Integrating occurrence data and expert maps for improved species range predictions
Aim: Knowledge of species geographical distributions is critical for many ecological and evolutionary questions and underpins effective conservation decision-making, yet it is usually limited in spatial resolution or reliability. Over large spatial extents, range predictions are typically derived fr...
Saved in:
Published in | Global ecology and biogeography Vol. 26; no. 1/2; pp. 243 - 258 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
John Wiley & Sons Ltd
01.02.2017
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aim: Knowledge of species geographical distributions is critical for many ecological and evolutionary questions and underpins effective conservation decision-making, yet it is usually limited in spatial resolution or reliability. Over large spatial extents, range predictions are typically derived from expert knowledge or, increasingly, species distribution models based on individual occurrence records. Expert maps are useful at coarse resolution, where they are suitable for delineating unoccupied regions. In contrast, point records typically provide finerscale occurrence information that can be characterized for its environmental association, but usually suffers from observer biases and does not representatively or fully address the geographical or environmental range occupied by a species. Innovation: We develop a new modelling methodology to combine the complementary informative attributes of both data types to improve fine-scale, large-extent predictions. We use expert delineations to constrain predictions of a species distribution model parameterized with incidental point occurrence records. We introduce a maximum entropy approach for combining the two data types and generalize it to Poisson point process models. We illustrate critical decision making during model construction using two detailed case studies and illustrate features more generally with applications to species with vastly different range and data attributes. Our methods are illustrated in the Supporting Information and with a new R package, bossMaps, that integrates with existing generalized linear modelling and Maxent software. Main conclusions: Our modelling strategy flexibly accommodates expert maps with different levels of bias and precision. The approach can also be useful with other coarse sources of spatially explicit information, including habitat associations, elevational bands or vegetation types. The flexible nature of this methodological innovation can support improved characterization of species distributions for a variety of applications and is being implemented as a standard element underpinning integrative species distribution predictions in the Map of Life (https://mol.org/). |
---|---|
AbstractList | Aim: Knowledge of species geographical distributions is critical for many ecological and evolutionary questions and underpins effective conservation decision-making, yet it is usually limited in spatial resolution or reliability. Over large spatial extents, range predictions are typically derived from expert knowledge or, increasingly, species distribution models based on individual occurrence records. Expert maps are useful at coarse resolution, where they are suitable for delineating unoccupied regions. In contrast, point records typically provide finerscale occurrence information that can be characterized for its environmental association, but usually suffers from observer biases and does not representatively or fully address the geographical or environmental range occupied by a species. Innovation: We develop a new modelling methodology to combine the complementary informative attributes of both data types to improve fine-scale, large-extent predictions. We use expert delineations to constrain predictions of a species distribution model parameterized with incidental point occurrence records. We introduce a maximum entropy approach for combining the two data types and generalize it to Poisson point process models. We illustrate critical decision making during model