculesChem Rev200610611510.1021/cr040095d1:CAS:528:DC%2BD2MXht1yrsLvP
BettencourtLMAWestGA unified theory of urban livingNature2010467912310.1038/467912a1:CAS:528:DC%2BC3cXhtlWmu7fM
NilssonMHierarchical Organization in smooth dynamical systemsArtif Life20051149351210.1162/106454605774270598
CartwrightJHGarcia-RuizJMNovellaMLOtaloraFFormation of chemical gardensJ Colloidal Surface Sci2002256351910.1006/jcis.2002.86201:CAS:528:DC%2BD3sXkvVGhtA%3D%3D
CooperGKitsonPWinterRZagnoniMLongD-LCroninLModular redox-active inorganic chemical cellAngew Chem Int Ed2011501510.1002/anie.201006633
EnquistBJEconomoEPHuxmanTE AllenAPIgnaceDDGilloolyJFScaling metabolism from organisms to ecosystemsNature20034236394210.1038/nature016711:CAS:528:DC%2BD3sXkt1yrsr0%3D
SwaddleTWSilicate complexes of aluminum (III) in aqueous systemsCoord Chem Rev2001219–2216658610.1016/S0010-8545(01)00362-9
PophristicVBalagurusamyVKleinMStructure and dynamics of the aluminum chlorohydrate polymer Al13O4(OH)24(H2O)12Cl7Phys Chem Chem Phys200469192310.1039/b310882a1:CAS:528:DC%2BD2cXhsFSjtL0%3D
Wikipedia: List of tallest buildings and structures in the world, [http://en.wikipedia.org/wiki/List_of_tallest_buildings_and_structures_in_the_world]
ShortMBBaygentsJCGoldsteinREA free-boundary theory for the shape of the ideal dripping iciclePhys Fluids20061808310110.1063/1.2335152
MakkiRAl-HumiariMDuttaSSteinbockOHollow microtubes and shells from reactant loaded polymer beadsAngew Chem Int Ed2009488752610.1002/anie.2009032921:CAS:528:DC%2BD1MXhtlGjurfJ
LeducSThe mechanism of life1911New YorkRebman Company10.1259/arr.1911.0008
StevenNWhiteJHemSStructure of aluminium hydroxide gel I: initial precipitateJ Pharm Sci197565118891
R Makki (7_CR12) 2009; 48
V Pophristic (7_CR33) 2004; 6
J Pantaleone (7_CR7) 2009; 79
A Benjan (7_CR44) 2005; 208
J Maselko (7_CR13) 2004; B108
W Noorduin (7_CR21) 2013; 340
V Kaminker (7_CR9) 2012; 137
C Ritchie (7_CR11) 2009; 1
MB Short (7_CR27) 2006; 18
L Jing (7_CR35) 2010; 29
J Maselko (7_CR40) 1986; 85
7_CR45
7_CR24
7_CR25
RD Coatman (7_CR2) 1980; 15
J Damuth (7_CR43) 2001; 98
J Pantaleone (7_CR6) 2008; 77
S Leduc (7_CR1) 1911
BJ Enquist (7_CR29) 2003; 423
N Steven (7_CR30) 1975; 65
JW Akit (7_CR36) 1989; 21
M Nilsson (7_CR19) 2005; 11
P Bak (7_CR28) 1987; 59
J Maselko (7_CR41) 1995; 132
LMA Bettencourt (7_CR42) 2010; 467
MJ Russell (7_CR15) 1997; 154
L O’Leary (7_CR22) 2011; 3
F Glaab (7_CR39) 2012; 124
S Thouvenel-Romans (7_CR5) 2003; 125
A Bejan (7_CR26) 2000
L Allouche (7_CR32) 2000; 39
S Rasmussen (7_CR23) 2001; 7
TW Swaddle (7_CR31) 2001; 219–221
CT Knight (7_CR34) 2007; 46
C Knutson (7_CR17) 2008; 14
MJ Russell (7_CR10) 2002; 113
DA Stone (7_CR4) 2004; 101
G Cooper (7_CR14) 2011; 50
H Fellermann (7_CR16) 2007; 13
I Askey (7_CR18) 1992
