Blood Pressure Estimation from Photoplythmography Using Hybrid Scattering–LSTM Networks

One of the most significant indicators of heart and cardiovascular health is blood pressure (BP). Blood pressure (BP) has gained great attention in the last decade. Uncontrolled high blood pressure increases the risk of serious health problems, including heart attack and stroke. Recently, machine/de...

Full description

Saved in:
Bibliographic Details
Published inBioMedInformatics Vol. 4; no. 1; pp. 139 - 157
Main Authors Omer, Osama A., Salah, Mostafa, Hassan, Ammar M., Abdel-Nasser, Mohamed, Sugita, Norihiro, Saijo, Yoshifumi
Format Journal Article
LanguageEnglish
Japanese
Published MDPI AG 09.01.2024
Subjects
Online AccessGet full text
ISSN2673-7426
2673-7426
DOI10.3390/biomedinformatics4010010

Cover

Abstract One of the most significant indicators of heart and cardiovascular health is blood pressure (BP). Blood pressure (BP) has gained great attention in the last decade. Uncontrolled high blood pressure increases the risk of serious health problems, including heart attack and stroke. Recently, machine/deep learning has been leveraged for learning a BP from photoplethysmography (PPG) signals. Hence, continuous BP monitoring can be introduced, based on simple wearable contact sensors or even remotely sensed from a proper camera away from the clinical setup. However, the available training dataset imposes many limitations besides the other difficulties related to the PPG time series as high-dimensional data. This work presents beat-by-beat continuous PPG-based BP monitoring while accounting for the aforementioned limitations. For a better exploration of beats’ features, we propose to use wavelet scattering transform as a better descriptive domain to cope with the limitation of the training dataset and to help the deep learning network accurately learn the relationship between the morphological shapes of PPG beats and the BP. A long short-term memory (LSTM) network is utilized to demonstrate the superiority of the wavelet scattering transform over other domains. The learning scenarios are carried out on a beat basis where the input corresponding PPG beat is used for predicting BP in two scenarios; (1) Beat-by-beat arterial blood pressure (ABP) estimation, and (2) Beat-by-beat estimation of the systolic and diastolic blood pressure values. Different transformations are used to extract the features of the PPG beats in different domains including time, discrete cosine transform (DCT), discrete wavelet transform (DWT), and wavelet scattering transform (WST) domains. The simulation results show that using the WST domain outperforms the other domains in the sense of root mean square error (RMSE) and mean absolute error (MAE) for both of the suggested two scenarios.
AbstractList One of the most significant indicators of heart and cardiovascular health is blood pressure (BP). Blood pressure (BP) has gained great attention in the last decade. Uncontrolled high blood pressure increases the risk of serious health problems, including heart attack and stroke. Recently, machine/deep learning has been leveraged for learning a BP from photoplethysmography (PPG) signals. Hence, continuous BP monitoring can be introduced, based on simple wearable contact sensors or even remotely sensed from a proper camera away from the clinical setup. However, the available training dataset imposes many limitations besides the other difficulties related to the PPG time series as high-dimensional data. This work presents beat-by-beat continuous PPG-based BP monitoring while accounting for the aforementioned limitations. For a better exploration of beats’ features, we propose to use wavelet scattering transform as a better descriptive domain to cope with the limitation of the training dataset and to help the deep learning network accurately learn the relationship between the morphological shapes of PPG beats and the BP. A long short-term memory (LSTM) network is utilized to demonstrate the superiority of the wavelet scattering transform over other domains. The learning scenarios are carried out on a beat basis where the input corresponding PPG beat is used for predicting BP in two scenarios; (1) Beat-by-beat arterial blood pressure (ABP) estimation, and (2) Beat-by-beat estimation of the systolic and diastolic blood pressure values. Different transformations are used to extract the features of the PPG beats in different domains including time, discrete cosine transform (DCT), discrete wavelet transform (DWT), and wavelet scattering transform (WST) domains. The simulation results show that using the WST domain outperforms the other domains in the sense of root mean square error (RMSE) and mean absolute error (MAE) for both of the suggested two scenarios.
Author Yoshifumi Saijo
Norihiro Sugita
Osama A. Omer
Mohamed Abdel-Nasser
Mostafa Salah
Ammar M. Hassan
Author_xml – sequence: 1
  givenname: Osama A.
  orcidid: 0000-0001-9302-7875
  surname: Omer
  fullname: Omer, Osama A.