construction using two detailed case studies and illustrate features more generally with applications to species with vastly different range and data attributes. Our methods are illustrated in the Supporting Information and with a new R package, bossMaps, that integrates with existing generalized linear modelling and Maxent software. Main conclusions: Our modelling strategy flexibly accommodates expert maps with different levels of bias and precision. The approach can also be useful with other coarse sources of spatially explicit information, including habitat associations, elevational bands or vegetation types. The flexible nature of this methodological innovation can support improved characterization of species distributions for a variety of applications and is being implemented as a standard element underpinning integrative species distribution predictions in the Map of Life (https://mol.org/). Aim Knowledge of species geographical distributions is critical for many ecological and evolutionary questions and underpins effective conservation decision-making, yet it is usually limited in spatial resolution or reliability. Over large spatial extents, range predictions are typically derived from expert knowledge or, increasingly, species distribution models based on individual occurrence records. Expert maps are useful at coarse resolution, where they are suitable for delineating unoccupied regions. In contrast, point records typically provide finer-scale occurrence information that can be characterized for its environmental association, but usually suffers from observer biases and does not representatively or fully address the geographical or environmental range occupied by a species. Innovation We develop a new modelling methodology to combine the complementary informative attributes of both data types to improve fine-scale, large-extent predictions. We use expert delineations to constrain predictions of a species distribution model parameterized with incidental point occurrence records. We introduce a maximum entropy approach for combining the two data types and generalize it to Poisson point process models. We illustrate critical decision making during model construction using two detailed case studies and illustrate features more generally with applications to species with vastly different range and data attributes. Our methods are illustrated in the Supporting Information and with a new R package, bossMaps, that integrates with existing generalized linear modelling and Maxent software. Main conclusions Our modelling strategy flexibly accommodates expert maps with different levels of bias and precision. The approach can also be useful with other coarse sources of spatially explicit information, including habitat associations, elevational bands or vegetation types. The flexible nature of this methodological innovation can support improved characterization of species distributions for a variety of applications and is being implemented as a standard element underpinning integrative species distribution predictions in the Map of Life (https://mol.org/). Aim Knowledge of species geographical distributions is critical for many ecological and evolutionary questions and underpins effective conservation decision‐making, yet it is usually limited in spatial resolution or reliability. Over large spatial extents, range predictions are typically derived from expert knowledge or, increasingly, species distribution models based on individual occurrence records. Expert maps are useful at coarse resolution, where they are suitable for delineating unoccupied regions. In contrast, point records typically provide finer‐scale occurrence information that can be characterized for its environmental association, but usually suffers from observer biases and does not representatively or fully address the geographical or environmental range occupied by a species. Innovation We develop a new modelling methodology to combine the complementary informative attributes of both data types to improve fine‐scale, large‐extent predictions. We use expert delineations to constrain predictions