BR Martin (7_CR37) 1991; 44
JH Cartwright (7_CR3) 2002; 256
D Chandran (7_CR20) 2012; 8
AG Boulay (7_CR8) 2012; 48
W Casey (7_CR38) 2006; 106
22431259 - Angew Chem Int Ed Engl. 2012 Apr 27;51(18):4317-21
18517710 - Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Apr;77(4 Pt 2):046207
23651289 - ACS Synth Biol. 2012 Aug 17;1(8):353-64
10413 - J Pharm Sci. 1976 Aug;65(8):1188-91
11541234 - J Geol Soc London. 1997 May;154(3):377-402
16197676 - Artif Life. 2005 Fall;11(4):493-512
22513869 - Chem Commun (Camb). 2012 May 25;48(42):5088-90
19830750 - Angew Chem Int Ed Engl. 2009;48(46):8752-6
15284444 - Proc Natl Acad Sci U S A. 2004 Aug 10;101(32):11537-41
17716015 - Artif Life. 2007 Fall;13(4):319-45
23687041 - Science. 2013 May 17;340(6134):832-7
18331190 - Artif Life. 2008 Spring;14(2):189-201
11226197 - Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2113-4
23163383 - J Chem Phys. 2012 Nov 14;137(18):184701
19518550 - Phys Rev E Stat Nonlin Soft Matter Phys. 2009 May;79(5 Pt 2):056221
17886822 - Angew Chem Int Ed Engl. 2007;46(43):8148-52
10035754 - Phys Rev Lett. 1987 Jul 27;59(4):381-384
12670257 - J Am Chem Soc. 2003 Apr 9;125(14):4338-41
16402770 - Chem Rev. 2006 Jan;106(1):1-16
20962823 - Nature. 2010 Oct 21;467(7318):912-3
15855399 - J Exp Biol. 2005 May;208(Pt 9):1677-86
11911785 - Artif Life. 2001;7(4):329-53
12789338 - Nature. 2003 Jun 5;423(6940):639-42
21378800 - Nat Chem. 2009 Apr;1(1):47-52
21941256 - Nat Chem. 2011 Aug 28;3(10):821-8
10671241 - Angew Chem Int Ed Engl. 2000 Feb;39(3):511-514
21901807 - Angew Chem Int Ed Engl. 2011 Oct 24;50(44):10373-6
References_xml – reference: KaminkerVMaselkoJPantaleoneJChemical precipitation structures formed by drops impacting on a deep poolJ Chem Physics20121371847110.1063/1.4762828
– reference: FellermannHRasmussenSZiockHJSoléRVLife cycle of a minimal protocell - a dissipative particle dynamics studyArtif Life2007133194510.1162/artl.2007.13.4.319
– reference: StevenNWhiteJHemSStructure of aluminium hydroxide gel I: initial precipitateJ Pharm Sci197565118891
– reference: SwaddleTWSilicate complexes of aluminum (III) in aqueous systemsCoord Chem Rev2001219–2216658610.1016/S0010-8545(01)00362-9
– reference: MakkiRAl-HumiariMDuttaSSteinbockOHollow microtubes and shells from reactant loaded polymer beadsAngew Chem Int Ed2009488752610.1002/anie.2009032921:CAS:528:DC%2BD1MXhtlGjurfJ
– reference: AskeyIBaerESarikayaMTirrellDHierarchically structured materialsMaterial Research Society Pittsburg1992
– reference: CooperGKitsonPWinterRZagnoniMLongD-LCroninLModular redox-active inorganic chemical cellAngew Chem Int Ed2011501510.1002/anie.201006633
– reference: DamuthJScaling of growth: plants and animals are not so differentProc Natl Acad Sci USA20019852113410.1073/pnas.0510111981:CAS:528:DC%2BD3MXhslKntr4%3D
