Integrating occurrence data and expert maps for improved species range predictions

Aim: Knowledge of species geographical distributions is critical for many ecological and evolutionary questions and underpins effective conservation decision-making, yet it is usually limited in spatial resolution or reliability. Over large spatial extents, range predictions are typically derived fr...

Full description

Saved in:
Bibliographic Details
Published inGlobal ecology and biogeography Vol. 26; no. 1/2; pp. 243 - 258
Main Authors Merow, Cory, Wilson, Adam M., Jetz, Walter
Format Journal Article
LanguageEnglish
Published Oxford John Wiley & Sons Ltd 01.02.2017
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aim: Knowledge of species geographical distributions is critical for many ecological and evolutionary questions and underpins effective conservation decision-making, yet it is usually limited in spatial resolution or reliability. Over large spatial extents, range predictions are typically derived from expert knowledge or, increasingly, species distribution models based on individual occurrence records. Expert maps are useful at coarse resolution, where they are suitable for delineating unoccupied regions. In contrast, point records typically provide finerscale occurrence information that can be characterized for its environmental association, but usually suffers from observer biases and does not representatively or fully address the geographical or environmental range occupied by a species. Innovation: We develop a new modelling methodology to combine the complementary informative attributes of both data types to improve fine-scale, large-extent predictions. We use expert delineations to constrain predictions of a species distribution model parameterized with incidental point occurrence records. We introduce a maximum entropy approach for combining the two data types and generalize it to Poisson point process models. We illustrate critical decision making during model construction using two detailed case studies and illustrate features more generally with applications to species with vastly different range and data attributes. Our methods are illustrated in the Supporting Information and with a new R package, bossMaps, that integrates with existing generalized linear modelling and Maxent software. Main conclusions: Our modelling strategy flexibly accommodates expert maps with different levels of bias and precision. The approach can also be useful with other coarse sources of spatially explicit information, including habitat associations, elevational bands or vegetation types. The flexible nature of this methodological innovation can support improved characterization of species distributions for a variety of applications and is being implemented as a standard element underpinning integrative species distribution predictions in the Map of Life (https://mol.org/).
AbstractList Aim: Knowledge of species geographical distributions is critical for many ecological and evolutionary questions and underpins effective conservation decision-making, yet it is usually limited in spatial resolution or reliability. Over large spatial extents, range predictions are typically derived from expert knowledge or, increasingly, species distribution models based on individual occurrence records. Expert maps are useful at coarse resolution, where they are suitable for delineating unoccupied regions. In contrast, point records typically provide finerscale occurrence information that can be characterized for its environmental association, but usually suffers from observer biases and does not representatively or fully address the geographical or environmental range occupied by a species. Innovation: We develop a new modelling methodology to combine the complementary informative attributes of both data types to improve fine-scale, large-extent predictions. We use expert delineations to constrain predictions of a species distribution model parameterized with incidental point occurrence records. We introduce a maximum entropy approach for combining the two data types and generalize it to Poisson point process models. We illustrate critical decision making during model construction using two detailed case studies and illustrate features more generally with applications to species with vastly different range and data attributes. Our methods are illustrated in the Supporting Information and with a new R package, bossMaps, that integrates with existing generalized linear modelling and Maxent software. Main conclusions: Our modelling strategy flexibly accommodates expert maps with different levels of bias and precision. The approach can also be useful with other coarse sources of spatially explicit information, including habitat associations, elevational bands or vegetation types. The flexible nature of this methodological innovation can support improved characterization of species distributions for a variety of applications and is being implemented as a standard element underpinning integrative species distribution predictions in the Map of Life (https://mol.org/).
Aim Knowledge of species geographical distributions is critical for many ecological and evolutionary questions and underpins effective conservation decision-making, yet it is usually limited in spatial resolution or reliability. Over large spatial extents, range predictions are typically derived from expert knowledge or, increasingly, species distribution models based on individual occurrence records. Expert maps are useful at coarse resolution, where they are suitable for delineating unoccupied regions. In contrast, point records typically provide finer-scale occurrence information that can be characterized for its environmental association, but usually suffers from observer biases and does not representatively or fully address the geographical or environmental range occupied by a species. Innovation We develop a new modelling methodology to combine the complementary informative attributes of both data types to improve fine-scale, large-extent predictions. We use expert delineations to constrain predictions of a species distribution model parameterized with incidental point occurrence records. We introduce a maximum entropy approach for combining the two data types and generalize it to Poisson point process models. We illustrate critical decision making during model construction using two detailed case studies and illustrate features more generally with applications to species with vastly different range and data attributes. Our methods are illustrated in the Supporting Information and with a new R package, bossMaps, that integrates with existing generalized linear modelling and Maxent software. Main conclusions Our modelling strategy flexibly accommodates expert maps with different levels of bias and precision. The approach can also be useful with other coarse sources of spatially explicit information, including habitat associations, elevational bands or vegetation types. The flexible nature of this methodological innovation can support improved characterization of species distributions for a variety of applications and is being implemented as a standard element underpinning integrative species distribution predictions in the Map of Life (https://mol.org/).