of a species distribution model parameterized with incidental point occurrence records. We introduce a maximum entropy approach for combining the two data types and generalize it to Poisson point process models. We illustrate critical decision making during model construction using two detailed case studies and illustrate features more generally with applications to species with vastly different range and data attributes. Our methods are illustrated in the Supporting Information and with a new R package, bossMaps, that integrates with existing generalized linear modelling and Maxent software. Main conclusions Our modelling strategy flexibly accommodates expert maps with different levels of bias and precision. The approach can also be useful with other coarse sources of spatially explicit information, including habitat associations, elevational bands or vegetation types. The flexible nature of this methodological innovation can support improved characterization of species distributions for a variety of applications and is being implemented as a standard element underpinning integrative species distribution predictions in the Map of Life (https://mol.org/). |
Author | Merow, Cory Wilson, Adam M. Jetz, Walter |
Author_xml | – sequence: 1 givenname: Cory surname: Merow fullname: Merow, Cory – sequence: 2 givenname: Adam M. surname: Wilson fullname: Wilson, Adam M. – sequence: 3 givenname: Walter surname: Jetz fullname: Jetz, Walter |
BookMark | eNqFkc1qGzEURkVJoYnbRR-gIMgmXTjR74y0TIyTGgKF0kJ3gyzdMTJjaSLJSfz2HceuFyYh2lwtzrl8l-8MnYQYAKGvlFzS4V0tYH5JmeT6AzqloqrGinF1cvizv5_QWc5LQogUsjpFv2ahwCKZ4sMCR2vXKUGwgJ0pBpvgMDz3kApemT7jNibsV32Kj-Bw7sF6yDiZsADcJ3DeFh9D_ow-tqbL8GU_R-jP7fT35Mf4_ufdbHJ9P7ZcST22MK8Zo66tNOcVCGAMhJZUurnj2nFhbM2UE7pumdSqbol2IFolKynrOXF8hC52e4dAD2vIpVn5bKHrTIC4zg0jjGiiOaHvonQIJLSiQ5IROj9Cl3GdwnDIlqp4rUQtB-pqR9kUc07QNtYXsz2_JOO7hpJmW0cz1NG81DEY34-MPvmVSZtX2f32J9_B5m2wuZve_De-7YxlLjEdDCEYFbWS_B9JaqQz |
CODEN | GEBIFS |
CitedBy_id | crossref_primary_10_1016_j_envsoft_2020_104806 crossref_primary_10_1186_s40657_018_0098_5 crossref_primary_10_1016_j_ecoinf_2019_101024 crossref_primary_10_1038_s41467_024_48276_3 crossref_primary_10_1111_geb_13911 crossref_primary_10_1111_2041_210X_14080 crossref_primary_10_1111_ddi_13970 crossref_primary_10_1111_nph_18158 crossref_primary_10_1111_jbi_13619 crossref_primary_10_1016_j_jenvman_2019_02_031 crossref_primary_10_1111_ecog_04327 crossref_primary_10_1016_j_ecoinf_2023_102127 crossref_primary_10_1016_j_gecco_2024_e03226 crossref_primary_10_1111_ecog_06268 crossref_primary_10_1002_ecy_2710 crossref_primary_10_1111_jbi_13220 crossref_primary_10_1111_jbi_15125 crossref_primary_10_1002_ecy_4175 crossref_primary_10_1038_s41559_019_0826_1 crossref_primary_10_1088_1748_9326_ab0cb5 crossref_primary_10_1111_2041_210X_13110 crossref_primary_10_1111_geb_13792 crossref_primary_10_1111_fwb_70014 crossref_primary_10_3390_insects15110879 crossref_primary_10_1111_2041_210X_13283 crossref_primary_10_1111_cobi_14221 crossref_primary_10_1111_cobi_13373 crossref_primary_10_1111_geb_12611 crossref_primary_10_1111_ddi_13424 crossref_primary_10_1371_journal_pone_0214522 crossref_primary_10_1038_s41597_022_01128_5 crossref_primary_10_1017_S0021859620000350 crossref_primary_10_1111_cobi_13492 crossref_primary_10_1002_ece3_70633 crossref_primary_10_1111_ecog_06731 crossref_primary_10_1017_pab_2024_16 crossref_primary_10_1111_csp2_13281 crossref_primary_10_1038_s41467_020_15407_5 crossref_primary_10_1016_j_gecco_2022_e02068 crossref_primary_10_1017_S0959270921000137 crossref_primary_10_3390_conservation2020023 crossref_primary_10_1016_j_biocon_2023_110118 crossref_primary_10_3390_f14051010 crossref_primary_10_1371_journal_pone_0221901 crossref_primary_10_1016_j_biocon_2020_108599 crossref_primary_10_1111_ecog_04627 crossref_primary_10_1002_ece3_6753 crossref_primary_10_1016_j_tree_2023_01_003 crossref_primary_10_1111_cobi_70015 crossref_primary_10_1002_ece3_6596 crossref_primary_10_1111_ecog_05877 crossref_primary_10_1002_ajb2_1059 crossref_primary_10_1111_ecog_04503 crossref_primary_10_1111_ecog_05119 crossref_primary_10_1111_jbi_14847 