Advances in Doped ZnO Nanostructures for Gas Sensor
Gas sensors based on metal oxides semiconductor (MOS) have attracted extensive attention from both academic and industry. ZnO, as a typical MOS, exhibits potential applications in toxic gas detection, owning to its wide band gap, n‐type transport characteristic and excellent electrical performance....
Saved in:
Published in | Chemical record Vol. 20; no. 12; pp. 1553 - 1567 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Gas sensors based on metal oxides semiconductor (MOS) have attracted extensive attention from both academic and industry. ZnO, as a typical MOS, exhibits potential applications in toxic gas detection, owning to its wide band gap, n‐type transport characteristic and excellent electrical performance. Meanwhile, doping is an effective way to improve the sensing performance of ZnO materials. In this review, the effects of different types of doping on morphology, crystal structure, band gap and depletion layer of ZnO materials are comprehensively discussed. Theoretical analysis on the strategies for enhancing the sensing properties of ZnO is also provided. This review puts forward the reasonable insight for designing efficient n‐type ZnO‐based semiconductor oxide sensing materials.
Gas sensor is still a research hotspot in academia and industry. It is necessary to prepare high‐efficiency sensing material.This review focuses on the influence of doping on the improvement of ZnO sensing performance. |
---|---|
AbstractList | Gas sensors based on metal oxides semiconductor (MOS) have attracted extensive attention from both academic and industry. ZnO, as a typical MOS, exhibits potential applications in toxic gas detection, owning to its wide band gap, n-type transport characteristic and excellent electrical performance. Meanwhile, doping is an effective way to improve the sensing performance of ZnO materials. In this review, the effects of different types of doping on morphology, crystal structure, band gap and depletion layer of ZnO materials are comprehensively discussed. Theoretical analysis on the strategies for enhancing the sensing properties of ZnO is also provided. This review puts forward the reasonable insight for designing efficient n-type ZnO-based semiconductor oxide sensing materials.Gas sensors based on metal oxides semiconductor (MOS) have attracted extensive attention from both academic and industry. ZnO, as a typical MOS, exhibits potential applications in toxic gas detection, owning to its wide band gap, n-type transport characteristic and excellent electrical performance. Meanwhile, doping is an effective way to improve the sensing performance of ZnO materials. In this review, the effects of different types of doping on morphology, crystal structure, band gap and depletion layer of ZnO materials are comprehensively discussed. Theoretical analysis on the strategies for enhancing the sensing properties of ZnO is also provided. This review puts forward the reasonable insight for designing efficient n-type ZnO-based semiconductor oxide sensing materials. Gas sensors based on metal oxides semiconductor (MOS) have attracted extensive attention from both academic and industry. ZnO, as a typical MOS, exhibits potential applications in toxic gas detection, owning to its wide band gap, n‐type transport characteristic and excellent electrical performance. Meanwhile, doping is an effective way to improve the sensing performance of ZnO materials. In this review, the effects of different types of doping on morphology, crystal structure, band gap and depletion layer of ZnO materials are comprehensively discussed. Theoretical analysis on the strategies for enhancing the sensing properties of ZnO is also provided. This review puts forward the reasonable insight for designing efficient n‐type ZnO‐based semiconductor oxide sensing materials. Gas sensor is still a research hotspot in academia and industry. It is necessary to prepare high‐efficiency sensing material.This review focuses on the influence of doping on the improvement of ZnO sensing performance. Gas sensors based on metal oxides semiconductor (MOS) have attracted extensive attention from both academic and industry. ZnO, as a typical MOS, exhibits potential applications in toxic gas detection, owning to its wide band gap, n‐type transport characteristic and excellent electrical performance. Meanwhile, doping is an effective way to improve the sensing performance of ZnO materials. In this review, the effects of different types of doping on morphology, crystal structure, band gap and depletion layer of ZnO materials are comprehensively discussed. Theoretical analysis on the strategies for enhancing the sensing properties of ZnO is also provided. This review puts forward the reasonable insight for designing efficient n‐type ZnO‐based semiconductor oxide sensing materials. |
Author | Fang, Shao‐Ming Li, Yu‐Liang Zhang, Yong‐Hui Zhang, Hao‐Li Gong, Fei‐Long Wang, Chao‐Nan |
Author_xml | – sequence: 1 givenname: Chao‐Nan surname: Wang fullname: Wang, Chao‐Nan organization: Zhengzhou University of Light Industry – sequence: 2 givenname: Yu‐Liang surname: Li fullname: Li, Yu‐Liang organization: Zhengzhou University of Light Industry – sequence: 3 givenname: Fei‐Long surname: Gong fullname: Gong, Fei‐Long organization: Zhengzhou University of Light Industry – sequence: 4 givenname: Yong‐Hui orcidid: 0000-0001-6546-8112 surname: Zhang fullname: Zhang, Yong‐Hui email: yonghui.zhang@zzuli.edu.cn organization: Zhengzhou University of Light Industry – sequence: 5 givenname: Shao‐Ming surname: Fang fullname: Fang, Shao‐Ming email: mingfang@zzuli.edu.cn organization: Zhengzhou University of Light Industry – sequence: 6 givenname: Hao‐Li surname: Zhang fullname: Zhang, Hao‐Li email: haoli.zhang@lzu.edu.cn organization: Lanzhou University |
BookMark | eNp9kEFLAzEQhYNUsK0evS948bI12c1ukmOpWoViQevFS8hmZyFlm9RkV-m_N1pRKOhcZmC-N294IzSwzgJC5wRPCMbZVaf9JMMZjsX5ERqSIuMpLgUZfM0s5UKIEzQKYY0xIZSxIcqn9ZuyGkJibHLttlAnL3aZPCjrQud73fU-7hrnk7kKyRPY4PwpOm5UG-Dsu4_R8-3NanaXLpbz-9l0keqcFzyFqhAVlKqsiWI8E02uObCa1RWuc9BUUF5ylUOpeVUBpUwXtADBCloT0sTNGF3u7269e-0hdHJjgoa2VRZcH2RGKecFLlke0YsDdO16b-N3kSoFJtGLRirdU9q7EDw0cuvNRvmdJFh-RihjhPInwsjnB7w2neqMs51Xpv1Txfaqd9PC7n8LuZo9_io_AE5shVs |
