Weighting schemes in metabolic graphs for identifying biochemical routes
Metabolism forms an integral part of all cells and its study is important to understand the functioning of the system, to understand alterations that occur in disease state and hence for subsequent applications in drug discovery. Reconstruction of genome-scale metabolic graphs from genomics and othe...
Saved in:
Published in | Systems and synthetic biology Vol. 8; no. 1; pp. 47 - 57 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.03.2014
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metabolism forms an integral part of all cells and its study is important to understand the functioning of the system, to understand alterations that occur in disease state and hence for subsequent applications in drug discovery. Reconstruction of genome-scale metabolic graphs from genomics and other molecular or biochemical data is now feasible. Few methods have also been reported for inferring biochemical pathways from these networks. However, given the large scale and complex inter-connections in the networks, the problem of identifying biochemical routes is not trivial and some questions still remain open. In particular, how a given path is altered in perturbed conditions remains a difficult problem, warranting development of improved methods. Here we report a comparison of 6 different weighting schemes to derive node and edge weights for a metabolic graph, weights reflecting various kinetic, thermodynamic parameters as well as abundances inferred from transcriptome data. Using a network of 50 nodes and 107 edges of carbohydrate metabolism, we show that kinetic parameter derived weighting schemes
K
M
S
K
M
P
and
K
M
K
c
a
t
fare best. However, these are limited by their extent of availability, highlighting the usefulness of omics data under such conditions. Interestingly, transcriptome derived weights yield paths with best scores, but are inadequate to discriminate the theoretical paths. The method is tested on a system of
Escherichia coli
stress response. The approach illustrated here is generic in nature and can be used in the analysis for metabolic network from any species and perhaps more importantly for comparing condition-specific networks. |
---|---|
AbstractList | Metabolism forms an integral part of all cells and its study is important to understand the functioning of the system, to understand alterations that occur in disease state and hence for subsequent applications in drug discovery. Reconstruction of genome-scale metabolic graphs from genomics and other molecular or biochemical data is now feasible. Few methods have also been reported for inferring biochemical pathways from these networks. However, given the large scale and complex inter-connections in the networks, the problem of identifying biochemical routes is not trivial and some questions still remain open. In particular, how a given path is altered in perturbed conditions remains a difficult problem, warranting development of improved methods. Here we report a comparison of 6 different weighting schemes to derive node and edge weights for a metabolic graph, weights reflecting various kinetic, thermodynamic parameters as well as abundances inferred from transcriptome data. Using a network of 50 nodes and 107 edges of carbohydrate metabolism, we show that kinetic parameter derived weighting schemes
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left[ {\left( {\frac{{K_{M}^{S} }}{{ K_{M}^{P } }}} \right){\text{ and }}\left( { \frac{{K_{M} }}{{K_{cat} }} } \right)} \right]$$\end{document}
fare best. However, these are limited by their extent of availability, highlighting the usefulness of omics data under such conditions. Interestingly, transcriptome derived weights yield paths with best scores, but are inadequate to discriminate the theoretical paths. The method is tested on a system of
Escherichia coli
