Cyclic growth of hierarchical structures in the aluminum-silicate system
Background Biological structures grow spontaneously from a seed, using materials supplied by the environment. These structures are hierarchical, with the ‘building blocks’ on each level constructed from those on the lower level. To understand and model the processes that occur on many levels, and la...
Saved in:
Published in | Journal of systems chemistry Vol. 6; no. 1; p. 3 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
06.03.2015
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background
Biological structures grow spontaneously from a seed, using materials supplied by the environment. These structures are hierarchical, with the ‘building blocks’ on each level constructed from those on the lower level. To understand and model the processes that occur on many levels, and later construct them, is a difficult task. However interest in this subject is growing. It is now possible to study the spontaneous growth of hierarchical structures in simple, two component chemical systems.
Results
Aluminum-silicate systems have been observed to grow into structures that are approximately conical. These structures are composed of multiple smaller cones with several hierarchical levels of complexity. On the highest level the system resembles a metropolis, with a horizontal resource distribution network connecting vertical, conical structures. The cones are made from many smaller cones that are connected together forming a whole with unusual behavior. The growth is observed to switch periodically between the vertical and horizontal directions.
Conclusion
A structure grown in a dish is observed to have many similarities to other hierarchical systems such as biological organisms or cities. This system may provide a simple model system to search for universal laws governing the growth of complex hierarchical structures.
Graphical Abstract
Side view of the chemical structure made from many vertical cones to form a chemical metropolis. The tallest structure is 17 cm high. |
---|---|
AbstractList | Background
Biological structures grow spontaneously from a seed, using materials supplied by the environment. These structures are hierarchical, with the ‘building blocks’ on each level constructed from those on the lower level. To understand and model the processes that occur on many levels, and later construct them, is a difficult task. However interest in this subject is growing. It is now possible to study the spontaneous growth of hierarchical structures in simple, two component chemical systems.
Results
Aluminum-silicate systems have been observed to grow into structures that are approximately conical. These structures are composed of multiple smaller cones with several hierarchical levels of complexity. On the highest level the system resembles a metropolis, with a horizontal resource distribution network connecting vertical, conical structures. The cones are made from many smaller cones that are connected together forming a whole with unusual behavior. The growth is observed to switch periodically between the vertical and horizontal directions.
Conclusion
A structure grown in a dish is observed to have many similarities to other hierarchical systems such as biological organisms or cities. This system may provide a simple model system to search for universal laws governing the growth of complex hierarchical structures.
Graphical Abstract
Side view of the chemical structure made from many vertical cones to form a chemical metropolis. The tallest structure is 17 cm high. BACKGROUNDBiological structures grow spontaneously from a seed, using materials supplied by the environment. These structures are hierarchical, with the 'building blocks' on each level constructed from those on the lower level. To understand and model the processes that occur on many levels, and later construct them, is a difficult task. However interest in this subject is growing. It is now possible to study the spontaneous growth of hierarchical structures in simple, two component chemical systems.RESULTSAluminum-silicate systems have been observed to grow into structures that are approximately conical. These structures are composed of multiple smaller cones with several hierarchical levels of complexity. On the highest level the system resembles a metropolis, with a horizontal resource distribution network connecting vertical, conical structures. The cones are made from many smaller cones that are connected together forming a whole with unusual behavior. The growth is observed to switch periodically between the vertical and horizontal directions.CONCLUSIONA structure grown in a dish is observed to have many similarities to other hierarchical systems such as biological organisms or cities. This system may provide a simple model system to search for universal laws governing the growth of complex hierarchical structures. Graphical AbstractSide view of the chemical structure made from many vertical cones to form a chemical metropolis. The tallest structure is 17 cm high. Background Biological structures grow spontaneously from a seed, using materials supplied by the environment. These structures are hierarchical, with