Flexible polyimide-based hybrid opto-electric neural interface with 16 channels of micro-LEDs and electrodes

In this paper, a polyimide-based flexible device that integrates 16 micro-LEDs and 16 IrO x -modified microelectrodes for synchronous photostimulation and neural signal recording is presented. The 4 × 4 micro-LEDs (dimensions of 220 × 270 × 50 μm 3 , 700 μm pitch) are fixed in the SU-8 fence structu...

Full description

Saved in:
Bibliographic Details
Published inMicrosystems & nanoengineering Vol. 4; no. 1; pp. 27 - 11
Main Authors Ji, Bowen, Guo, Zhejun, Wang, Minghao, Yang, Bin, Wang, Xiaolin, Li, Wen, Liu, Jingquan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 08.10.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, a polyimide-based flexible device that integrates 16 micro-LEDs and 16 IrO x -modified microelectrodes for synchronous photostimulation and neural signal recording is presented. The 4 × 4 micro-LEDs (dimensions of 220 × 270 × 50 μm 3 , 700 μm pitch) are fixed in the SU-8 fence structure on a polyimide substrate and connected to the leads via a wire-bonding method. The recording electrodes share a similar fabrication process on the polyimide with 16 microelectrode sites (200 μm in diameter and 700 μm in pitch) modified by iridium oxide (IrO x ). These two subparts can be aligned with alignment holes and glued back-to-back by epoxy, which ensures that the light from the LEDs passes through the corresponding holes that are evenly distributed around the recording sites. The long-term electrical and optical stabilities of the device are verified using a soaking test for 3 months, and the thermal property is specifically studied with different duty cycles, voltages, and frequencies. Additionally, the electrochemical results prove the reliability of the IrO x -modified microelectrodes after repeated pressing or friction. To evaluate the tradeoff between flexibility and strength, two microelectrode arrays with thicknesses of 5 and 10 μm are evaluated through simulation and experiment. The proposed device can be a useful mapping optogenetics tool for neuroscience studies in small (rats and mice) and large animal subjects and ultimately in nonhuman primates. Precise multisite control of neural activity with opto-electric device A durable, flexible device can be implanted on rat brains to precisely turn on nerve cells using light and synchronously record their activities. Jingquan Liu and colleagues from Shanghai Jiao Tong University in China combined reliable wire-bonding micro-LED and modified microelectrode arrays to design a device that can more precisely target local brain cortex with light than the currently used optic fibers in optogenetics. In this field of research, scientists genetically alter nerve cells to produce light-sensing proteins, allowing them to control nerve activity with light. This could lead to advancements in the treatment of diseases like Parkinson’s and depression. The new device retains good performance after 3 months of soaking test and repeated pressing and friction for 5000 times. It is a useful multifunctional optogenetics tool and potentially integrated with wireless technology.
AbstractList In this paper, a polyimide-based flexible device that integrates 16 micro-LEDs and 16 IrO x -modified microelectrodes for synchronous photostimulation and neural signal recording is presented. The 4 × 4 micro-LEDs (dimensions of 220 × 270 × 50 μm3, 700 μm pitch) are fixed in the SU-8 fence structure on a polyimide substrate and connected to the leads via a wire-bonding method. The recording electrodes share a similar fabrication process on the polyimide with 16 microelectrode sites (200 μm in diameter and 700 μm in pitch) modified by iridium oxide (IrO x ). These two subparts can be aligned with alignment holes and glued back-to-back by epoxy, which ensures that the light from the LEDs passes through the corresponding holes that are evenly distributed around the recording sites. The long-term electrical and optical stabilities of the device are verified using a soaking test for 3 months, and the thermal property is specifically studied with different duty cycles, voltages, and frequencies. Additionally, the electrochemical results prove the reliability of the IrO x -modified microelectrodes after repeated pressing or friction. To evaluate the tradeoff between flexibility and strength, two microelectrode arrays with thicknesses of 5 and 10 μm are evaluated through simulation and experiment. The proposed device can be a useful mapping optogenetics tool for neuroscience studies in small (rats and mice) and large animal subjects and ultimately in nonhuman primates.In this paper, a polyimide-based flexible device that integrates 16 micro-LEDs and 16 IrO x -modified microelectrodes for synchronous photostimulation and neural signal recording is presented. The 4 × 4 micro-LEDs (dimensions of 220 × 270 × 50 μm3, 700 μm pitch) are fixed in the SU-8 fence structure on a polyimide substrate and connected to the leads via a wire-bonding method. The recording electrodes share a similar fabrication process on the polyimide with 16 microelectrode sites (200 μm in diameter and 700 μm in pitch) modified by iridium oxide (IrO x ). These two subparts can be aligned with alignment holes and glued back-to-back by epoxy, which ensures that the light from the LEDs passes through the corresponding holes that are evenly distributed around the recording sites. The long-term electrical and optical stabilities of the device are verified using a soaking test for 3 months, and the thermal property is specifically studied with different duty cycles, voltages, and frequencies. Additionally, the electrochemical results prove the reliability of the IrO x -modified microelectrodes after repeated pressing or friction. To evaluate the tradeoff between flexibility and strength, two microelectrode arrays with thicknesses of 5 and 10 μm are evaluated through simulation and experiment. The proposed device can be a useful mapping optogenetics tool for neuroscience studies in small (rats and mice) and large animal subjects and ultimately in nonhuman primates.