Aim Knowledge of species geographical distributions is critical for many ecological and evolutionary questions and underpins effective conservation decision‐making, yet it is usually limited in spatial resolution or reliability. Over large spatial extents, range predictions are typically derived from expert knowledge or, increasingly, species distribution models based on individual occurrence records. Expert maps are useful at coarse resolution, where they are suitable for delineating unoccupied regions. In contrast, point records typically provide finer‐scale occurrence information that can be characterized for its environmental association, but usually suffers from observer biases and does not representatively or fully address the geographical or environmental range occupied by a species. Innovation We develop a new modelling methodology to combine the complementary informative attributes of both data types to improve fine‐scale, large‐extent predictions. We use expert delineations to constrain predictions of a species distribution model parameterized with incidental point occurrence records. We introduce a maximum entropy approach for combining the two data types and generalize it to Poisson point process models. We illustrate critical decision making during model construction using two detailed case studies and illustrate features more generally with applications to species with vastly different range and data attributes. Our methods are illustrated in the Supporting Information and with a new R package, bossMaps, that integrates with existing generalized linear modelling and Maxent software. Main conclusions Our modelling strategy flexibly accommodates expert maps with different levels of bias and precision. The approach can also be useful with other coarse sources of spatially explicit information, including habitat associations, elevational bands or vegetation types. The flexible nature of this methodological innovation can support improved characterization of species distributions for a variety of applications and is being implemented as a standard element underpinning integrative species distribution predictions in the Map of Life (https://mol.org/).
Author Merow, Cory
Wilson, Adam M.
Jetz, Walter
Author_xml – sequence: 1
  givenname: Cory
  surname: Merow
  fullname: Merow, Cory
– sequence: 2
  givenname: Adam M.
  surname: Wilson
  fullname: Wilson, Adam M.
– sequence: 3
  givenname: Walter
  surname: Jetz
  fullname: Jetz, Walter
BookMark eNqFkc1qGzEURkVJoYnbRR-gIMgmXTjR74y0TIyTGgKF0kJ3gyzdMTJjaSLJSfz2HceuFyYh2lwtzrl8l-8MnYQYAKGvlFzS4V0tYH5JmeT6AzqloqrGinF1cvizv5_QWc5LQogUsjpFv2ahwCKZ4sMCR2vXKUGwgJ0pBpvgMDz3kApemT7jNibsV32Kj-Bw7sF6yDiZsADcJ3DeFh9D_ow-tqbL8GU_R-jP7fT35Mf4_ufdbHJ9P7ZcST22MK8Zo66tNOcVCGAMhJZUurnj2nFhbM2UE7pumdSqbol2IFolKynrOXF8hC52e4dAD2vIpVn5bKHrTIC4zg0jjGiiOaHvonQIJLSiQ5IROj9Cl3GdwnDIlqp4rUQtB-pqR9kUc07QNtYXsz2_JOO7hpJmW0cz1NG81DEY34-MPvmVSZtX2f32J9_B5m2wuZve_De-7YxlLjEdDCEYFbWS_B9JaqQz
CODEN GEBIFS
CitedBy_id crossref_primary_10_1016_j_envsoft_2020_104806
crossref_primary_10_1186_s40657_018_0098_5
crossref_primary_10_1016_j_ecoinf_2019_101024
crossref_primary_10_1038_s41467_024_48276_3
crossref_primary_10_1111_geb_13911
crossref_primary_10_1111_2041_210X_14080
crossref_primary_10_1111_ddi_13970
crossref_primary_10_1111_nph_18158
crossref_primary_10_1111_jbi_13619
crossref_primary_10_1016_j_jenvman_2019_02_031
crossref_primary_10_1111_ecog_04327
crossref_primary_10_1016_j_ecoinf_2023_102127
crossref_primary_10_1016_j_gecco_2024_e03226
crossref_primary_10_1111_ecog_06268
crossref_primary_10_1002_ecy_2710
crossref_primary_10_1111_jbi_13220