the 'building blocks' on each level constructed from those on the lower level. To understand and model the processes that occur on many levels, and later construct them, is a difficult task. However interest in this subject is growing. It is now possible to study the spontaneous growth of hierarchical structures in simple, two component chemical systems. Results Aluminum-silicate systems have been observed to grow into structures that are approximately conical. These structures are composed of multiple smaller cones with several hierarchical levels of complexity. On the highest level the system resembles a metropolis, with a horizontal resource distribution network connecting vertical, conical structures. The cones are made from many smaller cones that are connected together forming a whole with unusual behavior. The growth is observed to switch periodically between the vertical and horizontal directions. Conclusion A structure grown in a dish is observed to have many similarities to other hierarchical systems such as biological organisms or cities. This system may provide a simple model system to search for universal laws governing the growth of complex hierarchical structures. [Figure not available: see fulltext.] Biological structures grow spontaneously from a seed, using materials supplied by the environment. These structures are hierarchical, with the 'building blocks' on each level constructed from those on the lower level. To understand and model the processes that occur on many levels, and later construct them, is a difficult task. However interest in this subject is growing. It is now possible to study the spontaneous growth of hierarchical structures in simple, two component chemical systems. Aluminum-silicate systems have been observed to grow into structures that are approximately conical. These structures are composed of multiple smaller cones with several hierarchical levels of complexity. On the highest level the system resembles a metropolis, with a horizontal resource distribution network connecting vertical, conical structures. The cones are made from many smaller cones that are connected together forming a whole with unusual behavior. The growth is observed to switch periodically between the vertical and horizontal directions. A structure grown in a dish is observed to have many similarities to other hierarchical systems such as biological organisms or cities. This system may provide a simple model system to search for universal laws governing the growth of complex hierarchical structures. Graphical AbstractSide view of the chemical structure made from many vertical cones to form a chemical metropolis. The tallest structure is 17 cm high. |
ArticleNumber | 3 |
Author | Maselko, Jerzy Pantaleone, Jim Kaminker, Vitaliy Wieckowska, Joanna Krzywicki, Tomasz Dyonizy, Agnieszka Nowak, Piotr |
Author_xml | – sequence: 1 givenname: Agnieszka surname: Dyonizy fullname: Dyonizy, Agnieszka organization: Department of Chemistry, Technical University – sequence: 2 givenname: Vitaliy surname: Kaminker fullname: Kaminker, Vitaliy organization: Department of Physics, University of Alaska Anchorage – sequence: 3 givenname: Joanna surname: Wieckowska fullname: Wieckowska, Joanna organization: Department of Chemistry, Technical University – sequence: 4 givenname: Tomasz surname: Krzywicki fullname: Krzywicki, Tomasz organization: Department of Chemistry, Technical University – sequence: 5 givenname: Jim surname: Pantaleone fullname: Pantaleone, Jim organization: Department of Physics, University of Alaska Anchorage – sequence: 6 givenname: Piotr surname: Nowak fullname: Nowak, Piotr organization: Department of Chemistry, Technical University – sequence: 7 givenname: Jerzy surname: Maselko fullname: Maselko, Jerzy email: jmaselko2@uaa.alaska.edu organization: Department of Chemistry, University of Alaska Anchorage |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25834644$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9r3DAQxUVJaZJtPkAvxdBLLm71x7akS6EsaVMI9JKchTw7XivYUirJLfvtq2WTsA20IBjB_N7wZt45OfHBIyHvGP3ImOo-JSYE5zVlbU0plbV-Rc6YbHXNOVUnR_9TcpHSfWFoW57Ub8gpb5VouqY5I9frHUwOqm0Mv_NYhaEaHUYbYXRgpyrluEBeIqbK-SqPWNlpmZ1f5jq5orMZq7RLGee35PVgp4QXj3VF7r5e3a6v65sf376vv9zUIFQxhAAKBBVC0B7kwBTVbd_ooVPFDmeoEHvaQaf5Zijr0XYDgKL0aKdlP1ixIp8Pcx-WfsYNoM_RTuYhutnGnQnWmb873o1mG36ZRsiGlZutyOXjgBh-LpiymV0CnCbrMSzJMMW7jrWSyYJ-eIHehyX6sp5hkuuGUdHSQr0_dvRs5enIBZAHAGJIKeJgwGWbXdgbdJNh1OwTNYdETUnU7BM1uijZC-XT8P9p-EGTCuu3GI9M_1P0BwuWsiY |
CitedBy_id | crossref_primary_10_1021_acs_langmuir_3c00079 |
Cites_doi | 10.1038/nature01671 10.1002/anie.201006633 10.1144/gsjgs.154.3.0377 10.1002/anie.200903292 10.1007/BF00550628 10.1002/ange.201107754 10.1242/jeb.01487 10.1073/pnas.0404544101 10.1073/pnas.051011198 10.1063/1.4762828 10.1021/jp036417j 10.1002/anie.200702986 10.7551/mitpress/9780262026215.003.0020 10.1259/arr.1911.0008 10.1021/ja0298343 10.1103/PhysRevE.79.056221 10.1006/jcis.2002.8620 10.1038/nchem.113 10.1063/1.2335152 10.1016/0162-0134(91)84026-6 10.1162/106454601317296988 10.1103/PhysRevE.77.046207 10.1016/S0010-8545(01)00362-9 10.1162/106454605774270598 10.1021/cr040095d 10.1162/artl.2007.13.4.319 10.1007/s11631-010-0107-9 10.1039/c2cc31194a 10.1126/science.1234621 10.1016/0079-6565(89)80001-9 10.7551/mitpress/9412.001.0001 10.1162/artl.2008.14.2.189 10.1038/nchem.1123 10.1103/PhysRevLett.59.381 10.1002/(SICI)1521-3773(20000204)39:3<511::AID-ANIE511>3.0.CO;2-N 10.1063/1.451473 10.1038/467912a 10.1039/b310882a |