CitedBy_id | crossref_primary_10_3390_s21134425 crossref_primary_10_1016_j_tsf_2023_140189 crossref_primary_10_1016_j_snb_2022_131482 crossref_primary_10_3390_metabo13030328 crossref_primary_10_1021_acsanm_3c04424 crossref_primary_10_1002_adsr_202300035 crossref_primary_10_1016_j_ceramint_2024_09_195 crossref_primary_10_1021_acsomega_1c00984 crossref_primary_10_1088_2058_8585_ac5214 crossref_primary_10_1002_admt_202302081 crossref_primary_10_1002_ente_202200113 crossref_primary_10_1016_j_snb_2024_135729 crossref_primary_10_1007_s10854_023_11582_5 crossref_primary_10_1016_j_snb_2023_133823 crossref_primary_10_1016_j_snb_2024_136255 crossref_primary_10_1016_j_ceramint_2023_07_222 crossref_primary_10_1016_j_ceramint_2024_04_418 crossref_primary_10_1016_j_physb_2024_416109 crossref_primary_10_1016_j_cej_2025_161075 crossref_primary_10_1016_j_mssp_2022_106807 crossref_primary_10_1007_s12598_023_02406_w crossref_primary_10_1016_j_snb_2024_135671 crossref_primary_10_1016_j_snb_2024_136802 crossref_primary_10_1016_j_snb_2023_134084 crossref_primary_10_3390_micro3020040 crossref_primary_10_3390_ma15041515 crossref_primary_10_1016_j_bsecv_2021_11_004 crossref_primary_10_1016_j_apsusc_2024_160668 crossref_primary_10_1016_j_chemosphere_2023_140838 crossref_primary_10_1007_s00339_021_04461_5 crossref_primary_10_1007_s00339_024_07643_z crossref_primary_10_1016_j_cplett_2025_142018 crossref_primary_10_1007_s12598_024_03027_7 crossref_primary_10_1016_j_ceramint_2024_11_439 crossref_primary_10_1007_s42247_021_00262_x crossref_primary_10_1016_j_snb_2025_137529 crossref_primary_10_1007_s00339_023_07031_z crossref_primary_10_1109_JSEN_2024_3389931 crossref_primary_10_1002_aisy_202200169 crossref_primary_10_1007_s10971_022_05785_1 crossref_primary_10_1007_s42341_023_00436_w crossref_primary_10_1016_j_apsusc_2022_156094 crossref_primary_10_1109_JSEN_2022_3214210 crossref_primary_10_1016_j_apsusc_2022_153418 crossref_primary_10_2139_ssrn_3996071 crossref_primary_10_1016_j_jallcom_2024_177829 crossref_primary_10_3390_s24041286 crossref_primary_10_1016_j_jallcom_2024_176856 crossref_primary_10_1016_j_apsusc_2023_158828 crossref_primary_10_1016_j_sna_2024_115210 crossref_primary_10_1007_s10854_024_12912_x crossref_primary_10_1039_D3DT00338H crossref_primary_10_1007_s11082_023_04872_z crossref_primary_10_1016_j_commatsci_2025_113774 crossref_primary_10_1021_acsami_1c16637 crossref_primary_10_1021_acssensors_4c01374 crossref_primary_10_1007_s10854_024_12284_2 crossref_primary_10_1021_acsanm_2c04447 crossref_primary_10_1016_j_cplett_2025_142043 crossref_primary_10_1002_tcr_202300106 crossref_primary_10_1051_epjconf_202430500016 crossref_primary_10_1016_j_apsusc_2023_156536 crossref_primary_10_3389_fmats_2022_869493 crossref_primary_10_1002_admt_202400184 crossref_primary_10_1016_j_jcis_2021_05_082 crossref_primary_10_1016_j_rsurfi_2025_100439 crossref_primary_10_1007_s11664_024_11280_w crossref_primary_10_1016_j_snb_2024_135482 crossref_primary_10_1016_j_ceramint_2022_03_017 crossref_primary_10_1016_j_jallcom_2022_166663 crossref_primary_10_1016_j_elecom_2024_107834 crossref_primary_10_1016_j_matpr_2022_11_422 crossref_primary_10_3390_nano11061555 crossref_primary_10_1016_j_cej_2024_157453 crossref_primary_10_26599_JAC_2024_9220873 crossref_primary_10_1016_j_materresbull_2024_113156 crossref_primary_10_1016_j_ceramint_2024_10_450 crossref_primary_10_1016_j_cclet_2022_04_023 crossref_primary_10_3390_chemosensors11060334 crossref_primary_10_1016_j_sna_2022_113740 crossref_primary_10_1002_pssa_202200247 crossref_primary_10_1007_s40097_022_00475_4 crossref_primary_10_1007_s10854_024_13123_0 crossref_primary_10_1016_j_inoche_2022_110083 crossref_primary_10_1016_j_microc_2024_111838 crossref_primary_10_1088_1361_6528_ad33e8 crossref_primary_10_1007_s11082_023_05942_y crossref_primary_10_1007_s43939_023_00066_2 crossref_primary_10_3390_chemosensors11010065 crossref_primary_10_1360_TB_2023_0340 crossref_primary_10_3390_coatings14060693 crossref_primary_10_1108_SR_03_2022_0128 crossref_primary_10_3390_molecules29143373 crossref_primary_10_1016_j_sna_2025_116396 crossref_primary_10_1007_s10965_022_03169_1 crossref_primary_10_1007_s41365_024_01600_4 crossref_primary_10_1016_j_snb_2023_134447 crossref_primary_10_1016_j_snb_2023_134689 crossref_primary_10_1016_j_apsadv_2025_100736 crossref_primary_10_1016_j_snb_2023_134203 crossref_primary_10_1007_s00894_024_06168_9 crossref_primary_10_1016_j_surfin_2024_104312 crossref_primary_10_1088_1742_6596_2426_1_012050 crossref_primary_10_1016_j_snb_2024_135542 crossref_primary_10_1016_j_sna_2021_113310 crossref_primary_10_3390_nano13081364 crossref_primary_10_1016_j_apsusc_2022_156058 crossref_primary_10_1016_j_ceramint_2023_10_348 crossref_primary_10_1007_s12596_025_02531_y crossref_primary_10_3390_molecules28124674 crossref_primary_10_1021_acsanm_2c02328 crossref_primary_10_1016_j_solmat_2024_112940 crossref_primary_10_1016_j_snb_2025_137283 crossref_primary_10_1016_j_sbsr_2025_100767 crossref_primary_10_1016_j_chemphys_2023_111908 crossref_primary_10_1016_j_jallcom_2024_175321 crossref_primary_10_1016_j_rinp_2024_107946 crossref_primary_10_1007_s10854_024_12135_0 crossref_primary_10_1007_s11468_023_01816_x crossref_primary_10_3390_s22124369 crossref_primary_10_1007_s10854_022_09566_y crossref_primary_10_1016_j_ceramint_2021_11_345 crossref_primary_10_1039_D4RA00553H crossref_primary_10_1016_j_optmat_2021_111683 crossref_primary_10_1016_j_snb_2025_137615 crossref_primary_10_1007_s10854_021_05664_5 crossref_primary_10_1016_j_synthmet_2023_117411 crossref_primary_10_3390_bios13040445 crossref_primary_10_1016_j_optmat_2022_113244 crossref_primary_10_1016_j_snr_2022_100084 crossref_primary_10_1021_acsanm_3c05965 crossref_primary_10_3390_nano11061544 crossref_primary_10_1021_acssensors_4c03510 crossref_primary_10_1016_j_physb_2024_416699 crossref_primary_10_1016_j_jiec_2025_01_053 crossref_primary_10_1016_j_snb_2023_134827 crossref_primary_10_1016_j_snb_2023_134306 crossref_primary_10_1016_j_surfin_2025_106003 crossref_primary_10_1016_j_snb_2024_137156 |