crossref_primary_10_1111_jbi_15125
crossref_primary_10_1002_ecy_4175
crossref_primary_10_1038_s41559_019_0826_1
crossref_primary_10_1088_1748_9326_ab0cb5
crossref_primary_10_1111_2041_210X_13110
crossref_primary_10_1111_geb_13792
crossref_primary_10_1111_fwb_70014
crossref_primary_10_3390_insects15110879
crossref_primary_10_1111_2041_210X_13283
crossref_primary_10_1111_cobi_14221
crossref_primary_10_1111_cobi_13373
crossref_primary_10_1111_geb_12611
crossref_primary_10_1111_ddi_13424
crossref_primary_10_1371_journal_pone_0214522
crossref_primary_10_1038_s41597_022_01128_5
crossref_primary_10_1017_S0021859620000350
crossref_primary_10_1111_cobi_13492
crossref_primary_10_1002_ece3_70633
crossref_primary_10_1111_ecog_06731
crossref_primary_10_1017_pab_2024_16
crossref_primary_10_1111_csp2_13281
crossref_primary_10_1038_s41467_020_15407_5
crossref_primary_10_1016_j_gecco_2022_e02068
crossref_primary_10_1017_S0959270921000137
crossref_primary_10_3390_conservation2020023
crossref_primary_10_1016_j_biocon_2023_110118
crossref_primary_10_3390_f14051010
crossref_primary_10_1371_journal_pone_0221901
crossref_primary_10_1016_j_biocon_2020_108599
crossref_primary_10_1111_ecog_04627
crossref_primary_10_1002_ece3_6753
crossref_primary_10_1016_j_tree_2023_01_003
crossref_primary_10_1111_cobi_70015
crossref_primary_10_1002_ece3_6596
crossref_primary_10_1111_ecog_05877
crossref_primary_10_1002_ajb2_1059
crossref_primary_10_1111_ecog_04503
crossref_primary_10_1111_ecog_05119
crossref_primary_10_1111_jbi_14847
crossref_primary_10_1007_s40808_024_02017_z
crossref_primary_10_1007_s00267_021_01525_3
crossref_primary_10_1016_j_gecco_2024_e02831
crossref_primary_10_1038_s41467_022_32546_z
crossref_primary_10_1111_jbi_14330
crossref_primary_10_1590_1809_4392202301392
crossref_primary_10_1111_geb_12759
crossref_primary_10_3389_fams_2017_00017
crossref_primary_10_1016_j_envres_2023_117537
crossref_primary_10_1186_s12983_023_00515_x
crossref_primary_10_1111_geb_13008
crossref_primary_10_1016_j_ecoinf_2021_101501
crossref_primary_10_1017_S0954102021000183
crossref_primary_10_1002_ecs2_4284
crossref_primary_10_1177_1940082917724133
crossref_primary_10_1111_ecog_06794
crossref_primary_10_1111_ecog_06992
crossref_primary_10_1111_jbi_13156
crossref_primary_10_1016_j_tree_2019_08_006
crossref_primary_10_1111_gcb_16114
crossref_primary_10_1016_j_biocon_2024_110511
crossref_primary_10_1111_nph_15934
crossref_primary_10_3897_BDJ_9_e59202
crossref_primary_10_1016_j_biocon_2024_110876
Cites_doi 10.1214/07-BA206
10.1093/jxb/10.2.290
10.2478/v10208-011-0016-2
10.1111/j.0030-1299.2008.16434.x
10.1111/j.1461-0248.2005.00726.x
10.1111/2041-210X.12242
10.1371/journal.pbio.1001292
10.1111/2041-210X.12221
10.1371/journal.pbio.1002415
10.1111/2041-210X.12280
10.1111/geb.12216
10.1111/j.1541-0420.2012.01824.x
10.1890/07-2153.1
10.1073/pnas.0901637106
10.1111/j.1366-9516.2005.00143.x
10.1111/ecog.01925
10.1111/j.1461-0248.2007.01107.x
10.1111/2041-210X.12352
10.1111/j.1523-1739.2007.00847.x
10.1111/geb.12453
10.1111/j.1749-6632.2011.06440.x
10.1126/science.1200303
10.1111/j.1466-8238.2011.00663.x
10.1002/joc.1276
10.1146/annurev.ecolsys.110308.120159
10.1111/j.1467-9876.2011.00769.x
10.1038/ncomms9221
10.1214/10-AOAS331
10.1111/j.1600-0587.2013.07872.x
10.1214/13-AOAS667
10.1890/06-0539
10.1016/j.biocon.2009.05.006
10.1016/j.tree.2011.09.007
10.1038/nature11631
10.1126/science.1229931
10.1111/j.1461-0248.2005.00792.x
10.1371/journal.pbio.1000385
10.1111/j.1466-8238.2008.00420.x
10.1111/j.2041-210X.2011.00141.x
10.1016/j.ecolmodel.2005.03.026
ContentType Journal Article
Copyright Copyright © 2017 John Wiley & Sons Ltd.