ContentType | Journal Article |
Copyright | Dyonizy et al.; licensee Springer. 2015. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Author(s) 2015 Dyonizy et al.; licensee Springer. 2015 |
Copyright_xml | – notice: Dyonizy et al.; licensee Springer. 2015. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. – notice: The Author(s) 2015 – notice: Dyonizy et al.; licensee Springer. 2015 |
DBID | C6C AAYXX CITATION NPM 8FE 8FG 8FH ABJCF AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO GNUQQ HCIFZ KB. LK8 M7P PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1186/s13322-015-0007-9 |
DatabaseName | SpringerOpen CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Materials Science Database Biological Sciences Biological Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Central Student PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1759-2208 |
EndPage | 3 |
ExternalDocumentID | PMC4374113 3856330221 25834644 10_1186_s13322_015_0007_9 |
Genre | Journal Article |
GroupedDBID | -58 -5G -A0 -BR 4.4 40G 8FE 8FG 8FH AAKKN ABDBF ABEEZ ABJCF ACACY ACGFS ACIWK ACPRK ACUHS ACULB ADBBV ADINQ AFGXO AFKRA AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH BAPOH BBNVY BENPR BGLVJ BHPHI C24 C6C CCPQU D1I EBS EJD ESX GX1 HCIFZ HH5 IAO IEA IGS IHR KB. LK8 M7P ML- M~E OK1 PDBOC RBZ RNS ROL RSV RVI SCM SOJ TUS AAYXX CITATION PHGZM PHGZT 2VQ H13 ISR ITC NPM AZQEC DWQXO GNUQQ PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 0R~ 5PM |
ID | FETCH-LOGICAL-c3859-ecc8c303330bc7f18095b49f6864421e8eeb06c692df32205dcce36440697bfa3 |
IEDL.DBID | BENPR |
ISSN | 1759-2208 |
IngestDate | Thu Aug 21 14:07:29 EDT 2025 Fri Jul 11 07:30:17 EDT 2025 Fri Jul 25 11:09:16 EDT 2025 Wed Feb 19 02:08:31 EST 2025 Thu Apr 24 23:01:27 EDT 2025 Tue Jul 01 02:49:22 EDT 2025 Fri Feb 21 02:26:36 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Chemical garden Hierarchy Self-construction Complex systems |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3859-ecc8c303330bc7f18095b49f6864421e8eeb06c692df32205dcce36440697bfa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doi.org/10.1186/s13322-015-0007-9 |
PMID | 25834644 |
PQID | 1729410350 |
PQPubID | 2034702 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4374113 proquest_miscellaneous_1826615717 proquest_journals_1729410350 pubmed_primary_25834644 crossref_citationtrail_10_1186_s13322_015_0007_9 crossref_primary_10_1186_s13322_015_0007_9 springer_journals_10_1186_s13322_015_0007_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20150306 |
PublicationDateYYYYMMDD | 2015-03-06 |
PublicationDate_xml | – month: 3 year: 2015 text: 20150306 day: 6 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: England – name: London |
PublicationTitle | Journal of systems chemistry |
PublicationTitleAbbrev | J Syst Chem |
PublicationTitleAlternate | J Syst Chem |
PublicationYear | 2015 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | ChandranDSauroHHierarchical modeling for synthetic BiologyACS Synth Biol20128135364 Holland, John H. Signals and boundaries: building blocks for complex adaptive systems. MIT Press; 2012. BejanAShape and structure, from engineering to nature2000CambridgeUniversity Press CoatmanRDThomasNLDoubleDDStudies of growth of silicate gardens and related phenomenaJ Mater Sci19801520172610.1007/BF005506281:CAS:528:DyaL3cXlvFGmt7w%3D StoneDAGoldsteinRETubular precipitation and redox gradients on a bubbling templateProc Natl Acad Sci USA2004101115374110.1073/pnas.04045441011:CAS:528:DC%2BD2cXntVektLg%3D Rasmussen S, Bass NA, Mayers B & Nillson M. Anzatz for dynamical hierarchies in emergence: contemporary reading in philosophy and science. Bedau M, Humphreys P, editors. Cambridge: MIT Press. 2008. MartinBRFe+3 and Al3+, hydrolysis equilibria: cooperativity in Al3+ hydrolysis reactionsJ Inorg Biochem199144141710.1016/0162-0134(91)84026-61:CAS:528:DyaK3MXmvVynsrk%3D BenjanAThe constructual law of organization in nature: tree-shaped flows and body sizeJ Exp Biol200520816778610.1242/jeb.01487 O’LearyLFallasJBakotaEKangMHartgerinkJMulti-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibbre and hydrogelNat Chem20113821810.1038/nchem.1123 JingLFunghuaZStructural changes and mineralization transformation mechanism of aluminum hydroxide gels from forced hydrolysis Al(III) solution containing Al4Al12(OH)24(H2O)127+ polyoxycation during agingChin J Geochem2010291071210.1007/s11631-010-0107-9 MaselkoJSegalNMultiplicity of stationary patterns in an array of chemical oscillatorsModel Chem19951327571:CAS:528:DyaK28Xht1Ortr8%3D BakPTangCWiesenfeldKSelf-organized criticality: an explanation of 1/ƒ noisePhys Rev Lett1987594381410.1103/PhysRevLett.59.381 MaselkoJSwinneyHComplex periodic oscillation in the Belousov-Zhabotinskii reactionJ Chem Phys198685643010.1063/1.4514731:CAS:528:DyaL2sXjvFWlsQ%3D%3D FellermannHRasmussenSZiockHJSoléRVLife cycle of a minimal protocell - a dissipative particle dynamics studyArtif Life2007133194510.1162/artl.2007.13.4.319 