Reefscapes of fear: predation risk and reef hetero‐geneity interact to shape herbivore foraging behaviour

Predators can exert strong direct and indirect effects on ecological communities by intimidating their prey. The nature of predation risk effects is often context dependent, but in some ecosystems these contingencies are often overlooked. Risk effects are often not uniform across landscapes or among...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of animal ecology Vol. 85; no. 1; pp. 146 - 156
Main Authors Catano, Laura B, Rojas, Maria C, Malossi, Ryan J, Peters, Joseph R, Heithaus, Michael R, Fourqurean, James W, Burkepile, Deron E, Fryxell, John
Format Journal Article
LanguageEnglish
Published England Blackwell Scientific Publ 2016
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Predators can exert strong direct and indirect effects on ecological communities by intimidating their prey. The nature of predation risk effects is often context dependent, but in some ecosystems these contingencies are often overlooked. Risk effects are often not uniform across landscapes or among species. Indeed, they can vary widely across gradients of habitat complexity and with different prey escape tactics. These context dependencies may be especially important for ecosystems such as coral reefs that vary widely in habitat complexity and have species‐rich predator and prey communities. With field experiments using predator decoys of the black grouper (Mycteroperca bonaci), we investigated how reef complexity interacts with predation risk to affect the foraging behaviour and herbivory rates of large herbivorous fishes (e.g. parrotfishes and surgeonfishes) across four coral reefs in the Florida Keys (USA). In both high and low complexity areas of the reef, we measured how herbivory changed with increasing distance from the predator decoy to examine how herbivorous fishes reconcile the conflicting demands of avoiding predation vs. foraging within a reefscape context. We show that with increasing risk, herbivorous fishes consumed dramatically less food (ca. 90%) but fed at a faster rate when they did feed (ca. 26%). Furthermore, we show that fishes foraging closest to the predator decoy were 40% smaller than those that foraged at further distances. Thus, smaller individuals showed muted response to predation risk compared to their larger counterparts, potentially due to their decreased risk to predation or lower reproductive value (i.e. the asset protection principle). Habitat heterogeneity mediated risk effects differently for different species of herbivores, with predation risk more strongly suppressing herbivore feeding in more complex areas and for individuals at higher risk of predation. Predators appear to create a reefscape of fear that changes the size structure of herbivores towards smaller individuals, increases individual feeding rates, but suppresses overall amounts of primary producers consumed, potentially altering patterns of herbivory, an ecosystem process critical for healthy coral reefs.
AbstractList 1. Predators can exert strong direct and indirect effects on ecological communities by intimidating their prey. The nature of predation risk effects is often context dependent, but in some ecosystems these contingencies are often overlooked. 2. Risk effects are often not uniform across landscapes or among species. Indeed, they can vary widely across gradients of habitat complexity and with different prey escape tactics. These context dependencies may be especially important for ecosystems such as coral reefs that vary widely in habitat complexity and have species-rich predator and prey communities. 3. With field experiments using predator decoys of the black grouper (Mycteroperca bonaci), we investigated how reef complexity interacts with predation risk to affect the foraging behaviour and herbivory rates of large herbivorous fishes (e.g. parrotfishes and surgeonfishes) across four coral reefs in the Florida Keys (USA). In both high and low complexity areas of the reef, we measured how herbivory changed with increasing distance from the predator decoy to examine how herbivorous fishes reconcile the conflicting demands of avoiding predation vs. foraging within a reefscape context. 4. We show that with increasing risk, herbivorous fishes consumed dramatically less food (ca. 90%) but fed at a faster rate when they did feed (ca. 26%). Furthermore, we show that fishes foraging closest to the predator decoy were 40% smaller than those that foraged at further distances. Thus, smaller individuals showed muted response to predation risk compared to their larger counterparts, potentially due to their decreased risk to predation or lower reproductive value (i.e. the asset protection principle). Habitat heterogeneity mediated risk effects differently for different species of herbivores, with predation risk more strongly suppressing herbivore feeding in more complex areas and for individuals at higher risk of predation. 5. Predators appear to create a reefscape of fear that changes the size structure of herbivores towards smaller individuals, increases individual feeding rates, but suppresses overall amounts of primary producers consumed, potentially altering patterns of herbivory, an ecosystem process critical for healthy coral reefs. The authors take a novel approach to address how predation risk and coral reef structural complexity interact to influence foraging by important herbivores. They examine prey behavioral responses to risk using fibreglass predator decoys anchored to the reef, building a new level of understanding of risk effects in these systems.
Summary Predators can exert strong direct and indirect effects on ecological communities by intimidating their prey. The nature of predation risk effects is often context dependent, but in some ecosystems these contingencies are often overlooked. Risk effects are often not uniform across landscapes or among species. Indeed, they can vary widely across gradients of habitat complexity and with different prey escape tactics. These context dependencies may be especially important for ecosystems such as coral reefs that vary widely in habitat complexity and have species-rich predator and prey communities. With field experiments using predator decoys of the black grouper (Mycteroperca bonaci), we investigated how reef complexity interacts with predation risk to affect the foraging behaviour and herbivory rates of large herbivorous fishes (e.g. parrotfishes and surgeonfishes) across four coral reefs in the Florida Keys (USA). In both high and low complexity areas of the reef, we measured how herbivory changed with increasing distance from the predator decoy to examine how herbivorous fishes reconcile the conflicting demands of avoiding predation vs. foraging within a reefscape context. We show that with increasing risk, herbivorous fishes consumed dramatically less food (ca. 90%) but fed at a faster rate when they did feed (ca. 26%). Furthermore, we show that fishes foraging closest to the predator decoy were 40% smaller than those that foraged at further distances. Thus, smaller individuals showed muted response to predation risk compared to their larger counterparts, potentially due to their decreased risk to predation or lower reproductive value (i.e. the asset protection principle). Habitat heterogeneity mediated risk effects differently for different species of herbivores, with predation risk more strongly suppressing herbivore feeding in more complex areas and for individuals at higher risk of predation. Predators appear to create a reefscape of fear that changes the size structure of herbivores towards smaller individuals, increases individual feeding rates, but suppresses overall amounts of primary producers consumed, potentially altering patterns of herbivory, an ecosystem process critical for healthy coral reefs.