2016 John Wiley & Sons Ltd
Copyright © 2017 John Wiley & Sons Ltd
Copyright_xml – notice: Copyright © 2017 John Wiley & Sons Ltd.
– notice: 2016 John Wiley & Sons Ltd
– notice: Copyright © 2017 John Wiley & Sons Ltd
DBID AAYXX
CITATION
7QG
7SN
7SS
7ST
7U6
C1K
7S9
L.6
DOI 10.1111/geb.12539
DatabaseName CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Entomology Abstracts
Ecology Abstracts
Environment Abstracts
Sustainability Science Abstracts
Animal Behavior Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Entomology Abstracts

AGRICOLA
Ecology Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
Environmental Sciences
EISSN 1466-8238
EndPage 258
ExternalDocumentID 4296172321
10_1111_geb_12539
GEB12539
44214785
Genre article
GrantInformation_xml – fundername: NASA Biodiversity Grant
  funderid: NNX16AQ45G
– fundername: NSF Grants
  funderid: 1565046 ; 1046328 ; 1137366
– fundername: NASA Biodiversity Grant
  funderid: NNX11AP72G ; DBI 0960550 ; DBI 1262600 ; DEB 1026764
GroupedDBID -~X
.3N
.GA
0R~
10A
1OC
29I
33P
4.4
50Y
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5GY
5HH
5LA
5VS
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAEVG
AAHBH
AAHKG
AAHQN
AAKGQ
AAMMB
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABLJU
ABPLY
ABPPZ
ABPVW
ABSQW
ABTLG
ABXSQ
ACAHQ
ACCZN
ACHIC
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ANHSF
AQVQM
ATUGU
AUFTA
BFHJK
BMNLL
BMXJE
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
F00
F01
F04
G-S
GODZA
HGLYW
HZI
IHE
IPSME
IX1
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
OIG
P2W
P4D
Q11
QB0
ROL
RX1
SA0
SUPJJ
TN5
UB1
UPT
W99
WIH
WIK
WQJ
WXSBR
XG1
ZZTAW
~KM
.Y3
31~
AAHHS
AAISJ
AANHP
ACBWZ
ACCFJ
ACRPL
ACYXJ
ADNMO
ADULT
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
BDRZF
CAG
COF
DOOOF
EQZMY
ESX
FEDTE
GTFYD
HF~
HGD
HQ2
HTVGU
HVGLF
JSODD
VQP
WRC
AAYXX
AGQPQ
CITATION
7QG
7SN
7SS
7ST
7U6
C1K
7S9
L.6
ID FETCH-LOGICAL-c3859-ceb7221df69336e4e22e49515dbd39d34ac728d497f25987f09de4f856557b0d3
IEDL.DBID DR2
ISSN 1466-822X
IngestDate Fri Jul 11 18:31:19 EDT 2025
Fri Jul 11 03:25:04 EDT 2025
Fri Jul 25 08:11:11 EDT 2025
Tue Jul 01 01:46:06 EDT 2025
Thu Apr 24 22:59:16 EDT 2025
Wed Jan 22 16:20:06 EST 2025
Thu Jul 03 22:05:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1/2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3859-ceb7221df69336e4e22e49515dbd39d34ac728d497f25987f09de4f856557b0d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0561-053X
PQID 1856378475
PQPubID 1066347
PageCount 16
ParticipantIDs proquest_miscellaneous_2020909301
proquest_miscellaneous_1859498193
proquest_journals_1856378475
crossref_citationtrail_10_1111_geb_12539
crossref_primary_10_1111_geb_12539
wiley_primary_10_1111_geb_12539_GEB12539
jstor_primary_44214785
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2017
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 02
  year: 2017
  text: February 2017
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Global ecology and biogeography
PublicationYear 2017
Publisher John Wiley & Sons Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons Ltd
– name: Wiley Subscription Services, Inc
References 2007; 104
2015; 6
2009; 40
2013; 69
2012a; 27
2000; 135
2011
2011; 60
2004
2013; 7
2012; 36
2016; 39
2007; 10
2011; 332
2014; 23
2012; 10
2016; 14
2005; 25
2012b; 491
2014; 5
2012; 3
2013; 36
2013; 339
2006; 190
2005; 8
2008; 117
2008; 22
2015
2007; 2
2009; 142
2009; 19
2012; 1260
2014; 6
2010; 4
2016; 25
2012; 21
1959; 10
2005; 11
2009; 18
2010; 8
2009; 106
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
Lomolino M.V. (e_1_2_7_25_1) 2004
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – year: 2011
– volume: 25
  start-page: 1022
  year: 2016
  end-page: 1036
  article-title: Improving niche and range estimates with Maxent and point process models by integrating spatially explicit information