PantaleoneJTothAHorvathDRother McMahanJSmithRButkiDOscillations of a chemical gardenPhys Rev E20087704620710.1103/PhysRevE.77.0462071:STN:280:DC%2BD1czlsVWqtQ%3D%3D PantaleoneJTothAHorvathDRoseFiguraLMorganWMaselkoJPressure oscillations in chemical gardenPhys Rev E2009790562110.1103/PhysRevE.79.056221 RussellMJHallAJFrom geochemistry to biochemistry: chemiosmotic coupling and transition element clusters in the onset of life and photosynthesisGeochemical News2002113612 AskeyIBaerESarikayaMTirrellDHierarchically structured materialsMaterial Research Society Pittsburg1992 KnightCTBalecRKinradeSThe structure of silicate anions in aqueous alkaline solutionAngew Chem Int Ed20074681485210.1002/anie.2007029861:CAS:528:DC%2BD2sXhtlCktrvM BoulayAGCooperGTCroninLMorphogenesis of amorphous polymetalic cluster-based materials to microtubular network architectureChem Commun20124850889010.1039/c2cc31194a1:CAS:528:DC%2BC38Xmt1ygtrc%3D AlloucheLGerardinCLoiseauTFereyGTaulleFAl30: a giant aluminum polycationAngew Chem200039512410.1002/(SICI)1521-3773(20000204)39:3<511::AID-ANIE511>3.0.CO;2-N DamuthJScaling of growth: plants and animals are not so differentProc Natl Acad Sci USA20019852113410.1073/pnas.0510111981:CAS:528:DC%2BD3MXhslKntr4%3D Thouvenel-RomansSSteinbockOOscillatory growth of silica tubes in chemical gardensJ Am Chem Soc200312543384110.1021/ja02983431:CAS:528:DC%2BD3sXhvF2lsbY%3D RasmussenSBaasNAMayerBNilssonMOlesenMWAnsatz for dynamical hierarchiesArtif Life200173295310.1162/1064546013172969881:STN:280:DC%2BD387nvFansw%3D%3D NoorduinWGrinthalAMahadevanLAizanbergJRationally designed complex hierarchical microarchitecturesSciences2013340832710.1126/science.12346211:CAS:528:DC%2BC3sXnsFSmsLs%3D MaselkoJStrizhakPSpontaneous formation of cellular chemical system that sustains itself far from thermodynamic equilibriumJ Phys Chem2004B1084937910.1021/jp036417j GlaabFKellerrmeierMKunzWMorallonEGarcia-RuizJMFormation and evolution of chemical gradients and potential difference across self-assembling inorganic membranesAngew Chemie20121244393710.1002/ange.201107754 KnutsonCBenköGRocheleauTMouffoukFMaselkoJChenLMetabolic photofragmentation kinetics for a minimal protocell: rate-limiting factors, efficiency, and implications for evolutionArtif Life20081418920110.1162/artl.2008.14.2.189 KaminkerVMaselkoJPantaleoneJChemical precipitation structures formed by drops impacting on a deep poolJ Chem Physics20121371847110.1063/1.4762828 RitchieCCooperGJSongYFStrebCYinHParentyASpontaneous assembly and real time growth of micrometer-scale tubular structures from polyoxometalate-based inorganic solidsNature Chem20091475210.1038/nchem.1131:CAS:528:DC%2BD1MXktlSlsbw%3D RussellMJHallAJThe emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH frontsJ Geol Soc Lond199715437740210.1144/gsjgs.154.3.03771:CAS:528:DyaK2sXjvF2jsbw%3D AkitJWMultinuclear studies of aluminum compoundsProg Nucl Magn Reson Spectrosc19892115010.1016/0079-6565(89)80001-9 CaseyWLarge aqueous aluminum hydroxide moleculesChem Rev200610611510.1021/cr040095d1:CAS:528:DC%2BD2MXht1yrsLvP BettencourtLMAWestGA unified theory of urban livingNature2010467912310.1038/467912a1:CAS:528:DC%2BC3cXhtlWmu7fM NilssonMHierarchical Organization in smooth dynamical systemsArtif Life20051149351210.1162/106454605774270598 CartwrightJHGarcia-RuizJMNovellaMLOtaloraFFormation of chemical gardensJ Colloidal Surface Sci2002256351910.1006/jcis.2002.86201:CAS:528:DC%2BD3sXkvVGhtA%3D%3D CooperGKitsonPWinterRZagnoniMLongD-LCroninLModular redox-active inorganic chemical cellAngew Chem Int Ed2011501510.1002/anie.201006633 EnquistBJEconomoEPHuxmanTE AllenAPIgnaceDDGilloolyJFScaling metabolism from organisms to ecosystemsNature20034236394210.1038/nature016711:CAS:528:DC%2BD3sXkt1yrsr0%3D SwaddleTWSilicate complexes of aluminum (III) in aqueous systemsCoord Chem Rev2001219–2216658610.1016/S0010-8545(01)00362-9 PophristicVBalagurusamyVKleinMStructure and dynamics of the aluminum chlorohydrate polymer Al13O4(OH)24(H2O)12Cl7Phys Chem Chem Phys200469192310.1039/b310882a1:CAS:528:DC%2BD2cXhsFSjtL0%3D Wikipedia: List of tallest buildings and structures in the world, [http://en.wikipedia.org/wiki/List_of_tallest_buildings_and_structures_in_the_world] ShortMBBaygentsJCGoldsteinREA free-boundary theory for the shape of the ideal dripping iciclePhys Fluids20061808310110.1063/1.2335152 MakkiRAl-HumiariMDuttaSSteinbockOHollow microtubes and shells from reactant loaded polymer beadsAngew Chem Int Ed2009488752610.1002/anie.2009032921:CAS:528:DC%2BD1MXhtlGjurfJ LeducSThe mechanism of life1911New YorkRebman Company10.1259/arr.1911.0008 StevenNWhiteJHemSStructure of aluminium hydroxide gel I: initial precipitateJ Pharm Sci197565118891 R Makki (7_CR12) 2009; 48 V Pophristic (7_CR33) 2004; 6 J Pantaleone (7_CR7) 2009; 79 A Benjan (7_CR44) 2005; 208 J Maselko (7_CR13) 2004; B108 W Noorduin (7_CR21) 2013; 340 V Kaminker (7_CR9) 2012; 137 C Ritchie (7_CR11) 2009; 1 MB Short (7_CR27) 2006; 18 L Jing (7_CR35) 2010; 29 J Maselko (7_CR40) 1986; 85 7_CR45 7_CR24 7_CR25 RD Coatman (7_CR2) 1980; 15 J Damuth (7_CR43) 2001; 98 J Pantaleone (7_CR6) 2008; 77 S Leduc (7_CR1) 1911 BJ Enquist (7_CR29) 2003; 423 N Steven (7_CR30) 1975; 65 JW Akit (7_CR36) 1989; 