– sequence: 2
  givenname: Mostafa
  surname: Salah
  fullname: Salah, Mostafa
– sequence: 3
  givenname: Ammar M.
  orcidid: 0000-0002-2643-0792
  surname: Hassan
  fullname: Hassan, Ammar M.
– sequence: 4
  givenname: Mohamed
  surname: Abdel-Nasser
  fullname: Abdel-Nasser, Mohamed
– sequence: 5
  givenname: Norihiro
  surname: Sugita
  fullname: Sugita, Norihiro
– sequence: 6
  givenname: Yoshifumi
  surname: Saijo
  fullname: Saijo, Yoshifumi
BackLink https://cir.nii.ac.jp/crid/1870303266596166528$$DView record in CiNii
BookMark eNqNkMtqWzEQhkVJoUnqd9CiWye6HR1pE2iN0wScNGB70ZXQ0cVWcnxkJIXgXd-hb9gniRwnEAqFwvCPGJhPw3cCjoY4OAAgRmeUSnTehbhxNgw-po0uwWSGMKr1ARwT3tJxywg_evf-BEY53yOEiGgpkeIY_PzWx2jhXXI5PyYHp7mEPSoO0Ke4gXfrWOK235X1Jq6S3q53cJnDsIJXuy4FC-dGl-JSnfz59Xs2X9zAW1eeYnrIn8FHr_vsRq_9FCwvp4vJ1Xj24_v15OtsbKho0LiTjWWk7Yz1lDKGhfAYM2YaKRHHWnqOtG2Nl1x4JDkhTDLf1OSsGrCMnoLrA9dGfa-2qZ6fdirqoF4GMa2UTtVN7xTlmrCm0Rhpz2jnO2YxMRw712HXMllZFweWSTHn5LwyobzYKEmHXmGk9t7Vv7xXgPgL8HbQf6x-OawOIdRv94lFiyiihPNGclyTCPoMxL6csg
CitedBy_id crossref_primary_10_3390_computers13050125
Cites_doi 10.1109/ACCESS.2019.2942936
10.1109/ACCESS.2022.3175436
10.3390/s22030919
10.1109/CVPR.2013.163
10.1364/BOE.7.003007
10.1038/s41598-021-94913-y
10.3390/s21186022
10.3390/s19153420
10.1109/MLSP.2017.8168136
10.3390/jcm7100316
10.1109/RBME.2022.3141877
10.1155/2018/1548647
10.1109/ISCAS.2015.7168806
10.3390/s21092952
10.1109/EMBC48229.2022.9871962
10.1109/JBHI.2021.3128229
10.3390/s20195668
10.1109/ACCESS.2020.3040257
10.1109/IEMBS.2006.260590
10.1016/j.bspc.2019.02.028
10.1109/CVPRW53098.2021.00423
10.1016/j.compbiomed.2020.103719
10.1007/978-3-030-36178-5_75
10.1109/TPAMI.2018.2855738
10.1155/2020/3215681
10.1109/TPAMI.2012.230
10.1016/j.eswa.2022.116788
10.1007/s00421-011-1983-3
10.3390/s21186311
10.1109/CIC.2002.1166854
10.1162/neco.1997.9.8.1735
10.3390/s18061894
10.1109/ICCV.2017.599
10.3390/bioengineering9110692
ContentType Journal Article
DBID RYH
AAYXX
CITATION
DOA
DOI 10.3390/biomedinformatics4010010
DatabaseName CiNii Complete
CrossRef
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2673-7426
EndPage 157
ExternalDocumentID oai_doaj_org_article_36a2455a10af43bfb4d12c61eeb1e749
10_3390_biomedinformatics4010010
GroupedDBID ABDBF
AFZYC
ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
MODMG
M~E
RYH
AAYXX
CITATION
ID FETCH-LOGICAL-c3850-b95d427bcdf3344188f1144c599061a9f60ad7cf968f09622494f524964390d43
IEDL.DBID DOA
ISSN 2673-7426
IngestDate Wed Aug 27 01:20:18 EDT 2025
Thu Apr 24 22:53:24 EDT 2025
Tue Jul 01 03:25:48 EDT 2025
Fri Jun 27 00:01:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
Japanese
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3850-b95d427bcdf3344188f1144c599061a9f60ad7cf968f09622494f524964390d43
ORCID 0000-0002-2643-0792
0000-0001-9302-7875
OpenAccessLink https://doaj.org/article/36a2455a10af43bfb4d12c61eeb1e749
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_36a2455a10af43bfb4d12c61eeb1e749
crossref_citationtrail_10_3390_biomedinformatics4010010
crossref_primary_10_3390_biomedinformatics4010010
nii_cinii_1870303266596166528
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-09
PublicationDateYYYYMMDD 2024-01-09
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-09
  day: 09
PublicationDecade 2020
PublicationTitle BioMedInformatics
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_14
Gesche (ref_21) 2012; 112
ref_35
ref_34
ref_33
ref_30
Yan (ref_10) 2019; 7
Xing (ref_13) 2016; 7
Bruna (ref_40) 2013; 35
ref_19
ref_18
ref_17
Hill (ref_29) 2021; 11
ref_16
ref_38
ref_15
ref_37
Tanveer (ref_27) 2019; 51
Salah (ref_32) 2022; 10
Maqsood (ref_12) 2022; 197
Haddad (ref_9) 2021; 26
Panula (ref_4) 2022; 16
ref_25
ref_24
ref_23
Marinko (ref_8) 2018; 42
ref_22
Goldberger (ref_7) 2020; 101
ref_20
ref_1
Hochreiter (ref_41) 1997; 9
ref_3
ref_2
Le (ref_6) 2020; 8
ref_28
ref_26
Khalid (ref_11) 2018; 2018
Saeed (ref_31) 2002; 29
ref_5
Liu (ref_39) 2020; 2020
Oyallon (ref_36) 2018; 41
References_xml – volume: 7
  start-page: 141970