  publication-title: Global Ecology and Biogeography
– volume: 27
  start-page: 151
  year: 2012a
  end-page: 159
  article-title: Integrating biodiversity distribution knowledge: toward a global map of life
  publication-title: Trends in Ecology and Evolution
– volume: 190
  start-page: 231
  year: 2006
  end-page: 259
  article-title: Maximum entropy modeling of species geographic distributions
  publication-title: Ecological Modelling
– volume: 21
  start-page: 293
  year: 2012
  end-page: 304
  article-title: Forecasting species ranges by statistical estimation of ecological niches and spatial population dynamics
  publication-title: Global Ecology and Biogeography
– volume: 6
  start-page: 366
  year: 2015
  end-page: 379
  article-title: Point process models for presence‐only analysis
  publication-title: Methods in Ecology and Evolution
– volume: 1260
  start-page: 66
  year: 2012
  end-page: 80
  article-title: Harnessing the world's biodiversity data: promise and peril in ecological niche modeling of species distributions
  publication-title: Annals of the New York Academy of Sciences
– volume: 40
  start-page: 677
  year: 2009
  end-page: 697
  article-title: Species distribution models: ecological explanation and prediction across space and time
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 117
  start-page: 847
  year: 2008
  end-page: 858
  article-title: Historical bias in biodiversity inventories affects the observed environmental niche of the species
  publication-title: Oikos
– volume: 19
  start-page: 181
  year: 2009
  end-page: 197
  article-title: Sample selection bias and presence‐only distribution models: implications for background and pseudo‐absence data
  publication-title: Ecological Applications
– volume: 22
  start-page: 110
  year: 2008
  end-page: 119
  article-title: Ecological correlates and conservation implications of overestimating species geographic ranges
  publication-title: Conservation Biology
– volume: 6
  start-page: 424
  year: 2014
  end-page: 438
  article-title: Bias correction in species distribution models: pooling survey and collection data for multiple species
  publication-title: Methods in Ecology and Evolution
– volume: 36
  start-page: 1
  year: 2012
  end-page: 132
  article-title: A strict maximum likelihood explanation of MaxEnt, and some implications for distribution modelling
  publication-title: Sommerfeltia
– volume: 6
  start-page: 1
  year: 2015
  end-page: 8
  article-title: Global priorities for an effective information basis of biodiversity distributions
  publication-title: Nature Communications
– volume: 3
  start-page: 177
  year: 2012
  end-page: 187
  article-title: Comparative interpretation of count, presence–absence and point methods for species distribution models
  publication-title: Methods in Ecology and Evolution
– volume: 23
  start-page: 1472
  year: 2014
  end-page: 1484
  article-title: Accounting for imperfect detection and survey bias in statistical analysis of presence‐only data
  publication-title: Global Ecology and Biogeography
– volume: 491
  start-page: 444
  year: 2012b
  end-page: 448
  article-title: The global diversity of birds in space and time
  publication-title: Nature
– volume: 10
  start-page: e1001292
  year: 2012
  article-title: Global gradients in vertebrate diversity predicted by historical area–productivity dynamics and contemporary environment
  publication-title: PLoS Biology
– volume: 2
  start-page: 137
  year: 2007
  end-page: 166
  article-title: A quantitative study of quantile based direct prior elicitation from expert opinion
  publication-title: Bayesian Analysis
– volume: 4
  start-page: 1383
  year: 2010
  end-page: 1402