Predators can exert strong direct and indirect effects on ecological communities by intimidating their prey. The nature of predation risk effects is often context dependent, but in some ecosystems these contingencies are often overlooked. Risk effects are often not uniform across landscapes or among species. Indeed, they can vary widely across gradients of habitat complexity and with different prey escape tactics. These context dependencies may be especially important for ecosystems such as coral reefs that vary widely in habitat complexity and have species-rich predator and prey communities. With field experiments using predator decoys of the black grouper (Mycteroperca bonaci), we investigated how reef complexity interacts with predation risk to affect the foraging behaviour and herbivory rates of large herbivorous fishes (e.g. parrotfishes and surgeonfishes) across four coral reefs in the Florida Keys (USA). In both high and low complexity areas of the reef, we measured how herbivory changed with increasing distance from the predator decoy to examine how herbivorous fishes reconcile the conflicting demands of avoiding predation vs. foraging within a reefscape context. We show that with increasing risk, herbivorous fishes consumed dramatically less food (ca. 90%) but fed at a faster rate when they did feed (ca. 26%). Furthermore, we show that fishes foraging closest to the predator decoy were 40% smaller than those that foraged at further distances. Thus, smaller individuals showed muted response to predation risk compared to their larger counterparts, potentially due to their decreased risk to predation or lower reproductive value (i.e. the asset protection principle). Habitat heterogeneity mediated risk effects differently for different species of herbivores, with predation risk more strongly suppressing herbivore feeding in more complex areas and for individuals at higher risk of predation. Predators appear to create a reefscape of fear that changes the size structure of herbivores towards smaller individuals, increases individual feeding rates, but suppresses overall amounts of primary producers consumed, potentially altering patterns of herbivory, an ecosystem process critical for healthy coral reefs.
Summary Predators can exert strong direct and indirect effects on ecological communities by intimidating their prey. The nature of predation risk effects is often context dependent, but in some ecosystems these contingencies are often overlooked. Risk effects are often not uniform across landscapes or among species. Indeed, they can vary widely across gradients of habitat complexity and with different prey escape tactics. These context dependencies may be especially important for ecosystems such as coral reefs that vary widely in habitat complexity and have species‐rich predator and prey communities. With field experiments using predator decoys of the black grouper (Mycteroperca bonaci), we investigated how reef complexity interacts with predation risk to affect the foraging behaviour and herbivory rates of large herbivorous fishes (e.g. parrotfishes and surgeonfishes) across four coral reefs in the Florida Keys (USA). In both high and low complexity areas of the reef, we measured how herbivory changed with increasing distance from the predator decoy to examine how herbivorous fishes reconcile the conflicting demands of avoiding predation vs. foraging within a reefscape context. We show that with increasing risk, herbivorous fishes consumed dramatically less food (ca. 90%) but fed at a faster rate when they did feed (ca. 26%). Furthermore, we show that fishes foraging closest to the predator decoy were 40% smaller than those that foraged at further distances. Thus, smaller individuals showed muted response to predation risk compared to their larger counterparts, potentially due to their decreased risk to predation or lower reproductive value (i.e. the asset protection principle). Habitat heterogeneity mediated risk effects differently for different species of herbivores, with predation risk more strongly suppressing herbivore feeding in more complex areas and for individuals at higher risk of predation. Predators appear to create a reefscape of fear that changes the size structure of herbivores towards smaller individuals, increases individual feeding rates, but suppresses overall amounts of primary producers consumed, potentially altering patterns of herbivory, an ecosystem process critical for healthy coral reefs. The authors take a novel approach to address how predation risk and coral reef structural complexity interact to influence foraging by important herbivores. They examine prey behavioral responses to risk using fibreglass predator decoys anchored to the reef, building a new level of understanding of risk effects in these systems.
Summary Predators can exert strong direct and indirect effects on ecological communities by intimidating their prey. The nature of predation risk effects is often context dependent, but in some ecosystems these contingencies are often overlooked. Risk effects are often not uniform across landscapes or among species. Indeed, they can vary widely across gradients of habitat complexity and with different prey escape tactics. These context dependencies may be especially important for ecosystems such as coral reefs that vary widely in habitat complexity and have species‐rich predator and prey communities. With field experiments using predator decoys of the black grouper ( Mycteroperca bonaci ), we investigated how reef complexity interacts with predation risk to affect the foraging behaviour and herbivory rates of large herbivorous fishes (e.g. parrotfishes and surgeonfishes) across four coral reefs in the Florida Keys (USA). In both high and low complexity areas of the reef, we measured how herbivory changed with increasing distance from the predator decoy to examine how herbivorous fishes reconcile the conflicting demands of avoiding predation vs. foraging within a reefscape context. We show that with increasing risk, herbivorous fishes consumed dramatically less food (ca. 90%) but fed at a faster rate when they did feed (ca. 26%). Furthermore, we show that fishes foraging closest to the predator decoy were 40% smaller than those that foraged at further distances. Thus, smaller individuals showed muted response to predation risk compared to their larger counterparts, potentially due to their decreased risk to predation or lower reproductive value (i.e. the asset protection principle). Habitat heterogeneity mediated risk effects differently for different species of herbivores, with predation risk more strongly suppressing herbivore feeding in more complex areas and for individuals at higher risk of predation. Predators appear to create a reefscape of fear that changes the size structure of herbivores towards smaller individuals, increases individual feeding rates, but suppresses overall amounts of primary producers consumed, potentially altering patterns of herbivory, an ecosystem process critical for healthy coral reefs.
