Reefscapes of fear: predation risk and reef hetero‐geneity interact to shape herbivore foraging behaviour
Predators can exert strong direct and indirect effects on ecological communities by intimidating their prey. The nature of predation risk effects is often context dependent, but in some ecosystems these contingencies are often overlooked. Risk effects are often not uniform across landscapes or among...
Saved in:
Published in | The Journal of animal ecology Vol. 85; no. 1; pp. 146 - 156 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Scientific Publ
2016
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Predators can exert strong direct and indirect effects on ecological communities by intimidating their prey. The nature of predation risk effects is often context dependent, but in some ecosystems these contingencies are often overlooked. Risk effects are often not uniform across landscapes or among species. Indeed, they can vary widely across gradients of habitat complexity and with different prey escape tactics. These context dependencies may be especially important for ecosystems such as coral reefs that vary widely in habitat complexity and have species‐rich predator and prey communities. With field experiments using predator decoys of the black grouper (Mycteroperca bonaci), we investigated how reef complexity interacts with predation risk to affect the foraging behaviour and herbivory rates of large herbivorous fishes (e.g. parrotfishes and surgeonfishes) across four coral reefs in the Florida Keys (USA). In both high and low complexity areas of the reef, we measured how herbivory changed with increasing distance from the predator decoy to examine how herbivorous fishes reconcile the conflicting demands of avoiding predation vs. foraging within a reefscape context. We show that with increasing risk, herbivorous fishes consumed dramatically less food (ca. 90%) but fed at a faster rate when they did feed (ca. 26%). Furthermore, we show that fishes foraging closest to the predator decoy were 40% smaller than those that foraged at further distances. Thus, smaller individuals showed muted response to predation risk compared to their larger counterparts, potentially due to their decreased risk to predation or lower reproductive value (i.e. the asset protection principle). Habitat heterogeneity mediated risk effects differently for different species of herbivores, with predation risk more strongly suppressing herbivore feeding in more complex areas and for individuals at higher risk of predation. Predators appear to create a reefscape of fear that changes the size structure of herbivores towards smaller individuals, increases individual feeding rates, but suppresses overall amounts of primary producers consumed, potentially altering patterns of herbivory, an ecosystem process critical for healthy coral reefs. |
---|---|
AbstractList | 1. Predators can exert strong direct and indirect effects on ecological communities by intimidating their prey. The nature of predation risk effects is often context dependent, but in some ecosystems these contingencies are often overlooked. 2. Risk effects are often not uniform across landscapes or among species. Indeed, they can vary widely across gradients of habitat complexity and with different prey escape tactics. These context dependencies may be especially important for ecosystems such as coral reefs that vary widely in habitat complexity and have species-rich predator and prey communities. 3. With field experiments using predator decoys of the black grouper (Mycteroperca bonaci), we investigated how reef complexity interacts with predation risk to affect the foraging behaviour and herbivory rates of large herbivorous fishes (e.g. parrotfishes and surgeonfishes) across four coral reefs in the Florida Keys (USA). In both high and low complexity areas of the reef, we measured how herbivory changed with increasing distance from the predator decoy to examine how herbivorous fishes reconcile the conflicting demands of avoiding predation vs. foraging within a reefscape context. 4. We show that with increasing risk, herbivorous fishes consumed dramatically less food (ca. 90%) but fed at a faster rate when they did feed (ca. 26%). Furthermore, we show that fishes foraging closest to the predator decoy were 40% smaller than those that foraged at further distances. Thus, smaller individuals showed muted response to predation risk compared to their larger counterparts, potentially due to their decreased risk to predation or lower reproductive value (i.e. the asset protection principle). Habitat heterogeneity mediated risk effects differently for different species of herbivores, with predation risk more strongly suppressing herbivore feeding in more complex areas and for individuals at higher risk of predation. 5. Predators appear to create a reefscape of fear that changes the size structure of herbivores towards smaller individuals, increases individual feeding rates, but suppresses overall amounts of primary producers consumed, potentially altering patterns of herbivory, an ecosystem process critical for healthy coral reefs. The authors take a novel approach to address how predation risk and coral reef structural complexity interact to influence foraging by important herbivores. They examine prey behavioral responses to risk using fibreglass predator decoys anchored to the reef, building a new level of understanding of risk effects in these systems. Summary Predators can exert strong direct and indirect effects on ecological communities by intimidating their prey. The nature of predation risk effects is often context dependent, but in some ecosystems these contingencies are often overlooked. Risk effects