Blood Pressure Estimation from Photoplythmography Using Hybrid Scattering–LSTM Networks
One of the most significant indicators of heart and cardiovascular health is blood pressure (BP). Blood pressure (BP) has gained great attention in the last decade. Uncontrolled high blood pressure increases the risk of serious health problems, including heart attack and stroke. Recently, machine/de...
Saved in:
Published in | BioMedInformatics Vol. 4; no. 1; pp. 139 - 157 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English Japanese |
Published |
MDPI AG
09.01.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2673-7426 2673-7426 |
DOI | 10.3390/biomedinformatics4010010 |
Cover
Abstract | One of the most significant indicators of heart and cardiovascular health is blood pressure (BP). Blood pressure (BP) has gained great attention in the last decade. Uncontrolled high blood pressure increases the risk of serious health problems, including heart attack and stroke. Recently, machine/deep learning has been leveraged for learning a BP from photoplethysmography (PPG) signals. Hence, continuous BP monitoring can be introduced, based on simple wearable contact sensors or even remotely sensed from a proper camera away from the clinical setup. However, the available training dataset imposes many limitations besides the other difficulties related to the PPG time series as high-dimensional data. This work presents beat-by-beat continuous PPG-based BP monitoring while accounting for the aforementioned limitations. For a better exploration of beats’ features, we propose to use wavelet scattering transform as a better descriptive domain to cope with the limitation of the training dataset and to help the deep learning network accurately learn the relationship between the morphological shapes of PPG beats and the BP. A long short-term memory (LSTM) network is utilized to demonstrate the superiority of the wavelet scattering transform over other domains. The learning scenarios are carried out on a beat basis where the input corresponding PPG beat is used for predicting BP in two scenarios; (1) Beat-by-beat arterial blood pressure (ABP) estimation, and (2) Beat-by-beat estimation of the systolic and diastolic blood pressure values. Different transformations are used to extract the features of the PPG beats in different domains including time, discrete cosine transform (DCT), discrete wavelet transform (DWT), and wavelet scattering transform (WST) domains. The simulation results show that using the WST domain outperforms the other domains in the sense of root mean square error (RMSE) and mean absolute error (MAE) for both of the suggested two scenarios. |
---|---|
AbstractList | One of the most significant indicators of heart and cardiovascular health is blood pressure (BP). Blood pressure (BP) has gained great attention in the last decade. Uncontrolled high blood pressure increases the risk of serious health problems, including heart attack and stroke. Recently, machine/deep learning has been leveraged for learning a BP from photoplethysmography (PPG) signals. Hence, continuous BP monitoring can be introduced, based on simple wearable contact sensors or even remotely sensed from a proper camera away from the clinical setup. However, the available training dataset imposes many limitations besides the other difficulties related to the PPG time series as high-dimensional data. This work presents beat-by-beat continuous PPG-based BP monitoring while accounting for the aforementioned limitations. For a better exploration of beats’ features, we propose to use wavelet scattering transform as a better descriptive domain to cope with the limitation of the training dataset and to help the deep learning network accurately learn the relationship between the morphological shapes of PPG beats and the BP. A long short-term memory (LSTM) network is utilized to demonstrate