  article-title: Poisson point process models solve the ‘pseudo‐absence problem’ for presence‐only data in ecology
  publication-title: Annals of Applied Statistics
– volume: 14
  start-page: e1002415
  year: 2016
  end-page: e1002420
  article-title: Remotely sensed high‐resolution global cloud dynamics for predicting ecosystem and biodiversity distributions
  publication-title: PLoS Biology
– volume: 8
  start-page: 319
  year: 2005
  end-page: 327
  article-title: Disparity between range map‐ and survey‐based analyses of species richness: patterns, processes and implications
  publication-title: Ecology Letters
– volume: 106
  start-page: 19644
  issue: Suppl. 2
  year: 2009
  article-title: Niches and distributional areas: concepts, methods, and assumptions
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 8
  start-page: e1000385
  year: 2010
  article-title: Distorted views of biodiversity: spatial and temporal bias in species occurrence data
  publication-title: PLoS Biology
– volume: 25
  start-page: 1965
  year: 2005
  end-page: 1978
  article-title: Very high resolution interpolated climate surfaces for global land areas
  publication-title: International Journal of Climatology
– volume: 6
  start-page: 389
  year: 2014
  end-page: 398
  article-title: CATS regression: a model based approach to studying trait based community assembly
  publication-title: Methods in Ecology and Evolution
– volume: 11
  start-page: 3
  year: 2005
  end-page: 23
  article-title: Conservation biogeography: assessment and prospect
  publication-title: Diversity and Distributions
– volume: 135
  start-page: 147
  year: 2000
  end-page: 186
  article-title: Predictive habitat distribution models in ecology
  publication-title: Ecological Modelling
– volume: 36
  start-page: 12
  year: 2013
  end-page: 11
  article-title: A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter
  publication-title: Ecography
– volume: 8
  start-page: 993
  year: 2005
  end-page: 1009
  article-title: Predicting species distribution: offering more than simple habitat models
  publication-title: Ecology Letters
– volume: 18
  start-page: 50
  year: 2009
  end-page: 63
  article-title: Characterizing and predicting species distributions across environments and scales: Argentine ant occurrences in the eye of the beholder
  publication-title: Global Ecology and Biogeography
– volume: 10
  start-page: 1115
  year: 2007
  end-page: 1123
  article-title: Grinnellian and Eltonian niches and geographic distributions of species
  publication-title: Ecology Letters
– volume: 39
  start-page: 1
  year: 2016
  end-page: 11
  article-title: Model‐based integration of observed and expert‐based information for assessing the geographic and environmental distribution of freshwater species
  publication-title: Ecography
– volume: 5
  start-page: 751
  year: 2014
  end-page: 760
  article-title: Quantifying range‐wide variation in population trends from local abundance surveys and widespread opportunistic occurrence records
  publication-title: Methods in Ecology and Evolution
– year: 2004
– volume: 142
  start-page: 2282
  year: 2009
  end-page: 2292
  article-title: eBird: a citizen‐based bird observation network in the biological sciences
  publication-title: Biological Conservation
– volume: 69
  start-page: 274
  year: 2013
  end-page: 281
  article-title: Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology
  publication-title: Biometrics
– volume: 339
  start-page: 277
  year: 2013
  end-page: 278
  article-title: Essential biodiversity variables
  publication-title: Science
– volume: 10
  start-page: 290
  year: 1959
  end-page: 301
  article-title: A flexible growth function for empirical use
  publication-title: Journal of Experimental Botany
– volume: 7
  start-page: 1917
  year: 2013
  end-page: 1939