Author Catano, Laura B
Rojas, Maria C
Malossi, Ryan J
Peters, Joseph R
Burkepile, Deron E
Heithaus, Michael R
Fryxell, John
Fourqurean, James W
Author_xml – sequence: 1
  fullname: Catano, Laura B
– sequence: 2
  fullname: Rojas, Maria C
– sequence: 3
  fullname: Malossi, Ryan J
– sequence: 4
  fullname: Peters, Joseph R
– sequence: 5
  fullname: Heithaus, Michael R
– sequence: 6
  fullname: Fourqurean, James W
– sequence: 7
  fullname: Burkepile, Deron E
– sequence: 8
  fullname: Fryxell, John
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26332988$$D View this record in MEDLINE/PubMed
BookMark eNqNkstOWzEQhq2KqgTourvWUjfdHPDl-JLuEKKUClGplLXl4zNODIkd7BOq7HgEnpEnqUOABZvWG0ujb3555vMO2oopAkIfKNmn9RxQLkXDpJD7lLUteYNGL5UtNCKE0UarMdlGO6VcEUIUI_wd2maSczbWeoSufwH44uwCCk4ee7D5K15k6O0QUsQ5lGtsY49zxfAUBsjp4e5-AhHCsMIh1oJ1Ax4SLtMaUpHchduUAfuU7STECe5gam9DWuY99NbbWYH3T_cuuvx2_Pvoe3P28-T06PCscVwL0gBTTLeqHtbxjvWt8rrl0Pn6dmZBeO24BduD47wXshfad1x7IiQ44qzlu-jLJneR080SymDmoTiYzWyEtCyGKiWl5C0n_4FKohUTXFb08yv0qs4U6yCVEkrUxcs1dbChXE6lZPBmkcPc5pWhxKyVmbUgsxZkHpXVjo9PuctuDv0L_-yoAnID_AkzWP0rz_w4PD9-Tv60afQ2GTupLs3lBSNU1o8wpnXJ_C9YG6x9
CODEN JAECAP
CitedBy_id crossref_primary_10_1016_j_tree_2019_01_004
crossref_primary_10_1111_maec_12561
crossref_primary_10_1016_j_anbehav_2018_04_005
crossref_primary_10_3389_fmars_2022_1037358
crossref_primary_10_1002_ecy_1668
crossref_primary_10_1088_1755_1315_1251_1_012032
crossref_primary_10_1016_j_beproc_2018_01_005
crossref_primary_10_1093_icb_icac147
crossref_primary_10_1371_journal_pone_0211886
crossref_primary_10_1007_s12237_016_0207_9
crossref_primary_10_1007_s00338_020_01920_y
crossref_primary_10_1016_j_marenvres_2024_106442
crossref_primary_10_1038_s41598_023_33415_5
crossref_primary_10_1038_s42003_022_03151_z
crossref_primary_10_3354_meps13074
crossref_primary_10_1002_ecm_1313
crossref_primary_10_1080_03949370_2018_1477837
crossref_primary_10_1111_fwb_14201
crossref_primary_10_1016_j_jembe_2017_09_005
crossref_primary_10_1002_ecs2_3301
crossref_primary_10_1016_j_scitotenv_2022_154811
crossref_primary_10_1098_rsbl_2019_0409
crossref_primary_10_2989_1814232X_2022_2066723
crossref_primary_10_1111_1365_2435_13779
crossref_primary_10_1016_j_marpolbul_2022_113799
crossref_primary_10_1007_s00442_018_4323_z
crossref_primary_10_1007_s00442_017_3928_y
crossref_primary_10_1093_biosci_biaa063
crossref_primary_10_3354_meps12733
crossref_primary_10_3354_meps11885
crossref_primary_10_1002_ecy_2649
crossref_primary_10_1007_s00338_019_01847_z
crossref_primary_10_1111_oik_08713
crossref_primary_10_7717_peerj_8149
crossref_primary_10_1007_s00442_017_3857_9
crossref_primary_10_1038_s41598_017_15679_w
crossref_primary_10_3389_fevo_2019_00102
crossref_primary_10_3390_d12100391
crossref_primary_10_12688_f1000research_10313_1
crossref_primary_10_1016_j_scitotenv_2020_139422
crossref_primary_10_1002_ecs2_2200
crossref_primary_10_1007_s00338_023_02378_4
crossref_primary_10_1007_s10530_018_1790_4
crossref_primary_10_1016_j_biocon_2023_110358
crossref_primary_10_1111_faf_12546
crossref_primary_10_3389_fmars_2021_678848
crossref_primary_10_1111_ddi_13063
crossref_primary_10_1007_s40823_017_0021_5
crossref_primary_10_1146_annurev_marine_010816_060551
crossref_primary_10_1111_ele_13614
crossref_primary_10_1016_j_anbehav_2023_06_013
crossref_primary_10_1016_j_ecolind_2022_109266
crossref_primary_10_1016_j_jembe_2020_151469
crossref_primary_10_1007_s10071_023_01743_8
crossref_primary_10_1007_s10924_024_03291_9
crossref_primary_10_1371_journal_pone_0236200
crossref_primary_10_1088_1755_1315_1137_1_012004
crossref_primary_10_3354_meps12600
crossref_primary_10_1098_rspb_2019_0053
crossref_primary_10_3354_meps11795
crossref_primary_10_3354_meps12443
crossref_primary_10_1111_oik_07731
crossref_primary_10_1371_journal_pone_0233498
crossref_primary_10_1111_oik_05954
crossref_primary_10_1111_oik_06844
crossref_primary_10_1007_s00338_019_01874_w
crossref_primary_10_1016_j_jembe_2017_09_020
crossref_primary_10_3354_meps13172
crossref_primary_10_1007_s11160_021_09692_6
crossref_primary_10_1016_j_fooweb_2021_e00216
crossref_primary_10_1002_ecs2_3944
crossref_primary_10_1007_s00227_018_3411_2
crossref_primary_10_1007_s10641_022_01260_6
crossref_primary_10_1002_wat2_1575
crossref_primary_10_1016_j_jembe_2019_03_009
crossref_primary_10_3354_meps12718
crossref_primary_10_1080_09524622_2023_2170469
crossref_primary_10_1002_ece3_3453
crossref_primary_10_1111_oik_06948
crossref_primary_10_1007_s00442_016_3794_z
crossref_primary_10_1371_journal_pone_0286570
crossref_primary_10_5343_bms_2022_0013
crossref_primary_10_1111_1365_2745_13235
crossref_primary_10_3390_d14090762
crossref_primary_10_1016_j_jembe_2023_151871
crossref_primary_10_3354_meps13480
crossref_primary_10_1016_j_marenvres_2017_11_001
crossref_primary_10_1016_j_aquabot_2020_103294
crossref_primary_10_1098_rspb_2019_2520
crossref_primary_10_1002_ecy_2380
crossref_primary_10_1098_rspb_2019_2367
Cites_doi 10.1126/science.150.3692.28
10.2307/1939877
10.1007/s00338-012-0988-7
10.1890/0012-9658(1997)078[1388:BMTCEO]2.0.CO;2
10.1890/1051-0761(2006)016[0747:TIOEGS]2.0.CO;2
10.3354/meps07413
10.2307/3545476
10.1111/j.1365-2656.2008.01512.x
10.1890/09-2015.1
10.1890/05-0032
10.1890/09-2174.1
10.1111/j.1461-0248.2003.00560.x
10.1890/0012-9658(2002)083[2037:CPAHSO]2.0.CO;2
10.3354/meps329225
10.1098/rspb.2013.2066
10.1016/j.cub.2006.12.049
10.1890/08-0606.1
10.1038/nature01934
10.1007/s004420050419
10.1111/j.1748-7692.2007.00167.x
10.1890/0012-9658(2002)083[0480:FAATSP]2.0.CO;2
10.1139/z90-092
10.1038/srep00014
10.1086/657039
10.1890/04-0719
10.1890/ES12-00084.1
10.1111/j.1365-2907.2011.00189.x
10.1007/s10641-006-9078-4
10.3354/meps10921
10.1007/s10641-005-6467-z
10.1371/journal.pone.0022761
10.2307/2937124
10.1016/j.biocon.2007.05.006
10.1890/11-0424.1
10.1007/BF00300117
10.1046/j.1467-2979.2003.00126.x
10.1038/nature01610
10.1038/srep01493
10.1111/oik.01318
10.1139/z01-094
10.1098/rspb.2009.0339
10.1073/pnas.0801946105
10.1111/1365-2656.12097
10.1023/A:1004545724503
10.1890/07-0260.1
10.1007/s00442-005-0063-y
10.1093/beheco/5.2.159
10.1371/journal.pone.0118764