the superiority of the wavelet scattering transform over other domains. The learning scenarios are carried out on a beat basis where the input corresponding PPG beat is used for predicting BP in two scenarios; (1) Beat-by-beat arterial blood pressure (ABP) estimation, and (2) Beat-by-beat estimation of the systolic and diastolic blood pressure values. Different transformations are used to extract the features of the PPG beats in different domains including time, discrete cosine transform (DCT), discrete wavelet transform (DWT), and wavelet scattering transform (WST) domains. The simulation results show that using the WST domain outperforms the other domains in the sense of root mean square error (RMSE) and mean absolute error (MAE) for both of the suggested two scenarios. |
Author | Yoshifumi Saijo Norihiro Sugita Osama A. Omer Mohamed Abdel-Nasser Mostafa Salah Ammar M. Hassan |
Author_xml | – sequence: 1 givenname: Osama A. orcidid: 0000-0001-9302-7875 surname: Omer fullname: Omer, Osama A. – sequence: 2 givenname: Mostafa surname: Salah fullname: Salah, Mostafa – sequence: 3 givenname: Ammar M. orcidid: 0000-0002-2643-0792 surname: Hassan fullname: Hassan, Ammar M. – sequence: 4 givenname: Mohamed surname: Abdel-Nasser fullname: Abdel-Nasser, Mohamed – sequence: 5 givenname: Norihiro surname: Sugita fullname: Sugita, Norihiro – sequence: 6 givenname: Yoshifumi surname: Saijo fullname: Saijo, Yoshifumi |
BackLink | https://cir.nii.ac.jp/crid/1870303266596166528$$DView record in CiNii |
BookMark | eNqNkMtqWzEQhkVJoUnqd9CiWye6HR1pE2iN0wScNGB70ZXQ0cVWcnxkJIXgXd-hb9gniRwnEAqFwvCPGJhPw3cCjoY4OAAgRmeUSnTehbhxNgw-po0uwWSGMKr1ARwT3tJxywg_evf-BEY53yOEiGgpkeIY_PzWx2jhXXI5PyYHp7mEPSoO0Ke4gXfrWOK235X1Jq6S3q53cJnDsIJXuy4FC-dGl-JSnfz59Xs2X9zAW1eeYnrIn8FHr_vsRq_9FCwvp4vJ1Xj24_v15OtsbKho0LiTjWWk7Yz1lDKGhfAYM2YaKRHHWnqOtG2Nl1x4JDkhTDLf1OSsGrCMnoLrA9dGfa-2qZ6fdirqoF4GMa2UTtVN7xTlmrCm0Rhpz2jnO2YxMRw712HXMllZFweWSTHn5LwyobzYKEmHXmGk9t7Vv7xXgPgL8HbQf6x-OawOIdRv94lFiyiihPNGclyTCPoMxL6csg |
CitedBy_id | crossref_primary_10_3390_computers13050125 |
Cites_doi | 10.1109/ACCESS.2019.2942936 10.1109/ACCESS.2022.3175436 10.3390/s22030919 10.1109/CVPR.2013.163 10.1364/BOE.7.003007 10.1038/s41598-021-94913-y 10.3390/s21186022 10.3390/s19153420 10.1109/MLSP.2017.8168136 10.3390/jcm7100316 10.1109/RBME.2022.3141877 10.1155/2018/1548647 10.1109/ISCAS.2015.7168806 10.3390/s21092952 10.1109/EMBC48229.2022.9871962 10.1109/JBHI.2021.3128229 10.3390/s20195668 10.1109/ACCESS.2020.3040257 10.1109/IEMBS.2006.260590 10.1016/j.bspc.2019.02.028 10.1109/CVPRW53098.2021.00423 10.1016/j.compbiomed.2020.103719 10.1007/978-3-030-36178-5_75 10.1109/TPAMI.2018.2855738 10.1155/2020/3215681 10.1109/TPAMI.2012.230 10.1016/j.eswa.2022.116788 10.1007/s00421-011-1983-3 10.3390/s21186311 10.1109/CIC.2002.1166854 10.1162/neco.1997.9.8.1735 10.3390/s18061894 10.1109/ICCV.2017.599 10.3390/bioengineering9110692 |
ContentType | Journal Article |
DBID | RYH AAYXX CITATION DOA |
DOI | 10.3390/biomedinformatics4010010 |
DatabaseName | CiNii Complete CrossRef DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2673-7426 |
EndPage | 157 |
ExternalDocumentID | oai_doaj_org_article_36a2455a10af43bfb4d12c61eeb1e749 10_3390_biomedinformatics4010010 |
GroupedDBID | ABDBF AFZYC ALMA_UNASSIGNED_HOLDINGS GROUPED_DOAJ MODMG M~E RYH AAYXX CITATION |
ID | FETCH-LOGICAL-c3850-b95d427bcdf3344188f1144c599061a9f60ad7cf968f09622494f524964390d43 |
IEDL.DBID | DOA |
ISSN | 2673-7426 |
IngestDate | Wed Aug 27 01:20:18 EDT 2025 Thu Apr 24 22:53:24 EDT 2025 Tue Jul 01 03:25:48 EDT 2025 Fri Jun 27 00:01:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English Japanese |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3850-b95d427bcdf3344188f1144c599061a9f60ad7cf968f09622494f524964390d43 |
ORCID | 0000-0002-2643-0792 0000-0001-9302-7875 |