– reference: NoorduinWGrinthalAMahadevanLAizanbergJRationally designed complex hierarchical microarchitecturesSciences2013340832710.1126/science.12346211:CAS:528:DC%2BC3sXnsFSmsLs%3D
– reference: JingLFunghuaZStructural changes and mineralization transformation mechanism of aluminum hydroxide gels from forced hydrolysis Al(III) solution containing Al4Al12(OH)24(H2O)127+ polyoxycation during agingChin J Geochem2010291071210.1007/s11631-010-0107-9
– reference: MartinBRFe+3 and Al3+, hydrolysis equilibria: cooperativity in Al3+ hydrolysis reactionsJ Inorg Biochem199144141710.1016/0162-0134(91)84026-61:CAS:528:DyaK3MXmvVynsrk%3D
– reference: KnutsonCBenköGRocheleauTMouffoukFMaselkoJChenLMetabolic photofragmentation kinetics for a minimal protocell: rate-limiting factors, efficiency, and implications for evolutionArtif Life20081418920110.1162/artl.2008.14.2.189
– reference: MaselkoJSegalNMultiplicity of stationary patterns in an array of chemical oscillatorsModel Chem19951327571:CAS:528:DyaK28Xht1Ortr8%3D
– reference: O’LearyLFallasJBakotaEKangMHartgerinkJMulti-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibbre and hydrogelNat Chem20113821810.1038/nchem.1123
– reference: KnightCTBalecRKinradeSThe structure of silicate anions in aqueous alkaline solutionAngew Chem Int Ed20074681485210.1002/anie.2007029861:CAS:528:DC%2BD2sXhtlCktrvM
– reference: RussellMJHallAJThe emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH frontsJ Geol Soc Lond199715437740210.1144/gsjgs.154.3.03771:CAS:528:DyaK2sXjvF2jsbw%3D
– reference: BakPTangCWiesenfeldKSelf-organized criticality: an explanation of 1/ƒ noisePhys Rev Lett1987594381410.1103/PhysRevLett.59.381
– reference: BejanAShape and structure, from engineering to nature2000CambridgeUniversity Press
– reference: MaselkoJStrizhakPSpontaneous formation of cellular chemical system that sustains itself far from thermodynamic equilibriumJ Phys Chem2004B1084937910.1021/jp036417j
– reference: PophristicVBalagurusamyVKleinMStructure and dynamics of the aluminum chlorohydrate polymer Al13O4(OH)24(H2O)12Cl7Phys Chem Chem Phys200469192310.1039/b310882a1:CAS:528:DC%2BD2cXhsFSjtL0%3D
– reference: BenjanAThe constructual law of organization in nature: tree-shaped flows and body sizeJ Exp Biol200520816778610.1242/jeb.01487
– reference: RussellMJHallAJFrom geochemistry to biochemistry: chemiosmotic coupling and transition element clusters in the onset of life and photosynthesisGeochemical News2002113612
– reference: Thouvenel-RomansSSteinbockOOscillatory growth of silica tubes in chemical gardensJ Am Chem Soc200312543384110.1021/ja02983431:CAS:528:DC%2BD3sXhvF2lsbY%3D
– reference: Holland, John H. Signals and boundaries: building blocks for complex adaptive systems. MIT Press; 2012.