10.1016/j.fishres.2011.01.012
10.1016/j.anbehav.2009.12.014
10.1890/ES13-00078.1
10.1016/S0003-3472(85)80011-7
10.1126/science.1121129
10.1007/s00442-011-2156-0
10.1890/0012-9658(2003)084[1083:AROTII]2.0.CO;2
10.1073/pnas.0702602104
ContentType Journal Article
Copyright 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society
2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
Journal of Animal Ecology © 2016 British Ecological Society
Copyright_xml – notice: 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society
– notice: 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
– notice: Journal of Animal Ecology © 2016 British Ecological Society
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
7X8
F1W
H95
L.G
DOI 10.1111/1365-2656.12440
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
Entomology Abstracts
MEDLINE - Academic
MEDLINE


CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
Biology
EISSN 1365-2656
Editor Fryxell, John
Editor_xml – sequence: 1
  givenname: John
  surname: Fryxell
  fullname: Fryxell, John
EndPage 156
ExternalDocumentID 3923388271
10_1111_1365_2656_12440
26332988
JANE12440
US201600091728
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GeographicLocations Florida
ASW, USA, Florida, Florida Keys
GeographicLocations_xml – name: Florida
– name: ASW, USA, Florida, Florida Keys
GrantInformation_xml – fundername: NOAA Coral Reef Conservation Program
– fundername: National Science Foundation
  funderid: OCE‐1130786
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1OC
24P
29J
2AX
2WC
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHKG
AAISJ
AAKGQ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABHUG
ABJNI
ABPFR
ABPLY
ABPTK
ABPVW
ABTAH
ABTLG
ABWRO
ABYAD
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACKIV
ACNCT
ACPOU
ACPRK
ACSCC
ACSTJ
ACTWD
ACUBG
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZLD
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AESBF
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFXHP
AFZJQ
AGJLS
AGUYK
AI.
AIHXQ
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
CBGCD
COF
CS3
CUYZI
CWIXF
D-E
D-F
DCZOG
DEVKO
DIK
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
DWIUU
E3Z
EBS
ECGQY
EJD
ESX
EYRJQ
F00
F01
F04
F5P
FBQ
FVMVE
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HQ2
HTVGU
HVGLF
HZI
HZ~
IHE
IX1
J0M
JAAYA
JAS
JBMMH
JBS
JBZCM
JEB
JENOY
JHFFW
JKQEH
JLEZI
JLS
JLXEF
JPL
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OK1
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
TEORI
TN5
UB1
UPT
VH1
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
YQT
ZCG
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAHBH
ABPQH
ABXSQ
ADACV
ADMHG
AHBTC
AHXOZ
AILXY
AITYG
AQVQM
HGLYW
IPSME
OIG
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
7X8
F1W
H95
L.G
ID FETCH-LOGICAL-c3850-e2728477772b3b2d47f843ebf2032ae5f8c3aeadec33d56d58fb38f056ec0caa3
IEDL.DBID DR2
ISSN 0021-8790
IngestDate Fri Oct 25 21:54:32 EDT 2024
Thu Oct 24 23:30:13 EDT 2024
Thu Oct 10 17:58:14 EDT 2024
Fri Aug 23 01:05:12 EDT 2024
Tue Oct 15 23:50:55 EDT 2024
Wed Oct 23 06:44:02 EDT 2024
Wed Dec 27 19:05:26 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords rugosity
coral reef
non-consumptive effects
predator-prey interactions
risk effects
landscape of fear
Language English
License 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3850-e2728477772b3b2d47f843ebf2032ae5f8c3aeadec33d56d58fb38f056ec0caa3
Notes http://dx.doi.org/10.1111/1365-2656.12440
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2656.12440
PMID 26332988
PQID 1757513666
PQPubID 37522
PageCount 11
ParticipantIDs proquest_miscellaneous_1776663430
proquest_miscellaneous_1760872536
proquest_journals_1757513666
crossref_primary_10_1111_1365_2656_12440
pubmed_primary_26332988
wiley_primary_10_1111_1365_2656_12440_JANE12440
fao_agris_US201600091728
PublicationCentury 2000
PublicationDate 2016
January 2016
2016-Jan
2016-01-00
20160101
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle The Journal of animal ecology
PublicationTitleAlternate J Anim Ecol
PublicationYear 2016
Publisher Blackwell Scientific Publ
Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Scientific Publ
– name: Blackwell Publishing Ltd
References 1997; 114
2010a; 176
2007; 104
1993; 67
2012; 168
2004; 7
1993; 63
2009; 276
2008; 105
2015b
2013; 280
2007; 78
2007; 138
2002; 83
2005; 145
2000; 57
1965; 150
2009; 90
2005; 74
2003; 4
2008; 24
2003; 84
2014; 123
2007; 17
2010a; 91
2011; 1
2010; 79
2006; 16
2009
2005; 86
2013a; 3
1989; 24
2011; 6
2007; 329
2012; 32
2008; 360
2014; 511
2006; 311
1987; 68
2009; 78
2011; 109
2012; 3
1990; 68
2003; 425
2015a; 10
2011; 92
1967; 5
1997; 78
2013b; 4
2013; 82
2015
2014
2013
1985; 33
2003; 423
2010; 91
2001; 79
2007; 88
1994; 5
2012; 42
e_1_2_7_3_1
Bohnsack J.A. (e_1_2_7_5_1) 2009
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
Catano L.B. (e_1_2_7_14_1) 2015
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
R Core Team (e_1_2_7_47_1) 2013
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
Randall J.E. (e_1_2_7_48_1) 1967; 5
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 90
  start-page: 23
  year: 2009
  end-page: 30
  article-title: Behavioral adjustments of African herbivores to predation risk by lions: spatiotemporal variations influence habitat use
  publication-title: Ecology
– volume: 276
  start-page: 3019
  year: 2009
  end-page: 3025
  article-title: Flattening of Caribbean coral reefs: region‐wide declines in architectural complexity
  publication-title: Proceedings of the Royal Society B
– volume: 114
  start-page: 50
  year: 1997
  end-page: 59
  article-title: Habitat complexity modifies the impact of piscivores on a coral reef fish population
  publication-title: Oecologia
– volume: 329
  start-page: 225
  year: 2007
  end-page: 238
  article-title: Complex habitats may not always benefit prey: linking visual field with reef fish behavior and distribution
  publication-title: Marine Ecology Progress Series
– volume: 16
  start-page: 747
  year: 2006
  end-page: 769
  article-title: The impact of exploiting grazers (Scaridae) on the dynamics of Caribbean coral reefs