In this paper, a polyimide-based flexible device that integrates 16 micro-LEDs and 16 IrO x -modified microelectrodes for synchronous photostimulation and neural signal recording is presented. The 4 × 4 micro-LEDs (dimensions of 220 × 270 × 50 μm 3 , 700 μm pitch) are fixed in the SU-8 fence structure on a polyimide substrate and connected to the leads via a wire-bonding method. The recording electrodes share a similar fabrication process on the polyimide with 16 microelectrode sites (200 μm in diameter and 700 μm in pitch) modified by iridium oxide (IrO x ). These two subparts can be aligned with alignment holes and glued back-to-back by epoxy, which ensures that the light from the LEDs passes through the corresponding holes that are evenly distributed around the recording sites. The long-term electrical and optical stabilities of the device are verified using a soaking test for 3 months, and the thermal property is specifically studied with different duty cycles, voltages, and frequencies. Additionally, the electrochemical results prove the reliability of the IrO x -modified microelectrodes after repeated pressing or friction. To evaluate the tradeoff between flexibility and strength, two microelectrode arrays with thicknesses of 5 and 10 μm are evaluated through simulation and experiment. The proposed device can be a useful mapping optogenetics tool for neuroscience studies in small (rats and mice) and large animal subjects and ultimately in nonhuman primates. A durable, flexible device can be implanted on rat brains to precisely turn on nerve cells using light and synchronously record their activities. Jingquan Liu and colleagues from Shanghai Jiao Tong University in China combined reliable wire-bonding micro-LED and modified microelectrode arrays to design a device that can more precisely target local brain cortex with light than the currently used optic fibers in optogenetics. In this field of research, scientists genetically alter nerve cells to produce light-sensing proteins, allowing them to control nerve activity with light. This could lead to advancements in the treatment of diseases like Parkinson’s and depression. The new device retains good performance after 3 months of soaking test and repeated pressing and friction for 5000 times. It is a useful multifunctional optogenetics tool and potentially integrated with wireless technology.
In this paper, a polyimide-based flexible device that integrates 16 micro-LEDs and 16 IrO x -modified microelectrodes for synchronous photostimulation and neural signal recording is presented. The 4 × 4 micro-LEDs (dimensions of 220 × 270 × 50 μm 3 , 700 μm pitch) are fixed in the SU-8 fence structure on a polyimide substrate and connected to the leads via a wire-bonding method. The recording electrodes share a similar fabrication process on the polyimide with 16 microelectrode sites (200 μm in diameter and 700 μm in pitch) modified by iridium oxide (IrO x ). These two subparts can be aligned with alignment holes and glued back-to-back by epoxy, which ensures that the light from the LEDs passes through the corresponding holes that are evenly distributed around the recording sites. The long-term electrical and optical stabilities of the device are verified using a soaking test for 3 months, and the thermal property is specifically studied with different duty cycles, voltages, and frequencies. Additionally, the electrochemical results prove the reliability of the IrO x -modified microelectrodes after repeated pressing or friction. To evaluate the tradeoff between flexibility and strength, two microelectrode arrays with thicknesses of 5 and 10 μm are evaluated through simulation and experiment. The proposed device can be a useful mapping optogenetics tool for neuroscience studies in small (rats and mice) and large animal subjects and ultimately in nonhuman primates. Precise multisite control of neural activity with opto-electric device A durable, flexible device can be implanted on rat brains to precisely turn on nerve cells using light and synchronously record their activities. Jingquan Liu and colleagues from Shanghai Jiao Tong University in China combined reliable wire-bonding micro-LED and modified microelectrode arrays to design a device that can more precisely target local brain cortex with light than the currently used optic fibers in optogenetics. In this field of research, scientists genetically alter nerve cells to produce light-sensing proteins, allowing them to control nerve activity with light. This could lead to advancements in the treatment of diseases like Parkinson’s and depression. The new device retains good performance after 3 months of soaking test and repeated pressing and friction for 5000 times. It is a useful multifunctional optogenetics tool and potentially integrated with wireless technology.
In this paper, a polyimide-based flexible device that integrates 16 micro-LEDs and 16 IrO -modified microelectrodes for synchronous photostimulation and neural signal recording is presented. The 4 × 4 micro-LEDs (dimensions of 220 × 270 × 50 μm , 700 μm pitch) are fixed in the SU-8 fence structure on a polyimide substrate and connected to the leads via a wire-bonding method. The recording electrodes share a similar fabrication process on the polyimide with 16 microelectrode sites (200 μm in diameter and 700 μm in pitch) modified by iridium oxide (IrO ). These two subparts can be aligned with alignment holes and glued back-to-back by epoxy, which ensures that the light from the LEDs passes through the corresponding holes that are evenly distributed around the recording sites. The long-term electrical and optical stabilities of the device are verified using a soaking test for 3 months, and the thermal property is specifically studied with different duty cycles, voltages, and frequencies. Additionally, the electrochemical results prove the reliability of the IrO -modified microelectrodes after repeated pressing or friction. To evaluate the tradeoff between flexibility and strength, two microelectrode arrays with thicknesses of 5 and 10 μm are evaluated through simulation and experiment. The proposed device can be a useful mapping optogenetics tool for neuroscience studies in small (rats and mice) and large animal subjects and ultimately in nonhuman primates.
In this paper, a polyimide-based flexible device that integrates 16 micro-LEDs and 16 IrOx-modified microelectrodes for synchronous photostimulation and neural signal recording is presented. The 4 × 4 micro-LEDs (dimensions of 220 × 270 × 50 μm3, 700 μm pitch) are fixed in the SU-8 fence structure on a polyimide substrate and connected to the leads via a wire-bonding method. The recording electrodes share a similar fabrication process on the polyimide with 16 microelectrode sites (200 μm in diameter and 700 μm in pitch) modified by iridium oxide (IrOx). These two subparts can be aligned with alignment holes and glued back-to-back by epoxy, which ensures that the light from the LEDs passes through the corresponding holes that are evenly distributed around the recording sites. The long-term electrical and optical stabilities of the device are verified using a soaking test for 3 months, and the thermal property is specifically studied with different duty cycles, voltages, and frequencies. Additionally, the electrochemical results prove the reliability of the IrOx-modified microelectrodes after repeated pressing or friction. To evaluate the tradeoff between flexibility and strength, two microelectrode arrays with thicknesses of 5 and 10 μm are evaluated through simulation and experiment. The proposed device can be a useful mapping optogenetics tool for neuroscience studies in small (rats and mice) and large animal subjects and ultimately in nonhuman primates.