crossref_primary_10_1007_s40808_024_02017_z crossref_primary_10_1007_s00267_021_01525_3 crossref_primary_10_1016_j_gecco_2024_e02831 crossref_primary_10_1038_s41467_022_32546_z crossref_primary_10_1111_jbi_14330 crossref_primary_10_1590_1809_4392202301392 crossref_primary_10_1111_geb_12759 crossref_primary_10_3389_fams_2017_00017 crossref_primary_10_1016_j_envres_2023_117537 crossref_primary_10_1186_s12983_023_00515_x crossref_primary_10_1111_geb_13008 crossref_primary_10_1016_j_ecoinf_2021_101501 crossref_primary_10_1017_S0954102021000183 crossref_primary_10_1002_ecs2_4284 crossref_primary_10_1177_1940082917724133 crossref_primary_10_1111_ecog_06794 crossref_primary_10_1111_ecog_06992 crossref_primary_10_1111_jbi_13156 crossref_primary_10_1016_j_tree_2019_08_006 crossref_primary_10_1111_gcb_16114 crossref_primary_10_1016_j_biocon_2024_110511 crossref_primary_10_1111_nph_15934 crossref_primary_10_3897_BDJ_9_e59202 crossref_primary_10_1016_j_biocon_2024_110876 |
Cites_doi | 10.1214/07-BA206 10.1093/jxb/10.2.290 10.2478/v10208-011-0016-2 10.1111/j.0030-1299.2008.16434.x 10.1111/j.1461-0248.2005.00726.x 10.1111/2041-210X.12242 10.1371/journal.pbio.1001292 10.1111/2041-210X.12221 10.1371/journal.pbio.1002415 10.1111/2041-210X.12280 10.1111/geb.12216 10.1111/j.1541-0420.2012.01824.x 10.1890/07-2153.1 10.1073/pnas.0901637106 10.1111/j.1366-9516.2005.00143.x 10.1111/ecog.01925 10.1111/j.1461-0248.2007.01107.x 10.1111/2041-210X.12352 10.1111/j.1523-1739.2007.00847.x 10.1111/geb.12453 10.1111/j.1749-6632.2011.06440.x 10.1126/science.1200303 10.1111/j.1466-8238.2011.00663.x 10.1002/joc.1276 10.1146/annurev.ecolsys.110308.120159 10.1111/j.1467-9876.2011.00769.x 10.1038/ncomms9221 10.1214/10-AOAS331 10.1111/j.1600-0587.2013.07872.x 10.1214/13-AOAS667 10.1890/06-0539 10.1016/j.biocon.2009.05.006 10.1016/j.tree.2011.09.007 10.1038/nature11631 10.1126/science.1229931 10.1111/j.1461-0248.2005.00792.x 10.1371/journal.pbio.1000385 10.1111/j.1466-8238.2008.00420.x 10.1111/j.2041-210X.2011.00141.x 10.1016/j.ecolmodel.2005.03.026 |
ContentType | Journal Article |
Copyright | Copyright © 2017 John Wiley & Sons Ltd. 2016 John Wiley & Sons Ltd Copyright © 2017 John Wiley & Sons Ltd |
Copyright_xml | – notice: Copyright © 2017 John Wiley & Sons Ltd. – notice: 2016 John Wiley & Sons Ltd – notice: Copyright © 2017 John Wiley & Sons Ltd |
DBID | AAYXX CITATION 7QG 7SN 7SS 7ST 7U6 C1K 7S9 L.6 |
DOI | 10.1111/geb.12539 |
DatabaseName | CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Ecology Abstracts Environment Abstracts Sustainability Science Abstracts Animal Behavior Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Entomology Abstracts AGRICOLA Ecology Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology Environmental Sciences |
EISSN | 1466-8238 |
EndPage | 258 |
ExternalDocumentID | 4296172321 10_1111_geb_12539 GEB12539 44214785 |
Genre | article |
GrantInformation_xml | – fundername: NASA Biodiversity Grant funderid: NNX16AQ45G – fundername: NSF Grants funderid: 1565046 ; 1046328 ; 1137366 – fundername: NASA Biodiversity Grant funderid: NNX11AP72G ; DBI 0960550 ; DBI 1262600 ; DEB 1026764 |
GroupedDBID | -~X .3N .GA 0R~ 10A 1OC 29I 33P 4.4 50Y 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5GY 5HH 5LA 5VS 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAEVG AAHBH AAHKG AAHQN AAKGQ AAMMB AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEML ABLJU ABPLY ABPPZ ABPVW ABSQW ABTLG ABXSQ ACAHQ ACCZN ACHIC ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGUYK AGXDD AGYGG AHBTC AHXOZ AIDQK AIDYY AILXY AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ANHSF AQVQM ATUGU AUFTA BFHJK BMNLL BMXJE BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD F00 F01 F04 G-S GODZA HGLYW HZI IHE IPSME IX1 JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A OIG P2W P4D Q11 QB0 ROL RX1 SA0 SUPJJ TN5 UB1 UPT W99 WIH WIK WQJ WXSBR XG1 ZZTAW ~KM .Y3 31~ AAHHS AAISJ AANHP ACBWZ ACCFJ ACRPL ACYXJ ADNMO ADULT ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ASPBG AVWKF AZFZN BDRZF CAG COF DOOOF EQZMY ESX FEDTE GTFYD HF~ HGD HQ2 HTVGU HVGLF JSODD VQP WRC AAYXX AGQPQ CITATION 7QG 7SN 7SS 7ST 7U6 C1K 7S9 L.6 |