are often not uniform across landscapes or among species. Indeed, they can vary widely across gradients of habitat complexity and with different prey escape tactics. These context dependencies may be especially important for ecosystems such as coral reefs that vary widely in habitat complexity and have species-rich predator and prey communities. With field experiments using predator decoys of the black grouper (Mycteroperca bonaci), we investigated how reef complexity interacts with predation risk to affect the foraging behaviour and herbivory rates of large herbivorous fishes (e.g. parrotfishes and surgeonfishes) across four coral reefs in the Florida Keys (USA). In both high and low complexity areas of the reef, we measured how herbivory changed with increasing distance from the predator decoy to examine how herbivorous fishes reconcile the conflicting demands of avoiding predation vs. foraging within a reefscape context. We show that with increasing risk, herbivorous fishes consumed dramatically less food (ca. 90%) but fed at a faster rate when they did feed (ca. 26%). Furthermore, we show that fishes foraging closest to the predator decoy were 40% smaller than those that foraged at further distances. Thus, smaller individuals showed muted response to predation risk compared to their larger counterparts, potentially due to their decreased risk to predation or lower reproductive value (i.e. the asset protection principle). Habitat heterogeneity mediated risk effects differently for different species of herbivores, with predation risk more strongly suppressing herbivore feeding in more complex areas and for individuals at higher risk of predation. Predators appear to create a reefscape of fear that changes the size structure of herbivores towards smaller individuals, increases individual feeding rates, but suppresses overall amounts of primary producers consumed, potentially altering patterns of herbivory, an ecosystem process critical for healthy coral reefs. Predators can exert strong direct and indirect effects on ecological communities by intimidating their prey. The nature of predation risk effects is often context dependent, but in some ecosystems these contingencies are often overlooked. Risk effects are often not uniform across landscapes or among species. Indeed, they can vary widely across gradients of habitat complexity and with different prey escape tactics. These context dependencies may be especially important for ecosystems such as coral reefs that vary widely in habitat complexity and have species-rich predator and prey communities. With field experiments using predator decoys of the black grouper (Mycteroperca bonaci), we investigated how reef complexity interacts with predation risk to affect the foraging behaviour and herbivory rates of large herbivorous fishes (e.g. parrotfishes and surgeonfishes) across four coral reefs in the Florida Keys (USA). In both high and low complexity areas of the reef, we measured how herbivory changed with increasing distance from the predator decoy to examine how herbivorous fishes reconcile the conflicting demands of avoiding predation vs. foraging within a reefscape context. We show that with increasing risk, herbivorous fishes consumed dramatically less food (ca. 90%) but fed at a faster rate when they did feed (ca. 26%). Furthermore, we show that fishes foraging closest to the predator decoy were 40% smaller than those that foraged at further distances. Thus, smaller individuals showed muted response to predation risk compared to their larger counterparts, potentially due to their decreased risk to predation or lower reproductive value (i.e. the asset protection principle). Habitat heterogeneity mediated risk effects differently for different species of herbivores, with predation risk more strongly suppressing herbivore feeding in more complex areas and for individuals at higher risk of predation. Predators appear to create a reefscape of fear that changes the size structure of herbivores towards smaller individuals, increases individual feeding rates, but suppresses overall amounts of primary producers consumed, potentially altering patterns of herbivory, an ecosystem process critical for healthy coral reefs. Summary Predators can exert strong direct and indirect effects on ecological communities by intimidating their prey. The nature of predation risk effects is often context dependent, but in some ecosystems these contingencies are often overlooked. Risk effects are often not uniform across landscapes or among species. Indeed, they can vary widely across gradients of habitat complexity and with different prey escape tactics. These context dependencies may be especially important for ecosystems such as coral reefs that vary widely in habitat complexity and have species‐rich predator and prey communities. With field experiments using predator decoys of the black grouper (Mycteroperca bonaci), we investigated how reef complexity interacts with predation risk to affect the foraging behaviour and herbivory rates of large herbivorous fishes (e.g. parrotfishes and surgeonfishes) across four coral reefs in the Florida Keys (USA). In both high and low complexity areas of the reef, we measured how herbivory changed with increasing distance from the predator decoy to examine how herbivorous fishes reconcile the conflicting demands of avoiding predation vs. foraging within a reefscape context. We show that with increasing risk, herbivorous fishes consumed dramatically less food (ca. 90%) but fed at a faster rate when they did feed (ca. 26%). Furthermore, we show that fishes foraging closest to the predator decoy were 40% smaller than those that foraged at further distances. Thus, smaller individuals