In this paper, a polyimide-based flexible device that integrates 16 micro-LEDs and 16 IrO x -modified microelectrodes for synchronous photostimulation and neural signal recording is presented. The 4 × 4 micro-LEDs (dimensions of 220 × 270 × 50 μm 3 , 700 μm pitch) are fixed in the SU-8 fence structure on a polyimide substrate and connected to the leads via a wire-bonding method. The recording electrodes share a similar fabrication process on the polyimide with 16 microelectrode sites (200 μm in diameter and 700 μm in pitch) modified by iridium oxide (IrO x ). These two subparts can be aligned with alignment holes and glued back-to-back by epoxy, which ensures that the light from the LEDs passes through the corresponding holes that are evenly distributed around the recording sites. The long-term electrical and optical stabilities of the device are verified using a soaking test for 3 months, and the thermal property is specifically studied with different duty cycles, voltages, and frequencies. Additionally, the electrochemical results prove the reliability of the IrO x -modified microelectrodes after repeated pressing or friction. To evaluate the tradeoff between flexibility and strength, two microelectrode arrays with thicknesses of 5 and 10 μm are evaluated through simulation and experiment. The proposed device can be a useful mapping optogenetics tool for neuroscience studies in small (rats and mice) and large animal subjects and ultimately in nonhuman primates.
ArticleNumber 27
Author Guo, Zhejun
Liu, Jingquan
Wang, Minghao
Wang, Xiaolin
Ji, Bowen
Yang, Bin
Li, Wen
Author_xml – sequence: 1
  givenname: Bowen
  orcidid: 0000-0002-2655-4840
  surname: Ji
  fullname: Ji, Bowen
  organization: National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University
– sequence: 2
  givenname: Zhejun
  surname: Guo
  fullname: Guo, Zhejun
  organization: National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University
– sequence: 3
  givenname: Minghao
  surname: Wang
  fullname: Wang, Minghao
  organization: National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University
– sequence: 4
  givenname: Bin
  surname: Yang
  fullname: Yang, Bin
  organization: National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University
– sequence: 5
  givenname: Xiaolin
  surname: Wang
  fullname: Wang, Xiaolin
  organization: National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University
– sequence: 6
  givenname: Wen
  surname: Li
  fullname: Li, Wen
  organization: Electrical and Computer Engineering Department, Michigan State University
– sequence: 7
  givenname: Jingquan
  surname: Liu
  fullname: Liu, Jingquan
  email: jqliu@sjtu.edu.cn
  organization: National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31057915$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1v1DAUtFARLaU_gAuyxKWXgD_XyQUJlRaQVuICZ8uxX7quHHuxE2D_fR2lhVIJDpYtv5nRzJvn6CimCAi9pOQNJbx9WwTlqm0IrYcw1ZAn6IQRKRsluDh68D5GZ6XcEEKo4qoj8hk65pRI1VF5gsJVgF--D4D3KRz86B00vSng8O7QZ-9w2k-pgQB2yt7iCHM2Afs4QR6MBfzTTztMN9juTIwQCk4DHr3NqdlefijYRIdXcnJQXqCngwkFzu7uU_Tt6vLrxadm--Xj54v328byVpJG9YOz1PGOuI0dOmidNDWqJVTaAURnlK2D-qmocoIIwtpukH3HQAyid4Sfoner7n7uR3AW4lRd6332o8kHnYzXf0-i3-nr9ENvGFu2VAXO7wRy-j5DmfToi4UQTIQ0F80Yp21XvYoKff0IepPmHGs8zSjdtLylilXUq4eOflu5L6IC1Aqoqyslw6Ctn8zk02LQB02JXlrXa-u6tq6X1vUSlj5i3ov_j8NWTqnYeA35j-l_k24B0Wq_Xw
CitedBy_id crossref_primary_10_3389_fbioe_2021_659033
crossref_primary_10_3390_ijms23031800
crossref_primary_10_3390_mi12091061
crossref_primary_10_1364_OE_428482
crossref_primary_10_3390_bios13020265
crossref_primary_10_1016_j_bioadv_2023_213392
crossref_primary_10_1088_1741_2552_aba41f
crossref_primary_10_3390_ma15020687
crossref_primary_10_1016_j_jiec_2020_10_023
crossref_primary_10_1063_5_0125103
crossref_primary_10_1016_j_jmapro_2022_09_059
crossref_primary_10_1016_j_bios_2019_111661
crossref_primary_10_1038_s41467_023_42860_9
crossref_primary_10_1088_1361_6439_abeb30
crossref_primary_10_1109_LPT_2023_3314060
crossref_primary_10_1002_advs_202002693
crossref_primary_10_1016_j_bios_2020_112009
crossref_primary_10_1016_j_isci_2022_105866
crossref_primary_10_1002_adhm_202303563
crossref_primary_10_1021_acsaelm_4c01514
crossref_primary_10_1016_j_jmat_2019_11_006
crossref_primary_10_1007_s10544_022_00632_0
crossref_primary_10_1109_TED_2023_3268628
crossref_primary_10_1007_s11814_024_00318_8
crossref_primary_10_1109_ACCESS_2024_3378581
crossref_primary_10_1039_D0MH00483A
crossref_primary_10_1039_D0QM00279H
crossref_primary_10_3390_mi15081036
crossref_primary_10_1007_s11432_021_3373_1
crossref_primary_10_1016_j_rinp_2021_104395
crossref_primary_10_1557_s43577_024_00786_7
crossref_primary_10_1016_j_intermet_2022_107535
crossref_primary_10_1016_j_sbsr_2022_100483
crossref_primary_10_3390_s22239085
crossref_primary_10_1002_adma_202107207
crossref_primary_10_1088_1741_2552_abf28d
crossref_primary_10_1080_10409238_2020_1726279
crossref_primary_10_1016_j_matt_2020_10_020
crossref_primary_10_1080_23746149_2019_1664319