ID | FETCH-LOGICAL-c3859-ceb7221df69336e4e22e49515dbd39d34ac728d497f25987f09de4f856557b0d3 |
IEDL.DBID | DR2 |
ISSN | 1466-822X |
IngestDate | Fri Jul 11 18:31:19 EDT 2025 Fri Jul 11 03:25:04 EDT 2025 Fri Jul 25 08:11:11 EDT 2025 Tue Jul 01 01:46:06 EDT 2025 Thu Apr 24 22:59:16 EDT 2025 Wed Jan 22 16:20:06 EST 2025 Thu Jul 03 22:05:39 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1/2 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3859-ceb7221df69336e4e22e49515dbd39d34ac728d497f25987f09de4f856557b0d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0561-053X |
PQID | 1856378475 |
PQPubID | 1066347 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2020909301 proquest_miscellaneous_1859498193 proquest_journals_1856378475 crossref_citationtrail_10_1111_geb_12539 crossref_primary_10_1111_geb_12539 wiley_primary_10_1111_geb_12539_GEB12539 jstor_primary_44214785 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2017 |
PublicationDateYYYYMMDD | 2017-02-01 |
PublicationDate_xml | – month: 02 year: 2017 text: February 2017 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Global ecology and biogeography |
PublicationYear | 2017 |
Publisher | John Wiley & Sons Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons Ltd – name: Wiley Subscription Services, Inc |
References | 2007; 104 2015; 6 2009; 40 2013; 69 2012a; 27 2000; 135 2011 2011; 60 2004 2013; 7 2012; 36 2016; 39 2007; 10 2011; 332 2014; 23 2012; 10 2016; 14 2005; 25 2012b; 491 2014; 5 2012; 3 2013; 36 2013; 339 2006; 190 2005; 8 2008; 117 2008; 22 2015 2007; 2 2009; 142 2009; 19 2012; 1260 2014; 6 2010; 4 2016; 25 2012; 21 1959; 10 2005; 11 2009; 18 2010; 8 2009; 106 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 Lomolino M.V. (e_1_2_7_25_1) 2004 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – year: 2011 – volume: 25 start-page: 1022 year: 2016 end-page: 1036 article-title: Improving niche and range estimates with Maxent and point process models by integrating spatially explicit information publication-title: Global Ecology and Biogeography – volume: 27 start-page: 151 year: 2012a end-page: 159 article-title: Integrating biodiversity distribution knowledge: toward a global map of life publication-title: Trends in Ecology and Evolution – volume: 190 start-page: 231 year: 2006 end-page: 259 article-title: Maximum entropy modeling of species geographic distributions publication-title: Ecological Modelling – volume: 21 start-page: 293 year: 2012 end-page: 304 article-title: Forecasting species ranges by statistical estimation of ecological niches and spatial population dynamics publication-title: Global Ecology and Biogeography – volume: 6 start-page: 366 year: 2015 end-page: 379 article-title: Point process models for presence‐only analysis publication-title: Methods in Ecology and Evolution – volume: 1260 start-page: 66 year: 2012 end-page: 80 article-title: Harnessing the world's biodiversity data: promise and peril in ecological niche modeling of species distributions publication-title: Annals of the New York Academy of Sciences – volume: 40 start-page: 677 year: 2009 end-page: 697 article-title: Species distribution models: ecological explanation and prediction across space and time publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 117 start-page: 847 year: 2008 end-page: 858 article-title: Historical bias in biodiversity inventories affects the observed environmental niche of the species publication-title: Oikos – volume: 19 start-page: 181 year: 2009 end-page: 197 article-title: Sample selection bias and presence‐only distribution models: implications for background and pseudo‐absence data publication-title: Ecological Applications – volume: 22 start-page: 110 year: 2008 end-page: 119 article-title: Ecological correlates and conservation implications of overestimating species geographic ranges publication-title: Conservation Biology – volume: 6 start-page: 424 year: 2014 end-page: 438 article-title: Bias correction in species distribution models: pooling survey and collection data for multiple species