Cites_doi | 10.1021/acsami.9b18863 10.1016/j.snb.2015.10.029 10.1016/j.cplett.2017.09.057 10.1016/j.matlet.2014.11.049 10.1007/s00339-009-5489-3 10.1016/j.ceramint.2017.08.003 10.1016/j.jallcom.2019.05.060 10.1108/SR-12-2016-0271 10.1021/acsami.9b07208 10.1016/j.ijleo.2017.08.129 10.1016/j.snb.2018.05.167 10.1016/j.ceramint.2016.11.031 10.1016/j.ceramint.2018.10.239 10.1039/C8TC00162F 10.1016/j.snb.2019.01.049 10.1016/j.apsusc.2019.144104 10.1021/acsami.5b01817 10.1039/C8RA01638K 10.1016/j.snb.2011.10.034 10.1021/acsami.8b17336 10.1016/j.snb.2018.12.145 10.1021/acsami.9b06701 10.1021/acsomega.9b02733 10.1016/j.ceramint.2018.06.110 10.1016/j.apsusc.2018.08.228 10.1021/acs.jpcc.8b04718 10.1016/j.ceramint.2019.11.151 10.1016/j.snb.2012.10.080 10.1039/C4RA14049D 10.1016/j.snb.2020.127846 10.1016/j.snb.2011.01.070 10.1016/j.snb.2017.10.081 10.1039/D0CE00052C 10.1021/acsami.9b07275 10.1021/acssensors.9b00259 10.1016/j.snb.2011.11.024 10.1016/j.snb.2018.10.063 10.1021/acsami.9b10410 10.1039/C4RA04249B 10.1016/j.cplett.2019.136725 10.1016/j.sna.2017.11.042 10.1039/C6TB01335J 10.1021/acs.jpcc.9b03609 10.1016/j.mssp.2019.104767 10.1016/j.tsf.2014.03.089 10.1021/acs.iecr.9b01561 10.1016/j.snb.2012.02.074 10.1016/j.snb.2019.127489 10.1039/C4RA12157K 10.1016/j.snb.2019.126633 10.1016/j.snb.2015.09.107 10.1021/am302294v 10.1021/acsomega.9b00734 10.1016/j.surfcoat.2018.11.053 10.1016/j.apsusc.2018.03.217 10.1021/acsami.6b00339 10.1039/C9NA00163H 10.1039/c4ta00387j 10.1016/j.snb.2013.02.085 10.1021/acs.inorgchem.7b02425 10.1016/j.snb.2019.05.032 10.1021/ie402743u 10.1016/j.snb.2018.08.016 10.1039/C6TA01355D 10.1021/acsami.9b09769 10.1016/j.vacuum.2007.08.015 10.1021/acsami.5b04066 10.1021/acsomega.9b04243 10.1021/acsomega.9b04475 10.1021/acsami.6b09467 10.1016/j.snb.2019.126774 10.1021/acsomega.8b01882 10.1016/j.snb.2019.127150 10.3762/bjnano.8.9 10.1016/j.jhazmat.2020.122069 10.1021/acsami.7b10856 10.1021/acssensors.9b00648 10.1007/s10854-019-02325-6 10.1007/s13391-015-5224-5 10.1016/j.jallcom.2015.07.251 10.1021/am5057322 10.1021/acs.jpcc.7b04821 10.1021/acs.jpcc.9b11147 10.1016/j.snb.2020.127658 10.1016/j.snb.2019.127456 10.1016/j.snb.2016.08.053 10.1039/C8TA11380G 10.1016/j.jallcom.2016.05.178 10.1016/j.snb.2017.08.015 10.1039/C9CE00710E 10.1016/j.snb.2019.03.085 10.1016/j.ijhydene.2019.06.056 10.1021/acs.langmuir.8b02642 10.1021/acsami.9b21290 10.1016/j.sna.2019.111722 10.1038/srep41716 10.1016/j.tsf.2007.07.189 10.1021/acssensors.9b00975 10.1007/s10948-018-4564-4 10.1016/j.tsf.2019.137693 10.1021/jp2123778 10.1039/C6RA10863F 10.1016/j.snb.2020.127828 10.1021/acsami.7b15946 10.1016/j.snb.2020.127662 10.1021/acsami.5b00055 10.1016/j.snb.2011.03.052 10.1021/am506674u 10.1021/acs.iecr.9b00158 10.1016/j.apsusc.2019.01.077 10.1016/j.apsusc.2016.02.161 10.1016/j.snb.2020.127657 10.1016/j.jhazmat.2019.120944 10.1016/j.snb.2014.01.083 10.1016/j.apsusc.2019.143857 10.1021/acssensors.9b01763 10.1016/j.jaap.2015.01.001 10.1021/acs.jpcc.7b08943 10.1021/am406030d 10.1016/j.mssp.2013.09.023 10.1021/acsami.9b07021 10.1016/j.mssp.2019.104819 10.1016/j.snb.2018.06.117 10.1016/j.materresbull.2012.10.042 10.1021/acsami.9b06338 10.1021/nl301226k 10.1016/j.jtusci.2016.02.002 10.1016/j.snb.2015.02.073 10.1039/C5TA09190J 10.1016/j.jallcom.2019.01.001 10.1016/j.apsusc.2019.144971 10.1021/acsami.5b01333 10.1016/S0925-4005(97)00324-9 10.1016/j.snb.2019.126769 10.1016/j.materresbull.2019.03.005 10.1021/jp036720k 10.1016/j.snb.2013.11.005 10.1016/j.snb.2009.03.071 10.3762/bjnano.7.3 10.1016/j.jallcom.2019.151815 10.1016/j.snb.2019.02.055 10.1016/j.cap.2012.08.019 10.1016/j.jallcom.2016.05.125 10.1021/acsami.9b22362 10.1016/j.jallcom.2020.154177 10.1016/j.ceramint.2015.07.166 10.1021/acsanm.9b00942 10.1016/j.jallcom.2017.06.336 10.1016/j.egyr.2019.08.070 10.1016/j.snb.2019.127395 10.1016/j.snb.2017.09.022 10.1039/C9TC06750G 10.1016/j.ceramint.2019.04.079 10.1007/s10854-018-0276-6 10.1016/j.snb.2019.127179 10.1016/j.ceramint.2018.11.107 10.1016/j.snb.2019.127617 |
ContentType | Journal Article |
Copyright | 2020 The Chemical Society of Japan & Wiley‐VCH GmbH 2020 The Chemical Society of Japan & Wiley-VCH GmbH. |
Copyright_xml | – notice: 2020 The Chemical Society of Japan & Wiley‐VCH GmbH – notice: 2020 The Chemical Society of Japan & Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7QO 7T7 8FD C1K FR3 P64 7X8 |
DOI | 10.1002/tcr.202000088 |
DatabaseName | CrossRef Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef Engineering Research Database Biotechnology Research Abstracts Technology Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Engineering Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1528-0691 |
EndPage | 1567 |
ExternalDocumentID | 10_1002_tcr_202000088 TCR202000088 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: NSFC funderid: 21771166; U1704256; 21972105 – fundername: Center Plain Science and Technology Innovation Talents funderid: 194200510013 – fundername: Ministry of Science and Technology of China funderid: 2017YFA0204903 |
GroupedDBID | --- .3N .Y3 05W 0R~ 10A 123 1OC 29B 31~ 33P 3WU 4.4 50Y 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 53G 5VS 66C 702 7PT 8-1 8UM A00 AAESR AAHHS AAHQN AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG AVWKF AZFZN AZVAB BDRZF BFHJK BMXJE BROTX BRXPI BY8 CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD F5P FEDTE G-S G.N GODZA HF~ HGLYW HVGLF HZ~ IX1 J0M LATKE LAW LC2 LC3 LEEKS LH- LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MSFUL MSSTM MXFUL MXSTM MY~ N9A O9- OIG P2W P4D Q11 QB0 QRW R.K ROL RX1 SUPJJ V2E W99 WBKPD WOHZO WQJ WXSBR WYJ WYUIH XG1 XV2 ZZTAW ~IA AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7QO 7T7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 7X8 |
ID | FETCH-LOGICAL-c3858-eb59be6a6d1a7829f3c8e7d7db0d3ec494868a3e6c8bbe447c545e9754d11f8a3 |
IEDL.DBID | DR2 |
ISSN | 1527-8999 1528-0691 |