21 M Nilsson (7_CR19) 2005; 11 P Bak (7_CR28) 1987; 59 J Maselko (7_CR41) 1995; 132 LMA Bettencourt (7_CR42) 2010; 467 MJ Russell (7_CR15) 1997; 154 L O’Leary (7_CR22) 2011; 3 F Glaab (7_CR39) 2012; 124 S Thouvenel-Romans (7_CR5) 2003; 125 A Bejan (7_CR26) 2000 L Allouche (7_CR32) 2000; 39 S Rasmussen (7_CR23) 2001; 7 TW Swaddle (7_CR31) 2001; 219–221 CT Knight (7_CR34) 2007; 46 C Knutson (7_CR17) 2008; 14 MJ Russell (7_CR10) 2002; 113 DA Stone (7_CR4) 2004; 101 G Cooper (7_CR14) 2011; 50 H Fellermann (7_CR16) 2007; 13 I Askey (7_CR18) 1992 BR Martin (7_CR37) 1991; 44 JH Cartwright (7_CR3) 2002; 256 D Chandran (7_CR20) 2012; 8 AG Boulay (7_CR8) 2012; 48 W Casey (7_CR38) 2006; 106 22431259 - Angew Chem Int Ed Engl. 2012 Apr 27;51(18):4317-21 18517710 - Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Apr;77(4 Pt 2):046207 23651289 - ACS Synth Biol. 2012 Aug 17;1(8):353-64 10413 - J Pharm Sci. 1976 Aug;65(8):1188-91 11541234 - J Geol Soc London. 1997 May;154(3):377-402 16197676 - Artif Life. 2005 Fall;11(4):493-512 22513869 - Chem Commun (Camb). 2012 May 25;48(42):5088-90 19830750 - Angew Chem Int Ed Engl. 2009;48(46):8752-6 15284444 - Proc Natl Acad Sci U S A. 2004 Aug 10;101(32):11537-41 17716015 - Artif Life. 2007 Fall;13(4):319-45 23687041 - Science. 2013 May 17;340(6134):832-7 18331190 - Artif Life. 2008 Spring;14(2):189-201 11226197 - Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2113-4 23163383 - J Chem Phys. 2012 Nov 14;137(18):184701 19518550 - Phys Rev E Stat Nonlin Soft Matter Phys. 2009 May;79(5 Pt 2):056221 17886822 - Angew Chem Int Ed Engl. 2007;46(43):8148-52 10035754 - Phys Rev Lett. 1987 Jul 27;59(4):381-384 12670257 - J Am Chem Soc. 2003 Apr 9;125(14):4338-41 16402770 - Chem Rev. 2006 Jan;106(1):1-16 20962823 - Nature. 2010 Oct 21;467(7318):912-3 15855399 - J Exp Biol. 2005 May;208(Pt 9):1677-86 11911785 - Artif Life. 2001;7(4):329-53 12789338 - Nature. 2003 Jun 5;423(6940):639-42 21378800 - Nat Chem. 2009 Apr;1(1):47-52 21941256 - Nat Chem. 2011 Aug 28;3(10):821-8 10671241 - Angew Chem Int Ed Engl. 2000 Feb;39(3):511-514 21901807 - Angew Chem Int Ed Engl. 2011 Oct 24;50(44):10373-6 |
References_xml | – reference: KaminkerVMaselkoJPantaleoneJChemical precipitation structures formed by drops impacting on a deep poolJ Chem Physics20121371847110.1063/1.4762828 – reference: FellermannHRasmussenSZiockHJSoléRVLife cycle of a minimal protocell - a dissipative particle dynamics studyArtif Life2007133194510.1162/artl.2007.13.4.319 – reference: StevenNWhiteJHemSStructure of aluminium hydroxide gel I: initial precipitateJ Pharm Sci197565118891 – reference: SwaddleTWSilicate complexes of aluminum (III) in aqueous systemsCoord Chem Rev2001219–2216658610.1016/S0010-8545(01)00362-9 – reference: MakkiRAl-HumiariMDuttaSSteinbockOHollow microtubes and shells from reactant loaded polymer beadsAngew Chem Int Ed2009488752610.1002/anie.2009032921:CAS:528:DC%2BD1MXhtlGjurfJ – reference: AskeyIBaerESarikayaMTirrellDHierarchically structured materialsMaterial Research Society Pittsburg1992 – reference: CooperGKitsonPWinterRZagnoniMLongD-LCroninLModular redox-active inorganic chemical cellAngew Chem Int Ed2011501510.1002/anie.201006633 – reference: DamuthJScaling of growth: plants and animals are not so differentProc Natl Acad Sci USA20019852113410.1073/pnas.0510111981:CAS:528:DC%2BD3MXhslKntr4%3D – reference: NoorduinWGrinthalAMahadevanLAizanbergJRationally designed complex hierarchical microarchitecturesSciences2013340832710.1126/science.12346211:CAS:528:DC%2BC3sXnsFSmsLs%3D – reference: JingLFunghuaZStructural changes and mineralization transformation mechanism of aluminum hydroxide gels from forced hydrolysis Al(III) solution containing Al4Al12(OH)24(H2O)127+ polyoxycation during agingChin J Geochem2010291071210.1007/s11631-010-0107-9 – reference: MartinBRFe+3 and Al3+, hydrolysis equilibria: cooperativity in Al3+ hydrolysis reactionsJ Inorg Biochem199144141710.1016/0162-0134(91)84026-61:CAS:528:DyaK3MXmvVynsrk%3D – reference: KnutsonCBenköGRocheleauTMouffoukFMaselkoJChenLMetabolic photofragmentation kinetics for a minimal protocell: rate-limiting factors, efficiency, and implications for evolutionArtif Life20081418920110.1162/artl.2008.14.2.189 – reference: MaselkoJSegalNMultiplicity of stationary patterns in an array of chemical oscillatorsModel Chem19951327571:CAS:528:DyaK28Xht1Ortr8%3D – reference: O’LearyLFallasJBakotaEKangMHartgerinkJMulti-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibbre and hydrogelNat Chem20113821810.1038/nchem.1123 – reference: KnightCTBalecRKinradeSThe structure of silicate anions in aqueous alkaline solutionAngew Chem Int Ed20074681485210.1002/anie.2007029861:CAS:528:DC%2BD2sXhtlCktrvM – reference: RussellMJHallAJThe emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH frontsJ Geol Soc Lond199715437740210.1144/gsjgs.154.3.03771:CAS:528:DyaK2sXjvF2jsbw%3D – reference: BakPTangCWiesenfeldKSelf-organized criticality: an explanation of 1/ƒ noisePhys Rev Lett1987594381410.1103/PhysRevLett.59.381 – reference: BejanAShape and structure, from engineering to nature2000CambridgeUniversity Press – reference: MaselkoJStrizhakPSpontaneous formation of cellular chemical system that sustains itself far from thermodynamic