publication-title: Methods in Ecology and Evolution – volume: 36 start-page: 1 year: 2012 end-page: 132 article-title: A strict maximum likelihood explanation of MaxEnt, and some implications for distribution modelling publication-title: Sommerfeltia – volume: 6 start-page: 1 year: 2015 end-page: 8 article-title: Global priorities for an effective information basis of biodiversity distributions publication-title: Nature Communications – volume: 3 start-page: 177 year: 2012 end-page: 187 article-title: Comparative interpretation of count, presence–absence and point methods for species distribution models publication-title: Methods in Ecology and Evolution – volume: 23 start-page: 1472 year: 2014 end-page: 1484 article-title: Accounting for imperfect detection and survey bias in statistical analysis of presence‐only data publication-title: Global Ecology and Biogeography – volume: 491 start-page: 444 year: 2012b end-page: 448 article-title: The global diversity of birds in space and time publication-title: Nature – volume: 10 start-page: e1001292 year: 2012 article-title: Global gradients in vertebrate diversity predicted by historical area–productivity dynamics and contemporary environment publication-title: PLoS Biology – volume: 2 start-page: 137 year: 2007 end-page: 166 article-title: A quantitative study of quantile based direct prior elicitation from expert opinion publication-title: Bayesian Analysis – volume: 4 start-page: 1383 year: 2010 end-page: 1402 article-title: Poisson point process models solve the ‘pseudo‐absence problem’ for presence‐only data in ecology publication-title: Annals of Applied Statistics – volume: 14 start-page: e1002415 year: 2016 end-page: e1002420 article-title: Remotely sensed high‐resolution global cloud dynamics for predicting ecosystem and biodiversity distributions publication-title: PLoS Biology – volume: 8 start-page: 319 year: 2005 end-page: 327 article-title: Disparity between range map‐ and survey‐based analyses of species richness: patterns, processes and implications publication-title: Ecology Letters – volume: 106 start-page: 19644 issue: Suppl. 2 year: 2009 article-title: Niches and distributional areas: concepts, methods, and assumptions publication-title: Proceedings of the National Academy of Sciences USA – volume: 8 start-page: e1000385 year: 2010 article-title: Distorted views of biodiversity: spatial and temporal bias in species occurrence data publication-title: PLoS Biology – volume: 25 start-page: 1965 year: 2005 end-page: 1978 article-title: Very high resolution interpolated climate surfaces for global land areas publication-title: International Journal of Climatology – volume: 6 start-page: 389 year: 2014 end-page: 398 article-title: CATS regression: a model based approach to studying trait based community assembly publication-title: Methods in Ecology and Evolution – volume: 11 start-page: 3 year: 2005 end-page: 23 article-title: Conservation biogeography: assessment and prospect publication-title: Diversity and Distributions – volume: 135 start-page: 147 year: 2000 end-page: 186 article-title: Predictive habitat distribution models in ecology publication-title: Ecological Modelling – volume: 36 start-page: 12 year: 2013 end-page: 11 article-title: A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter publication-title: Ecography – volume: 8 start-page: 993 year: 2005 end-page: 1009 article-title: Predicting species distribution: offering more than simple habitat models publication-title: Ecology Letters – volume: 18 start-page: 50 year: 2009 end-page: 63 article-title: Characterizing and predicting species distributions across environments and scales: Argentine ant occurrences in the eye of the beholder publication-title: Global Ecology and Biogeography – volume: 10 start-page: 1115 year: 2007 end-page: 1123 article-title: Grinnellian and Eltonian niches and geographic distributions of species publication-title: Ecology Letters – volume: 39 start-page: 1 year: 2016 end-page: 11 article-title: Model‐based integration of observed and expert‐based information for assessing the geographic and environmental