IngestDate | Thu Jul 10 23:55:41 EDT 2025 Fri Jul 25 10:34:35 EDT 2025 Thu Apr 24 23:01:33 EDT 2025 Tue Jul 01 00:57:28 EDT 2025 Wed Jan 22 16:31:13 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3858-eb59be6a6d1a7829f3c8e7d7db0d3ec494868a3e6c8bbe447c545e9754d11f8a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-6546-8112 |
OpenAccessLink | http://ir.lzu.edu.cn/handle/262010/442181 |
PQID | 2469014864 |
PQPubID | 1006501 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2448850673 proquest_journals_2469014864 crossref_primary_10_1002_tcr_202000088 crossref_citationtrail_10_1002_tcr_202000088 wiley_primary_10_1002_tcr_202000088_TCR202000088 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2020 2020-12-00 20201201 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Chemical record |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 141 2018; 447 2019; 11 2019; 289 2020; 12 2019; 284 2018; 44 2012; 12 2019; 287 2019; 286 2018; 6 2018; 8 2018; 3 2019; 280 2009; 98 2020; 693 2019; 21 2008; 516 2019; 797 2018; 30 2014; 17 2018; 31 2017; 689 2017; 723 2019; 7 2019; 4 2019; 31 2019; 2 2019; 1 2019; 35 2020; 381 2020; 303 2020; 302 2016; 684 2020; 305 2015; 649 2020; 304 2013; 187 2020; 388 2013; 182 2020; 307 2019; 463 2020; 826 2020; 308 2016; 4 2016; 6 2016; 7 2019; 44 2015; 112 2019; 45 2017; 56 2020; 310 2020; 22 2019; 734 2019; 294 2018; 11 2012; 116 2018; 10 2016; 8 2017; 148 2019; 296 2019; 297 2012; 161 2017; 7 2018; 122 2011; 158 2017; 8 2017; 43 2019; 58 2019; 125 2020; 124 2016; 224 2012; 169 2011; 156 2017; 9 2019; 123 2017; 239 1998; 46 2020; 8 2020; 6 2020; 5 2014; 4 2014; 2 2017; 37 2013; 13 2015; 213 2018; 256 2018; 255 2015; 41 2019; 115 2019; 358 2019; 476 2020; 46 2020; 499 2017; 121 2017; 122 2014; 562 2014; 6 2020; 814 2014; 53 2013; 48 2015; 5 2018; 269 2015; 11 2020; 106 2020; 107 2014; 195 2014; 192 2004; 108 2015; 7 2020; 504 2019; 783 2020; 506 2018; 274 2018; 273 2020 2009; 140 2012; 5 2008; 82 2016; 370 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_71_2 e_1_2_9_10_2 e_1_2_9_94_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_103_1 e_1_2_9_149_1 e_1_2_9_126_2 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_168_1 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_37_1 e_1_2_9_164_1 e_1_2_9_18_2 e_1_2_9_79_2 e_1_2_9_183_1 e_1_2_9_64_1 e_1_2_9_41_2 e_1_2_9_87_2 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_119_2 e_1_2_9_60_1 e_1_2_9_2_2 e_1_2_9_138_1 e_1_2_9_111_2 e_1_2_9_134_1 e_1_2_9_115_1 e_1_2_9_157_1 e_1_2_9_49_2 e_1_2_9_130_1 e_1_2_9_176_1 e_1_2_9_26_2 e_1_2_9_68_2 e_1_2_9_153_1 e_1_2_9_172_1 e_1_2_9_53_1 e_1_2_9_30_2 e_1_2_9_99_1 e_1_2_9_72_2 e_1_2_9_57_1 e_1_2_9_34_2 e_1_2_9_95_1 e_1_2_9_76_2 e_1_2_9_11_2 e_1_2_9_91_2 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_167_1 e_1_2_9_106_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 Lee B.-J. (e_1_2_9_160_2) 2019; 125 e_1_2_9_186_2 e_1_2_9_121_1 e_1_2_9_182_2 e_1_2_9_19_2 e_1_2_9_88_2 e_1_2_9_61_1 e_1_2_9_84_1 e_1_2_9_42_2 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_2 e_1_2_9_118_2 e_1_2_9_1_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_179_1 e_1_2_9_9_2 e_1_2_9_152_1 e_1_2_9_175_1 e_1_2_9_27_2 e_1_2_9_46_2 e_1_2_9_69_2 e_1_2_9_110_1 e_1_2_9_171_1 e_1_2_9_31_1 e_1_2_9_73_2 e_1_2_9_50_2 e_1_2_9_77_2 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_109_2 e_1_2_9_92_2 e_1_2_9_101_1 e_1_2_9_128_1 Shima Rezaie Z. G. B. (e_1_2_9_163_1) 2020 e_1_2_9_166_2 e_1_2_9_105_2 e_1_2_9_147_1 e_1_2_9_124_2 e_1_2_9_162_2 e_1_2_9_185_2 e_1_2_9_39_1 e_1_2_9_16_2 e_1_2_9_35_2 e_1_2_9_58_1 e_1_2_9_120_2 e_1_2_9_143_1 e_1_2_9_181_2 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_2 e_1_2_9_24_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_43_2 e_1_2_9_4_2 e_1_2_9_81_2 e_1_2_9_113_2 e_1_2_9_159_2 e_1_2_9_117_2 e_1_2_9_155_1 e_1_2_9_8_2 e_1_2_9_136_1 e_1_2_9_178_1 e_1_2_9_151_1 e_1_2_9_47_2 e_1_2_9_132_1 e_1_2_9_174_1 e_1_2_9_28_2 e_1_2_9_170_1 e_1_2_9_51_2 e_1_2_9_74_1 e_1_2_9_78_2 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_108_2 e_1_2_9_93_1 e_1_2_9_70_1 e_1_2_9_127_2 e_1_2_9_100_1 e_1_2_9_165_2 e_1_2_9_104_2 e_1_2_9_123_2 e_1_2_9_169_1 e_1_2_9_146_1 e_1_2_9_161_2 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_184_1 e_1_2_9_36_2 e_1_2_9_180_1 e_1_2_9_86_2 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_44_2 e_1_2_9_67_2 e_1_2_9_82_2 e_1_2_9_21_1 e_1_2_9_7_2 e_1_2_9_3_2 e_1_2_9_112_2 e_1_2_9_139_1 Hua-Liang Yu J. W. (e_1_2_9_17_2) 2020 e_1_2_9_116_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_177_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_173_1 e_1_2_9_48_1 e_1_2_9_29_2 e_1_2_9_150_1 |
References_xml | – volume: 7 start-page: 3415 year: 2019 end-page: 3425 publication-title: J. Mater. Chem. A – volume: 161 start-page: 734 year: 2012 end-page: 739 publication-title: Sens. Actuators B – volume: 8 start-page: 2812 year: 2020 publication-title: J. Mater. Chem. C – volume: 3 start-page: 13798 year: 2018 end-page: 13807 publication-title: ACS Omega – volume: 5 start-page: 8587 year: 2020 end-page: 8595 publication-title: ACS Omega – volume: 122 start-page: 377 year: 2017 end-page: 385 publication-title: J. Phys. Chem. C – volume: 45 start-page: 4103 year: 2019 end-page: 4107 publication-title: Ceram. Int. – volume: 12 start-page: 13824 year: 2020 end-page: 13835 publication-title: ACS Appl. Mater. Interfaces – volume: 112 start-page: 348 year: 2015 end-page: 356 publication-title: J. Anal. Appl. Pyrol. – volume: 723 start-page: 1155 year: 2017 end-page: 1161 publication-title: J. Alloys Compd. – volume: 4 start-page: 2048 year: 2019 end-page: 2057 publication-title: ACS Sens. – volume: 7 start-page: 22 year: 2016 end-page: 31 publication-title: Beilstein J. Nanotechnol. – volume: 305 year: 2020 publication-title: Sens. Actuators B – volume: 58 start-page: 17130 year: 2019 end-page: 17163 publication-title: Ind. Eng. Chem. Res. – volume: 148 start-page: 325 year: 2017 end-page: 331 publication-title: Optik – volume: 358 start-page: 223 year: 2019 end-page: 227 publication-title: Sur. Coat. Tech. – volume: 10 start-page: 3761 year: 2018 end-page: 