  article-title: Finite‐sample equivalence of several statistical models for presence‐only data
  publication-title: Annals of Applied Statistics
– volume: 104
  start-page: 13384
  year: 2007
  end-page: 13389
  article-title: Species richness, hotspots, and the scale dependence of range maps in ecology and conservation
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 332
  start-page: 53
  year: 2011
  end-page: 58
  article-title: Beyond predictions: biodiversity conservation in a changing climate
  publication-title: Science
– year: 2015
– volume: 60
  start-page: 757
  year: 2011
  end-page: 776
  article-title: Point pattern modelling for degraded presence only data over large regions
  publication-title: Journal of the Royal Statistical Society: Series C (Applied Statistics)
– ident: e_1_2_7_7_1
  doi: 10.1214/07-BA206
– ident: e_1_2_7_38_1
  doi: 10.1093/jxb/10.2.290
– ident: e_1_2_7_15_1
  doi: 10.2478/v10208-011-0016-2
– ident: e_1_2_7_17_1
  doi: 10.1111/j.0030-1299.2008.16434.x
– ident: e_1_2_7_18_1
  doi: 10.1111/j.1461-0248.2005.00726.x
– ident: e_1_2_7_20_1
– ident: e_1_2_7_12_1
  doi: 10.1111/2041-210X.12242
– ident: e_1_2_7_21_1
  doi: 10.1371/journal.pbio.1001292
– ident: e_1_2_7_31_1
  doi: 10.1111/2041-210X.12221
– ident: e_1_2_7_45_1
  doi: 10.1371/journal.pbio.1002415
– ident: e_1_2_7_43_1
  doi: 10.1111/2041-210X.12280
– ident: e_1_2_7_9_1
  doi: 10.1111/geb.12216
– ident: e_1_2_7_36_1
  doi: 10.1111/j.1541-0420.2012.01824.x
– ident: e_1_2_7_34_1
  doi: 10.1890/07-2153.1
– ident: e_1_2_7_40_1
  doi: 10.1073/pnas.0901637106
– ident: e_1_2_7_44_1
  doi: 10.1111/j.1366-9516.2005.00143.x
– ident: e_1_2_7_8_1
  doi: 10.1111/ecog.01925
– ident: e_1_2_7_39_1
  doi: 10.1111/j.1461-0248.2007.01107.x
– ident: e_1_2_7_37_1
  doi: 10.1111/2041-210X.12352
– ident: e_1_2_7_22_1
  doi: 10.1111/j.1523-1739.2007.00847.x
– ident: e_1_2_7_28_1
  doi: 10.1111/geb.12453
– ident: e_1_2_7_3_1
  doi: 10.1111/j.1749-6632.2011.06440.x
– ident: e_1_2_7_6_1
  doi: 10.1126/science.1200303
– ident: e_1_2_7_30_1
  doi: 10.1111/j.1466-8238.2011.00663.x
– ident: e_1_2_7_16_1
  doi: 10.1002/joc.1276
– ident: e_1_2_7_10_1
  doi: 10.1146/annurev.ecolsys.110308.120159
– ident: e_1_2_7_5_1
  doi: 10.1111/j.1467-9876.2011.00769.x
– volume-title: Conservation biogeography
  year: 2004
  ident: e_1_2_7_25_1
– ident: e_1_2_7_29_1
  doi: 10.1038/ncomms9221
– ident: e_1_2_7_42_1
  doi: 10.1214/10-AOAS331
– ident: e_1_2_7_27_1
  doi: 10.1111/j.1600-0587.2013.07872.x
– ident: e_1_2_7_11_1
  doi: 10.1214/13-AOAS667
– ident: e_1_2_7_14_1
  doi: 10.1890/06-0539
– ident: e_1_2_7_35_1
– ident: e_1_2_7_41_1
  doi: 10.1016/j.biocon.2009.05.006
– ident: e_1_2_7_23_1
  doi: 10.1016/j.tree.2011.09.007
– ident: e_1_2_7_24_1
  doi: 10.1038/nature11631
– ident: e_1_2_7_32_1
  doi: 10.1126/science.1229931
– ident: e_1_2_7_13_1
  doi: 10.1111/j.1461-0248.2005.00792.x
– ident: e_1_2_7_4_1
  doi: 10.1371/journal.pbio.1000385
– ident: e_1_2_7_26_1
  doi: 10.1111/j.1466-8238.2008.00420.x
– ident: e_1_2_7_2_1
  doi: 10.1111/j.2041-210X.2011.00141.x
– ident: e_1_2_7_33_1
  doi: 10.1016/j.ecolmodel.2005.03.026
– ident: e_1_2_7_19_1
  doi: 10.1111/j.1461-0248.2005.00726.x
SSID ssj0005456
Score 2.48274
Snippet Aim: Knowledge of species geographical distributions is critical for many ecological and evolutionary questions and underpins effective conservation...
Aim Knowledge of species geographical distributions is critical for many ecological and evolutionary questions and underpins effective conservation...
Aim Knowledge of species geographical distributions is critical for many ecological and evolutionary questions and underpins effective conservation...
AIM: Knowledge of species geographical distributions is critical for many ecological and evolutionary questions and underpins effective conservation...