distribution of freshwater species publication-title: Ecography – volume: 5 start-page: 751 year: 2014 end-page: 760 article-title: Quantifying range‐wide variation in population trends from local abundance surveys and widespread opportunistic occurrence records publication-title: Methods in Ecology and Evolution – year: 2004 – volume: 142 start-page: 2282 year: 2009 end-page: 2292 article-title: eBird: a citizen‐based bird observation network in the biological sciences publication-title: Biological Conservation – volume: 69 start-page: 274 year: 2013 end-page: 281 article-title: Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology publication-title: Biometrics – volume: 339 start-page: 277 year: 2013 end-page: 278 article-title: Essential biodiversity variables publication-title: Science – volume: 10 start-page: 290 year: 1959 end-page: 301 article-title: A flexible growth function for empirical use publication-title: Journal of Experimental Botany – volume: 7 start-page: 1917 year: 2013 end-page: 1939 article-title: Finite‐sample equivalence of several statistical models for presence‐only data publication-title: Annals of Applied Statistics – volume: 104 start-page: 13384 year: 2007 end-page: 13389 article-title: Species richness, hotspots, and the scale dependence of range maps in ecology and conservation publication-title: Proceedings of the National Academy of Sciences USA – volume: 332 start-page: 53 year: 2011 end-page: 58 article-title: Beyond predictions: biodiversity conservation in a changing climate publication-title: Science – year: 2015 – volume: 60 start-page: 757 year: 2011 end-page: 776 article-title: Point pattern modelling for degraded presence only data over large regions publication-title: Journal of the Royal Statistical Society: Series C (Applied Statistics) – ident: e_1_2_7_7_1 doi: 10.1214/07-BA206 – ident: e_1_2_7_38_1 doi: 10.1093/jxb/10.2.290 – ident: e_1_2_7_15_1 doi: 10.2478/v10208-011-0016-2 – ident: e_1_2_7_17_1 doi: 10.1111/j.0030-1299.2008.16434.x – ident: e_1_2_7_18_1 doi: 10.1111/j.1461-0248.2005.00726.x – ident: e_1_2_7_20_1 – ident: e_1_2_7_12_1 doi: 10.1111/2041-210X.12242 – ident: e_1_2_7_21_1 doi: 10.1371/journal.pbio.1001292 – ident: e_1_2_7_31_1 doi: 10.1111/2041-210X.12221 – ident: e_1_2_7_45_1 doi: 10.1371/journal.pbio.1002415 – ident: e_1_2_7_43_1 doi: 10.1111/2041-210X.12280 – ident: e_1_2_7_9_1 doi: 10.1111/geb.12216 – ident: e_1_2_7_36_1 doi: 10.1111/j.1541-0420.2012.01824.x – ident: e_1_2_7_34_1 doi: 10.1890/07-2153.1 – ident: e_1_2_7_40_1 doi: 10.1073/pnas.0901637106 – ident: e_1_2_7_44_1 doi: 10.1111/j.1366-9516.2005.00143.x – ident: e_1_2_7_8_1 doi: 10.1111/ecog.01925 – ident: e_1_2_7_39_1 doi: 10.1111/j.1461-0248.2007.01107.x – ident: e_1_2_7_37_1 doi: 10.1111/2041-210X.12352 – ident: e_1_2_7_22_1 doi: 10.1111/j.1523-1739.2007.00847.x – ident: e_1_2_7_28_1 doi: 10.1111/geb.12453 – ident: e_1_2_7_3_1 doi: 10.1111/j.1749-6632.2011.06440.x – ident: e_1_2_7_6_1 doi: 10.1126/science.1200303 – ident: e_1_2_7_30_1 doi: 10.1111/j.1466-8238.2011.00663.x – ident: e_1_2_7_16_1 doi: 10.1002/joc.1276 – ident: e_1_2_7_10_1 doi: 10.1146/annurev.ecolsys.110308.120159 – ident: e_1_2_7_5_1 doi: 10.1111/j.1467-9876.2011.00769.x – volume-title: Conservation biogeography year: 2004 ident: e_1_2_7_25_1 – ident: e_1_2_7_29_1 doi: 10.1038/ncomms9221 – ident: e_1_2_7_42_1 doi: 10.1214/10-AOAS331 – ident: e_1_2_7_27_1 doi: 10.1111/j.1600-0587.2013.07872.x – ident: e_1_2_7_11_1 doi: 10.1214/13-AOAS667 – ident: e_1_2_7_14_1 doi: 10.1890/06-0539 – ident: e_1_2_7_35_1 – ident: e_1_2_7_41_1 doi: 10.1016/j.biocon.2009.05.006 – ident: e_1_2_7_23_1 doi: 10.1016/j.tree.2011.09.007 – ident: e_1_2_7_24_1 doi: 10.1038/nature11631 – ident: e_1_2_7_32_1 doi: 10.1126/science.1229931 – ident: e_1_2_7_13_1 doi: 10.1111/j.1461-0248.2005.00792.x – ident: e_1_2_7_4_1 doi: 10.1371/journal.pbio.1000385 – ident: e_1_2_7_26_1 doi: 10.1111/j.1466-8238.2008.00420.x – ident: e_1_2_7_2_1 doi: 10.1111/j.2041-210X.2011.00141.x – ident: e_1_2_7_33_1 doi: 10.1016/j.ecolmodel.2005.03.026 – ident: e_1_2_7_19_1 doi: 10.1111/j.1461-0248.2005.00726.x |