  publication-title: Ecological Applications
– volume: 68
  start-page: 619
  year: 1990
  end-page: 640
  article-title: Behavioral decisions made under the risk of predation: a review and prospectus
  publication-title: Canadian Journal of Zoology
– volume: 311
  start-page: 98
  year: 2006
  end-page: 101
  article-title: Fishing, trophic cascades, and the process of grazing on coral reefs
  publication-title: Science
– volume: 78
  start-page: 556
  year: 2009
  end-page: 562
  article-title: Towards a predictive framework for predator risk effects: the interaction of landscape features and prey escape tactics
  publication-title: Journal of Animal Ecology
– year: 2015b
  article-title: Data from: Reefscapes of fear: predation risk and reef heterogeneity interact to shape herbivore foraging behavior
  publication-title: Dryad Digital Repository
– start-page: 1
  year: 2009
  end-page: 29
  article-title: Coral reef fish response to FKNMS management zones: the first ten years (1997–2007)
  publication-title: Progress Report of the Florida Keys National Marine Sanctuary
– volume: 4
  start-page: 1
  year: 2013b
  end-page: 19
  article-title: Habitat selection by large herbivores in a southern African savanna: the relative roles of bottom‐up and top‐down forces
  publication-title: Ecosphere
– volume: 4
  start-page: 216
  year: 2003
  end-page: 226
  article-title: Learned predator recognition and antipredator responses in fishes
  publication-title: Fish and Fisheries
– year: 2014
– volume: 176
  start-page: 785
  year: 2010a
  end-page: 801
  article-title: Fishing indirectly structures macroalgal assemblages by altering herbivore behavior
  publication-title: The American Naturalist
– volume: 32
  start-page: 429
  year: 2012
  end-page: 440
  article-title: Stable isotope analysis indicates a lack of inter‐ and intra‐specific dietary redundancy among ecologically important coral reef fishes
  publication-title: Coral Reefs
– volume: 5
  start-page: 655
  year: 1967
  end-page: 847
  article-title: Food habits of reef fishes of the West Indies
  publication-title: Studies in Tropical Oceanography
– volume: 138
  start-page: 514
  year: 2007
  end-page: 519
  article-title: Restoring Yellowstone's aspen with wolves
  publication-title: Biological Conservation
– volume: 109
  start-page: 25
  year: 2011
  end-page: 41
  article-title: Multispecies survey design for assessing reef‐fish stocks, spatially explicit management performance, and ecosystem condition
  publication-title: Fisheries Research
– volume: 10
  start-page: 1
  year: 2015a
  end-page: 21
  article-title: Predation risk, resource quality, and reef structural complexity shape territoriality in a coral reef herbivore
  publication-title: PLoS One
– volume: 78
  start-page: 1388
  year: 1997
  end-page: 1399
  article-title: Behaviorally mediated trophic cascades: effects of predation risk on food web interactions
  publication-title: Ecology
– volume: 1
  start-page: 14
  year: 2011
  article-title: Landscape of fear visible from space
  publication-title: Scientific Reports
– volume: 91
  start-page: 3332
  year: 2010
  end-page: 3342
  article-title: Functional connectivity from a reef fish perspective: behavioral tactics for moving in a fragmented landscape
  publication-title: Ecology
– volume: 78
  start-page: 71
  year: 2007
  end-page: 82
  article-title: Relationships between reef fish communities and remotely sensed rugosity measurements in Biscayne National Park, Florida, USA
  publication-title: Environmental Biology of Fishes
– volume: 63
  start-page: 77
  year: 1993
  end-page: 101
  article-title: Predation, prey refuges, and the structure of coral‐reef fish assemblages
  publication-title: Ecological Monographs
– volume: 67
  start-page: 309
  year: 1993
  end-page: 316
  article-title: The influence of snakes on the foraging behavior of gerbils
  publication-title: Oikos
– volume: 91
  start-page: 3563
  year: 2010a
  end-page: 3571
  article-title: Field evidence for pervasive indirect effects of fishing on prey foraging behavior
  publication-title: Ecology
– volume: 92
  start-page: 2258
  year: 2011
  end-page: 2266
  article-title: Landscape of fear influences the relative importance of consumptive and nonconsumptive predator effects
  publication-title: Ecology
– volume: 68
  start-page: 1856
  year: 1987
  end-page: 1862
  article-title: Habitat selection under predation hazard : test of a model with foraging minnows
  publication-title: Ecology
– volume: 511
  start-page: 193
  year: 2014
  end-page: 207
  article-title: Predation risk, competition and territorial damselfishes as drivers of herbivore foraging on Caribbean coral reefs
  publication-title: Marine Ecology Progress Series
– volume: 6
  start-page: e22761
  year: 2011
  article-title: Fear of fishers: human predation explains behavioral changes in coral reef fishes
  publication-title: PLoS One
– year: 2015
– volume: 17
  start-page: 360
  year: 2007
  end-page: 365
  article-title: Phase shifts, herbivory, and the resilience of coral reefs to climate change
  publication-title: Current Biology
– volume: 24
  start-page: 47
  year: 1989
  end-page: 58
  article-title: Threat‐sensitive predator avoidance in damselfish‐trumpetfish interactions
  publication-title: Behavioral Ecology and Sociobiology
– volume: 79
  start-page: 531
  year: 2010
  end-page: 537
  article-title: Spatial responses to predators vary with prey escape mode
  publication-title: Animal Behaviour
– volume: 86
  start-page: 501
  year: 2005
  end-page: 509
  article-title: Scared to death? The effects of intimidation and consumption in predator‐prey interactions
  publication-title: Ecology
– volume: 123
  start-page: 829
  year: 2014
  end-page: 836
  article-title: Not worth the risk: apex predators suppress herbivory on coral reefs
  publication-title: Oikos
– volume: 145
  start-page: 225
  year: 2005
  end-page: 234
  article-title: Scaling from plot experiments to landscapes: studying grasshoppers to inform forest ecosystem management