showed muted response to predation risk compared to their larger counterparts, potentially due to their decreased risk to predation or lower reproductive value (i.e. the asset protection principle). Habitat heterogeneity mediated risk effects differently for different species of herbivores, with predation risk more strongly suppressing herbivore feeding in more complex areas and for individuals at higher risk of predation. Predators appear to create a reefscape of fear that changes the size structure of herbivores towards smaller individuals, increases individual feeding rates, but suppresses overall amounts of primary producers consumed, potentially altering patterns of herbivory, an ecosystem process critical for healthy coral reefs. The authors take a novel approach to address how predation risk and coral reef structural complexity interact to influence foraging by important herbivores. They examine prey behavioral responses to risk using fibreglass predator decoys anchored to the reef, building a new level of understanding of risk effects in these systems. Summary Predators can exert strong direct and indirect effects on ecological communities by intimidating their prey. The nature of predation risk effects is often context dependent, but in some ecosystems these contingencies are often overlooked. Risk effects are often not uniform across landscapes or among species. Indeed, they can vary widely across gradients of habitat complexity and with different prey escape tactics. These context dependencies may be especially important for ecosystems such as coral reefs that vary widely in habitat complexity and have species‐rich predator and prey communities. With field experiments using predator decoys of the black grouper ( Mycteroperca bonaci ), we investigated how reef complexity interacts with predation risk to affect the foraging behaviour and herbivory rates of large herbivorous fishes (e.g. parrotfishes and surgeonfishes) across four coral reefs in the Florida Keys (USA). In both high and low complexity areas of the reef, we measured how herbivory changed with increasing distance from the predator decoy to examine how herbivorous fishes reconcile the conflicting demands of avoiding predation vs. foraging within a reefscape context. We show that with increasing risk, herbivorous fishes consumed dramatically less food (ca. 90%) but fed at a faster rate when they did feed (ca. 26%). Furthermore, we show that fishes foraging closest to the predator decoy were 40% smaller than those that foraged at further distances. Thus, smaller individuals showed muted response to predation risk compared to their larger counterparts, potentially due to their decreased risk to predation or lower reproductive value (i.e. the asset protection principle). Habitat heterogeneity mediated risk effects differently for different species of herbivores, with predation risk more strongly suppressing herbivore feeding in more complex areas and for individuals at higher risk of predation. Predators appear to create a reefscape of fear that changes the size structure of herbivores towards smaller individuals, increases individual feeding rates, but suppresses overall amounts of primary producers consumed, potentially altering patterns of herbivory, an ecosystem process critical for healthy coral reefs. |
Author | Catano, Laura B Rojas, Maria C Malossi, Ryan J Peters, Joseph R Burkepile, Deron E Heithaus, Michael R Fryxell, John Fourqurean, James W |
Author_xml | – sequence: 1 fullname: Catano, Laura B – sequence: 2 fullname: Rojas, Maria C – sequence: 3 fullname: Malossi, Ryan J – sequence: 4 fullname: Peters, Joseph R – sequence: 5 fullname: Heithaus, Michael R – sequence: 6 fullname: Fourqurean, James W – sequence: 7 fullname: Burkepile, Deron E – sequence: 8 fullname: Fryxell, John |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26332988$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkstOWzEQhq2KqgTourvWUjfdHPDl-JLuEKKUClGplLXl4zNODIkd7BOq7HgEnpEnqUOABZvWG0ujb3555vMO2oopAkIfKNmn9RxQLkXDpJD7lLUteYNGL5UtNCKE0UarMdlGO6VcEUIUI_wd2maSczbWeoSufwH44uwCCk4ee7D5K15k6O0QUsQ5lGtsY49zxfAUBsjp4e5-AhHCsMIh1oJ1Ax4SLtMaUpHchduUAfuU7STECe5gam9DWuY99NbbWYH3T_cuuvx2_Pvoe3P28-T06PCscVwL0gBTTLeqHtbxjvWt8rrl0Pn6dmZBeO24BduD47wXshfad1x7IiQ44qzlu-jLJneR080SymDmoTiYzWyEtCyGKiWl5C0n_4FKohUTXFb08yv0qs4U6yCVEkrUxcs1dbChXE6lZPBmkcPc5pWhxKyVmbUgsxZkHpXVjo9PuctuDv0L_-yoAnID_AkzWP0rz_w4PD9-Tv60afQ2GTupLs3lBSNU1o8wpnXJ_C9YG6x9 |
CODEN | JAECAP |
CitedBy_id | crossref_primary_10_1016_j_tree_2019_01_004 crossref_primary_10_1111_maec_12561 crossref_primary_10_1016_j_anbehav_2018_04_005 crossref_primary_10_3389_fmars_2022_1037358 crossref_primary_10_1002_ecy_1668 crossref_primary_10_1088_1755_1315_1251_1_012032 crossref_primary_10_1016_j_beproc_2018_01_005 crossref_primary_10_1093_icb_icac147 crossref_primary_10_1371_journal_pone_0211886 crossref_primary_10_1007_s12237_016_0207_9 crossref_primary_10_1007_s00338_020_01920_y crossref_primary_10_1016_j_marenvres_2024_106442 crossref_primary_10_1038_s41598_023_33415_5 crossref_primary_10_1038_s42003_022_03151_z crossref_primary_10_3354_meps13074 crossref_primary_10_1002_ecm_1313 crossref_primary_10_1080_03949370_2018_1477837 crossref_primary_10_1111_fwb_14201 crossref_primary_10_1016_j_jembe_2017_09_005 crossref_primary_10_1002_ecs2_3301 crossref_primary_10_1016_j_scitotenv_2022_154811 crossref_primary_10_1098_rsbl_2019_0409 crossref_primary_10_2989_1814232X_2022_2066723 crossref_primary_10_1111_1365_2435_13779 crossref_primary_10_1016_j_marpolbul_2022_113799 crossref_primary_10_1007_s00442_018_4323_z crossref_primary_10_1007_s00442_017_3928_y crossref_primary_10_1093_biosci_biaa063 crossref_primary_10_3354_meps12733 crossref_primary_10_3354_meps11885 