SSID | ssj0005456 |
Score | 2.48274 |
Snippet | Aim: Knowledge of species geographical distributions is critical for many ecological and evolutionary questions and underpins effective conservation... Aim Knowledge of species geographical distributions is critical for many ecological and evolutionary questions and underpins effective conservation... Aim Knowledge of species geographical distributions is critical for many ecological and evolutionary questions and underpins effective conservation... AIM: Knowledge of species geographical distributions is critical for many ecological and evolutionary questions and underpins effective conservation... |
SourceID | proquest crossref wiley jstor |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 243 |
SubjectTerms | biogeography case studies computer software decision making Ecological niche model expert opinion habitats linear models MACROECOLOGICAL METHODS maximum entropy Poisson point process prediction species distribution model vegetation types |
Title | Integrating occurrence data and expert maps for improved species range predictions |
URI | https://www.jstor.org/stable/44214785 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgeb.12539 https://www.proquest.com/docview/1856378475 https://www.proquest.com/docview/1859498193 https://www.proquest.com/docview/2020909301 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB9EEHyx9fTwrC2x9MGXPXaT7G5Cn6rcqYX2QSrcQ2HJZymte8d9PLR_fSfZD7VUKL4FMgvJJpP5TTLzG4B3XhplhHWJ5oYn3FNsee4TKQy3UqlMq3Df8elzcXXLP87y2Ra873JhGn6I_sItaEY8r4OCK716oOTfnB6jdWYheS_EagVAdHNPHRWQQZNZVCRoBGctq1CI4um_fGSLmnDER0DzIVyN9mb6Ar52I23CTH6MN2s9Nr__InF85lRewl6LQ8mHZuPsw5arB7AziRzWvwYwnNwnwKFYewKsDuDmuuWXQJNH5sZEeifjSIg0Jaq2JJYMWJM7tVgRBMTke7y1cJaEnE50y8kypDOQxTK8EMVNfwi308mXi6ukrcuQGCZymRinS0oz6wvJWOG4o9Shn5XlVlsmLePKlFRYLkuPzpUofSqt414gdsxLnVo2hO16XrsjIJpRR1NtufGS50KKVCFi4wXLmM60lCM461aoMi1peaid8bPqnBf8d1X8dyN424suGqaOfwkN4zL3EpyHQk0iH8FJt-5Vq8WrCrFMwUq039h92nej_oVHFVW7-SbKSC4RV7GnZShicplKPEtxPnEjPD3C6nJyHhvH_y_6CnZpQBsxmPwEttfLjXuNWGmt30Sl-ANntw95 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgSXAoVVtxQwiAOXrBLbSWyJC48tW2h7qFppLyjyE6HS7Gofh_LrGTuPtohKiJslTyQ79ni-sWe-AXjjpVFGWJdobnjCPcWW5z6RwnArlcq0CvcdR8fF5Ix_mebTDXjX5cI0_BD9hVvQjHheBwUPF9LXtPy70yM0z0zegbuhondgzv90ckUeFbBBk1tUJGgGpy2vUIjj6T-9YY2agMQbUPM6YI0WZ_8hfOvG2gSanI_WKz0yv_6gcfzfyTyCrRaKkvfN3nkMG67ehnvjSGN9uQ2D8VUOHIq1h8DyCZwctBQTaPXIzJjI8GQcCcGmRNWWxKoBK3Kh5kuCmJj8iBcXzpKQ1omeOVmEjAYyX4RHorjvn8LZ_vj04yRpSzMkholcJsbpktLM-kIyVjjuKHXoamW51ZZJy7gyJRWWy9KjfyVKn0rruBcIH_NSp5YNYLOe1W4HiGbU0VRbbrzkuZAiVQjaeMEypjMt5RDedktUmZa3PJTP-Fl1_gv-uyr-uyG87kXnDVnH34QGcZ17Cc5DrSaRD2GvW_iqVeRlhXCmYCWacOx-1XejCoZ3FVW72TrKSC4RWrHbZSjCcplKPE5xPnEn3D7C6vP4Q2zs_rvoS7g_OT06rA4Pjr8-gwc0gI8YW74Hm6vF2j1H6LTSL6KG_AZU7hOV |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9qRfGl1erh1apRfPBlj90ku5vgk7V3tn4UKRbuQVjyWcR277iPB_3rnWQ_2ooF8S2QWUg2mcxvkpnfALzy0igjrEs0NzzhnmLLc59IYbiVSmVahfuOz8fF4Sn_MM2nG_Cmy4Vp-CH6C7egGfG8Dgo-t_6Kkp85PULrzOQtuM2LVIa6DQcnl9xRARo0qUVFglZw2tIKhTCe_tNrxqiJR7yGNK_i1WhwJtvwrRtqE2fyY7Re6ZH59QeL43_O5T5stUCUvG12zgPYcPUO3BlHEuufOzAYX2bAoVh7BCwfwslRSzCBNo_MjIn8TsaREGpKVG1JrBmwIhdqviSIiMn3eG3hLAlJneiXk0XIZyDzRXgiirv-EZxOxl_fHSZtYYbEMJHLxDhdUppZX0jGCscdpQ4drSy32jJpGVempMJyWXr0rkTpU2kd9wLBY17q1LIBbNaz2j0Gohl1NNWWGy95LqRIFUI2XrCM6UxLOYTX3QpVpmUtD8UzzqvOe8F_V8V_N4SXvei8oer4m9AgLnMvwXmo1CTyIex16161arysEMwUrEQDjt0v-m5UwPCqomo3W0cZySUCK3azDEVQLlOJhynOJ26Em0dYvR_vx8buv4s-h7tfDibVp6Pjj0_gHg3IIwaW78HmarF2TxE3rfSzqB-_AQv5EkQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+occurrence+data+and+expert+maps+for+improved+species+range+predictions&rft.jtitle=Global+ecology+and+biogeography&rft.au=Merow%2C+Cory&rft.au=Wilson%2C+Adam+M.&rft.au=Jetz%2C+Walter&rft.date=2017-02-01&rft.pub=John+Wiley+%26+Sons+Ltd&rft.issn=1466-822X&rft.eissn=1466-8238&rft.volume=26&rft.issue=1%2F2&rft.spage=243&rft.epage=258&rft_id=info:doi/10.1111%2Fgeb.12539&rft.externalDocID=44214785 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-822X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-822X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-822X&client=summon |