  publication-title: Oecologia
– volume: 86
  start-page: 3387
  year: 2005
  end-page: 3397
  article-title: Elk alter habitat selection as an antipredator response to wolves
  publication-title: Ecology
– volume: 3
  start-page: 1493
  year: 2013a
  article-title: Nutrient supply from fishes facilitates macroalgae and suppresses corals in a Caribbean coral reef ecosystem
  publication-title: Scientific Reports
– volume: 423
  start-page: 280
  year: 2003
  end-page: 283
  article-title: Rapid worldwide depletion of predatory fish communities
  publication-title: Nature
– volume: 360
  start-page: 237
  year: 2008
  end-page: 244
  article-title: Size‐dependent variation in the functional role of the parrotfish Scarus rivulatus on the Great Barrier Reef, Australia
  publication-title: Marine Ecology Progress Series
– volume: 84
  start-page: 1083
  year: 2003
  end-page: 1100
  article-title: A review of trait‐mediated indirect interactions in ecological communities
  publication-title: Ecology
– volume: 83
  start-page: 2037
  year: 2002
  end-page: 2048
  article-title: Coyote predation and habitat segregation of white‐tailed deer and mule deer
  publication-title: Ecology
– volume: 24
  start-page: 1
  year: 2008
  end-page: 15
  article-title: Seascapes of fear: evaluating sublethal predator effects experienced and generated by marine mammals
  publication-title: Marine Mammal Science
– volume: 280
  start-page: 20132066
  year: 2013
  article-title: The ontogeny of home ranges: evidence from coral reef fishes
  publication-title: Proceedings of the Biological Sciences
– volume: 74
  start-page: 99
  year: 2005
  end-page: 107
  article-title: Interpreting space use and behavior of blue tang, acanthurus coeruleus, in the context of habitat, density, and intra‐specific interactions
  publication-title: Environmental Biology of Fishes
– volume: 5
  start-page: 159
  year: 1994
  end-page: 170
  article-title: Antipredator behavior and the asset protection principle
  publication-title: Behavioral Ecology
– volume: 150
  start-page: 28
  year: 1965
  end-page: 35
  article-title: Predation, body size, and composition of plankton
  publication-title: Science
– volume: 105
  start-page: 16201
  year: 2008
  end-page: 16206
  article-title: Herbivore species richness and feeding complementarity affect community structure and function on a coral reef
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 7
  start-page: 153
  year: 2004
  end-page: 163
  article-title: Trophic cascades: the primacy of trait‐mediated indirect interactions
  publication-title: Ecology Letters
– volume: 33
  start-page: 782
  year: 1985
  end-page: 792
  article-title: Group foraging by a coral reef fish: a mechanism for gaining access to defended resources
  publication-title: Animal Behavior
– volume: 83
  start-page: 480
  year: 2002
  end-page: 491
  article-title: Food availability and tiger shark predation risk influence bottlenose dolphin habitat use
  publication-title: Ecology
– volume: 79
  start-page: 1401
  year: 2001
  end-page: 1409
  article-title: Wolves, elk, and bison: reestablishing the “landscape of fear” in Yellowstone National Park, USA
  publication-title: Canadian Journal of Zoology
– volume: 3
  start-page: 1
  year: 2012
  end-page: 27
  article-title: The allometry of fear: interspecific relationships between body size and response to predation risk
  publication-title: Ecosphere
– volume: 168
  start-page: 1079
  year: 2012
  end-page: 1090
  article-title: Spatial dynamics of benthic competition on coral reefs
  publication-title: Oecologia
– volume: 425
  start-page: 288
  year: 2003
  end-page: 290
  article-title: Patterns of predation in a diverse predator – prey system
  publication-title: Nature
– volume: 82
  start-page: 1192
  year: 2013
  end-page: 1202
  article-title: Patterns of top‐down control in a seagrass ecosystem: could a roving apex predator induce a behaviour‐mediated trophic cascade?
  publication-title: The Journal of Animal Ecology
– volume: 88
  start-page: 2744
  year: 2007
  end-page: 2751
  article-title: Predator hunting mode and habitat domain alter nonconsumptive effects in predator‐prey interactions
  publication-title: Ecology
– volume: 104
  start-page: 8362
  year: 2007
  end-page: 8367
  article-title: Trophic cascade facilitates coral recruitment in a marine reserve
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 42
  start-page: 55
  year: 2012
  end-page: 77
  article-title: Habitat heterogeneity and mammalian predator‐prey interactions
  publication-title: Mammal Review
– volume: 57
  start-page: 11
  year: 2000
  end-page: 24
  article-title: Movements of fishes within and among fringing coral reefs in Barbados
  publication-title: Environmental Biology of Fishes
– year: 2013
– ident: e_1_2_7_7_1
  doi: 10.1126/science.150.3692.28
– ident: e_1_2_7_19_1
  doi: 10.2307/1939877
– ident: e_1_2_7_43_1
  doi: 10.1007/s00338-012-0988-7
– ident: e_1_2_7_54_1
  doi: 10.1890/0012-9658(1997)078[1388:BMTCEO]2.0.CO;2
– ident: e_1_2_7_3_1
– ident: e_1_2_7_39_1
  doi: 10.1890/1051-0761(2006)016[0747:TIOEGS]2.0.CO;2
– ident: e_1_2_7_6_1
  doi: 10.3354/meps07413
– ident: e_1_2_7_28_1
  doi: 10.2307/3545476
– ident: e_1_2_7_22_1
  doi: 10.1111/j.1365-2656.2008.01512.x
– ident: e_1_2_7_59_1
  doi: 10.1890/09-2015.1
– ident: e_1_2_7_17_1
  doi: 10.1890/05-0032
– ident: e_1_2_7_30_1
– ident: e_1_2_7_35_1
  doi: 10.1890/09-2174.1
– ident: e_1_2_7_55_1
  doi: 10.1111/j.1461-0248.2003.00560.x
– ident: e_1_2_7_34_1
  doi: 10.1890/0012-9658(2002)083[2037:CPAHSO]2.0.CO;2
– ident: e_1_2_7_49_1
  doi: 10.3354/meps329225
– ident: e_1_2_7_61_1
  doi: 10.1098/rspb.2013.2066
– ident: e_1_2_7_25_1
  doi: 10.1016/j.cub.2006.12.049
– ident: e_1_2_7_32_1
– ident: e_1_2_7_60_1
  doi: 10.1890/08-0606.1
– start-page: 1
  year: 2009
  ident: e_1_2_7_5_1
  article-title: Coral reef fish response to FKNMS management zones: the first ten years (1997–2007)
  publication-title: Progress Report of the Florida Keys National Marine Sanctuary
  contributor:
    fullname: Bohnsack J.A.