– reference: MaselkoJSwinneyHComplex periodic oscillation in the Belousov-Zhabotinskii reactionJ Chem Phys198685643010.1063/1.4514731:CAS:528:DyaL2sXjvFWlsQ%3D%3D
– reference: AkitJWMultinuclear studies of aluminum compoundsProg Nucl Magn Reson Spectrosc19892115010.1016/0079-6565(89)80001-9
– reference: PantaleoneJTothAHorvathDRoseFiguraLMorganWMaselkoJPressure oscillations in chemical gardenPhys Rev E2009790562110.1103/PhysRevE.79.056221
– reference: PantaleoneJTothAHorvathDRother McMahanJSmithRButkiDOscillations of a chemical gardenPhys Rev E20087704620710.1103/PhysRevE.77.0462071:STN:280:DC%2BD1czlsVWqtQ%3D%3D
– reference: BoulayAGCooperGTCroninLMorphogenesis of amorphous polymetalic cluster-based materials to microtubular network architectureChem Commun20124850889010.1039/c2cc31194a1:CAS:528:DC%2BC38Xmt1ygtrc%3D
– reference: NilssonMHierarchical Organization in smooth dynamical systemsArtif Life20051149351210.1162/106454605774270598
– reference: BettencourtLMAWestGA unified theory of urban livingNature2010467912310.1038/467912a1:CAS:528:DC%2BC3cXhtlWmu7fM
– reference: AlloucheLGerardinCLoiseauTFereyGTaulleFAl30: a giant aluminum polycationAngew Chem200039512410.1002/(SICI)1521-3773(20000204)39:3<511::AID-ANIE511>3.0.CO;2-N
– reference: StoneDAGoldsteinRETubular precipitation and redox gradients on a bubbling templateProc Natl Acad Sci USA2004101115374110.1073/pnas.04045441011:CAS:528:DC%2BD2cXntVektLg%3D
– reference: ShortMBBaygentsJCGoldsteinREA free-boundary theory for the shape of the ideal dripping iciclePhys Fluids20061808310110.1063/1.2335152
– reference: RitchieCCooperGJSongYFStrebCYinHParentyASpontaneous assembly and real time growth of micrometer-scale tubular structures from polyoxometalate-based inorganic solidsNature Chem20091475210.1038/nchem.1131:CAS:528:DC%2BD1MXktlSlsbw%3D
– reference: CaseyWLarge aqueous aluminum hydroxide moleculesChem Rev200610611510.1021/cr040095d1:CAS:528:DC%2BD2MXht1yrsLvP
– reference: GlaabFKellerrmeierMKunzWMorallonEGarcia-RuizJMFormation and evolution of chemical gradients and potential difference across self-assembling inorganic membranesAngew Chemie20121244393710.1002/ange.201107754
– reference: CoatmanRDThomasNLDoubleDDStudies of growth of silicate gardens and related phenomenaJ Mater Sci19801520172610.1007/BF005506281:CAS:528:DyaL3cXlvFGmt7w%3D
– reference: EnquistBJEconomoEPHuxmanTE AllenAPIgnaceDDGilloolyJFScaling metabolism from organisms to ecosystemsNature20034236394210.1038/nature016711:CAS:528:DC%2BD3sXkt1yrsr0%3D
– reference: Rasmussen S, Bass NA, Mayers B & Nillson M. Anzatz for dynamical hierarchies in emergence: contemporary reading in philosophy and science. Bedau M, Humphreys P, editors. Cambridge: MIT Press. 2008.
– reference: RasmussenSBaasNAMayerBNilssonMOlesenMWAnsatz for dynamical hierarchiesArtif Life200173295310.1162/1064546013172969881:STN:280:DC%2BD387nvFansw%3D%3D
– reference: CartwrightJHGarcia-RuizJMNovellaMLOtaloraFFormation of chemical gardensJ Colloidal Surface Sci2002256351910.1006/jcis.2002.86201:CAS:528:DC%2BD3sXkvVGhtA%3D%3D
– reference: ChandranDSauroHHierarchical modeling for synthetic BiologyACS Synth Biol20128135364
– reference: Wikipedia: List of tallest buildings and structures in the world, [http://en.wikipedia.org/wiki/List_of_tallest_buildings_and_structures_in_the_world]
– reference: LeducSThe mechanism of life1911New YorkRebman Company10.1259/arr.1911.0008
– volume: 113
  start-page: 6
  year: 2002
  ident: 7_CR10
  publication-title: Geochemical News
– volume: 423
  start-page: 639