SourceID proquest
crossref
wiley
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 243
SubjectTerms biogeography
case studies
computer software
decision making
Ecological niche model
expert opinion
habitats
linear models
MACROECOLOGICAL METHODS
maximum entropy
Poisson point process
prediction
species distribution model
vegetation types
Title Integrating occurrence data and expert maps for improved species range predictions
URI https://www.jstor.org/stable/44214785
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgeb.12539
https://www.proquest.com/docview/1856378475
https://www.proquest.com/docview/1859498193
https://www.proquest.com/docview/2020909301
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB9EEHyx9fTwrC2x9MGXPXaT7G5Cn6rcqYX2QSrcQ2HJZymte8d9PLR_fSfZD7VUKL4FMgvJJpP5TTLzG4B3XhplhHWJ5oYn3FNsee4TKQy3UqlMq3Df8elzcXXLP87y2Ra873JhGn6I_sItaEY8r4OCK716oOTfnB6jdWYheS_EagVAdHNPHRWQQZNZVCRoBGctq1CI4um_fGSLmnDER0DzIVyN9mb6Ar52I23CTH6MN2s9Nr__InF85lRewl6LQ8mHZuPsw5arB7AziRzWvwYwnNwnwKFYewKsDuDmuuWXQJNH5sZEeifjSIg0Jaq2JJYMWJM7tVgRBMTke7y1cJaEnE50y8kypDOQxTK8EMVNfwi308mXi6ukrcuQGCZymRinS0oz6wvJWOG4o9Shn5XlVlsmLePKlFRYLkuPzpUofSqt414gdsxLnVo2hO16XrsjIJpRR1NtufGS50KKVCFi4wXLmM60lCM461aoMi1peaid8bPqnBf8d1X8dyN424suGqaOfwkN4zL3EpyHQk0iH8FJt-5Vq8WrCrFMwUq039h92nej_oVHFVW7-SbKSC4RV7GnZShicplKPEtxPnEjPD3C6nJyHhvH_y_6CnZpQBsxmPwEttfLjXuNWGmt30Sl-ANntw95
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgSXAoVVtxQwiAOXrBLbSWyJC48tW2h7qFppLyjyE6HS7Gofh_LrGTuPtohKiJslTyQ79ni-sWe-AXjjpVFGWJdobnjCPcWW5z6RwnArlcq0CvcdR8fF5Ix_mebTDXjX5cI0_BD9hVvQjHheBwUPF9LXtPy70yM0z0zegbuhondgzv90ckUeFbBBk1tUJGgGpy2vUIjj6T-9YY2agMQbUPM6YI0WZ_8hfOvG2gSanI_WKz0yv_6gcfzfyTyCrRaKkvfN3nkMG67ehnvjSGN9uQ2D8VUOHIq1h8DyCZwctBQTaPXIzJjI8GQcCcGmRNWWxKoBK3Kh5kuCmJj8iBcXzpKQ1omeOVmEjAYyX4RHorjvn8LZ_vj04yRpSzMkholcJsbpktLM-kIyVjjuKHXoamW51ZZJy7gyJRWWy9KjfyVKn0rruBcIH_NSp5YNYLOe1W4HiGbU0VRbbrzkuZAiVQjaeMEypjMt5RDedktUmZa3PJTP-Fl1_gv-uyr-uyG87kXnDVnH34QGcZ17Cc5DrSaRD2GvW_iqVeRlhXCmYCWacOx-1XejCoZ3FVW72TrKSC4RWrHbZSjCcplKPE5xPnEn3D7C6vP4Q2zs_rvoS7g_OT06rA4Pjr8-gwc0gI8YW74Hm6vF2j1H6LTSL6KG_AZU7hOV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9qRfGl1erh1apRfPBlj90ku5vgk7V3tn4UKRbuQVjyWcR277iPB_3rnWQ_2ooF8S2QWUg2mcxvkpnfALzy0igjrEs0NzzhnmLLc59IYbiVSmVahfuOz8fF4Sn_MM2nG_Cmy4Vp-CH6C7egGfG8Dgo-t_6Kkp85PULrzOQtuM2LVIa6DQcnl9xRARo0qUVFglZw2tIKhTCe_tNrxqiJR7yGNK_i1WhwJtvwrRtqE2fyY7Re6ZH59QeL43_O5T5stUCUvG12zgPYcPUO3BlHEuufOzAYX2bAoVh7BCwfwslRSzCBNo_MjIn8TsaREGpKVG1JrBmwIhdqviSIiMn3eG3hLAlJneiXk0XIZyDzRXgiirv-EZxOxl_fHSZtYYbEMJHLxDhdUppZX0jGCscdpQ4drSy32jJpGVempMJyWXr0rkTpU2kd9wLBY17q1LIBbNaz2j0Gohl1NNWWGy95LqRIFUI2XrCM6UxLOYTX3QpVpmUtD8UzzqvOe8F_V8V_N4SXvei8oer4m9AgLnMvwXmo1CTyIex16161arysEMwUrEQDjt0v-m5UwPCqomo3W0cZySUCK3azDEVQLlOJhynOJ26Em0dYvR_vx8buv4s-h7tfDibVp6Pjj0_gHg3IIwaW78HmarF2TxE3rfSzqB-_AQv5EkQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+occurrence+data+and+expert+maps+for+improved+species+range+predictions&rft.jtitle=Global+ecology+and+biogeography&rft.au=Merow%2C+Cory&rft.au=Wilson%2C+Adam+M.&rft.au=Jetz%2C+Walter&rft.date=2017-02-01&rft.pub=John+Wiley+%26+Sons+Ltd&rft.issn=1466-822X&rft.eissn=1466-8238&rft.volume=26&rft.issue=1%2F2&rft.spage=243&rft.epage=258&rft_id=info:doi/10.1111%2Fgeb.12539&rft.externalDocID=44214785
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-822X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-822X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-822X&client=summon