– ident: e_1_2_7_57_1
  doi: 10.1038/nature01934
– ident: e_1_2_7_4_1
  doi: 10.1007/s004420050419
– volume: 5
  start-page: 655
  year: 1967
  ident: e_1_2_7_48_1
  article-title: Food habits of reef fishes of the West Indies
  publication-title: Studies in Tropical Oceanography
  contributor:
    fullname: Randall J.E.
– ident: e_1_2_7_64_1
  doi: 10.1111/j.1748-7692.2007.00167.x
– ident: e_1_2_7_21_1
  doi: 10.1890/0012-9658(2002)083[0480:FAATSP]2.0.CO;2
– ident: e_1_2_7_33_1
  doi: 10.1139/z90-092
– ident: e_1_2_7_36_1
  doi: 10.1038/srep00014
– ident: e_1_2_7_37_1
  doi: 10.1086/657039
– ident: e_1_2_7_44_1
  doi: 10.1890/04-0719
– ident: e_1_2_7_45_1
  doi: 10.1890/ES12-00084.1
– ident: e_1_2_7_20_1
  doi: 10.1111/j.1365-2907.2011.00189.x
– ident: e_1_2_7_29_1
  doi: 10.1007/s10641-006-9078-4
– ident: e_1_2_7_12_1
  doi: 10.3354/meps10921
– volume-title: R Foundation for Statistical Computing
  year: 2013
  ident: e_1_2_7_47_1
  contributor:
    fullname: R Core Team
– ident: e_1_2_7_56_1
  doi: 10.1007/s10641-005-6467-z
– year: 2015
  ident: e_1_2_7_14_1
  article-title: Data from: Reefscapes of fear: predation risk and reef heterogeneity interact to shape herbivore foraging behavior
  publication-title: Dryad Digital Repository
  contributor:
    fullname: Catano L.B.
– ident: e_1_2_7_26_1
  doi: 10.1371/journal.pone.0022761
– ident: e_1_2_7_24_1
  doi: 10.2307/2937124
– ident: e_1_2_7_50_1
  doi: 10.1016/j.biocon.2007.05.006
– ident: e_1_2_7_38_1
  doi: 10.1890/11-0424.1
– ident: e_1_2_7_23_1
  doi: 10.1007/BF00300117
– ident: e_1_2_7_27_1
  doi: 10.1046/j.1467-2979.2003.00126.x
– ident: e_1_2_7_42_1
  doi: 10.1038/nature01610
– ident: e_1_2_7_9_1
  doi: 10.1038/srep01493
– ident: e_1_2_7_51_1
  doi: 10.1111/oik.01318
– ident: e_1_2_7_31_1
  doi: 10.1139/z01-094
– ident: e_1_2_7_2_1
  doi: 10.1098/rspb.2009.0339
– ident: e_1_2_7_8_1
  doi: 10.1073/pnas.0801946105
– ident: e_1_2_7_11_1
  doi: 10.1111/1365-2656.12097
– ident: e_1_2_7_15_1
  doi: 10.1023/A:1004545724503
– ident: e_1_2_7_46_1
  doi: 10.1890/07-0260.1
– ident: e_1_2_7_53_1
  doi: 10.1007/s00442-005-0063-y
– ident: e_1_2_7_16_1
  doi: 10.1093/beheco/5.2.159
– ident: e_1_2_7_13_1
  doi: 10.1371/journal.pone.0118764
– ident: e_1_2_7_58_1
  doi: 10.1016/j.fishres.2011.01.012
– ident: e_1_2_7_63_1
  doi: 10.1016/j.anbehav.2009.12.014
– ident: e_1_2_7_10_1
  doi: 10.1890/ES13-00078.1
– ident: e_1_2_7_18_1
  doi: 10.1016/S0003-3472(85)80011-7
– ident: e_1_2_7_40_1
  doi: 10.1126/science.1121129
– ident: e_1_2_7_52_1
  doi: 10.1007/s00442-011-2156-0
– ident: e_1_2_7_62_1
  doi: 10.1890/0012-9658(2003)084[1083:AROTII]2.0.CO;2
– ident: e_1_2_7_41_1
  doi: 10.1073/pnas.0702602104
SSID ssj0007203
Score 2.4605596
Snippet Predators can exert strong direct and indirect effects on ecological communities by intimidating their prey. The nature of predation risk effects is often...
Summary Predators can exert strong direct and indirect effects on ecological communities by intimidating their prey. The nature of predation risk effects is...
Summary Predators can exert strong direct and indirect effects on ecological communities by intimidating their prey. The nature of predation risk effects is...
1. Predators can exert strong direct and indirect effects on ecological communities by intimidating their prey. The nature of predation risk effects is often...