  year: 2003
  ident: 7_CR29
  publication-title: Nature
  doi: 10.1038/nature01671
– volume: 50
  start-page: 1
  year: 2011
  ident: 7_CR14
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201006633
– volume: 154
  start-page: 377
  year: 1997
  ident: 7_CR15
  publication-title: J Geol Soc Lond
  doi: 10.1144/gsjgs.154.3.0377
– volume: 48
  start-page: 8752
  year: 2009
  ident: 7_CR12
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.200903292
– volume: 15
  start-page: 2017
  year: 1980
  ident: 7_CR2
  publication-title: J Mater Sci
  doi: 10.1007/BF00550628
– volume: 8
  start-page: 1353
  year: 2012
  ident: 7_CR20
  publication-title: ACS Synth Biol
– volume: 124
  start-page: 4393
  year: 2012
  ident: 7_CR39
  publication-title: Angew Chemie
  doi: 10.1002/ange.201107754
– volume: 208
  start-page: 1677
  year: 2005
  ident: 7_CR44
  publication-title: J Exp Biol
  doi: 10.1242/jeb.01487
– volume: 101
  start-page: 11537
  year: 2004
  ident: 7_CR4
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0404544101
– volume: 98
  start-page: 2113
  issue: 5
  year: 2001
  ident: 7_CR43
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.051011198
– volume: 137
  start-page: 18471
  year: 2012
  ident: 7_CR9
  publication-title: J Chem Physics
  doi: 10.1063/1.4762828
– volume: B108
  start-page: 4937
  year: 2004
  ident: 7_CR13
  publication-title: J Phys Chem
  doi: 10.1021/jp036417j
– volume: 46
  start-page: 8148
  year: 2007
  ident: 7_CR34
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.200702986
– ident: 7_CR45
– ident: 7_CR24
  doi: 10.7551/mitpress/9780262026215.003.0020
– volume-title: The mechanism of life
  year: 1911
  ident: 7_CR1
  doi: 10.1259/arr.1911.0008
– volume: 125
  start-page: 4338
  year: 2003
  ident: 7_CR5
  publication-title: J Am Chem Soc
  doi: 10.1021/ja0298343
– volume: 79
  start-page: 05621
  year: 2009
  ident: 7_CR7
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.79.056221
– volume: 256
  start-page: 351
  year: 2002
  ident: 7_CR3
  publication-title: J Colloidal Surface Sci
  doi: 10.1006/jcis.2002.8620
– volume: 1
  start-page: 47
  year: 2009
  ident: 7_CR11
  publication-title: Nature Chem
  doi: 10.1038/nchem.113
– volume: 18
  start-page: 083101
  year: 2006
  ident: 7_CR27
  publication-title: Phys Fluids
  doi: 10.1063/1.2335152
– volume-title: Material Research Society Pittsburg
  year: 1992
  ident: 7_CR18
– volume-title: Shape and structure, from engineering to nature
  year: 2000
  ident: 7_CR26
– volume: 44
  start-page: 141
  year: 1991
  ident: 7_CR37
  publication-title: J Inorg Biochem
  doi: 10.1016/0162-0134(91)84026-6
– volume: 7
  start-page: 329
  year: 2001
  ident: 7_CR23
  publication-title: Artif Life
  doi: 10.1162/106454601317296988
– volume: 77
  start-page: 046207
  year: 2008
  ident: 7_CR6
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.77.046207
– volume: 219–221
  start-page: 665
  year: 2001
  ident: 7_CR31
  publication-title: Coord Chem Rev
  doi: 10.1016/S0010-8545(01)00362-9
– volume: 11
  start-page: 493
  year: 2005
  ident: 7_CR19
  publication-title: Artif Life
  doi: 10.1162/106454605774270598
– volume: 106
  start-page: 1
  year: 2006
  ident: 7_CR38
  publication-title: Chem Rev
  doi: 10.1021/cr040095d
– volume: 13
  start-page: 319
  year: 2007
  ident: 7_CR16
  publication-title: Artif Life
  doi: 10.1162/artl.2007.13.4.319
– volume: 29
  start-page: 107
  year: 2010
  ident: 7_CR35
  publication-title: Chin J Geochem
  doi: 10.1007/s11631-010-0107-9