equilibriumJ Phys Chem2004B1084937910.1021/jp036417j – reference: PophristicVBalagurusamyVKleinMStructure and dynamics of the aluminum chlorohydrate polymer Al13O4(OH)24(H2O)12Cl7Phys Chem Chem Phys200469192310.1039/b310882a1:CAS:528:DC%2BD2cXhsFSjtL0%3D – reference: BenjanAThe constructual law of organization in nature: tree-shaped flows and body sizeJ Exp Biol200520816778610.1242/jeb.01487 – reference: RussellMJHallAJFrom geochemistry to biochemistry: chemiosmotic coupling and transition element clusters in the onset of life and photosynthesisGeochemical News2002113612 – reference: Thouvenel-RomansSSteinbockOOscillatory growth of silica tubes in chemical gardensJ Am Chem Soc200312543384110.1021/ja02983431:CAS:528:DC%2BD3sXhvF2lsbY%3D – reference: Holland, John H. Signals and boundaries: building blocks for complex adaptive systems. MIT Press; 2012. – reference: MaselkoJSwinneyHComplex periodic oscillation in the Belousov-Zhabotinskii reactionJ Chem Phys198685643010.1063/1.4514731:CAS:528:DyaL2sXjvFWlsQ%3D%3D – reference: AkitJWMultinuclear studies of aluminum compoundsProg Nucl Magn Reson Spectrosc19892115010.1016/0079-6565(89)80001-9 – reference: PantaleoneJTothAHorvathDRoseFiguraLMorganWMaselkoJPressure oscillations in chemical gardenPhys Rev E2009790562110.1103/PhysRevE.79.056221 – reference: PantaleoneJTothAHorvathDRother McMahanJSmithRButkiDOscillations of a chemical gardenPhys Rev E20087704620710.1103/PhysRevE.77.0462071:STN:280:DC%2BD1czlsVWqtQ%3D%3D – reference: BoulayAGCooperGTCroninLMorphogenesis of amorphous polymetalic cluster-based materials to microtubular network architectureChem Commun20124850889010.1039/c2cc31194a1:CAS:528:DC%2BC38Xmt1ygtrc%3D – reference: NilssonMHierarchical Organization in smooth dynamical systemsArtif Life20051149351210.1162/106454605774270598 – reference: BettencourtLMAWestGA unified theory of urban livingNature2010467912310.1038/467912a1:CAS:528:DC%2BC3cXhtlWmu7fM – reference: AlloucheLGerardinCLoiseauTFereyGTaulleFAl30: a giant aluminum polycationAngew Chem200039512410.1002/(SICI)1521-3773(20000204)39:3<511::AID-ANIE511>3.0.CO;2-N – reference: StoneDAGoldsteinRETubular precipitation and redox gradients on a bubbling templateProc Natl Acad Sci USA2004101115374110.1073/pnas.04045441011:CAS:528:DC%2BD2cXntVektLg%3D – reference: ShortMBBaygentsJCGoldsteinREA free-boundary theory for the shape of the ideal dripping iciclePhys Fluids20061808310110.1063/1.2335152 – reference: RitchieCCooperGJSongYFStrebCYinHParentyASpontaneous assembly and real time growth of micrometer-scale tubular structures from polyoxometalate-based inorganic solidsNature Chem20091475210.1038/nchem.1131:CAS:528:DC%2BD1MXktlSlsbw%3D – reference: CaseyWLarge aqueous aluminum hydroxide moleculesChem Rev200610611510.1021/cr040095d1:CAS:528:DC%2BD2MXht1yrsLvP – reference: GlaabFKellerrmeierMKunzWMorallonEGarcia-RuizJMFormation and evolution of chemical gradients and potential difference across self-assembling inorganic membranesAngew Chemie20121244393710.1002/ange.201107754 – reference: CoatmanRDThomasNLDoubleDDStudies of growth of silicate gardens and related phenomenaJ Mater Sci19801520172610.1007/BF005506281:CAS:528:DyaL3cXlvFGmt7w%3D – reference: EnquistBJEconomoEPHuxmanTE AllenAPIgnaceDDGilloolyJFScaling metabolism from organisms to ecosystemsNature20034236394210.1038/nature016711:CAS:528:DC%2BD3sXkt1yrsr0%3D – reference: Rasmussen S, Bass NA, Mayers B & Nillson M. Anzatz for dynamical hierarchies in emergence: contemporary reading in philosophy and science. Bedau M, Humphreys P, editors. Cambridge: MIT Press. 2008. – reference: RasmussenSBaasNAMayerBNilssonMOlesenMWAnsatz for dynamical hierarchiesArtif Life200173295310.1162/1064546013172969881:STN:280:DC%2BD387nvFansw%3D%3D – reference: CartwrightJHGarcia-RuizJMNovellaMLOtaloraFFormation of chemical gardensJ Colloidal Surface Sci2002256351910.1006/jcis.2002.86201:CAS:528:DC%2BD3sXkvVGhtA%3D%3D – reference: ChandranDSauroHHierarchical modeling for synthetic BiologyACS Synth Biol20128135364 – reference: Wikipedia: List of tallest buildings and structures in the world, [http://en.wikipedia.org/wiki/List_of_tallest_buildings_and_structures_in_the_world] – reference: LeducSThe mechanism of life1911New YorkRebman Company10.1259/arr.1911.0008 – volume: 113 start-page: 6 year: 2002 ident: 7_CR10 publication-title: Geochemical News – volume: 423 start-page: 639 year: 2003 ident: 7_CR29 publication-title: Nature doi: 10.1038/nature01671 – volume: 50 start-page: 1 year: 2011 ident: 7_CR14 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201006633 – volume: 154 start-page: 377 year: 1997 ident: 7_CR15 publication-title: J Geol Soc Lond doi: 10.1144/gsjgs.154.3.0377 – volume: 48 start-page: 8752 year: 2009 ident: 7_CR12 publication-title: Angew Chem Int Ed doi: 10.1002/anie.200903292 – volume: 15 start-page: 2017 year: 1980 ident: 7_CR2 publication-title: J Mater Sci doi: 10.1007/BF00550628 – volume: 8 start-page: 1353 year: 2012 ident: 7_CR20 publication-title: ACS Synth Biol – volume: 124 start-page: 4393 year: 2012 ident: 7_CR39 publication-title: Angew Chemie doi: 10.1002/ange.201107754 – volume: 208 start-page: 1677 year: 2005 ident: 7_CR44 publication-title: J Exp Biol doi: 