  year: 2019
  ident: ref_10
  article-title: Cuffless continuous blood pressure estimation from pulse morphology of photoplethysmograms
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2942936
– volume: 10
  start-page: 55616
  year: 2022
  ident: ref_32
  article-title: Beat-Based PPG-ABP Cleaning Technique for Blood Pressure Estimation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3175436
– ident: ref_24
  doi: 10.3390/s22030919
– ident: ref_38
  doi: 10.1109/CVPR.2013.163
– volume: 7
  start-page: 3007
  year: 2016
  ident: ref_13
  article-title: Optical blood pressure estimation with photoplethysmography and FFT-based neural networks
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.7.003007
– volume: 11
  start-page: 15755
  year: 2021
  ident: ref_29
  article-title: Imputation of the Continuous Arterial Line Blood Pressure Waveform from Non-Invasive Measurements Using Deep Learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-94913-y
– ident: ref_19
  doi: 10.3390/s21186022
– ident: ref_15
  doi: 10.3390/s19153420
– ident: ref_35
  doi: 10.1109/MLSP.2017.8168136
– ident: ref_3
  doi: 10.3390/jcm7100316
– ident: ref_37
– volume: 16
  start-page: 424
  year: 2022
  ident: ref_4
  article-title: Advances in non-invasive blood pressure measurement techniques
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2022.3141877
– volume: 2018
  start-page: 1548647
  year: 2018
  ident: ref_11
  article-title: Blood pressure estimation using photoplethysmography only: Comparison between different machine learning approaches
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2018/1548647
– ident: ref_1
– ident: ref_22
  doi: 10.1109/ISCAS.2015.7168806
– ident: ref_16
  doi: 10.3390/s21092952
– ident: ref_30
  doi: 10.1109/EMBC48229.2022.9871962
– volume: 26
  start-page: 2096
  year: 2021
  ident: ref_9
  article-title: Continuous ppg-based blood pressure monitoring using multi-linear regression
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2021.3128229
– ident: ref_18
  doi: 10.3390/s20195668
– ident: ref_23
– volume: 42
  start-page: 33
  year: 2018
  ident: ref_8
  article-title: Continuous blood pressure estimation from PPG signal
  publication-title: Informatica
– volume: 8
  start-page: 212478
  year: 2020
  ident: ref_6
  article-title: Continuous non-invasive blood pressure monitoring: A methodological review on measurement techniques
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3040257
– ident: ref_20
  doi: 10.1109/IEMBS.2006.260590
– volume: 51
  start-page: 382
  year: 2019
  ident: ref_27
  article-title: Cuffless blood pressure estimation from electrocardiogram and photoplethysmogram using waveform based ANN-LSTM network
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2019.02.028
– ident: ref_14
  doi: 10.1109/CVPRW53098.2021.00423
– ident: ref_33
– ident: ref_28
  doi: 10.1016/j.compbiomed.2020.103719
– ident: ref_2
– ident: ref_26
  doi: 10.1007/978-3-030-36178-5_75
– volume: 41
  start-page: 2208
  year: 2018
  ident: ref_36
  article-title: Scattering networks for hybrid representation learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2855738
– volume: 2020
  start-page: 3215681
  year: 2020
  ident: ref_39
  article-title: Wavelet scattering transform for ECG beat classification
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2020/3215681
– volume: 35
  start-page: 1872
  year: 2013
  ident: ref_40
  article-title: Invariant scattering convolution networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.230
– volume: 197
  start-page: 116788
  year: 2022
  ident: ref_12
  article-title: A survey: From shallow to deep machine learning approaches for blood pressure estimation using biosensors
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.116788
– volume: 112
  start-page: 309
  year: 2012
  ident: ref_21
  article-title: Continuous blood pressure measurement by using the pulse transit time: Comparison to a cuff-based method
  publication-title: Eur. J. Appl. Physiol.