– volume: 48
  start-page: 5088
  year: 2012
  ident: 7_CR8
  publication-title: Chem Commun
  doi: 10.1039/c2cc31194a
– volume: 340
  start-page: 832
  year: 2013
  ident: 7_CR21
  publication-title: Sciences
  doi: 10.1126/science.1234621
– volume: 132
  start-page: 757
  year: 1995
  ident: 7_CR41
  publication-title: Model Chem
– volume: 21
  start-page: 1
  year: 1989
  ident: 7_CR36
  publication-title: Prog Nucl Magn Reson Spectrosc
  doi: 10.1016/0079-6565(89)80001-9
– ident: 7_CR25
  doi: 10.7551/mitpress/9412.001.0001
– volume: 14
  start-page: 189
  year: 2008
  ident: 7_CR17
  publication-title: Artif Life
  doi: 10.1162/artl.2008.14.2.189
– volume: 3
  start-page: 821
  year: 2011
  ident: 7_CR22
  publication-title: Nat Chem
  doi: 10.1038/nchem.1123
– volume: 59
  start-page: 381
  issue: 4
  year: 1987
  ident: 7_CR28
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.59.381
– volume: 65
  start-page: 1188
  year: 1975
  ident: 7_CR30
  publication-title: J Pharm Sci
– volume: 39
  start-page: 512
  year: 2000
  ident: 7_CR32
  publication-title: Angew Chem
  doi: 10.1002/(SICI)1521-3773(20000204)39:3<511::AID-ANIE511>3.0.CO;2-N
– volume: 85
  start-page: 6430
  year: 1986
  ident: 7_CR40
  publication-title: J Chem Phys
  doi: 10.1063/1.451473
– volume: 467
  start-page: 912
  year: 2010
  ident: 7_CR42
  publication-title: Nature
  doi: 10.1038/467912a
– volume: 6
  start-page: 919
  year: 2004
  ident: 7_CR33
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/b310882a
– reference: 12789338 - Nature. 2003 Jun 5;423(6940):639-42
– reference: 18331190 - Artif Life. 2008 Spring;14(2):189-201
– reference: 17886822 - Angew Chem Int Ed Engl. 2007;46(43):8148-52
– reference: 15284444 - Proc Natl Acad Sci U S A. 2004 Aug 10;101(32):11537-41
– reference: 11226197 - Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2113-4
– reference: 23651289 - ACS Synth Biol. 2012 Aug 17;1(8):353-64
– reference: 16402770 - Chem Rev. 2006 Jan;106(1):1-16
– reference: 16197676 - Artif Life. 2005 Fall;11(4):493-512
– reference: 19518550 - Phys Rev E Stat Nonlin Soft Matter Phys. 2009 May;79(5 Pt 2):056221
– reference: 15855399 - J Exp Biol. 2005 May;208(Pt 9):1677-86
– reference: 11541234 - J Geol Soc London. 1997 May;154(3):377-402
– reference: 23687041 - Science. 2013 May 17;340(6134):832-7
– reference: 10413 - J Pharm Sci. 1976 Aug;65(8):1188-91
– reference: 19830750 - Angew Chem Int Ed Engl. 2009;48(46):8752-6
– reference: 23163383 - J Chem Phys. 2012 Nov 14;137(18):184701
– reference: 10035754 - Phys Rev Lett. 1987 Jul 27;59(4):381-384
– reference: 18517710 - Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Apr;77(4 Pt 2):046207
– reference: 21901807 - Angew Chem Int Ed Engl. 2011 Oct 24;50(44):10373-6
– reference: 17716015 - Artif Life. 2007 Fall;13(4):319-45
– reference: 22431259 - Angew Chem Int Ed Engl. 2012 Apr 27;51(18):4317-21
– reference: 10671241 - Angew Chem Int Ed Engl. 2000 Feb;39(3):511-514
– reference: 11911785 - Artif Life. 2001;7(4):329-53
– reference: 21378800 - Nat Chem. 2009 Apr;1(1):47-52
– reference: 22513869 - Chem Commun (Camb). 2012 May 25;48(42):5088-90
– reference: 21941256 - Nat Chem. 2011 Aug 28;3(10):821-8
– reference: 20962823 - Nature. 2010 Oct 21;467(7318):912-3
– reference: 12670257 - J Am Chem Soc. 2003 Apr 9;125(14):4338-41
SSID ssj0000500579
Score 1.9434665
Snippet Background Biological structures grow spontaneously from a seed, using materials supplied by the environment. These structures are hierarchical, with the...