3768 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 24757 year: 2019 end-page: 24763 publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 20891 year: 2020 end-page: 20900 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 2387 year: 2018 end-page: 2395 publication-title: J. Mater. Chem. C – volume: 7 start-page: 17199 year: 2015 end-page: 17208 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 18661 year: 2014 end-page: 7 publication-title: ACS Appl. Mater. Interfaces – volume: 21 start-page: 5084 year: 2019 end-page: 5094 publication-title: CrystEngComm – volume: 284 start-page: 421 year: 2019 end-page: 427 publication-title: Sens. Actuators B – volume: 302 year: 2020 publication-title: Sens. Actuators B – volume: 187 start-page: 191 year: 2013 end-page: 197 publication-title: Sens. Actuators B – volume: 43 start-page: 14873 year: 2017 end-page: 14879 publication-title: Ceram. Int. – volume: 161 start-page: 292 year: 2012 end-page: 297 publication-title: Sens. Actuators B – volume: 98 start-page: 537 year: 2009 end-page: 542 publication-title: Appl. Phys. A – volume: 4 start-page: 10252 year: 2019 end-page: 10262 publication-title: ACS Omega – volume: 58 start-page: 8061 year: 2019 end-page: 8071 publication-title: Ind. Eng. Chem. Res. – volume: 115 start-page: 12 year: 2019 end-page: 18 publication-title: Mater. Res. Bull. – volume: 156 start-page: 588 year: 2011 end-page: 592 publication-title: Sens. Actuators B – volume: 31 start-page: 144 year: 2019 end-page: 153 publication-title: J. Mater. Sci. Mater. Electron. – volume: 158 start-page: 9 year: 2011 end-page: 16 publication-title: Sens. Actuators B – volume: 310 year: 2020 publication-title: Sens. Actuators B – volume: 269 start-page: 331 year: 2018 end-page: 341 publication-title: Sensor Actuat A-Phys. – volume: 11 start-page: 31551 year: 2019 end-page: 31561 publication-title: ACS Appl. Mater. Interfaces – volume: 56 start-page: 13646 year: 2017 end-page: 13650 publication-title: Inorg. Chem. – volume: 499 year: 2020 publication-title: Appl. Surf. Sci. – volume: 797 start-page: 284 year: 2019 end-page: 301 publication-title: J. Alloys Compd. – volume: 11 start-page: 33124 year: 2019 end-page: 33131 publication-title: ACS Appl. Mater. Interfaces – start-page: 1 year: 2020 end-page: 12 publication-title: Sensor Actuat A-Phys. – volume: 5 start-page: 3839 year: 2020 end-page: 3848 publication-title: ACS Omega – volume: 388 year: 2020 publication-title: J. Hazard. Mater. – volume: 6 start-page: 22553 year: 2014 end-page: 60 publication-title: ACS Appl. Mater. Interfaces – volume: 108 start-page: 5206 year: 2004 end-page: 5210 publication-title: J. Phys. Chem. B – volume: 48 start-page: 362 year: 2013 end-page: 366 publication-title: Mater. Res. Bull. – volume: 304 year: 2020 publication-title: Sens. Actuators B – volume: 6 start-page: 4277 year: 2014 end-page: 85 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 46 year: 2020 end-page: 62 publication-title: Energy Reports – volume: 4 start-page: 1577 year: 2019 end-page: 1585 publication-title: ACS Sens. – volume: 370 start-page: 83 year: 2016 end-page: 91 publication-title: Appl. Surf. Sci. – volume: 116 start-page: 10586 year: 2012 end-page: 10591 publication-title: J. Phys. Chem. C – volume: 689 start-page: 92 year: 2017 end-page: 99 publication-title: Chem. Phys. Lett. – volume: 12 start-page: 3994 year: 2012 end-page: 4000 publication-title: Nano Lett. – volume: 255 start-page: 2248 year: 2018 end-page: 2257 publication-title: Sens. Actuators B – volume: 11 start-page: 576 year: 2018 end-page: 582 publication-title: J. Taibah Univ. Sci. – volume: 122 start-page: 18596 year: 2018 end-page: 18602 publication-title: J. Phys. Chem. C – volume: 308 year: 2020 publication-title: Sens. Actuators B – volume: 273 start-page: 1278 year: 2018 end-page: 1290 publication-title: Sens. Actuators B – volume: 53 start-page: 1924 year: 2014 end-page: 1932 publication-title: Ind. Eng. Chem. Res. – volume: 169 start-page: 67 year: 2012 end-page: 73 publication-title: Sens. Actuators B – volume: 289 start-page: 114 year: 2019 end-page: 123 publication-title: Sens. Actuators B – volume: 192 start-page: 607 year: 2014 end-page: 627 publication-title: Sens. Actuators B – volume: 121 start-page: 16012 year: 2017 end-page: 16020 publication-title: J. Phys. Chem. C – volume: 43 start-page: 2418 year: 2017 end-page: 2423 publication-title: Ceram. Int. – volume: 8 start-page: 5466 year: 2016 end-page: 74 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 31969 year: 2014 publication-title: RSC Adv. – volume: 11 start-page: 24172 year: 2019 end-page: 24183 publication-title: ACS Appl. Mater. Interfaces – volume: 141 start-page: 79 year: 2015 end-page: 82 publication-title: Mater. Lett. – volume: 11 start-page: 31452 year: 2019 end-page: 31466 publication-title: ACS Appl. Mater. Interfaces – volume: 1 start-page: 3900 year: 2019 end-page: 3908 publication-title: Nanoscale – volume: 107 year: 2020 publication-title: Mat. Sci. Semicon. Proc. – volume: 4 start-page: 2228 year: 2019 end-page: 2249 publication-title: ACS Sens. – volume: 256 start-page: 374 year: 2018 end-page: 382 publication-title: Sens. Actuators B – volume: 239 start-page: 501 year: 2017 end-page: 510 publication-title: Sens. Actuators B – volume: 4 start-page: 5358 year: 2016 end-page: 5366 publication-title: J. Mater. Chem. B – volume: 287 start-page: 199 year: 2019 end-page: 208 publication-title: Sens. Actuators B – volume: 11 start-page: 31245 year: 2019 end-page: 31256 publication-title: ACS Appl. Mater. Interfaces – volume: 476 start-page: 16 year: 2019 end-page: 27 publication-title: Appl. Surf. Sci. – volume: 13 start-page: 403 year: 2013 end-page: 407 publication-title: Curr. Appl. Phys. – volume: 5 start-page: 5209 year: 2020 end-page: 5218 publication-title: ACS Omega – volume: 684 start-page: 15 year: 2016 end-page: 20 publication-title: J. Alloys Compd. – volume: 296 year: 2019 publication-title: Sens. Actuators B – volume: 123 start-page: 18187 year: 2019 end-page: 18197 publication-title: J. Phys. Chem. C – volume: 11 start-page: 1085 year: 2015 end-page: 1092 publication-title: Electron. Mater. Lett. – volume: 286 start-page: 624 year: 2019 end-page: 640 publication-title: Sens. Actuators B – volume: 463 start-page: 348 year: 2019 end-page: 356 publication-title: Appl. Surf. Sci. – volume: 11 start-page: 1411 year: 2019 end-page: 1419 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 41716 year: 2017 publication-title: Sci. Rep. – volume: 4 start-page: 64093 year: 2014 publication-title: RSC Adv. – volume: 307 year: 2020 publication-title: Sens. Actuators B – volume: 224 start-page: 193 year: 2016 end-page: 200 publication-title: Sens. Actuators B – volume: 280 start-page: 151 year: 2019 end-page: 161 publication-title: Sens. Actuators B – volume: 7 start-page: 11824 year: 2015 end-page: 11832 publication-title: ACS Appl. Mater. Interfaces – volume: 274 start-page: 565 year: 2018 end-page: 574 publication-title: Sens. Actuators B – volume: 44 start-page: 20068 year: 2019 end-page: 20078 publication-title: Int. J. Hydrogen Energy – volume: 5 start-page: 135 year: 2012 end-page: 143 publication-title: ACS Appl. Mater. Interfaces – volume: 46 start-page: 75 year: 1998 end-page: 79 publication-title: Sens. Actuators B – volume: 2 start-page: 6144 year: 2019 end-page: 6151 publication-title: ACS Appl. Nano Mater. – volume: 2 start-page: 6412 year: 2014 end-page: 6418 publication-title: J. Mater. Chem. A – volume: 8 start-page: 17582 year: 2018 end-page: 17594 publication-title: RSC Adv. – volume: 649 start-page: 1136 year: 2015 end-page: 1144 publication-title: J. Alloys Compd. – volume: 783 start-page: 503 year: 2019 end-page: 512 publication-title: J. Alloys Compd. – volume: 44 start-page: 16773 year: 2018 end-page: 16780 publication-title: Ceram. Int. – volume: 8 start-page: 30440 year: 2016 end-page: 30448 publication-title: ACS Appl. Mater. Interfaces – volume: 684 start-page: 428 year: 2016 end-page: 437 publication-title: J. Alloys Compd. – volume: 82 start-page: 588 year: 2008 end-page: 593 publication-title: Vacuum – volume: 22 start-page: 2315 year: 2020 end-page: 2326 publication-title: CrystEngComm – volume: 303 year: 2020 publication-title: Sensor Actuat A-Phys. – volume: 140 start-page: 73 year: 2009 end-page: 78 publication-title: Sens. Actuators B – volume: 562 start-page: 585 year: 2014 end-page: 591 publication-title: Thin Solid Films – volume: 504 year: 2020 publication-title: Appl. Surf. Sci. – volume: 45 start-page: 4322 year: 2019 end-page: 4334 publication-title: Ceram. Int. – volume: 124 start-page: 7144 year: 2020 end-page: 7155 publication-title: J. Phys. Chem. C – volume: 182 start-page: 170 year: 2013 end-page: 175 publication-title: Sens. Actuators B – volume: 814 year: 2020 publication-title: J. Alloys Compd. – volume: 12 start-page: 14095 year: 2020 end-page: 14104 publication-title: ACS Appl. Mater. Interfaces – volume: 255 start-page: 672 year: 2018 end-page: 683 publication-title: Sens. Actuators B – volume: 4 start-page: 1390 year: 2016 publication-title: J. Mater. Chem. A – volume: 4 start-page: 6527 year: 2016 publication-title: J. Mater. Chem. A – volume: 213 start-page: 222 year: 2015 end-page: 233 publication-title: Sens. Actuators B – volume: 447 start-page: 173 year: 2018 end-page: 181 publication-title: Appl. Surf. Sci. – volume: 8 start-page: 82 year: 2017 end-page: 90 publication-title: Beilstein J. Nanotechnol. – volume: 106 year: 2020 publication-title: Mat. Sci. Semicon. Proc. – volume: 125 year: 2019 publication-title: Appl. Phys. A – volume: 273 start-page: 991 year: 2018 end-page: 998 publication-title: Sens. Actuators B – volume: 17 start-page: 162 year: 2014 end-page: 167 publication-title: Mat. Sci. Semicon. Proc. – volume: 297 year: 2019 publication-title: Sens. Actuators B – volume: 5 start-page: 346 year: 2020 end-page: 352 publication-title: ACS Sens. – volume: 30 start-page: 147 year: 2018 end-page: 158 publication-title: J. Mater. Sci. Mater. Electron. – volume: 5 start-page: 13519 year: 2015 end-page: 13524 publication-title: RSC Adv. – volume: 31 start-page: 2897 year: 2018 end-page: 2905 publication-title: J. Supercond. Nov. Magn. – volume: 41 start-page: 13676 year: 2015 end-page: 13684 publication-title: Ceram. Int. – year: 2020 publication-title: ScienceDirect – volume: 7 start-page: 11351 year: 2015 end-page: 8 publication-title: ACS Appl. Mater. Interfaces – volume: 35 start-page: 3248 year: 2019 end-page: 3255 publication-title: Langmuir – volume: 7 start-page: 9462 year: 2015 end-page: 8 publication-title: ACS Appl. Mater. Interfaces – volume: 381 year: 2020 publication-title: J. Hazard. Mater. – volume: 224 start-page: 372 year: 2016 end-page: 380 publication-title: Sens. Actuators B – volume: 11 start-page: 25891 year: 2019 end-page: 25900 publication-title: ACS Appl. Mater. Interfaces – volume: 45 start-page: 13825 year: 2019 end-page: 13831 publication-title: Ceram. Int. – volume: 7 start-page: 17199 year: 2015 end-page: 208 publication-title: ACS Appl. Mater. Interfaces – volume: 734 year: 2019 publication-title: Chem. Phys. Lett. – volume: 693 year: 2020 publication-title: Thin Solid Films – volume: 516 start-page: 2225 year: 2008 end-page: 2230 publication-title: Thin Solid Films – volume: 46 start-page: 6634 year: 2020 end-page: 6640 publication-title: Ceram. Int. – volume: 195 start-page: 657 year: 2014 end-page: 666 publication-title: Sens. Actuators B – volume: 826 year: 2020 publication-title: J. Alloys Compd. – volume: 506 year: 2020 publication-title: Appl. Surf. Sci. – volume: 37 start-page: 364 year: 2017 end-page: 370 publication-title: Sensor Rev. – volume: 6 start-page: 58236 year: 2016 end-page: 58246 publication-title: RSC Adv. – volume: 294 start-page: 78 year: 2019 end-page: 88 publication-title: Sens. Actuators B – volume: 9 start-page: 42482 year: 2017 end-page: 42491 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_9_48_1 – ident: e_1_2_9_8_2 doi: 10.1021/acsami.9b18863 – ident: e_1_2_9_107_1 – volume: 125 year: 2019 ident: e_1_2_9_160_2 publication-title: Appl. Phys. A – ident: e_1_2_9_76_2 doi: 10.1016/j.snb.2015.10.029 – ident: e_1_2_9_43_2 doi: 10.1016/j.cplett.2017.09.057 – ident: e_1_2_9_168_1 doi: 10.1016/j.matlet.2014.11.049 – ident: e_1_2_9_84_1 doi: 10.1007/s00339-009-5489-3 – ident: e_1_2_9_100_1 doi: 10.1016/j.ceramint.2017.08.003 – ident: e_1_2_9_117_2 doi: 10.1016/j.jallcom.2019.05.060 – ident: e_1_2_9_147_1 doi: 10.1108/SR-12-2016-0271 – ident: e_1_2_9_110_1 – ident: e_1_2_9_27_2 doi: 10.1021/acsami.9b07208 – ident: e_1_2_9_162_2 doi: 10.1016/j.ijleo.2017.08.129 – ident: e_1_2_9_115_1 doi: 10.1016/j.snb.2018.05.167 – ident: e_1_2_9_37_1 doi: 10.1016/j.ceramint.2016.11.031 – ident: e_1_2_9_61_1 doi: 10.1016/j.ceramint.2018.10.239 – ident: e_1_2_9_102_1 doi: 10.1039/C8TC00162F – ident: e_1_2_9_128_1 doi: 10.1016/j.snb.2019.01.049 – ident: e_1_2_9_66_1 – ident: e_1_2_9_140_1 doi: 10.1016/j.apsusc.2019.144104 – ident: e_1_2_9_154_1 doi: 10.1021/acsami.5b01817 – ident: e_1_2_9_104_2 doi: 10.1039/C8RA01638K – ident: e_1_2_9_167_1 doi: 10.1016/j.snb.2011.10.034 – ident: e_1_2_9_12_1 doi: 10.1021/acsami.8b17336 – ident: e_1_2_9_30_2 doi: 10.1016/j.snb.2018.12.145 – ident: e_1_2_9_11_2 doi: 10.1021/acsami.9b06701 – ident: e_1_2_9_7_2 doi: 10.1021/acsomega.9b02733 – ident: e_1_2_9_186_2 doi: 10.1016/j.ceramint.2018.06.110 – ident: e_1_2_9_33_1 – ident: e_1_2_9_133_1 doi: 10.1016/j.apsusc.2018.08.228 – ident: e_1_2_9_67_2 doi: 10.1021/acs.jpcc.8b04718 – ident: e_1_2_9_144_1 doi: 10.1016/j.ceramint.2019.11.151 – ident: e_1_2_9_64_1 doi: 10.1016/j.snb.2012.10.080 – ident: e_1_2_9_77_2 doi: 10.1039/C4RA14049D – ident: e_1_2_9_155_1 doi: 10.1016/j.snb.2020.127846 – ident: e_1_2_9_42_2 doi: 10.1016/j.snb.2011.01.070 – ident: e_1_2_9_183_1 doi: 10.1016/j.snb.2017.10.081 – ident: e_1_2_9_136_1 doi: 10.1039/D0CE00052C – ident: e_1_2_9_132_1 doi: 10.1021/acsami.9b07275 – ident: e_1_2_9_31_1 doi: 10.1021/acssensors.9b00259 – ident: e_1_2_9_87_2 doi: 10.1016/j.snb.2011.11.024 – ident: e_1_2_9_182_2 doi: 10.1016/j.snb.2018.10.063 – ident: e_1_2_9_46_2 doi: 10.1021/acsami.9b10410 – ident: e_1_2_9_92_2 doi: 10.1039/C4RA04249B – ident: e_1_2_9_86_2 doi: 10.1016/j.cplett.2019.136725 – ident: e_1_2_9_82_2 doi: 10.1016/j.sna.2017.11.042 – ident: e_1_2_9_98_1 doi: 10.1039/C6TB01335J – ident: e_1_2_9_44_2 doi: 10.1021/acs.jpcc.9b03609 – ident: e_1_2_9_57_1 doi: 10.1016/j.mssp.2019.104767 – ident: e_1_2_9_72_2 doi: 10.1016/j.tsf.2014.03.089 – ident: e_1_2_9_1_1 – ident: e_1_2_9_28_2 doi: 10.1021/acs.iecr.9b01561 – ident: e_1_2_9_150_1 doi: 10.1016/j.snb.2012.02.074 – ident: e_1_2_9_74_1 doi: 10.1016/j.snb.2019.127489 – ident: e_1_2_9_137_1 doi: 10.1039/C4RA12157K – ident: e_1_2_9_157_1 doi: 10.1016/j.snb.2019.126633 – ident: e_1_2_9_85_1 – ident: e_1_2_9_126_2 doi: 10.1016/j.snb.2015.09.107 – ident: e_1_2_9_123_2 doi: 10.1021/am302294v – ident: e_1_2_9_40_1 – ident: e_1_2_9_41_2 doi: 10.1021/acsomega.9b00734 – ident: e_1_2_9_170_1 doi: 10.1016/j.surfcoat.2018.11.053 – ident: e_1_2_9_185_2 doi: 10.1016/j.apsusc.2018.03.217 – ident: e_1_2_9_79_2 doi: 10.1021/acsami.6b00339 – ident: e_1_2_9_39_1 doi: 10.1039/C9NA00163H – ident: e_1_2_9_99_1 doi: 10.1039/c4ta00387j – ident: e_1_2_9_145_1 doi: 10.1016/j.snb.2013.02.085 – ident: e_1_2_9_89_2 doi: 10.1021/acs.inorgchem.7b02425 – ident: e_1_2_9_134_1 doi: 10.1016/j.snb.2019.05.032 – ident: e_1_2_9_111_2 doi: 10.1021/ie402743u – ident: e_1_2_9_69_2 doi: 10.1016/j.snb.2018.08.016 – ident: e_1_2_9_122_1 – ident: e_1_2_9_59_1 doi: 10.1039/C6TA01355D – ident: e_1_2_9_125_1 – ident: e_1_2_9_5_2 doi: 10.1021/acsami.9b09769 – ident: e_1_2_9_149_1 doi: 10.1016/j.vacuum.2007.08.015 – ident: e_1_2_9_176_1 doi: 10.1021/acsami.5b04066 – ident: e_1_2_9_4_2 doi: 10.1021/acsomega.9b04243 – ident: e_1_2_9_47_2 doi: 10.1021/acsomega.9b04475 – ident: e_1_2_9_78_2 doi: 10.1021/acsami.6b09467 – ident: e_1_2_9_54_1 doi: 10.1016/j.snb.2019.126774 – ident: e_1_2_9_24_1 doi: 10.1021/acsomega.8b01882 – ident: e_1_2_9_75_1 – ident: e_1_2_9_135_1 doi: 10.1016/j.snb.2019.127150 – ident: e_1_2_9_15_1 – ident: e_1_2_9_35_2 doi: 10.3762/bjnano.8.9 – ident: e_1_2_9_127_2 doi: 10.1016/j.jhazmat.2020.122069 – ident: e_1_2_9_153_1 doi: 10.1021/acsami.7b10856 – ident: e_1_2_9_152_1 doi: 10.1021/acssensors.9b00648 – ident: e_1_2_9_103_1 – ident: e_1_2_9_159_2 doi: 10.1007/s10854-019-02325-6 – ident: e_1_2_9_174_1 doi: 10.1007/s13391-015-5224-5 – ident: e_1_2_9_109_2 doi: 10.1016/j.jallcom.2015.07.251 – ident: e_1_2_9_32_1 doi: 10.1021/acsami.9b07275 – ident: e_1_2_9_130_1 doi: 10.1021/am5057322 – ident: e_1_2_9_34_2 doi: 10.1021/acs.jpcc.7b04821 – ident: e_1_2_9_25_1 – ident: e_1_2_9_3_2 doi: 10.1021/acs.jpcc.9b11147 – ident: e_1_2_9_138_1 doi: 10.1016/j.snb.2020.127658 – start-page: 1 year: 2020 ident: e_1_2_9_17_2 publication-title: Sensor Actuat A-Phys. – ident: e_1_2_9_58_1 doi: 10.1016/j.snb.2019.127456 – ident: e_1_2_9_96_1 doi: 10.1016/j.snb.2016.08.053 – ident: e_1_2_9_29_2 doi: 10.1039/C8TA11380G – ident: e_1_2_9_83_1 doi: 10.1016/j.jallcom.2016.05.178 – ident: e_1_2_9_131_1 doi: 10.1016/j.snb.2017.08.015 – ident: e_1_2_9_141_1 doi: 10.1039/C9CE00710E – ident: e_1_2_9_175_1 doi: 10.1016/j.snb.2019.03.085 – ident: e_1_2_9_119_2 doi: 10.1016/j.ijhydene.2019.06.056 – ident: e_1_2_9_10_2 doi: 10.1021/acs.langmuir.8b02642 – ident: e_1_2_9_116_1 – ident: e_1_2_9_90_1 – year: 2020 ident: e_1_2_9_163_1 publication-title: ScienceDirect – ident: e_1_2_9_21_1 doi: 10.1021/acsami.9b21290 – ident: e_1_2_9_19_2 doi: 10.1016/j.sna.2019.111722 – ident: e_1_2_9_63_1 doi: 10.1038/srep41716 – ident: e_1_2_9_65_1 doi: 10.1016/j.tsf.2007.07.189 – ident: e_1_2_9_164_1 – ident: e_1_2_9_124_2 doi: 10.1021/acssensors.9b00975 – ident: e_1_2_9_120_2 doi: 10.1007/s10948-018-4564-4 – ident: e_1_2_9_49_2 doi: 10.1016/j.tsf.2019.137693 – ident: e_1_2_9_14_1 doi: 10.1021/jp2123778 – ident: e_1_2_9_106_1 doi: 10.1039/C6RA10863F – ident: e_1_2_9_18_2 doi: 10.1016/j.snb.2020.127828 – ident: e_1_2_9_129_1 doi: 10.1021/acsami.5b04066 – ident: e_1_2_9_22_1 doi: 10.1021/acsami.7b15946 – ident: e_1_2_9_13_1 doi: 10.1016/j.snb.2020.127662 – ident: e_1_2_9_51_2 doi: 10.1021/acsami.5b00055 – ident: e_1_2_9_91_2 doi: 10.1016/j.snb.2011.03.052 – ident: e_1_2_9_180_1 – ident: e_1_2_9_93_1 doi: 10.1021/am506674u – ident: e_1_2_9_81_2 doi: 10.1021/acs.iecr.9b00158 – ident: e_1_2_9_118_2 doi: 10.1016/j.apsusc.2019.01.077 – ident: e_1_2_9_173_1 doi: 10.1016/j.apsusc.2016.02.161 – ident: e_1_2_9_139_1 doi: 10.1016/j.snb.2020.127657 – ident: e_1_2_9_50_2 doi: 10.1016/j.jhazmat.2019.120944 – ident: e_1_2_9_97_1 doi: 10.1016/j.snb.2014.01.083 – ident: e_1_2_9_114_1 doi: 10.1016/j.apsusc.2019.143857 – ident: e_1_2_9_9_2 doi: 10.1021/acssensors.9b01763 – ident: e_1_2_9_16_2 doi: 10.1016/j.jaap.2015.01.001 – ident: e_1_2_9_161_2 doi: 10.1021/acs.jpcc.7b08943 – ident: e_1_2_9_68_2 doi: 10.1021/am406030d – ident: e_1_2_9_171_1 doi: 10.1016/j.mssp.2013.09.023 – ident: e_1_2_9_143_1 doi: 10.1021/acsami.9b07021 – ident: e_1_2_9_20_1 doi: 10.1016/j.mssp.2019.104819 – ident: e_1_2_9_6_1 – ident: e_1_2_9_94_1 doi: 10.1016/j.snb.2018.06.117 – ident: e_1_2_9_169_1 doi: 10.1016/j.materresbull.2012.10.042 – ident: e_1_2_9_2_2 doi: 10.1021/acsami.9b06338 – ident: e_1_2_9_70_1 – ident: e_1_2_9_112_2 doi: 10.1021/nl301226k – ident: e_1_2_9_172_1 doi: 10.1016/j.jtusci.2016.02.002 – ident: e_1_2_9_108_2 doi: 10.1016/j.snb.2015.02.073 – ident: e_1_2_9_151_1 doi: 10.1039/C5TA09190J – ident: e_1_2_9_181_2 doi: 10.1016/j.jallcom.2019.01.001 – ident: e_1_2_9_52_1 doi: 10.1016/j.apsusc.2019.144971 – ident: e_1_2_9_56_1 doi: 10.1021/acsami.5b01333 – ident: e_1_2_9_146_1 doi: 10.1016/S0925-4005(97)00324-9 – ident: e_1_2_9_177_1 doi: 10.1016/j.snb.2019.126769 – ident: e_1_2_9_113_2 doi: 10.1016/j.materresbull.2019.03.005 – ident: e_1_2_9_165_2 doi: 10.1021/jp036720k – ident: e_1_2_9_53_1 doi: 10.1016/j.snb.2013.11.005 – ident: e_1_2_9_142_1 doi: 10.1016/j.snb.2009.03.071 – ident: e_1_2_9_36_2 doi: 10.3762/bjnano.7.3 – ident: e_1_2_9_158_1 – ident: e_1_2_9_62_1 doi: 10.1016/j.jallcom.2019.151815 – ident: e_1_2_9_88_2 doi: 10.1016/j.snb.2019.02.055 – ident: e_1_2_9_71_2 doi: 10.1016/j.cap.2012.08.019 – ident: e_1_2_9_95_1 doi: 10.1016/j.jallcom.2016.05.125 – ident: e_1_2_9_23_1 doi: 10.1021/acsami.9b22362 – ident: e_1_2_9_184_1 – ident: e_1_2_9_101_1 doi: 10.1016/j.jallcom.2020.154177 – ident: e_1_2_9_73_2 doi: 10.1016/j.ceramint.2015.07.166 – ident: e_1_2_9_26_2 doi: 10.1021/acsanm.9b00942 – ident: e_1_2_9_105_2 doi: 10.1016/j.jallcom.2017.06.336 – ident: e_1_2_9_121_1 doi: 10.1016/j.egyr.2019.08.070 – ident: e_1_2_9_179_1 doi: 10.1016/j.snb.2019.127395 – ident: e_1_2_9_55_1 doi: 10.1016/j.snb.2017.09.022 – ident: e_1_2_9_38_1 doi: 10.1039/C9TC06750G – ident: e_1_2_9_148_1 doi: 10.1016/j.ceramint.2019.04.079 – ident: e_1_2_9_166_2 doi: 10.1007/s10854-018-0276-6 – ident: e_1_2_9_60_1 doi: 10.1016/j.snb.2019.127179 – ident: e_1_2_9_80_1 – ident: e_1_2_9_178_1 doi: 10.1016/j.ceramint.2018.11.107 – ident: e_1_2_9_156_1 doi: 10.1016/j.snb.2019.127617 – ident: e_1_2_9_45_1 |
SSID | ssj0011477 |
Score | 2.5973504 |
SecondaryResourceType | review_article |
Snippet | Gas sensors based on metal oxides semiconductor (MOS) have attracted extensive attention from both academic and industry. ZnO, as a typical MOS, exhibits... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1553 |
SubjectTerms | band gap Crystal structure Depletion depletion layer doped ZnO Doping Energy gap Gas sensors Metal oxides Morphology Theoretical analysis Transport properties Zinc oxide |
Title | Advances in Doped ZnO Nanostructures for Gas Sensor |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftcr.202000088 https://www.proquest.com/docview/2469014864 https://www.proquest.com/docview/2448850673 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA6yi178LU6nRBBPdlvbtE2PYzqHoMLcYHipSZOCKO2w28W_3veatnOCgnhrSULb95KX72uS7xFynrgowsI9yxZBYrGwK6yQS6AqSnIX-ocIimwNd_f-cMJup960zHOKZ2GMPkT9ww1HRhGvcYALmXeWoqEQqIDeOQXowcO-uF8LQdGolo8CqF9kXsTMrRbwirDU2IT2nZXWq3PSEmh-havFfDPYIs_Vm5ptJq_txVy2449vIo7_-JRtslliUdoznWeHrOl0l6z3qxRwe8TtmR0COX1J6VU204o-pQ8UInJmdGcXQNYpwF56I3L6CIw4e98nk8H1uD-0yiwLVoyLgpaWXii1L3wF7uJOmLgx14EKlOwqV8coH-Nz4Wo_5lJqxoIYQJcOA48p206g5IA00izVh4RKJ5HAjxhXjmaBbwvAG7YEjuQKTyqXN8llZecoLiXIMRPGW2TEk50ILBHVlmiSi7r6zGhv_FSxVTktKodgHjlI_IHs-axJzupiMCCuiIhUZwusA_HLw1w9TdItPPT7g6Jxf1TfHP29yTHZwGuzHaZFGuAqfQKgZi5Pi577CZCh62g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT8IwFD5RfMAX78Ypak2MTw7ZvXskIKICJggJ8WVp1y4xmo0IvPjrPd3GABNNjI_b2l3OaU-_r-2-A3AZWUqEhTq6wbxIt_0a033KkaoITi1sH8xLszV0e257aD-MnNHSX_yZPkQx4aZ6RhqvVQdXE9I3C9VQjFTI78wU9dB12FBZvZV6frNfCEgh2E9zL6rcrToyCz9X2cQb3KxUXx2VFlBzGbCmI05rG9j8XbONJm_V2ZRXw89vMo7_-Zgd2MrhKKln7WcX1mS8B-XGPAvcPlj1bJPAhLzGpJmMpSAv8RPBoJxk0rMz5OsEkS-5YxPyjKQ4-TiAYet20GjreaIFPVTrgrrkjs-ly1yBHqOmH1khlZ7wBK8JS4ZKQcalzJJuSDmXtu2FiLuk7zm2MIwIrxxCKU5ieQSEmxFHimRTYUrbcw2GkMPgSJMs5nBhUQ2u54YOwlyFXCXDeA8y_WQzQEsEhSU0uCqKjzP5jZ8KVuZeC_JeOAlMxf2R77m2BhfFZTSgWhRhsUxmqgyGMEel69Gglrro9wcFg0a_ODj-e5VzKLcH3U7Que89nsCmOp_tjqlACd0mTxHjTPlZ2oy_AF8f74Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwGP3QCeqLd7E6NYL4ZLe1Tdv0UTbn_YJuMHypSZOCKO1w7sVf75fepoKC-Ngm6eXL7ZwmPQdgP3a0CAtzTYv7sUmDFjcDJpCqSMEcbB_cz9warq690z49H7iDwudU_wuT60NUH9x0z8jGa93BhzJuTkRDcaBCemdnoIdNwwz1WoH2bujcVfpRiPUz60Vt3WoisQgKkU28QPNL8a-T0gRpfsar2YTTXYTH8lHzfSbPjfGbaETv31Qc__EuS7BQgFFylLeeZZhSyQrMtUsPuFVwjvItAiPylJBOOlSSPCQ3BIfkNBeeHSNbJ4h7yQkfkXukxOnrGvS7x732qVnYLJiRXhU0lXADoTzuSawvZgexEzHlS1-KlnRUpPVjPMYd5UVMCEWpHyHqUoHvUmlZMaasQy1JE7UBRNixQIJEmbQV9T2LI-CwBJIkh7tCOsyAwzLOYVRokGsrjJcwV0-2Q4xEWEXCgIMq-zAX3_gpY72stLDog6PQ1swf2Z5HDdirkjGAekmEJyod6zw4gLnarMeAVlZDv98o7LXvqoPNvxfZhdnbTje8PLu-2IJ5fTrfGlOHGtaa2kaA8yZ2skb8AZIj7jM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+Doped+ZnO+Nanostructures+for+Gas+Sensor&rft.jtitle=Chemical+record&rft.au=Wang%2C+Chao-Nan&rft.au=Li%2C+Yu-Liang&rft.au=Gong%2C+Fei-Long&rft.au=Zhang%2C+Yong-Hui&rft.date=2020-12-01&rft.issn=1528-0691&rft.eissn=1528-0691&rft.volume=20&rft.issue=12&rft.spage=1553&rft_id=info:doi/10.1002%2Ftcr.202000088&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-8999&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-8999&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-8999&client=summon |