10.1242/jeb.01487 – volume: 101 start-page: 11537 year: 2004 ident: 7_CR4 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0404544101 – volume: 98 start-page: 2113 issue: 5 year: 2001 ident: 7_CR43 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.051011198 – volume: 137 start-page: 18471 year: 2012 ident: 7_CR9 publication-title: J Chem Physics doi: 10.1063/1.4762828 – volume: B108 start-page: 4937 year: 2004 ident: 7_CR13 publication-title: J Phys Chem doi: 10.1021/jp036417j – volume: 46 start-page: 8148 year: 2007 ident: 7_CR34 publication-title: Angew Chem Int Ed doi: 10.1002/anie.200702986 – ident: 7_CR45 – ident: 7_CR24 doi: 10.7551/mitpress/9780262026215.003.0020 – volume-title: The mechanism of life year: 1911 ident: 7_CR1 doi: 10.1259/arr.1911.0008 – volume: 125 start-page: 4338 year: 2003 ident: 7_CR5 publication-title: J Am Chem Soc doi: 10.1021/ja0298343 – volume: 79 start-page: 05621 year: 2009 ident: 7_CR7 publication-title: Phys Rev E doi: 10.1103/PhysRevE.79.056221 – volume: 256 start-page: 351 year: 2002 ident: 7_CR3 publication-title: J Colloidal Surface Sci doi: 10.1006/jcis.2002.8620 – volume: 1 start-page: 47 year: 2009 ident: 7_CR11 publication-title: Nature Chem doi: 10.1038/nchem.113 – volume: 18 start-page: 083101 year: 2006 ident: 7_CR27 publication-title: Phys Fluids doi: 10.1063/1.2335152 – volume-title: Material Research Society Pittsburg year: 1992 ident: 7_CR18 – volume-title: Shape and structure, from engineering to nature year: 2000 ident: 7_CR26 – volume: 44 start-page: 141 year: 1991 ident: 7_CR37 publication-title: J Inorg Biochem doi: 10.1016/0162-0134(91)84026-6 – volume: 7 start-page: 329 year: 2001 ident: 7_CR23 publication-title: Artif Life doi: 10.1162/106454601317296988 – volume: 77 start-page: 046207 year: 2008 ident: 7_CR6 publication-title: Phys Rev E doi: 10.1103/PhysRevE.77.046207 – volume: 219–221 start-page: 665 year: 2001 ident: 7_CR31 publication-title: Coord Chem Rev doi: 10.1016/S0010-8545(01)00362-9 – volume: 11 start-page: 493 year: 2005 ident: 7_CR19 publication-title: Artif Life doi: 10.1162/106454605774270598 – volume: 106 start-page: 1 year: 2006 ident: 7_CR38 publication-title: Chem Rev doi: 10.1021/cr040095d – volume: 13 start-page: 319 year: 2007 ident: 7_CR16 publication-title: Artif Life doi: 10.1162/artl.2007.13.4.319 – volume: 29 start-page: 107 year: 2010 ident: 7_CR35 publication-title: Chin J Geochem doi: 10.1007/s11631-010-0107-9 – volume: 48 start-page: 5088 year: 2012 ident: 7_CR8 publication-title: Chem Commun doi: 10.1039/c2cc31194a – volume: 340 start-page: 832 year: 2013 ident: 7_CR21 publication-title: Sciences doi: 10.1126/science.1234621 – volume: 132 start-page: 757 year: 1995 ident: 7_CR41 publication-title: Model Chem – volume: 21 start-page: 1 year: 1989 ident: 7_CR36 publication-title: Prog Nucl Magn Reson Spectrosc doi: 10.1016/0079-6565(89)80001-9 – ident: 7_CR25 doi: 10.7551/mitpress/9412.001.0001 – volume: 14 start-page: 189 year: 2008 ident: 7_CR17 publication-title: Artif Life doi: 10.1162/artl.2008.14.2.189 – volume: 3 start-page: 821 year: 2011 ident: 7_CR22 publication-title: Nat Chem doi: 10.1038/nchem.1123 – volume: 59 start-page: 381 issue: 4 year: 1987 ident: 7_CR28 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.59.381 – volume: 65 start-page: 1188 year: 1975 ident: 7_CR30 publication-title: J Pharm Sci – volume: 39 start-page: 512 year: 2000 ident: 7_CR32 publication-title: Angew Chem doi: 10.1002/(SICI)1521-3773(20000204)39:3<511::AID-ANIE511>3.0.CO;2-N – volume: 85 start-page: 6430 year: 1986 ident: 7_CR40 publication-title: J Chem Phys doi: 10.1063/1.451473 – volume: 467 start-page: 912 year: 2010 ident: 7_CR42 publication-title: Nature doi: 10.1038/467912a – volume: 6 start-page: 919 year: 2004 ident: 7_CR33 publication-title: Phys Chem Chem Phys doi: 10.1039/b310882a – reference: 12789338 - Nature. 2003 Jun 5;423(6940):639-42 – reference: 18331190 - Artif Life. 2008 Spring;14(2):189-201 – reference: 17886822 - Angew Chem Int Ed Engl. 2007;46(43):8148-52 – reference: 15284444 - Proc Natl Acad Sci U S A. 2004 Aug 10;101(32):11537-41 – reference: 11226197 - Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2113-4 – reference: 23651289 - ACS Synth Biol. 2012 Aug 17;1(8):353-64 – reference: 16402770 - Chem Rev. 2006 Jan;106(1):1-16 – reference: 16197676 - Artif Life. 2005 Fall;11(4):493-512 – reference: 19518550 - Phys Rev E Stat Nonlin Soft Matter Phys. 2009 May;79(5 Pt 2):056221 – reference: 15855399 - J Exp Biol. 2005 May;208(Pt 9):1677-86 – reference: 11541234 - J Geol Soc London. 1997 May;154(3):377-402 – reference: 23687041 - Science. 2013 May 17;340(6134):832-7 – reference: 10413 - J Pharm Sci. 1976 Aug;65(8):1188-91 – reference: 19830750 - Angew Chem Int Ed Engl. 2009;48(46):8752-6 – reference: 23163383 - J Chem Phys. 2012 Nov 14;137(18):184701 – reference: 10035754 - Phys Rev Lett. 1987 Jul 27;59(4):381-384 – reference: 18517710 - Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Apr;77(4 Pt 2):046207 – reference: 21901807 - Angew Chem Int Ed Engl. 2011 Oct 24;50(44):10373-6 – reference: 17716015 - Artif Life. 2007 Fall;13(4):319-45 – reference: 22431259 - Angew Chem Int Ed Engl. 2012 Apr 27;51(18):4317-21 – reference: 10671241 - Angew Chem Int Ed Engl. 2000 Feb;39(3):511-514 – reference: 11911785 - Artif Life. 2001;7(4):329-53 – reference: 21378800 - Nat Chem. 2009 Apr;1(1):47-52 – reference: 22513869 - Chem Commun (Camb). 2012 May 25;48(42):5088-90 – reference: 21941256 - Nat Chem. 2011 Aug 28;3(10):821-8 – reference: 20962823 - Nature. 2010 Oct 21;467(7318):912-3 – reference: 12670257 - J Am Chem Soc. 2003 Apr 9;125(14):4338-41 |