Biological structures grow spontaneously from a seed, using materials supplied by the environment. These structures are hierarchical, with the 'building...
Background Biological structures grow spontaneously from a seed, using materials supplied by the environment. These structures are hierarchical, with the...
BACKGROUNDBiological structures grow spontaneously from a seed, using materials supplied by the environment. These structures are hierarchical, with the...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3
SubjectTerms Biochemistry
Bioorganic Chemistry
Biotechnology
Chemistry
Chemistry and Materials Science
Organic Chemistry
Research Article
SummonAdditionalLinks – databaseName: SpringerOpen
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50PehFfFtfRPCkBNumefQoxWUR9OSCt9KkqVtYu8LuHvz3Ttpu2fUFnmdCmpm0-aaT-QbgqogRp4YqpyLXjEbcz6iORUgznSkhUZobV-D8-CQGw-jhhb-0ZNGuFmY5fx8ocTvFGCp0lwe4q3-WNF6HDR4w6bo0JCLpfqf4vC6rbPOWP45cPXm-wcnvtyK_pEbrE6e_A9stVCR3jW93Yc1We7CZLDq07cMg-TDj0pBXDKVnIzIpiGtsXacG0PKkoYadYzxNyoog0CMZfonKav5Gp2VT-0YaIucDGPbvn5MBbTsjUMMUjynaXRk8fBjztZGF4-DiOooLoRDehIFV1mpfGIGmLpgrpc2NsQxlvoilLjJ2CL1qUtljIEqb2AqZhbqwESu0jkI_kyrHOM4ECMA88BdWS01LG-66V4zTOnxQIm0MnaKhXSZbpjjkuhvy3nBm_KV8tnBF2r4-0xRRVRwFLunpwWUnRuu6bEZW2ckcdZTDFhzDUQ-OGs91s4VcsQiX64Fc8Wmn4Ei1VyVVOarJtSOGGCtgHtwsvL_0WL8t4uRf2qewFdbb0vXVOIMe7gZ7jtBmpi_qTf0Jj3vxDA
  priority: 102
  providerName: Springer Nature
Title Cyclic growth of hierarchical structures in the aluminum-silicate system
URI https://link.springer.com/article/10.1186/s13322-015-0007-9
https://www.ncbi.nlm.nih.gov/pubmed/25834644
https://www.proquest.com/docview/1729410350
https://www.proquest.com/docview/1826615717
https://pubmed.ncbi.nlm.nih.gov/PMC4374113
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB2V5QAXVFoKoVC5Uk8gi8R2HOdUQcR2VamoqorELYodp0SCLGjZA_--M_lqFwQXS5FtJfZzxm88nhmAL1WKPFWYkuvSSq7isOA21YIXtjA6wdrSkYPzjws9u1Tfr-Kr_sBt0V-rHGRiK6jLuaMz8hPcaFMVkR3s6909p6xRZF3tU2iswTqKYGMmsH52fvHz13jKEsatt2VvzoyMPlmgUiboNkJMDtUJT1c3pGcs8_llyScW03Yjmr6FrZ5BstMO8m1445t3sJENidvewyx7dDe1Y39Qw364ZvOKUb7r1mKAgLAuYuwS1WxWNwz5HytQQNXN8pYv6s4ljnXxnXfgcnr-O5vxPmECd9LEKUc4jMM9ScrQuqSi0FyxVWmlDbIeEXnjvQ2104hAJcnDtnTOS6wLdZrYqpAfYNLMG78HzFiXep0UwlZeycpaJcIiMSWqdy5CXhZAOMxa7vpo4pTU4iZvtQqj826ic5xoMnAnOXY5GrvcdaE0Xmt8MECR93_VIv-3BgL4PFbj7JKRo2j8fIltDFGOGLXUAHY75Ma3idhIhcMNIFnBdGxAsbZXa5r6uo25rSRSr0gGcDyg_99nvTSI_dcH8RE2RbsOKb_GAUwQfn-IFOfBfoI1FX7D0kyx7NY0PmVCUamzv5rq_Vo