crossref_primary_10_1002_ecy_2649 crossref_primary_10_1007_s00338_019_01847_z crossref_primary_10_1111_oik_08713 crossref_primary_10_7717_peerj_8149 crossref_primary_10_1007_s00442_017_3857_9 crossref_primary_10_1038_s41598_017_15679_w crossref_primary_10_3389_fevo_2019_00102 crossref_primary_10_3390_d12100391 crossref_primary_10_12688_f1000research_10313_1 crossref_primary_10_1016_j_scitotenv_2020_139422 crossref_primary_10_1002_ecs2_2200 crossref_primary_10_1007_s00338_023_02378_4 crossref_primary_10_1007_s10530_018_1790_4 crossref_primary_10_1016_j_biocon_2023_110358 crossref_primary_10_1111_faf_12546 crossref_primary_10_3389_fmars_2021_678848 crossref_primary_10_1111_ddi_13063 crossref_primary_10_1007_s40823_017_0021_5 crossref_primary_10_1146_annurev_marine_010816_060551 crossref_primary_10_1111_ele_13614 crossref_primary_10_1016_j_anbehav_2023_06_013 crossref_primary_10_1016_j_ecolind_2022_109266 crossref_primary_10_1016_j_jembe_2020_151469 crossref_primary_10_1007_s10071_023_01743_8 crossref_primary_10_1007_s10924_024_03291_9 crossref_primary_10_1371_journal_pone_0236200 crossref_primary_10_1088_1755_1315_1137_1_012004 crossref_primary_10_3354_meps12600 crossref_primary_10_1098_rspb_2019_0053 crossref_primary_10_3354_meps11795 crossref_primary_10_3354_meps12443 crossref_primary_10_1111_oik_07731 crossref_primary_10_1371_journal_pone_0233498 crossref_primary_10_1111_oik_05954 crossref_primary_10_1111_oik_06844 crossref_primary_10_1007_s00338_019_01874_w crossref_primary_10_1016_j_jembe_2017_09_020 crossref_primary_10_3354_meps13172 crossref_primary_10_1007_s11160_021_09692_6 crossref_primary_10_1016_j_fooweb_2021_e00216 crossref_primary_10_1002_ecs2_3944 crossref_primary_10_1007_s00227_018_3411_2 crossref_primary_10_1007_s10641_022_01260_6 crossref_primary_10_1002_wat2_1575 crossref_primary_10_1016_j_jembe_2019_03_009 crossref_primary_10_3354_meps12718 crossref_primary_10_1080_09524622_2023_2170469 crossref_primary_10_1002_ece3_3453 crossref_primary_10_1111_oik_06948 crossref_primary_10_1007_s00442_016_3794_z crossref_primary_10_1371_journal_pone_0286570 crossref_primary_10_5343_bms_2022_0013 crossref_primary_10_1111_1365_2745_13235 crossref_primary_10_3390_d14090762 crossref_primary_10_1016_j_jembe_2023_151871 crossref_primary_10_3354_meps13480 crossref_primary_10_1016_j_marenvres_2017_11_001 crossref_primary_10_1016_j_aquabot_2020_103294 crossref_primary_10_1098_rspb_2019_2520 crossref_primary_10_1002_ecy_2380 crossref_primary_10_1098_rspb_2019_2367 |
Cites_doi | 10.1126/science.150.3692.28 10.2307/1939877 10.1007/s00338-012-0988-7 10.1890/0012-9658(1997)078[1388:BMTCEO]2.0.CO;2 10.1890/1051-0761(2006)016[0747:TIOEGS]2.0.CO;2 10.3354/meps07413 10.2307/3545476 10.1111/j.1365-2656.2008.01512.x 10.1890/09-2015.1 10.1890/05-0032 10.1890/09-2174.1 10.1111/j.1461-0248.2003.00560.x 10.1890/0012-9658(2002)083[2037:CPAHSO]2.0.CO;2 10.3354/meps329225 10.1098/rspb.2013.2066 10.1016/j.cub.2006.12.049 10.1890/08-0606.1 10.1038/nature01934 10.1007/s004420050419 10.1111/j.1748-7692.2007.00167.x 10.1890/0012-9658(2002)083[0480:FAATSP]2.0.CO;2 10.1139/z90-092 10.1038/srep00014 10.1086/657039 10.1890/04-0719 10.1890/ES12-00084.1 10.1111/j.1365-2907.2011.00189.x 10.1007/s10641-006-9078-4 10.3354/meps10921 10.1007/s10641-005-6467-z 10.1371/journal.pone.0022761 10.2307/2937124 10.1016/j.biocon.2007.05.006 10.1890/11-0424.1 10.1007/BF00300117 10.1046/j.1467-2979.2003.00126.x 10.1038/nature01610 10.1038/srep01493 10.1111/oik.01318 10.1139/z01-094 10.1098/rspb.2009.0339 10.1073/pnas.0801946105 10.1111/1365-2656.12097 10.1023/A:1004545724503 10.1890/07-0260.1 10.1007/s00442-005-0063-y 10.1093/beheco/5.2.159 10.1371/journal.pone.0118764 10.1016/j.fishres.2011.01.012 10.1016/j.anbehav.2009.12.014 10.1890/ES13-00078.1 10.1016/S0003-3472(85)80011-7 10.1126/science.1121129 10.1007/s00442-011-2156-0 10.1890/0012-9658(2003)084[1083:AROTII]2.0.CO;2 10.1073/pnas.0702602104 |
ContentType | Journal Article |
Copyright | 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society. Journal of Animal Ecology © 2016 British Ecological Society |
Copyright_xml | – notice: 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society – notice: 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society. – notice: Journal of Animal Ecology © 2016 British Ecological Society |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 7X8 F1W H95 L.G |
DOI | 10.1111/1365-2656.12440 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Animal Behavior Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Entomology Abstracts MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology Biology |
EISSN | 1365-2656 |
Editor | Fryxell, John |
Editor_xml | – sequence: 1 givenname: John surname: Fryxell fullname: Fryxell, John |
EndPage | 156 |
ExternalDocumentID | 3923388271 10_1111_1365_2656_12440 26332988 JANE12440 US201600091728 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GeographicLocations | Florida ASW, USA, Florida, Florida Keys |
GeographicLocations_xml | – name: Florida – name: ASW, USA, Florida, Florida Keys |