stress response. The approach illustrated here is generic in nature and can be used in the analysis for metabolic network from any species and perhaps more importantly for comparing condition-specific networks. Metabolism forms an integral part of all cells and its study is important to understand the functioning of the system, to understand alterations that occur in disease state and hence for subsequent applications in drug discovery. Reconstruction of genome-scale metabolic graphs from genomics and other molecular or biochemical data is now feasible. Few methods have also been reported for inferring biochemical pathways from these networks. However, given the large scale and complex inter-connections in the networks, the problem of identifying biochemical routes is not trivial and some questions still remain open. In particular, how a given path is altered in perturbed conditions remains a difficult problem, warranting development of improved methods. Here we report a comparison of 6 different weighting schemes to derive node and edge weights for a metabolic graph, weights reflecting various kinetic, thermodynamic parameters as well as abundances inferred from transcriptome data. Using a network of 50 nodes and 107 edges of carbohydrate metabolism, we show that kinetic parameter derived weighting schemes [Formula: see text] fare best. However, these are limited by their extent of availability, highlighting the usefulness of omics data under such conditions. Interestingly, transcriptome derived weights yield paths with best scores, but are inadequate to discriminate the theoretical paths. The method is tested on a system of Escherichia coli stress response. The approach illustrated here is generic in nature and can be used in the analysis for metabolic network from any species and perhaps more importantly for comparing condition-specific networks. Metabolism forms an integral part of all cells and its study is important to understand the functioning of the system, to understand alterations that occur in disease state and hence for subsequent applications in drug discovery. Reconstruction of genome-scale metabolic graphs from genomics and other molecular or biochemical data is now feasible. Few methods have also been reported for inferring biochemical pathways from these networks. However, given the large scale and complex inter-connections in the networks, the problem of identifying biochemical routes is not trivial and some questions still remain open. In particular, how a given path is altered in perturbed conditions remains a difficult problem, warranting development of improved methods. Here we report a comparison of 6 different weighting schemes to derive node and edge weights for a metabolic graph, weights reflecting various kinetic, thermodynamic parameters as well as abundances inferred from transcriptome data. Using a network of 50 nodes and 107 edges of carbohydrate metabolism, we show that kinetic parameter derived weighting schemes K M S K M P and K M K c a t fare best. However, these are limited by their extent of availability, highlighting the usefulness of omics data under such conditions. Interestingly, transcriptome derived weights yield paths with best scores, but are inadequate to discriminate the theoretical paths. The method is tested on a system of Escherichia coli stress response. The approach illustrated here is generic in nature and can be used in the analysis for metabolic network from any species and perhaps more importantly for comparing condition-specific networks. (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Issue Title: Special Issue: Perspectives in Systems Biology Metabolism forms an integral part of all cells and its study is important to understand the functioning of the system, to understand alterations that occur in disease state and hence for subsequent applications in drug discovery. Reconstruction of genome-scale metabolic graphs from genomics and other molecular or biochemical data is now feasible. Few methods have also been reported for inferring biochemical pathways from these networks. However, given the large scale and complex inter-connections in the networks, the problem of identifying biochemical routes is not trivial and some questions still remain open. In particular, how a given path is altered in perturbed conditions remains a difficult problem, warranting development of improved methods. Here we report a comparison of 6 different weighting schemes to derive node and edge weights for a metabolic graph, weights reflecting various kinetic, thermodynamic parameters as well as abundances inferred from transcriptome data. Using a network of 50 nodes and 107 edges of carbohydrate metabolism, we show that kinetic parameter derived weighting schemes ... fare best. However, these are limited by their extent of availability, highlighting the usefulness of omics data under such conditions. Interestingly, transcriptome derived weights yield paths with best scores, but are inadequate to discriminate the theoretical paths. The method is tested on a system of Escherichia coli stress response. The approach illustrated here is generic in nature and can be used in the analysis for metabolic network from any species and perhaps more importantly for comparing condition-specific networks. [PUBLICATION ABSTRACT] |