SourceID proquest
crossref
pubmed
wiley
fao
SourceType Aggregation Database
Index Database
Publisher
StartPage 146
SubjectTerms Animal behavior
Animals
Bass - physiology
coral reef
Coral Reefs
ecosystems
Fear
fearfulness
field experimentation
Fish
Fishes - physiology
Florida
Food Chain
foraging
herbivores
Herbivory
landscape of fear
landscapes
Marine
Marine ecology
Mycteroperca bonaci
non‐consumptive effects
Predation
predators
Predatory Behavior
predator–prey interactions
risk
risk effects
risk reduction
rugosity
Title Reefscapes of fear: predation risk and reef hetero‐geneity interact to shape herbivore foraging behaviour
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2656.12440
https://www.ncbi.nlm.nih.gov/pubmed/26332988
https://www.proquest.com/docview/1757513666
https://search.proquest.com/docview/1760872536
https://search.proquest.com/docview/1776663430
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxUxFA5aENxoffa2VSK4cDPXmTmTZOKuaEsp2EX1grgJeY0thZnL3HuFdtWf4G_0l3jOPK62iCLOKjAnIa-T8yX5cg5jLyPIUsUsS6IuRFKEWCZWOI27lMz5IlOZ7Z5Hvz-Wh7Pi6JMY2YT0Fqb3D7E-cCPN6NZrUnDrFr8o-cDPEnJKJop27RkoInW9O_npQIouGXuSR4Z6r9PBuQ9xeW7kv2aXble2-R3kvI5gOxN0cJ-5sfI98-R8ulq6qb-84dfxv1q3ye4NAJXv9TPqAbsV64fsTh-y8gJTn5su9Yidn8SIBtTO44I3Fa9QZd7weRv7IE2cOOvc1oG3KMZPiXXTfL_6hvM1IvDn5KaCHmjxZcMXp1gIirTu7GvTRo44uoudxAcfAqv2MZsd7H98e5gMoRsSD6VIk5grsnv45Q5cHgpVlQVEV1HAdhtFVXqwxNX2AEHIIMrKQVkhGos-9dbCE7ZRN3XcYtynoF3ItXSZLrQKGpehCrQPUoF3PkzYq3HgzLz30GHGnQ31oqFeNF0vTtgWDqyxX7ALzOxDTt71EGNSiK4J2x1H2wxavDAIrZTAMqScsBfr36h_dKli69isSEampcoF_FFGYRlQANbgaT-T1lXNJUCuS6zA624-_K0N5mjveL9Lbf9zjh12l9rcnyDtso1lu4rPEFMt3fNObX4AhmMTEQ
link.rule.ids 315,783,787,1378,4033,27937,27938,27939,46308,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagCMGFf-hCASNx4JIliWPH7q2CVktp91C6UsXF8i9FlZJVdhcJTjxCn7FP0pkku7QVAiFyshTHsj3zZT7b4xlCXgcmZBmyLAmq4Enhg0wMtwpWKZl1RVZmpr0evT8Wo0mxe8SPLtyF6eJDrDbcEBnt_xoBjhvSF1DeO2hxMUQbBcv2GwB6hlkM3h_8CiGFx4ydm0cGyFdpH94HvXmuNHDJMl2Ppv4d6bzMYVsjtHOXuGX3O9-Tk-Fibofux5XIjv83vnvkTs9R6VanVPfJtVA9IDe7rJXfofS5bksPyclBCGBDzTTMaB1pBNRs0mkTujxNFN3Wqak8baAaPUbHm_rs5ymobADuTzFSBd7RovOazo6hEajS2K_f6iZQoNJt-iTahxFYNI_IZGf78N0o6bM3JI5JniYhL9H0wZNbZnNflFEWLNiIOdtN4FE6ZtBd2zHmufBcRstkBEIWXOqMYY_JWlVXYZ1QlzJlfa6EzVShSq_gTxSZch7k7azzA_JmKTk97YJ06OXiBmdR4yzqdhYHZB0kq80XmAI9-ZRjgD2gmZila0A2luLWPZBnGthVyaENIQbk1eo1QBDPVUwV6gXWEaksc87-WKeENljBoAdPOlVadTUXjOVKQgfetgrxtzHo3a3xdlt6-s9fvCS3Rof7e3rvw_jjM3Ibx99tKG2QtXmzCM-BYs3tixZD57uuFys
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagCMSlvOlCASNx4JJtEsdOzK2iXZUCK1RYCXGx_KRVpWSV3UWCEz-B38gvYSZOFlohECInS3FGfsxkPtufZwh54pmoSp9liZcFTwrnq0RzI2GVkhlbZGWmu-vRr6fiYFYcvucDmxDvwsT4EOsNN7SM7n-NBj534Rcj7_lZXIzRRcGq_VIhWIqsrr2jnxGk8JQxsjwyMHyZ9tF9kMxzTsAZx3Qx6OZ3mPMshO180OQaMUPrI_XkdLxamrH9ci6w43917zrZ7BEq3Y0qdYNc8PVNcjnmrPwMpQ9NV7pFTo-8Bw-q535Bm0AD2MwzOm99zNJEkbROde1oC9XoMdJumu9fv4HCekD-FONU4A0tumzo4hiEQJXWnHxqWk8BSHfJk2gfRGDV3iazyf675wdJn7shsaziaeLzEh0fPLlhJndFGaqCeRMwY7v2PFSWaSRrW8YcF45XwbAqABzzNrVasztko25qv0WoTZk0LpfCZLKQpZPwHwpMWidKZo11I_J0mDg1jyE61LC0wVFUOIqqG8UR2YKJVfojDIGavc0xvB6ATMzRNSLbw2yr3owXCrBVyUGGECPyeP0aDBBPVXTtmxXWEWlV5pz9sU4JMljBoAV3oyatm5oLxnJZQQN2On34Wx_U4e50vyvd--cvHpErb_Ym6tWL6cv75Cp2P-4mbZONZbvyDwBfLc3DzoJ-AFKaFdo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reefscapes+of+fear%3A+predation+risk+and+reef+hetero%E2%80%90geneity+interact+to+shape+herbivore+foraging+behaviour&rft.jtitle=The+Journal+of+animal+ecology&rft.au=Catano%2C+Laura+B&rft.au=Rojas%2C+Maria+C&rft.au=Malossi%2C+Ryan+J&rft.au=Peters%2C+Joseph+R&rft.date=2016&rft.pub=Blackwell+Scientific+Publ&rft.issn=0021-8790&rft.eissn=1365-2656&rft.volume=85&rft.issue=1&rft.spage=146&rft.epage=156&rft_id=info:doi/10.1111%2F1365-2656.12440&rft.externalDocID=US201600091728
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8790&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8790&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8790&client=summon