crossref_primary_10_1038_s41528_024_00344_w
crossref_primary_10_1007_s42242_024_00299_x
crossref_primary_10_1002_adma_202303267
crossref_primary_10_1038_s41598_021_88960_8
crossref_primary_10_1021_acsabm_3c00131
crossref_primary_10_1021_acsaelm_1c00440
crossref_primary_10_3390_coatings11020204
crossref_primary_10_1039_D0TB00872A
crossref_primary_10_1088_1741_2552_aba1a4
crossref_primary_10_1002_admt_202301692
crossref_primary_10_1016_j_smaim_2020_08_002
crossref_primary_10_1364_OE_27_030864
crossref_primary_10_1016_j_addr_2022_114399
crossref_primary_10_1016_j_mee_2022_111740
crossref_primary_10_1063_5_0153753
crossref_primary_10_3389_fpsyt_2022_950910
crossref_primary_10_1002_pssa_202400051
crossref_primary_10_1016_j_copbio_2021_11_001
crossref_primary_10_1088_2516_1091_ad0b19
crossref_primary_10_1002_advs_202104629
crossref_primary_10_1109_ACCESS_2020_3037338
crossref_primary_10_4103_bc_bc_33_24
crossref_primary_10_1002_aelm_202300258
Cites_doi 10.1038/nature05744
10.1364/OL.37.004841
10.1109/TBCAS.2013.2282318
10.1088/1741-2560/7/2/026004
10.1038/nmeth.3620
10.1109/RBME.2011.2172408
10.1109/TED.2016.2645860
10.1016/j.proeng.2015.08.672
10.1038/nprot.2011.413
10.1126/science.1232437
10.1088/1741-2560/1/2/001
10.1152/jn.00153.2013
10.1016/j.conb.2015.03.015
10.1038/nbt.3415
10.1016/j.neuron.2016.01.013
10.1088/0022-3727/47/20/205401
10.1016/j.snb.2013.08.085
10.1016/j.nanoen.2016.12.038
10.1021/acsnano.5b07889
10.1016/j.jneumeth.2015.07.028
10.1002/adfm.201703018
10.1038/ncomms6258
10.1038/nmat2745
10.1088/1741-2560/11/1/016010
10.1038/nature06310
10.1038/nn1525
10.1088/1741-2560/12/5/056002
10.1038/micronano.2016.12
10.1002/advs.201700149
10.1109/95.486556
10.1109/BioCAS.2016.7833835
10.1117/12.2252926
10.1109/MEMSYS.2017.7863462
10.1109/TRANSDUCERS.2017.7994394
ContentType Journal Article
Copyright The Author(s) 2018
2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M7P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOI 10.1038/s41378-018-0027-0
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Biological Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2055-7434
EndPage 11
ExternalDocumentID PMC6220173
31057915
10_1038_s41378_018_0027_0
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: No. 51475307, 61728402
  funderid: https://doi.org/10.13039/501100001809
– fundername: China Scholarship Council (CSC)
  grantid: 201606230100
  funderid: https://doi.org/10.13039/501100004543
– fundername: National Key R&D Program of China under grant 2017YFB1002501, Research Program of Shanghai Science and Technology Committee (17JC1402800, 15JC1400103), Program of Shanghai Academic/Technology Research Leader (18XD1401900), ZBYY-MOE Joint Funding (6141A02022604)
– fundername: ;
– fundername: ;
  grantid: No. 51475307, 61728402
– fundername: ;
  grantid: 201606230100
GroupedDBID 0R~
3V.
5VS
7X7
8FE
8FG
8FH
8FI
8FJ
AAJSJ
ABJCF
ABUWG
ACGFS
ACSMW
ADBBV
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
EBLON
EBS
EJD
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
HZ~
KQ8
L6V
LK8
M7P
M7S
M~E
NAO
O9-
OK1
PIMPY
PQQKQ
PROAC
PTHSS
RNT
RPM
SNYQT
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
ADMLS
ARCSS
NPM
7XB
8FK
AARCD
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c3850-7bfdc1d390d6cf9e8d5a378c015cfe49a7cd6cd5a717d4040289f5b92e4f4bd03
IEDL.DBID 7X7
ISSN 2055-7434
2096-1030
IngestDate Thu Aug 21 18:01:13 EDT 2025
Fri Jul 11 06:14:17 EDT 2025
Wed Aug 13 04:32:54 EDT 2025
Thu Apr 03 07:07:45 EDT 2025
Tue Jul 01 03:27:09 EDT 2025
Thu Apr 24 22:50:44 EDT 2025
Fri Feb 21 02:38:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3850-7bfdc1d390d6cf9e8d5a378c015cfe49a7cd6cd5a717d4040289f5b92e4f4bd03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2655-4840
OpenAccessLink https://www.proquest.com/docview/2116838172?pq-origsite=%requestingapplication%
PMID 31057915
PQID 2116838172
PQPubID 2041946
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6220173
proquest_miscellaneous_2231898504
proquest_journals_2116838172
pubmed_primary_31057915
crossref_citationtrail_10_1038_s41378_018_0027_0
crossref_primary_10_1038_s41378_018_0027_0
springer_journals_10_1038_s41378_018_0027_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20181008
PublicationDateYYYYMMDD 2018-10-08
PublicationDate_xml – month: 10
  year: 2018
  text: 20181008
  day: 8
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Microsystems & nanoengineering
PublicationTitleAbbrev Microsyst Nanoeng
PublicationTitleAlternate Microsyst Nanoeng
PublicationYear 2018
Publisher Nature Publishing Group UK
Springer Nature B.V
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
References Park (CR16) 2014; 5
Fukushima, Chao, Fujii (CR14) 2015; 32
CR18
Ledochowitsch (CR13) 2015; 256
Slutzky (CR23) 2010; 7
Lee (CR33) 2017; 4
Xiang, Liu, Lee (CR20) 2016; 2
Ruiz (CR26) 2013; 110
Schalk, Leuthardt (CR11) 2011; 4
Sparta (CR3) 2012; 7
Zhang (CR25) 2007; 446
Clements (CR4) 2013; 8586
Park (CR9) 2015; 12
Hall, Lyons, Weld (CR34) 1996; 19
Leuthardt (CR10) 2004; 1
Ayub (CR22) 2015; 120