  doi: 10.1007/s00421-011-1983-3
– ident: ref_25
  doi: 10.3390/s21186311
– volume: 29
  start-page: 641
  year: 2002
  ident: ref_31
  article-title: MIMIC II: A massive temporal ICU patient database to support research in intelligent patient monitoring
  publication-title: Comput. Cardiol.
  doi: 10.1109/CIC.2002.1166854
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_41
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 101
  start-page: e215
  year: 2020
  ident: ref_7
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals
  publication-title: Circulation
– ident: ref_5
  doi: 10.3390/s18061894
– ident: ref_34
  doi: 10.1109/ICCV.2017.599
– ident: ref_17
  doi: 10.3390/bioengineering9110692
SSID ssj0002873298
Score 2.2505538
Snippet One of the most significant indicators of heart and cardiovascular health is blood pressure (BP). Blood pressure (BP) has gained great attention in the last...
SourceID doaj
crossref
nii
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 139
SubjectTerms arterial blood pressure (ABP)
Computer applications to medicine. Medical informatics
continuous blood pressure monitoring
deep learning
LSTM
Neurosciences. Biological psychiatry. Neuropsychiatry
photoplethysmography (PPG)
R858-859.7
RC321-571
wavelet scattering transform
Title Blood Pressure Estimation from Photoplythmography Using Hybrid Scattering–LSTM Networks
URI https://cir.nii.ac.jp/crid/1870303266596166528
https://doaj.org/article/36a2455a10af43bfb4d12c61eeb1e749
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTgIxEG4MXrwYjRpRIT143bDd_mx7BIUQI8QESPC02Xa7AYNAEA_cfAff0Cdxul0JHowevMyh2Wab2dmZ-ZqZbxC6VsKEVnIdxBA9AnB4aaAzIgIjGCTLxBiZuubkXl90R-xuzMc7o75cTZinB_aKa1CRRozzlIRpzqjONctIZASx4GRszIrWvVCFO2DqqbgyimmkpC_doYDrG76bvWQjdQzIACwcIPoWjwrafogy8-l0J8p0jtBhmR7ipj_WMdqz8xP02HLV5dh38q0sbsNv6TsOsesOwQ-TxXqxnG3Wk-eSgBoXlQC4u3H9WHhgChJNWPl4e78fDHu474u_X07RqNMe3nSDciRCYKjkYaAVz1gUa5PllEImI2UOgIYZDkFFkFTlIkyz2ORKyBzACcRnxXIO0iUeYcboGarMF3N7jrDlOqQ0it0ccKaZTjNuIzeSSoALkIZXUfylmMSUfOFubMUsAdzgVJr8pNIqItudS8-Z8Yc9Laf77fOO9bpYAFtISltIfrOFKqrBl4PTOkmkc2aQnQquBAEZyYv_eMklOoggsSmuYdQVqqxXr7YGicla19F-s3Xb6tQLW_wE5M3jIw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blood+Pressure+Estimation+from+Photoplythmography+Using+Hybrid+Scattering%E2%80%93LSTM+Networks&rft.jtitle=BioMedInformatics&rft.au=Osama+A.+Omer&rft.au=Mostafa+Salah&rft.au=Ammar+M.+Hassan&rft.au=Mohamed+Abdel-Nasser&rft.date=2024-01-09&rft.pub=MDPI+AG&rft.eissn=2673-7426&rft.volume=4&rft.spage=139&rft.epage=157&rft_id=info:doi/10.3390%2Fbiomedinformatics4010010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-7426&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-7426&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-7426&client=summon