SSID | ssj0000500579 |
Score | 1.9434665 |
Snippet | Background
Biological structures grow spontaneously from a seed, using materials supplied by the environment. These structures are hierarchical, with the... Biological structures grow spontaneously from a seed, using materials supplied by the environment. These structures are hierarchical, with the 'building... Background Biological structures grow spontaneously from a seed, using materials supplied by the environment. These structures are hierarchical, with the... BACKGROUNDBiological structures grow spontaneously from a seed, using materials supplied by the environment. These structures are hierarchical, with the... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3 |
SubjectTerms | Biochemistry Bioorganic Chemistry Biotechnology Chemistry Chemistry and Materials Science Organic Chemistry Research Article |
SummonAdditionalLinks | – databaseName: SpringerOpen dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50PehFfFtfRPCkBNumefQoxWUR9OSCt9KkqVtYu8LuHvz3Ttpu2fUFnmdCmpm0-aaT-QbgqogRp4YqpyLXjEbcz6iORUgznSkhUZobV-D8-CQGw-jhhb-0ZNGuFmY5fx8ocTvFGCp0lwe4q3-WNF6HDR4w6bo0JCLpfqf4vC6rbPOWP45cPXm-wcnvtyK_pEbrE6e_A9stVCR3jW93Yc1We7CZLDq07cMg-TDj0pBXDKVnIzIpiGtsXacG0PKkoYadYzxNyoog0CMZfonKav5Gp2VT-0YaIucDGPbvn5MBbTsjUMMUjynaXRk8fBjztZGF4-DiOooLoRDehIFV1mpfGIGmLpgrpc2NsQxlvoilLjJ2CL1qUtljIEqb2AqZhbqwESu0jkI_kyrHOM4ECMA88BdWS01LG-66V4zTOnxQIm0MnaKhXSZbpjjkuhvy3nBm_KV8tnBF2r4-0xRRVRwFLunpwWUnRuu6bEZW2ckcdZTDFhzDUQ-OGs91s4VcsQiX64Fc8Wmn4Ei1VyVVOarJtSOGGCtgHtwsvL_0WL8t4uRf2qewFdbb0vXVOIMe7gZ7jtBmpi_qTf0Jj3vxDA priority: 102 providerName: Springer Nature |
Title | Cyclic growth of hierarchical structures in the aluminum-silicate system |
URI | https://link.springer.com/article/10.1186/s13322-015-0007-9 https://www.ncbi.nlm.nih.gov/pubmed/25834644 https://www.proquest.com/docview/1729410350 https://www.proquest.com/docview/1826615717 https://pubmed.ncbi.nlm.nih.gov/PMC4374113 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB2V5QAXVFoKoVC5Uk8gi8R2HOdUQcR2VamoqorELYodp0SCLGjZA_--M_lqFwQXS5FtJfZzxm88nhmAL1WKPFWYkuvSSq7isOA21YIXtjA6wdrSkYPzjws9u1Tfr-Kr_sBt0V-rHGRiK6jLuaMz8hPcaFMVkR3s6909p6xRZF3tU2iswTqKYGMmsH52fvHz13jKEsatt2VvzoyMPlmgUiboNkJMDtUJT1c3pGcs8_llyScW03Yjmr6FrZ5BstMO8m1445t3sJENidvewyx7dDe1Y39Qw364ZvOKUb7r1mKAgLAuYuwS1WxWNwz5HytQQNXN8pYv6s4ljnXxnXfgcnr-O5vxPmECd9LEKUc4jMM9ScrQuqSi0FyxVWmlDbIeEXnjvQ2104hAJcnDtnTOS6wLdZrYqpAfYNLMG78HzFiXep0UwlZeycpaJcIiMSWqdy5CXhZAOMxa7vpo4pTU4iZvtQqj826ic5xoMnAnOXY5GrvcdaE0Xmt8MECR93_VIv-3BgL4PFbj7JKRo2j8fIltDFGOGLXUAHY75Ma3idhIhcMNIFnBdGxAsbZXa5r6uo25rSRSr0gGcDyg_99nvTSI_dcH8RE2RbsOKb_GAUwQfn-IFOfBfoI1FX7D0kyx7NY0PmVCUamzv5rq_Vo |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXRCmFlAJGgguV1cR2HOeAULWwbJ-nVuotxI5DI5Vsq-2q6p_qb2QmL1gqeut57MSeGdvfeDwzAB_KFHGqMAXXhZVcxWHObaoFz21udILUwlGA8-GRnpyovdP4dAlu-1gYelbZ74nNRl1MHd2Rb-NBm6qI_GBfLi45VY0i72pfQqNVi31_c40m2-zz7leU70chxt-ORxPeVRXgTpo45Thm43DjRkPeuqSk_FWxVWmpDUIDEXnjvQ210zjMUlIYauGcl0gLdZrYMpf43UfwWEk8ySkyffx9uNMJ4ya2s3OeRkZvz9AEFPT2Iabw7YSni8ffHUx792nmP_7Z5tgbP4OnHV5lO62CrcKSr5_DyqgvE7cGk9GNO68c-4n2_NUZm5aMqms3_gkUP2vz087RqGdVzRBtshy3w6qe_-Kzqg3AY2026Rdw8iCMXIflelr7V8CMdanXSS5s6ZUsrVUizBNToDHpIkSBAYQ91zLX5S6nEhrnWWPDGJ21jM6Q0eROTzLs8mnoctEm7riv8WYviqxbw7Psj8YF8H4gI3fJpZLXfjrHNoYATow2cQAvW8kNfxOxkQqnG0CyINOhAWX2XqTU1VmT4VtJBHqRDGCrl_5fw_rfJDbun8Q7WJkcHx5kB7tH-6_hiWh0kip7bMIyqoJ_g-Dqyr5tNJrBj4deQr8BnG80jA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RKtFeKlr6SHnUSPTSyiKxE8c5cECB1VIe6qFI3NLYsUskmkXaXVX8qv7FjuMkYqFU6oHzOIk948f3ZTwzADs2Q5zKZEVFpTiNk7CkKhOMlqqUIkVppV2A8-mZGJ_HXy6SiyX43cfCtLfde5ekj2lwWZqa2e51Zf0Sl2J3isyKuSsFiYuKTmnW3ao8Nje_kLNN944O0MAfGRsdfsvHtCsrQDWXSUax01Ljzo1MXunUugRWiYozKyRiAxYZaYwKhRbYT8tdHGqlteEoC0WWKltyfO8TeIrEKHJsLxf58FMnTNrgzs57-teeLp5_90Dt_buZdxy07bk3WoUXHWAl-36GvYQl07yCZ3lfJ24NxvmNvqo1-YGEfnZJJpa48tqtgwLtT3yC2jmyelI3BOEmKXE_rJv5TzqtfQQe8emkX8P5oyjyDSw3k8a8AyKVzoxIS6asiblVKmZhmcoK2aSOEAYGEPZaK3SXvNzV0LgqWhIjReEVXaCinT89LfCRT8Mj1z5zx78ab_SmKLpFPC0Q22Vx5FyvAWwPYtSu86mUjZnMsY10CCdBUhzAW2-54WsskTzG4QaQLth0aOBSey9KmvqyTfEdc0R6EQ_gc2_9W916aBDv_6v1B1j5ejAqTo7OjtfhOWtnqCv0sQHLODHMJmKtmdpq5zeB74-9oP4AaP41Zg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cyclic+growth+of+hierarchical+structures+in+the+aluminum-silicate+system&rft.jtitle=Journal+of+systems+chemistry&rft.au=Dyonizy%2C+Agnieszka&rft.au=Kaminker%2C+Vitaliy&rft.au=Wieckowska%2C+Joanna&rft.au=Krzywicki%2C+Tomasz&rft.date=2015-03-06&rft.pub=Springer+International+Publishing&rft.eissn=1759-2208&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1186%2Fs13322-015-0007-9&rft_id=info%3Apmid%2F25834644&rft.externalDocID=PMC4374113 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-2208&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-2208&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-2208&client=summon |