Richner (CR12) 2014; 11
Park (CR15) 2016; 10
Zorzos (CR6) 2012; 37
Kim (CR8) 2013; 340
Yazdan-Shahmorad (CR17) 2016; 89
CR29
CR28
Ji (CR30) 2017; 64
Park (CR27) 2015; 33
Shin (CR35) 2016; 3
Kwon (CR5) 2013; 7
CR24
Lee (CR7) 2015; 12
Kim (CR37) 2010; 9
CR21
Lee (CR31) 2017; 33
Boyden (CR1) 2005; 8
Adamantidis (CR2) 2007; 450
Goßler (CR19) 2014; 47
Ganji (CR36) 2017; 27
Kang (CR32) 2016; 190
DW Park (27_CR16) 2014; 5
27_CR28
27_CR21
S Shin (27_CR35) 2016; 3
J Lee (27_CR7) 2015; 12
F Zhang (27_CR25) 2007; 446
27_CR24
C Goßler (27_CR19) 2014; 47
AN Zorzos (27_CR6) 2012; 37
P Ledochowitsch (27_CR13) 2015; 256
XY Kang (27_CR32) 2016; 190
ZL Xiang (27_CR20) 2016; 2
IP Clements (27_CR4) 2013; 8586
AH Park (27_CR15) 2016; 10
S Lee (27_CR33) 2017; 4
A Yazdan-Shahmorad (27_CR17) 2016; 89
DR Sparta (27_CR3) 2012; 7
DH Kim (27_CR37) 2010; 9
ES Boyden (27_CR1) 2005; 8
O Ruiz (27_CR26) 2013; 110
M Ganji (27_CR36) 2017; 27
TI Kim (27_CR8) 2013; 340
TJ Richner (27_CR12) 2014; 11
27_CR29
MW Slutzky (27_CR23) 2010; 7
SI Park (27_CR27) 2015; 33
S Lee (27_CR31) 2017; 33
SI Park (27_CR9) 2015; 12
BW Ji (27_CR30) 2017; 64
AR Adamantidis (27_CR2) 2007; 450
KY Kwon (27_CR5) 2013; 7
M Fukushima (27_CR14) 2015; 32
EC Leuthardt (27_CR10) 2004; 1
S Ayub (27_CR22) 2015; 120
E Hall (27_CR34) 1996; 19
27_CR18
G Schalk (27_CR11) 2011; 4
References_xml – volume: 446
  start-page: 633
  year: 2007
  end-page: 639
  ident: CR25
  article-title: Multimodal fast optical interrogation of neural circuitry
  publication-title: Nature
  doi: 10.1038/nature05744
– volume: 37
  start-page: 4841
  year: 2012
  end-page: 4843
  ident: CR6
  article-title: Three-dimensional multiwaveguide probe array for light delivery to distributed brain circuits
  publication-title: Opt. Lett.
  doi: 10.1364/OL.37.004841
– ident: CR18
– volume: 7
  start-page: 593
  year: 2013
  end-page: 600
  ident: CR5
  article-title: Opto- ECoG array: a hybrid neural interface with transparent ECoG electrode array and integrated LEDs for optogenetics
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  doi: 10.1109/TBCAS.2013.2282318
– volume: 7
  start-page: 026004
  year: 2010
  ident: CR23
  article-title: Optimal spacing of surface electrode arrays for brain–machine interface applications
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/7/2/026004
– volume: 12
  start-page: 281
  year: 2015
  end-page: 313
  ident: CR7
  article-title: Transparent intracortical microprobe array for simultaneous spatiotemporal optical stimulation and multichannel electrical recording
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3620
– volume: 4
  start-page: 140
  year: 2011
  end-page: 154
  ident: CR11
  article-title: Brain-computer interfaces using electrocorticographic signals
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2011.2172408
– volume: 64
  start-page: 2008
  year: 2017
  end-page: 2015
  ident: CR30
  article-title: Flexible optoelectric neural interface integrated wire-bonding LEDs and microelectrocorticography for optogenetics
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2016.2645860
– volume: 120
  start-page: 472
  year: 2015
  end-page: 475
  ident: CR22
  article-title: An intracerebral probe with integrated 10×1 LED array for optogenetic experiments at 460 nm
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2015.08.672
– volume: 7
  start-page: 12
  year: 2012
  end-page: 23
  ident: CR3
  article-title: Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2011.413
– volume: 340
  start-page: 211
  year: 2013
  end-page: 216
  ident: CR8
  article-title: Injectable, cellular-scale optoelectronics with applications for wireless optogenetics
  publication-title: Science
  doi: 10.1126/science.1232437
– volume: 1
  start-page: 63
  year: 2004
  end-page: 71
  ident: CR10
  article-title: A brain-computer interface using electrocorticographic signals in humans
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/1/2/001
– volume: 110
  start-page: 1455
  year: 2013
  end-page: 1467
  ident: CR26
  article-title: Optogenetics through windows on the brain in the nonhuman primate
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00153.2013
– volume: 32
  start-page: 124
  year: 2015
  end-page: 131
  ident: CR14
  article-title: Studying brain functions with mesoscopic measurements: advances in electrocorticography for non-human primates
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2015.03.015
– volume: 33
  start-page: 1280
  year: 2015
  end-page: 1286
  ident: CR27
  article-title: Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3415
– volume: 8586
  start-page: 85860X
  year: 2013
  ident: CR4
  article-title: Miniaturized LED sources for in vivo optogenetic experimentation
  publication-title: Optogenetics
– ident: CR29
– volume: 3
  start-page: 243
  year: 2016
  end-page: 260
  ident: CR35
  article-title: High charge storage capacity electrodeposited iridium oxide film on liquid crystal polymer-based neural electrodes
  publication-title: Sens. Mater.