GrantInformation_xml | – fundername: NOAA Coral Reef Conservation Program – fundername: National Science Foundation funderid: OCE‐1130786 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29J 2AX 2WC 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHKG AAISJ AAKGQ AANLZ AAONW AASGY AAXRX AAZKR ABBHK ABCQN ABCUV ABEML ABHUG ABJNI ABPFR ABPLY ABPTK ABPVW ABTAH ABTLG ABWRO ABYAD ACAHQ ACCFJ ACCZN ACFBH ACGFS ACKIV ACNCT ACPOU ACPRK ACSCC ACSTJ ACTWD ACUBG ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZLD ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AESBF AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFXHP AFZJQ AGJLS AGUYK AI. AIHXQ AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG CBGCD COF CS3 CUYZI CWIXF D-E D-F DCZOG DEVKO DIK DOOOF DPXWK DR2 DRFUL DRSTM DU5 DWIUU E3Z EBS ECGQY EJD ESX EYRJQ F00 F01 F04 F5P FBQ FVMVE G-S G.N GODZA GTFYD H.T H.X HF~ HGD HQ2 HTVGU HVGLF HZI HZ~ IHE IX1 J0M JAAYA JAS JBMMH JBS JBZCM JEB JENOY JHFFW JKQEH JLEZI JLS JLXEF JPL JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OK1 OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ TEORI TN5 UB1 UPT VH1 W8V W99 WBKPD WH7 WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 YQT ZCG ZY4 ZZTAW ~02 ~IA ~KM ~WT AAHBH ABPQH ABXSQ ADACV ADMHG AHBTC AHXOZ AILXY AITYG AQVQM HGLYW IPSME OIG CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 7X8 F1W H95 L.G |
ID | FETCH-LOGICAL-c3850-e2728477772b3b2d47f843ebf2032ae5f8c3aeadec33d56d58fb38f056ec0caa3 |
IEDL.DBID | DR2 |
ISSN | 0021-8790 |
IngestDate | Fri Oct 25 21:54:32 EDT 2024 Thu Oct 24 23:30:13 EDT 2024 Thu Oct 10 17:58:14 EDT 2024 Fri Aug 23 01:05:12 EDT 2024 Tue Oct 15 23:50:55 EDT 2024 Wed Oct 23 06:44:02 EDT 2024 Wed Dec 27 19:05:26 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | rugosity coral reef non-consumptive effects predator-prey interactions risk effects landscape of fear |
Language | English |
License | 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3850-e2728477772b3b2d47f843ebf2032ae5f8c3aeadec33d56d58fb38f056ec0caa3 |
Notes | http://dx.doi.org/10.1111/1365-2656.12440 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2656.12440 |
PMID | 26332988 |
PQID | 1757513666 |
PQPubID | 37522 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1776663430 proquest_miscellaneous_1760872536 proquest_journals_1757513666 crossref_primary_10_1111_1365_2656_12440 pubmed_primary_26332988 wiley_primary_10_1111_1365_2656_12440_JANE12440 fao_agris_US201600091728 |
PublicationCentury | 2000 |
PublicationDate | 2016 January 2016 2016-Jan 2016-01-00 20160101 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – year: 2016 text: 2016 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | The Journal of animal ecology |
PublicationTitleAlternate | J Anim Ecol |
PublicationYear | 2016 |
Publisher | Blackwell Scientific Publ Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Scientific Publ – name: Blackwell Publishing Ltd |
References | 1997; 114 2010a; 176 2007; 104 1993; 67 2012; 168 2004; 7 1993; 63 2009; 276 2008; 105 2015b 2013; 280 2007; 78 2007; 138 2002; 83 2005; 145 2000; 57 1965; 150 2009; 90 2005; 74 2003; 4 2008; 24 2003; 84 2014; 123 2007; 17 2010a; 91 2011; 1 2010; 79 2006; 16 2009 2005; 86 2013a; 3 1989; 24 2011; 6 2007; 329 2012; 32 2008; 360 2014; 511 2006; 311 1987; 68 2009; 78 2011; 109 2012; 3 1990; 68 2003; 425 2015a; 10 2011; 92 1967; 5 1997; 78 2013b; 4 2013; 82 2015 2014 2013 1985; 33 2003; 423 2010; 91 2001; 79 2007; 88 1994; 5 2012; 42 e_1_2_7_3_1 Bohnsack J.A. (e_1_2_7_5_1) 2009 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 Catano L.B. (e_1_2_7_14_1) 2015 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 R Core Team (e_1_2_7_47_1) 2013 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 Randall J.E. (e_1_2_7_48_1) 1967; 5 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 90 start-page: 23 year: 2009 end-page: 30 article-title: Behavioral adjustments of African herbivores to predation risk by lions: spatiotemporal variations influence habitat use publication-title: Ecology – volume: 276 start-page: 3019 year: 2009 end-page: 3025 article-title: Flattening of Caribbean coral reefs: region‐wide declines in architectural complexity publication-title: Proceedings of the Royal Society B – volume: 114 start-page: 50 year: 1997 end-page: 59 article-title: Habitat complexity modifies the impact of piscivores on a coral reef fish population publication-title: Oecologia – volume: 329 start-page: 225 year: 2007 end-page: 238 article-title: Complex habitats may not always benefit prey: linking visual field with reef fish behavior and distribution publication-title: Marine Ecology Progress Series – volume: 16 start-page: 747 year: 2006 end-page: 769 article-title: The impact of exploiting grazers (Scaridae) on the dynamics of Caribbean coral reefs publication-title: Ecological Applications – volume: 68 start-page: 619 year: 1990 end-page: 640 article-title: Behavioral decisions made under the risk of predation: a review and prospectus publication-title: Canadian Journal of Zoology – volume: 311 start-page: 98 year: 2006 end-page: 101 article-title: Fishing, trophic cascades, and the process of grazing on coral reefs publication-title: Science – volume: 78 start-page: 556 year: 2009 end-page: 562 article-title: Towards a predictive framework for predator risk effects: the interaction of landscape features and prey escape tactics publication-title: Journal of Animal Ecology – year: 2015b article-title: Data from: Reefscapes of fear: predation risk and reef heterogeneity interact to shape herbivore foraging behavior publication-title: Dryad Digital Repository – start-page: 1 year: 2009 end-page: 29 article-title: Coral reef fish response to FKNMS management zones: the first ten years (1997–2007) publication-title: Progress Report of the Florida Keys National Marine Sanctuary – volume: 4 start-page: 1 year: 2013b end-page: 19 article-title: Habitat selection by large herbivores in a southern African savanna: the relative roles of bottom‐up and top‐down forces publication-title: Ecosphere – volume: 4 start-page: 216 year: 2003 end-page: 226 article-title: Learned predator recognition and antipredator responses in fishes publication-title: Fish and Fisheries – year: 2014 – volume: 176 start-page: 785 year: 2010a end-page: 801 article-title: Fishing indirectly structures macroalgal assemblages by