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXRCmFlAJGgguV1cR2HOeAULWwbJ-nVuotxI5DI5Vsq-2q6p_qb2QmL1gqeut57MSeGdvfeDwzAB_KFHGqMAXXhZVcxWHObaoFz21udILUwlGA8-GRnpyovdP4dAlu-1gYelbZ74nNRl1MHd2Rb-NBm6qI_GBfLi45VY0i72pfQqNVi31_c40m2-zz7leU70chxt-ORxPeVRXgTpo45Thm43DjRkPeuqSk_FWxVWmpDUIDEXnjvQ210zjMUlIYauGcl0gLdZrYMpf43UfwWEk8ySkyffx9uNMJ4ya2s3OeRkZvz9AEFPT2Iabw7YSni8ffHUx792nmP_7Z5tgbP4OnHV5lO62CrcKSr5_DyqgvE7cGk9GNO68c-4n2_NUZm5aMqms3_gkUP2vz087RqGdVzRBtshy3w6qe_-Kzqg3AY2026Rdw8iCMXIflelr7V8CMdanXSS5s6ZUsrVUizBNToDHpIkSBAYQ91zLX5S6nEhrnWWPDGJ21jM6Q0eROTzLs8mnoctEm7riv8WYviqxbw7Psj8YF8H4gI3fJpZLXfjrHNoYATow2cQAvW8kNfxOxkQqnG0CyINOhAWX2XqTU1VmT4VtJBHqRDGCrl_5fw_rfJDbun8Q7WJkcHx5kB7tH-6_hiWh0kip7bMIyqoJ_g-Dqyr5tNJrBj4deQr8BnG80jA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RKtFeKlr6SHnUSPTSyiKxE8c5cECB1VIe6qFI3NLYsUskmkXaXVX8qv7FjuMkYqFU6oHzOIk948f3ZTwzADs2Q5zKZEVFpTiNk7CkKhOMlqqUIkVppV2A8-mZGJ_HXy6SiyX43cfCtLfde5ekj2lwWZqa2e51Zf0Sl2J3isyKuSsFiYuKTmnW3ao8Nje_kLNN944O0MAfGRsdfsvHtCsrQDWXSUax01Ljzo1MXunUugRWiYozKyRiAxYZaYwKhRbYT8tdHGqlteEoC0WWKltyfO8TeIrEKHJsLxf58FMnTNrgzs57-teeLp5_90Dt_buZdxy07bk3WoUXHWAl-36GvYQl07yCZ3lfJ24NxvmNvqo1-YGEfnZJJpa48tqtgwLtT3yC2jmyelI3BOEmKXE_rJv5TzqtfQQe8emkX8P5oyjyDSw3k8a8AyKVzoxIS6asiblVKmZhmcoK2aSOEAYGEPZaK3SXvNzV0LgqWhIjReEVXaCinT89LfCRT8Mj1z5zx78ab_SmKLpFPC0Q22Vx5FyvAWwPYtSu86mUjZnMsY10CCdBUhzAW2-54WsskTzG4QaQLth0aOBSey9KmvqyTfEdc0R6EQ_gc2_9W916aBDv_6v1B1j5ejAqTo7OjtfhOWtnqCv0sQHLODHMJmKtmdpq5zeB74-9oP4AaP41Zg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cyclic+growth+of+hierarchical+structures+in+the+aluminum-silicate+system&rft.jtitle=Journal+of+systems+chemistry&rft.au=Dyonizy%2C+Agnieszka&rft.au=Kaminker%2C+Vitaliy&rft.au=Wieckowska%2C+Joanna&rft.au=Krzywicki%2C+Tomasz&rft.date=2015-03-06&rft.pub=Springer+International+Publishing&rft.eissn=1759-2208&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1186%2Fs13322-015-0007-9&rft_id=info%3Apmid%2F25834644&rft.externalDocID=PMC4374113
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-2208&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-2208&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-2208&client=summon