– volume: 89
  start-page: 927
  year: 2016
  end-page: 939
  ident: CR17
  article-title: A large-scale interface for optogenetic stimulation and recording in nonhuman primates
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.01.013
– volume: 47
  start-page: 205401
  year: 2014
  ident: CR19
  article-title: GaN-based micro-LED arrays on flexible substrates for optical cochlear implants
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/47/20/205401
– volume: 190
  start-page: 601
  year: 2016
  end-page: 611
  ident: CR32
  article-title: Controlled activation of iridium film for AIROF microelectrodes
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2013.08.085
– volume: 33
  start-page: 1
  year: 2017
  end-page: 11
  ident: CR31
  article-title: Development of battery-free neural interface and modulated control of tibialis anterior muscle via common peroneal nerve based on triboelectric nanogenerators (TENGs)
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.12.038
– volume: 10
  start-page: 2791
  year: 2016
  end-page: 2802
  ident: CR15
  article-title: Optogenetic mapping of functional connectivity in freely moving mice via insertable wrapping electrode array beneath the skull
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b07889
– volume: 256
  start-page: 220
  year: 2015
  end-page: 231
  ident: CR13
  article-title: Strategies for optical control and simultaneous electrical readout of extended cortical circuits
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2015.07.028
– ident: CR21
– volume: 27
  start-page: 1703018
  year: 2017
  ident: CR36
  article-title: Scaling effects on the electrochemical performance of poly (3, 4-ethylenedioxythiophene (PEDOT), Au, and Pt for electrocorticography recording
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201703018
– volume: 5
  start-page: 5258
  year: 2014
  ident: CR16
  article-title: Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6258
– volume: 9
  start-page: 511
  year: 2010
  end-page: 517
  ident: CR37
  article-title: Dissolvable films of silk fibroin for ultrathin, conformal bio-integrated electronics
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2745
– volume: 11
  start-page: 016010
  year: 2014
  ident: CR12
  article-title: Optogenetic micro-electrocorticography for modulating and localizing cerebral cortex activity
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/11/1/016010
– volume: 450
  start-page: 420
  year: 2007
  end-page: 424
  ident: CR2
  article-title: Neural substrates of awakening probed with optogenetic control of hypocretin neurons
  publication-title: Nature
  doi: 10.1038/nature06310
– volume: 8
  start-page: 1263
  year: 2005
  end-page: 1268
  ident: CR1
  article-title: Millisecond-timescale, genetically targeted optical control of neural activity
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1525
– volume: 12
  start-page: 056002
  year: 2015
  ident: CR9
  article-title: Ultraminiaturized photovoltaic and radio frequency powered optoelectronic systems for wireless optogenetics
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/12/5/056002
– volume: 2
  start-page: 16012
  year: 2016
  ident: CR20
  article-title: A flexible three-dimensional electrode mesh: an enabling technology for wireless brain–computer interface prostheses
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/micronano.2016.12
– volume: 4
  start-page: 1700149
  year: 2017
  ident: CR33
  article-title: Toward bioelectronic medicine—neuromodulation of small peripheral nerves using flexible neural clip
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700149
– ident: CR28
– volume: 19
  start-page: 12
  year: 1996
  end-page: 17
  ident: CR34
  article-title: Gold wire bonding onto flexible polymeric substrates
  publication-title: IEEE Trans. Compon. Packag. Manuf. Technol. A
  doi: 10.1109/95.486556
– ident: CR24
– volume: 446
  start-page: 633
  year: 2007
  ident: 27_CR25
  publication-title: Nature
  doi: 10.1038/nature05744
– volume: 19
  start-page: 12
  year: 1996
  ident: 27_CR34
  publication-title: IEEE Trans. Compon. Packag. Manuf. Technol. A
  doi: 10.1109/95.486556
– volume: 5
  start-page: 5258
  year: 2014
  ident: 27_CR16
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6258
– ident: 27_CR18
  doi: 10.1109/BioCAS.2016.7833835
– volume: 256
  start-page: 220
  year: 2015
  ident: 27_CR13
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2015.07.028
– ident: 27_CR28
  doi: 10.1117/12.2252926
– volume: 64
  start-page: 2008
  year: 2017
  ident: 27_CR30
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2016.2645860
– volume: 10
  start-page: 2791
  year: 2016
  ident: 27_CR15
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b07889
– volume: 33
  start-page: 1
  year: 2017
  ident: 27_CR31
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.12.038
– volume: 8
  start-page: 1263
  year: 2005
  ident: 27_CR1
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1525
– volume: 4
  start-page: 140
  year: 2011
  ident: 27_CR11
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2011.2172408
– volume: 4
  start-page: 1700149
  year: 2017
  ident: 27_CR33
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700149
– volume: 27
  start-page: 1703018
  year: 2017
  ident: 27_CR36
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201703018
– volume: 1
  start-page: 63
  year: 2004
  ident: 27_CR10
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/1/2/001
– volume: 32
  start-page: 124
  year: 2015
  ident: 27_CR14
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2015.03.015
– volume: 8586
  start-page: 85860X
  year: 2013
  ident: 27_CR4
  publication-title: Optogenetics
– volume: 7
  start-page: 026004
  year: 2010
  ident: 27_CR23
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/7/2/026004
– volume: 33
  start-page: 1280
  year: 2015
  ident: 27_CR27
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3415
– volume: 37
  start-page: 4841
  year: 2012
  ident: 27_CR6
  publication-title: Opt. Lett.