altering herbivore behavior publication-title: The American Naturalist – volume: 32 start-page: 429 year: 2012 end-page: 440 article-title: Stable isotope analysis indicates a lack of inter‐ and intra‐specific dietary redundancy among ecologically important coral reef fishes publication-title: Coral Reefs – volume: 5 start-page: 655 year: 1967 end-page: 847 article-title: Food habits of reef fishes of the West Indies publication-title: Studies in Tropical Oceanography – volume: 138 start-page: 514 year: 2007 end-page: 519 article-title: Restoring Yellowstone's aspen with wolves publication-title: Biological Conservation – volume: 109 start-page: 25 year: 2011 end-page: 41 article-title: Multispecies survey design for assessing reef‐fish stocks, spatially explicit management performance, and ecosystem condition publication-title: Fisheries Research – volume: 10 start-page: 1 year: 2015a end-page: 21 article-title: Predation risk, resource quality, and reef structural complexity shape territoriality in a coral reef herbivore publication-title: PLoS One – volume: 78 start-page: 1388 year: 1997 end-page: 1399 article-title: Behaviorally mediated trophic cascades: effects of predation risk on food web interactions publication-title: Ecology – volume: 1 start-page: 14 year: 2011 article-title: Landscape of fear visible from space publication-title: Scientific Reports – volume: 91 start-page: 3332 year: 2010 end-page: 3342 article-title: Functional connectivity from a reef fish perspective: behavioral tactics for moving in a fragmented landscape publication-title: Ecology – volume: 78 start-page: 71 year: 2007 end-page: 82 article-title: Relationships between reef fish communities and remotely sensed rugosity measurements in Biscayne National Park, Florida, USA publication-title: Environmental Biology of Fishes – volume: 63 start-page: 77 year: 1993 end-page: 101 article-title: Predation, prey refuges, and the structure of coral‐reef fish assemblages publication-title: Ecological Monographs – volume: 67 start-page: 309 year: 1993 end-page: 316 article-title: The influence of snakes on the foraging behavior of gerbils publication-title: Oikos – volume: 91 start-page: 3563 year: 2010a end-page: 3571 article-title: Field evidence for pervasive indirect effects of fishing on prey foraging behavior publication-title: Ecology – volume: 92 start-page: 2258 year: 2011 end-page: 2266 article-title: Landscape of fear influences the relative importance of consumptive and nonconsumptive predator effects publication-title: Ecology – volume: 68 start-page: 1856 year: 1987 end-page: 1862 article-title: Habitat selection under predation hazard : test of a model with foraging minnows publication-title: Ecology – volume: 511 start-page: 193 year: 2014 end-page: 207 article-title: Predation risk, competition and territorial damselfishes as drivers of herbivore foraging on Caribbean coral reefs publication-title: Marine Ecology Progress Series – volume: 6 start-page: e22761 year: 2011 article-title: Fear of fishers: human predation explains behavioral changes in coral reef fishes publication-title: PLoS One – year: 2015 – volume: 17 start-page: 360 year: 2007 end-page: 365 article-title: Phase shifts, herbivory, and the resilience of coral reefs to climate change publication-title: Current Biology – volume: 24 start-page: 47 year: 1989 end-page: 58 article-title: Threat‐sensitive predator avoidance in damselfish‐trumpetfish interactions publication-title: Behavioral Ecology and Sociobiology – volume: 79 start-page: 531 year: 2010 end-page: 537 article-title: Spatial responses to predators vary with prey escape mode publication-title: Animal Behaviour – volume: 86 start-page: 501 year: 2005 end-page: 509 article-title: Scared to death? The effects of intimidation and consumption in predator‐prey interactions publication-title: Ecology – volume: 123 start-page: 829 year: 2014 end-page: 836 article-title: Not worth the risk: apex predators suppress herbivory on coral reefs publication-title: Oikos – volume: 145 start-page: 225 year: 2005 end-page: 234 article-title: Scaling from plot experiments to landscapes: studying grasshoppers to inform forest ecosystem management publication-title: Oecologia – volume: 86 start-page: 3387 year: 2005 end-page: 3397 article-title: Elk alter habitat selection as an antipredator response to wolves publication-title: Ecology – volume: 3 start-page: 1493 year: 2013a article-title: Nutrient supply from fishes facilitates macroalgae and suppresses corals in a Caribbean coral reef ecosystem publication-title: Scientific Reports – volume: 423 start-page: 280 year: 2003 end-page: 283 article-title: Rapid worldwide depletion of predatory fish communities publication-title: Nature – volume: 360 start-page: 237 year: 2008 end-page: 244 article-title: Size‐dependent variation in the functional role of the parrotfish Scarus rivulatus on the Great Barrier Reef, Australia publication-title: Marine Ecology Progress Series – volume: 84 start-page: 1083 year: 2003 end-page: 1100 article-title: A review of trait‐mediated indirect interactions in ecological communities publication-title: Ecology – volume: 83 start-page: 2037 year: 2002 end-page: 2048 article-title: Coyote predation and habitat segregation of white‐tailed deer and mule deer publication-title: Ecology – volume: 24 start-page: 1 year: 2008 end-page: 15 article-title: Seascapes of fear: evaluating sublethal predator effects experienced and generated by marine mammals publication-title: Marine Mammal Science – volume: 280 start-page: 20132066 year: 2013 article-title: The ontogeny of home ranges: evidence from coral reef fishes publication-title: Proceedings of the Biological Sciences – volume: 