OpenAccessLink | https://doaj.org/article/36a2455a10af43bfb4d12c61eeb1e749 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_36a2455a10af43bfb4d12c61eeb1e749 crossref_citationtrail_10_3390_biomedinformatics4010010 crossref_primary_10_3390_biomedinformatics4010010 nii_cinii_1870303266596166528 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-09 |
PublicationDateYYYYMMDD | 2024-01-09 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-09 day: 09 |
PublicationDecade | 2020 |
PublicationTitle | BioMedInformatics |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_14 Gesche (ref_21) 2012; 112 ref_35 ref_34 ref_33 ref_30 Yan (ref_10) 2019; 7 Xing (ref_13) 2016; 7 Bruna (ref_40) 2013; 35 ref_19 ref_18 ref_17 Hill (ref_29) 2021; 11 ref_16 ref_38 ref_15 ref_37 Tanveer (ref_27) 2019; 51 Salah (ref_32) 2022; 10 Maqsood (ref_12) 2022; 197 Haddad (ref_9) 2021; 26 Panula (ref_4) 2022; 16 ref_25 ref_24 ref_23 Marinko (ref_8) 2018; 42 ref_22 Goldberger (ref_7) 2020; 101 ref_20 ref_1 Hochreiter (ref_41) 1997; 9 ref_3 ref_2 Le (ref_6) 2020; 8 ref_28 ref_26 Khalid (ref_11) 2018; 2018 Saeed (ref_31) 2002; 29 ref_5 Liu (ref_39) 2020; 2020 Oyallon (ref_36) 2018; 41 |
References_xml | – volume: 7 start-page: 141970 year: 2019 ident: ref_10 article-title: Cuffless continuous blood pressure estimation from pulse morphology of photoplethysmograms publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2942936 – volume: 10 start-page: 55616 year: 2022 ident: ref_32 article-title: Beat-Based PPG-ABP Cleaning Technique for Blood Pressure Estimation publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3175436 – ident: ref_24 doi: 10.3390/s22030919 – ident: ref_38 doi: 10.1109/CVPR.2013.163 – volume: 7 start-page: 3007 year: 2016 ident: ref_13 article-title: Optical blood pressure estimation with photoplethysmography and FFT-based neural networks publication-title: Biomed. Opt. Express doi: 10.1364/BOE.7.003007 – volume: 11 start-page: 15755 year: 2021 ident: ref_29 article-title: Imputation of the Continuous Arterial Line Blood Pressure Waveform from Non-Invasive Measurements Using Deep Learning publication-title: Sci. Rep. doi: 10.1038/s41598-021-94913-y – ident: ref_19 doi: 10.3390/s21186022 – ident: ref_15 doi: 10.3390/s19153420 – ident: ref_35 doi: 10.1109/MLSP.2017.8168136 – ident: ref_3 doi: 10.3390/jcm7100316 – ident: ref_37 – volume: 16 start-page: 424 year: 2022 ident: ref_4 article-title: Advances in non-invasive blood pressure measurement techniques publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2022.3141877 – volume: 2018 start-page: 1548647 year: 2018 ident: ref_11 article-title: Blood pressure estimation using photoplethysmography only: Comparison between different machine learning approaches publication-title: J. Healthc. Eng. doi: 10.1155/2018/1548647 – ident: ref_1 – ident: ref_22 doi: 10.1109/ISCAS.2015.7168806 – ident: ref_16 doi: 10.3390/s21092952 – ident: ref_30 doi: 10.1109/EMBC48229.2022.9871962 – volume: 26 start-page: 2096 year: 2021 ident: ref_9 article-title: Continuous ppg-based blood pressure monitoring using multi-linear regression publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2021.3128229 – ident: ref_18 doi: 10.3390/s20195668 – ident: ref_23 – volume: 42 start-page: 33 year: 2018 ident: ref_8 article-title: Continuous blood pressure estimation from PPG signal publication-title: Informatica – volume: 8 start-page: 212478 year: 2020 ident: ref_6 article-title: Continuous non-invasive blood pressure monitoring: A methodological review on measurement techniques publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3040257 – ident: ref_20 doi: 10.1109/IEMBS.2006.260590 – volume: 51 start-page: 382 year: 2019 ident: ref_27 article-title: Cuffless blood pressure estimation from electrocardiogram and photoplethysmogram using waveform based ANN-LSTM network publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2019.02.028 – ident: ref_14 doi: 10.1109/CVPRW53098.2021.00423 – ident: ref_33 – ident: ref_28 doi: 10.1016/j.compbiomed.2020.103719 – ident: ref_2 – ident: ref_26 doi: 10.1007/978-3-030-36178-5_75 – volume: 41 start-page: 2208 year: 2018 ident: ref_36 article-title: Scattering networks for hybrid representation learning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2018.2855738 – volume: 2020 start-page: 3215681 year: 2020 ident: ref_39 article-title: Wavelet scattering transform for ECG beat classification publication-title: Comput. Math. Methods Med. doi: 10.1155/2020/3215681 – volume: 35 start-page: 1872 year: 2013 ident: ref_40 article-title: Invariant scattering convolution networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.230 – volume: 197 start-page: 116788 year: 2022 ident: ref_12 article-title: A survey: From shallow to deep machine learning approaches for blood pressure estimation using biosensors publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.116788 – volume: 112 start-page: 309 year: 2012 ident: ref_21 article-title: Continuous blood pressure measurement by using the pulse transit time: Comparison to a cuff-based method publication-title: Eur. J. Appl. Physiol. doi: 10.1007/s00421-011-1983-3 – ident: ref_25 doi: 10.3390/s21186311 – volume: 29 start-page: 641 year: 2002 ident: ref_31 article-title: MIMIC II: A massive temporal ICU patient database to support research in intelligent patient monitoring publication-title: Comput. Cardiol. doi: 10.1109/CIC.2002.1166854 – volume: 9 start-page: 1735 year: 1997 ident: ref_41 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 101 start-page: e215 year: 2020 ident: ref_7 article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals publication-title: Circulation – ident: ref_5 doi: 10.3390/s18061894 – ident: ref_34 doi: 10.1109/ICCV.2017.599 – ident: ref_17 doi: 10.3390/bioengineering9110692 |
SSID | ssj0002873298 |
Score | 2.2505538 |
Snippet | One of the most significant indicators of heart and cardiovascular health is blood pressure (BP). Blood pressure (BP) has gained great attention in the last... |
SourceID | doaj crossref nii |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 139 |
SubjectTerms | arterial blood pressure (ABP) Computer applications to medicine. Medical informatics continuous blood pressure monitoring deep learning LSTM Neurosciences. Biological psychiatry. Neuropsychiatry photoplethysmography (PPG) R858-859.7 RC321-571 wavelet scattering transform |
Title | Blood Pressure Estimation from Photoplythmography Using Hybrid Scattering–LSTM Networks |
URI | https://cir.nii.ac.jp/crid/1870303266596166528 https://doaj.org/article/36a2455a10af43bfb4d12c61eeb1e749 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTgIxEG4MXrwYjRpRIT143bDd_mx7BIUQI8QESPC02Xa7AYNAEA_cfAff0Cdxul0JHowevMyh2Wab2dmZ-ZqZbxC6VsKEVnIdxBA9AnB4aaAzIgIjGCTLxBiZuubkXl90R-xuzMc7o75cTZinB_aKa1CRRozzlIRpzqjONctIZASx4GRszIrWvVCFO2DqqbgyimmkpC_doYDrG76bvWQjdQzIACwcIPoWjwrafogy8-l0J8p0jtBhmR7ipj_WMdqz8xP02HLV5dh38q0sbsNv6TsOsesOwQ-TxXqxnG3Wk-eSgBoXlQC4u3H9WHhgChJNWPl4e78fDHu474u_X07RqNMe3nSDciRCYKjkYaAVz1gUa5PllEImI2UOgIYZDkFFkFTlIkyz2ORKyBzACcRnxXIO0iUeYcboGarMF3N7jrDlOqQ0it0ccKaZTjNuIzeSSoALkIZXUfylmMSUfOFubMUsAdzgVJr8pNIqItudS8-Z8Yc9Laf77fOO9bpYAFtISltIfrOFKqrBl4PTOkmkc2aQnQquBAEZyYv_eMklOoggsSmuYdQVqqxXr7YGicla19F-s3Xb6tQLW_wE5M3jIw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blood+Pressure+Estimation+from+Photoplythmography+Using+Hybrid+Scattering%E2%80%93LSTM+Networks&rft.jtitle=BioMedInformatics&rft.au=Osama+A.+Omer&rft.au=Mostafa+Salah&rft.au=Ammar+M.+Hassan&rft.au=Mohamed+Abdel-Nasser&rft.date=2024-01-09&rft.pub=MDPI+AG&rft.eissn=2673-7426&rft.volume=4&rft.spage=139&rft.epage=157&rft_id=info:doi/10.3390%2Fbiomedinformatics4010010 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-7426&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-7426&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-7426&client=summon |