  doi: 10.1364/OL.37.004841
– volume: 7
  start-page: 12
  year: 2012
  ident: 27_CR3
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2011.413
– volume: 12
  start-page: 056002
  year: 2015
  ident: 27_CR9
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/12/5/056002
– ident: 27_CR21
  doi: 10.1109/MEMSYS.2017.7863462
– volume: 120
  start-page: 472
  year: 2015
  ident: 27_CR22
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2015.08.672
– volume: 2
  start-page: 16012
  year: 2016
  ident: 27_CR20
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/micronano.2016.12
– ident: 27_CR24
– volume: 47
  start-page: 205401
  year: 2014
  ident: 27_CR19
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/47/20/205401
– volume: 190
  start-page: 601
  year: 2016
  ident: 27_CR32
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2013.08.085
– volume: 110
  start-page: 1455
  year: 2013
  ident: 27_CR26
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00153.2013
– ident: 27_CR29
  doi: 10.1109/TRANSDUCERS.2017.7994394
– volume: 9
  start-page: 511
  year: 2010
  ident: 27_CR37
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2745
– volume: 7
  start-page: 593
  year: 2013
  ident: 27_CR5
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  doi: 10.1109/TBCAS.2013.2282318
– volume: 89
  start-page: 927
  year: 2016
  ident: 27_CR17
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.01.013
– volume: 3
  start-page: 243
  year: 2016
  ident: 27_CR35
  publication-title: Sens. Mater.
– volume: 12
  start-page: 281
  year: 2015
  ident: 27_CR7
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3620
– volume: 450
  start-page: 420
  year: 2007
  ident: 27_CR2
  publication-title: Nature
  doi: 10.1038/nature06310
– volume: 340
  start-page: 211
  year: 2013
  ident: 27_CR8
  publication-title: Science
  doi: 10.1126/science.1232437
– volume: 11
  start-page: 016010
  year: 2014
  ident: 27_CR12
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/11/1/016010
SSID ssj0001737905
ssib048324881
Score 2.3537064
Snippet In this paper, a polyimide-based flexible device that integrates 16 micro-LEDs and 16 IrO x -modified microelectrodes for synchronous photostimulation and...
In this paper, a polyimide-based flexible device that integrates 16 micro-LEDs and 16 IrO -modified microelectrodes for synchronous photostimulation and neural...
In this paper, a polyimide-based flexible device that integrates 16 micro-LEDs and 16 IrOx-modified microelectrodes for synchronous photostimulation and neural...
In this paper, a polyimide-based flexible device that integrates 16 micro-LEDs and 16 IrO x -modified microelectrodes for synchronous photostimulation and...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 27
SubjectTerms 639/166/987
639/925/350/59
Computer applications
Electric wire
Electrodes
Engineering
Frequency
Genetics
Implants
Information processing
Iridium
Light emitting diodes
Microelectrodes
Nervous system
Optics
Primates
Recording
Reliability analysis
Substrates
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5V7QUOqLxDCzISJ5BFEtuJfURLVxUCTlTqLfJTXWmbrLrbQ_89M3lsu6xA4pBLbMeOZ8aesWe-AfiQauOjipYT0AuXwtcoUklzYaQqddCl8RSN_ONndX4hv12qywMopliY3mm_h7Tsl-nJO-zzGhdbwoIt8EFLiqOVfkTI7cTUs2p2f6xSC4Kcmu4vhd5vubsD7amV-96Rf1yR9jvP_BiejCoj-zIM8ikcxPYZPH4AJPgclnPCtXTLyFbd8m5xvQiR0_4U2NUdhWSxbrXp-JDyZuEZgVjiFwkq4iZZHxmdxrKiYhQG3OJuybrErslVj38_-7pmtg1szJcT4voFXMzPfs3O-ZhHgXuhVc5rl4IvgjB5qHwyUQdlcUo8agI-RWls7bEAX6JpFyRKNRphSTlTRpmkC7l4CYdt18bXwCrUcr1RNgmjZOG0VdYlW9bG5Uq7vMwgn-a28SPIOOW6WDb9ZbfQzUCOBsnREDmaPIOP2yarAWHjX5VPJ4I1o7CtG7RhK01Ig9j9-20xigndfdg2drdYB_VYbXA2ZAavBvpuexOU69gUKoN6h_LbCgTBvVvSLq56KO6qLInlMvg08cj9sP76E2_-q_YJPCqJeXu_w1M43NzcxreoCG3cu571fwOj4QNl