74 start-page: 99 year: 2005 end-page: 107 article-title: Interpreting space use and behavior of blue tang, acanthurus coeruleus, in the context of habitat, density, and intra‐specific interactions publication-title: Environmental Biology of Fishes – volume: 5 start-page: 159 year: 1994 end-page: 170 article-title: Antipredator behavior and the asset protection principle publication-title: Behavioral Ecology – volume: 150 start-page: 28 year: 1965 end-page: 35 article-title: Predation, body size, and composition of plankton publication-title: Science – volume: 105 start-page: 16201 year: 2008 end-page: 16206 article-title: Herbivore species richness and feeding complementarity affect community structure and function on a coral reef publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 7 start-page: 153 year: 2004 end-page: 163 article-title: Trophic cascades: the primacy of trait‐mediated indirect interactions publication-title: Ecology Letters – volume: 33 start-page: 782 year: 1985 end-page: 792 article-title: Group foraging by a coral reef fish: a mechanism for gaining access to defended resources publication-title: Animal Behavior – volume: 83 start-page: 480 year: 2002 end-page: 491 article-title: Food availability and tiger shark predation risk influence bottlenose dolphin habitat use publication-title: Ecology – volume: 79 start-page: 1401 year: 2001 end-page: 1409 article-title: Wolves, elk, and bison: reestablishing the “landscape of fear” in Yellowstone National Park, USA publication-title: Canadian Journal of Zoology – volume: 3 start-page: 1 year: 2012 end-page: 27 article-title: The allometry of fear: interspecific relationships between body size and response to predation risk publication-title: Ecosphere – volume: 168 start-page: 1079 year: 2012 end-page: 1090 article-title: Spatial dynamics of benthic competition on coral reefs publication-title: Oecologia – volume: 425 start-page: 288 year: 2003 end-page: 290 article-title: Patterns of predation in a diverse predator – prey system publication-title: Nature – volume: 82 start-page: 1192 year: 2013 end-page: 1202 article-title: Patterns of top‐down control in a seagrass ecosystem: could a roving apex predator induce a behaviour‐mediated trophic cascade? publication-title: The Journal of Animal Ecology – volume: 88 start-page: 2744 year: 2007 end-page: 2751 article-title: Predator hunting mode and habitat domain alter nonconsumptive effects in predator‐prey interactions publication-title: Ecology – volume: 104 start-page: 8362 year: 2007 end-page: 8367 article-title: Trophic cascade facilitates coral recruitment in a marine reserve publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 42 start-page: 55 year: 2012 end-page: 77 article-title: Habitat heterogeneity and mammalian predator‐prey interactions publication-title: Mammal Review – volume: 57 start-page: 11 year: 2000 end-page: 24 article-title: Movements of fishes within and among fringing coral reefs in Barbados publication-title: Environmental Biology of Fishes – year: 2013 – ident: e_1_2_7_7_1 doi: 10.1126/science.150.3692.28 – ident: e_1_2_7_19_1 doi: 10.2307/1939877 – ident: e_1_2_7_43_1 doi: 10.1007/s00338-012-0988-7 – ident: e_1_2_7_54_1 doi: 10.1890/0012-9658(1997)078[1388:BMTCEO]2.0.CO;2 – ident: e_1_2_7_3_1 – ident: e_1_2_7_39_1 doi: 10.1890/1051-0761(2006)016[0747:TIOEGS]2.0.CO;2 – ident: e_1_2_7_6_1 doi: 10.3354/meps07413 – ident: e_1_2_7_28_1 doi: 10.2307/3545476 – ident: e_1_2_7_22_1 doi: 10.1111/j.1365-2656.2008.01512.x – ident: e_1_2_7_59_1 doi: 10.1890/09-2015.1 – ident: e_1_2_7_17_1 doi: 10.1890/05-0032 – ident: e_1_2_7_30_1 – ident: e_1_2_7_35_1 doi: 10.1890/09-2174.1 – ident: e_1_2_7_55_1 doi: 10.1111/j.1461-0248.2003.00560.x – ident: e_1_2_7_34_1 doi: 10.1890/0012-9658(2002)083[2037:CPAHSO]2.0.CO;2 – ident: e_1_2_7_49_1 doi: 10.3354/meps329225 – ident: e_1_2_7_61_1 doi: 10.1098/rspb.2013.2066 – ident: e_1_2_7_25_1 doi: 10.1016/j.cub.2006.12.049 – ident: e_1_2_7_32_1 – ident: e_1_2_7_60_1 doi: 10.1890/08-0606.1 – start-page: 1 year: 2009 ident: e_1_2_7_5_1 article-title: Coral reef fish response to FKNMS management zones: the first ten years (1997–2007) publication-title: Progress Report of the Florida Keys National Marine Sanctuary contributor: fullname: Bohnsack J.A. – ident: e_1_2_7_57_1 doi: 10.1038/nature01934 – ident: e_1_2_7_4_1 doi: 10.1007/s004420050419 – volume: 5 start-page: 655 year: 1967 ident: e_1_2_7_48_1 article-title: Food habits of reef fishes of the West Indies publication-title: Studies in Tropical Oceanography contributor: fullname: Randall J.E. – ident: e_1_2_7_64_1 doi: 10.1111/j.1748-7692.2007.00167.x – ident: e_1_2_7_21_1 doi: 10.1890/0012-9658(2002)083[0480:FAATSP]2.0.CO;2 – ident: e_1_2_7_33_1 doi: 10.1139/z90-092 – ident: e_1_2_7_36_1 doi: 10.1038/srep00014 – ident: e_1_2_7_37_1 doi: 10.1086/657039 – ident: e_1_2_7_44_1 doi: 10.1890/04-0719 – ident: e_1_2_7_45_1 doi: 10.1890/ES12-00084.1 – ident: e_1_2_7_20_1 doi: 10.1111/j.1365-2907.2011.00189.x – ident: e_1_2_7_29_1 doi: 10.1007/s10641-006-9078-4 – ident: e_1_2_7_12_1 doi: 10.3354/meps10921 – volume-title: R Foundation for Statistical Computing year: 2013 ident: e_1_2_7_47_1 contributor: fullname: R Core Team – ident: e_1_2_7_56_1 doi: 10.1007/s10641-005-6467-z – year: 2015 ident: e_1_2_7_14_1 article-title: Data from: Reefscapes of fear: predation risk and reef heterogeneity interact to shape herbivore foraging behavior publication-title: Dryad Digital Repository contributor: fullname: Catano L.B. – ident: e_1_2_7_26_1 doi: 10.1371/journal.pone.0022761 – ident: e_1_2_7_24_1 doi: 10.2307/2937124 – ident: e_1_2_7_50_1 doi: 10.1016/j.biocon.2007.05.006 – ident: e_1_2_7_38_1 doi: 10.1890/11-0424.1 – ident: e_1_2_7_23_1 