  priority: 102
  providerName: Springer Nature
Title Flexible polyimide-based hybrid opto-electric neural interface with 16 channels of micro-LEDs and electrodes
URI https://link.springer.com/article/10.1038/s41378-018-0027-0
https://www.ncbi.nlm.nih.gov/pubmed/31057915
https://www.proquest.com/docview/2116838172
https://www.proquest.com/docview/2231898504
https://pubmed.ncbi.nlm.nih.gov/PMC6220173
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdge4EHxPcyRmUknkDW0thO7CdUSstUwYSASX2LHH9olbqkLN3D_vvd5WuUiT2kkWw3bXx3vvPd-XeEvA-Ztl56wxDohQluMxCpoBjXQibKqURbPI38_TQ9OROLpVx2Dre6S6vs18RmoXaVRR_5MWxUUoVwcsmnzR-GVaMwutqV0HhI9hG6DFO6suWgTgVwq-jR0hufS8YRjwrrzYHlzrDCVh_o5Oq4hvUc4WbHcMFmjcW7quqO_Xk3jfKfWGqjouZPyZPOtqSTlhmekQe-fE4e_4U4-IKs5wiAWaw93VTr69XFynmGiszR82s8u0WrzbZibW2claWIdglPREyJy2Csp-i2peOU4nnhEtQqrQK9wJw-9m32paamdLQrrON8_ZKczWe_pyesK7jALFcyZlkRnB07rmOX2qC9ctLAlFgwGWzwQpvMQgc0wh7QCRB_2K0FWejEiyAKF_NXZK-sSn9AaArmsNXSBK6lGBfKSFMEk2S6iKUq4iQicT-3ue3QyLEoxjpvouJc5S05ciBHjuTI44h8GL6yaaE47ht81BMs76Syzm95KCLvhm6QJwySmNJXVzAGDF6lYTZERF639B1-jWNRZD2WEcl2KD8MQKzu3Z5ydd5gdqdJguwXkY89j9z-rf--xOH9L_GGPEqQW5uMxCOyt7288m_BRNoWo0YO4FPNv47I_mSy-LWA--fZ6Y-f0DpNp6PG-XAD68MRVw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJtAASPBBWQ18SOxDwgh2mVLtz21Um8h8UNdaZsszVZo_xS_kZk8tiwVvfWQS-w8Z8Yz47G_j5B3ITPWK18wBHphUtgMTCpoJoxUXDvNjcXdyAeH6fhYfj9RJxvk97AXBpdVDmNiO1C72uIc-TYkKqlGODn-ef6TIWsUVlcHCo1OLfb98hekbM2nvR2Q73vOR7tHX8esZxVgVmgVs6wMziYOcn2X2mC8dqoQmbbgF23w0hSZhQY4CYmOk6DjkJIEVRruZZCliwXc9xa5LYUwaFF69G3QXwnWIQd09naOJxOIf4X8dpApMGT0GgqrQm834D8Q3jaBA5JDFq-7xivx7tVlm__UbluXOHpA7vexLP3SKd9DsuGrR-TeXwiHj8lshICb5czTeT1bTs-mzjN0nI6eLnGvGK3ni5p1XDxTSxFdE-6IGBbnobCe4jQxTVKK-5MrcOO0DvQM1xCyye5OQ4vK0Z7Ix_nmCTm-EVE8JZtVXfnnhKYQflujiiCMkkmpC1WUoeCZKWOly5hHJB7-bW579HMk4ZjlbRVe6LwTRw7iyFEceRyRD6tL5h30x3WdtwaB5f0o0OSXOhuRt6tmsF8syhSVry-gDwTY2sDfkBF51sl39TSBJMwmURHJ1iS_6oDY4Ost1fS0xQhPOUf1i8jHQUcuX-u_H_Hi-o94Q-6Mjw4m-WTvcP8luctRc9vVkFtkc3F-4V9BeLYoX7c2QcmPmzbCP4H7STk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIiE4IN4YCiwSXECr2Puwdw8IIdKopaXiQKXcjL0PNVJqhyYVyl_j1zHjVwkVvfWQS3bj2J6ZnZmd2e8j5E3IjPXKFwyBXpgUNgOTCpoJIxXXTnNj8TTy16N071h-marpFvndn4XBtsp-TWwWaldb3CMfQaKSaoST46PQtUV8G08-Ln4yZJDCSmtPp9GqyIFf_4L0bflhfwyyfsv5ZPf75z3WMQwwK7SKWVYGZxMHeb9LbTBeO1WITFvwkTZ4aYrMwgB8CUmPk6DvkJ4EVRruZZCliwVc9wa5mQmVoI1l08GVS7AU2SO1N_s9mUAsLOS6g6yBIbtXX2QVerQEX4JQtwl8IFFk8aabvBT7Xm7h_KeO27jHyT1yt4tr6adWEe-TLV89IHf-Qjt8SOYTBN8s554u6vl6djpznqETdfRkjefGaL1Y1azl5ZlZikibcEXEszgLhfUUt4xpklI8q1yBS6d1oKfYT8gOd8dLWlSOdqQ-zi8fkeNrEcVjsl3VlX9KaAqhuDWqCMIomZS6UEUZCp6ZMla6jHlE4v7d5rZDQkdCjnneVOSFzltx5CCOHMWRxxF5N_xk0cKAXDV5pxdY3q0Iy_xCfyPyehgGW8YCTVH5-hzmQLCtDbwNGZEnrXyHfxNIyGwSFZFsQ_LDBMQJ3xypZicNXnjKOapfRN73OnJxW_99iGdXP8QrcgvMLz_cPzp4Tm5zVNymMXKHbK_Ozv0LiNRW5cvGJCj5cd02-AfYzE1m
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+polyimide-based+hybrid+opto-electric+neural+interface+with+16+channels+of+micro-LEDs+and+electrodes&rft.jtitle=Microsystems+%26+nanoengineering&rft.au=Ji%2C+Bowen&rft.au=Guo%2C+Zhejun&rft.au=Wang%2C+Minghao&rft.au=Yang%2C+Bin&rft.date=2018-10-08&rft.pub=Nature+Publishing+Group+UK&rft.issn=2096-1030&rft.eissn=2055-7434&rft.volume=4&rft_id=info:doi/10.1038%2Fs41378-018-0027-0&rft_id=info%3Apmid%2F31057915&rft.externalDocID=PMC6220173
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2055-7434&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2055-7434&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2055-7434&client=summon