doi: 10.1007/BF00300117 – ident: e_1_2_7_27_1 doi: 10.1046/j.1467-2979.2003.00126.x – ident: e_1_2_7_42_1 doi: 10.1038/nature01610 – ident: e_1_2_7_9_1 doi: 10.1038/srep01493 – ident: e_1_2_7_51_1 doi: 10.1111/oik.01318 – ident: e_1_2_7_31_1 doi: 10.1139/z01-094 – ident: e_1_2_7_2_1 doi: 10.1098/rspb.2009.0339 – ident: e_1_2_7_8_1 doi: 10.1073/pnas.0801946105 – ident: e_1_2_7_11_1 doi: 10.1111/1365-2656.12097 – ident: e_1_2_7_15_1 doi: 10.1023/A:1004545724503 – ident: e_1_2_7_46_1 doi: 10.1890/07-0260.1 – ident: e_1_2_7_53_1 doi: 10.1007/s00442-005-0063-y – ident: e_1_2_7_16_1 doi: 10.1093/beheco/5.2.159 – ident: e_1_2_7_13_1 doi: 10.1371/journal.pone.0118764 – ident: e_1_2_7_58_1 doi: 10.1016/j.fishres.2011.01.012 – ident: e_1_2_7_63_1 doi: 10.1016/j.anbehav.2009.12.014 – ident: e_1_2_7_10_1 doi: 10.1890/ES13-00078.1 – ident: e_1_2_7_18_1 doi: 10.1016/S0003-3472(85)80011-7 – ident: e_1_2_7_40_1 doi: 10.1126/science.1121129 – ident: e_1_2_7_52_1 doi: 10.1007/s00442-011-2156-0 – ident: e_1_2_7_62_1 doi: 10.1890/0012-9658(2003)084[1083:AROTII]2.0.CO;2 – ident: e_1_2_7_41_1 doi: 10.1073/pnas.0702602104 |
SSID | ssj0007203 |
Score | 2.4605596 |
Snippet | Predators can exert strong direct and indirect effects on ecological communities by intimidating their prey. The nature of predation risk effects is often... Summary Predators can exert strong direct and indirect effects on ecological communities by intimidating their prey. The nature of predation risk effects is... Summary Predators can exert strong direct and indirect effects on ecological communities by intimidating their prey. The nature of predation risk effects is... 1. Predators can exert strong direct and indirect effects on ecological communities by intimidating their prey. The nature of predation risk effects is often... |
SourceID | proquest crossref pubmed wiley fao |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 146 |
SubjectTerms | Animal behavior Animals Bass - physiology coral reef Coral Reefs ecosystems Fear fearfulness field experimentation Fish Fishes - physiology Florida Food Chain foraging herbivores Herbivory landscape of fear landscapes Marine Marine ecology Mycteroperca bonaci non‐consumptive effects Predation predators Predatory Behavior predator–prey interactions risk risk effects risk reduction rugosity |
Title | Reefscapes of fear: predation risk and reef hetero‐geneity interact to shape herbivore foraging behaviour |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2656.12440 https://www.ncbi.nlm.nih.gov/pubmed/26332988 https://www.proquest.com/docview/1757513666 https://search.proquest.com/docview/1760872536 https://search.proquest.com/docview/1776663430 |
Volume | 85 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxUxFA5aENxoffa2VSK4cDPXmTmTZOKuaEsp2EX1grgJeY0thZnL3HuFdtWf4G_0l3jOPK62iCLOKjAnIa-T8yX5cg5jLyPIUsUsS6IuRFKEWCZWOI27lMz5IlOZ7Z5Hvz-Wh7Pi6JMY2YT0Fqb3D7E-cCPN6NZrUnDrFr8o-cDPEnJKJop27RkoInW9O_npQIouGXuSR4Z6r9PBuQ9xeW7kv2aXble2-R3kvI5gOxN0cJ-5sfI98-R8ulq6qb-84dfxv1q3ye4NAJXv9TPqAbsV64fsTh-y8gJTn5su9Yidn8SIBtTO44I3Fa9QZd7weRv7IE2cOOvc1oG3KMZPiXXTfL_6hvM1IvDn5KaCHmjxZcMXp1gIirTu7GvTRo44uoudxAcfAqv2MZsd7H98e5gMoRsSD6VIk5grsnv45Q5cHgpVlQVEV1HAdhtFVXqwxNX2AEHIIMrKQVkhGos-9dbCE7ZRN3XcYtynoF3ItXSZLrQKGpehCrQPUoF3PkzYq3HgzLz30GHGnQ31oqFeNF0vTtgWDqyxX7ALzOxDTt71EGNSiK4J2x1H2wxavDAIrZTAMqScsBfr36h_dKli69isSEampcoF_FFGYRlQANbgaT-T1lXNJUCuS6zA624-_K0N5mjveL9Lbf9zjh12l9rcnyDtso1lu4rPEFMt3fNObX4AhmMTEQ |
link.rule.ids | 315,783,787,1378,4033,27937,27938,27939,46308,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagCMGFf-hCASNx4JIliWPH7q2CVktp91C6UsXF8i9FlZJVdhcJTjxCn7FP0pkku7QVAiFyshTHsj3zZT7b4xlCXgcmZBmyLAmq4Enhg0wMtwpWKZl1RVZmpr0evT8Wo0mxe8SPLtyF6eJDrDbcEBnt_xoBjhvSF1DeO2hxMUQbBcv2GwB6hlkM3h_8CiGFx4ydm0cGyFdpH94HvXmuNHDJMl2Ppv4d6bzMYVsjtHOXuGX3O9-Tk-Fibofux5XIjv83vnvkTs9R6VanVPfJtVA9IDe7rJXfofS5bksPyclBCGBDzTTMaB1pBNRs0mkTujxNFN3Wqak8baAaPUbHm_rs5ymobADuTzFSBd7RovOazo6hEajS2K_f6iZQoNJt-iTahxFYNI_IZGf78N0o6bM3JI5JniYhL9H0wZNbZnNflFEWLNiIOdtN4FE6ZtBd2zHmufBcRstkBEIWXOqMYY_JWlVXYZ1QlzJlfa6EzVShSq_gTxSZch7k7azzA_JmKTk97YJ06OXiBmdR4yzqdhYHZB0kq80XmAI9-ZRjgD2gmZila0A2luLWPZBnGthVyaENIQbk1eo1QBDPVUwV6gXWEaksc87-WKeENljBoAdPOlVadTUXjOVKQgfetgrxtzHo3a3xdlt6-s9fvCS3Rof7e3rvw_jjM3Ibx99tKG2QtXmzCM-BYs3tixZD57uuFys |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagCMSlvOlCASNx4JJtEsdOzK2iXZUCK1RYCXGx_KRVpWSV3UWCEz-B38gvYSZOFlohECInS3FGfsxkPtufZwh54pmoSp9liZcFTwrnq0RzI2GVkhlbZGWmu-vRr6fiYFYcvucDmxDvwsT4EOsNN7SM7n-NBj534Rcj7_lZXIzRRcGq_VIhWIqsrr2jnxGk8JQxsjwyMHyZ9tF9kMxzTsAZx3Qx6OZ3mPMshO180OQaMUPrI_XkdLxamrH9ci6w43917zrZ7BEq3Y0qdYNc8PVNcjnmrPwMpQ9NV7pFTo-8Bw-q535Bm0AD2MwzOm99zNJEkbROde1oC9XoMdJumu9fv4HCekD-FONU4A0tumzo4hiEQJXWnHxqWk8BSHfJk2gfRGDV3iazyf675wdJn7shsaziaeLzEh0fPLlhJndFGaqCeRMwY7v2PFSWaSRrW8YcF45XwbAqABzzNrVasztko25qv0WoTZk0LpfCZLKQpZPwHwpMWidKZo11I_J0mDg1jyE61LC0wVFUOIqqG8UR2YKJVfojDIGavc0xvB6ATMzRNSLbw2yr3owXCrBVyUGGECPyeP0aDBBPVXTtmxXWEWlV5pz9sU4JMljBoAV3oyatm5oLxnJZQQN2On34Wx_U4e50vyvd--cvHpErb_Ym6tWL6cv75Cp2P-4mbZONZbvyDwBfLc3DzoJ-AFKaFdo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reefscapes+of+fear%3A+predation+risk+and+reef+hetero%E2%80%90geneity+interact+to+shape+herbivore+foraging+behaviour&rft.jtitle=The+Journal+of+animal+ecology&rft.au=Catano%2C+Laura+B&rft.au=Rojas%2C+Maria+C&rft.au=Malossi%2C+Ryan+J&rft.au=Peters%2C+Joseph+R&rft.date=2016&rft.pub=Blackwell+Scientific+Publ&rft.issn=0021-8790&rft.eissn=1365-2656&rft.volume=85&rft.issue=1&rft.spage=146&rft.epage=156&rft_id=info:doi/10.1111%2F1365-2656.12440&rft.externalDocID=US201600091728 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8790&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8790&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8790&client=summon |