Author | Vishveshwara, S. Ghosh, S. Chandra, N. Baloni, P. |
Author_xml | – sequence: 1 givenname: S. surname: Ghosh fullname: Ghosh, S. organization: I.I.Sc. Mathematics Initiative, Indian Institute of Science – sequence: 2 givenname: P. surname: Baloni fullname: Baloni, P. organization: Department of Biochemistry, Indian Institute of Science – sequence: 3 givenname: S. surname: Vishveshwara fullname: Vishveshwara, S. organization: Molecular Biophysics Unit, Indian Institute of Science – sequence: 4 givenname: N. surname: Chandra fullname: Chandra, N. email: nchandra@biochem.iisc.ernet.in organization: Department of Biochemistry, Indian Institute of Science |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24592291$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtr3TAQRkVIyav9Ad0UQzfZuNFrbGsTKKFpCoFsGrIUkjz2VbClG8ku5N_X5qaXJNCVBubMpxnOKTkMMSAhnxn9xiitLzJjlRIlZaJUjDclPSAnrKl5CUKIw33N4Zic5vxIKdQg4YgccwmKc8VOyM0D-n4z-dAX2W1wxFz4UIw4GRsH74o-me0mF11MhW8xTL57Xlnr40p7Z4YixXnC_JF86MyQ8dPLe0bur3_8vropb-9-_rr6fls60QAtoWKI0jForQNlkdcOrLKOtS11VWuMaqsOpAWlpLMNd9woJSrEDkTH206ckctd7na2I7Zu2SmZQW-TH0161tF4_bYT_Eb38Y8WSohK8CXg_CUgxacZ86RHnx0OgwkY56wZUClBclEv6Nd36GOcU1jOWykGspF8pdiOcinmnLDbL8OoXj3pnSe9eNKrJ02XmS-vr9hP_BOzAHwH5KUVekyvvv5v6l-11aFF |
CitedBy_id | crossref_primary_10_1093_bfgp_elw002 |
Cites_doi | 10.1186/1752-0509-3-103 10.1371/journal.pone.0000881 10.1099/mic.0.27481-0 10.1038/msb.2010.18 10.1186/1742-4682-3-42 10.1093/bib/bbl022 10.1016/S1631-0691(03)00117-3 10.1371/journal.pcbi.1003126 10.1007/978-1-61779-361-5_6 10.1074/jbc.R800056200 10.1126/science.292.5518.929 10.1002/bit.260361013 10.1093/nar/gki437 10.1016/j.jmb.2005.09.079 10.1038/nrd3146 10.1093/bioinformatics/18.suppl_1.S233 10.1145/1925041.1925054 10.1093/nar/gkp889 10.1074/mcp.M400110-MCP200 10.1093/nar/gkq1089 10.1101/gr.1239303 10.1016/j.dam.2011.09.019 10.1038/nrc2817 10.1093/nar/27.1.29 10.1145/367766.368168 10.1038/81125 10.1093/bfgp/eln011 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media Dordrecht 2013 Springer Science+Business Media Dordrecht 2014 |
Copyright_xml | – notice: Springer Science+Business Media Dordrecht 2013 – notice: Springer Science+Business Media Dordrecht 2014 |
DBID | NPM AAYXX CITATION 3V. 7X7 7XB 88A 88I 8AO 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M2P M7P PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1007/s11693-013-9128-0 |
DatabaseName | PubMed CrossRef ProQuest Central (Corporate) ProQuest_Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Science Database Biological Science Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Biology |
EISSN | 1872-5333 |
EndPage | 57 |
ExternalDocumentID | 3228196071 10_1007_s11693_013_9128_0 24592291 |
Genre | Journal Article Feature |
GroupedDBID | -56 -5G -BR -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 1N0 29Q 2LR 2VQ 2WC 2~H 30V 3V. 4.4 408 40D 5VS 67N 67Z 6NX 7X7 88A 88I 8AO 8FE 8FH 8FI 8FJ 8TC 8UJ 95. 95~ 96X AAIAL AAPBV AARHV AARTL AAWCG AAYQN ABJNI ABJOX ABMNI ABTEG ABTMW ABUWG ACCUX ACGFS ACGOD ACOMO ACPRK ADBBV ADHIR ADINQ ADKPE ADRFC AEGNC AEOHA AEPYU AETLH AFGCZ AFKRA AFLOW AFNRJ AFWTZ AGJBK AGQMX AGWIL AHAVH AHBYD AHMBA AHSBF AIIXL AJBLW AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AOIJS AZQEC BAWUL BBNVY BENPR BGNMA BHPHI BPHCQ BVXVI CAG CCPQU COF CS3 CSCUP DIK DWQXO E3Z EBS EJD EN4 ESBYG F5P FYUFA G-Y G-Z GGCAI GGRSB GNUQQ GQ6 GQ7 GX1 HCIFZ HF~ HG6 HLICF HMCUK HMJXF HRMNR HYE HZ~ IJ- IXC IXE IZQ I~X J0Z JBSCW KDC KOV LK8 M0L M2P M4Y M7P MA- NU0 O9- O93 O9I OK1 PF0 PQQKQ PROAC Q2X QOS R9I RIG RPM RPX RSV S1Z S27 S3A S3B SAP SBL SDH SHX SOJ SZN T13 TR2 TSK TUC U2A U9L UG4 UKHRP VC2 W48 WJK WK8 Z45 ZOVNA ~A9 ~KM AAYZH AFBBN NPM AAYXX CITATION 7XB 8FK K9. PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c3850-561ee4c15dbc59be27c5b9bc1dd0c6daa9d6f54b5994cb82c2a9936eef53f2df3 |
IEDL.DBID | RPM |
ISSN | 1872-5325 |
IngestDate | Tue Sep 17 21:08:57 EDT 2024 Fri Oct 25 03:21:03 EDT 2024 Thu Oct 10 16:38:11 EDT 2024 Fri Aug 23 00:44:48 EDT 2024 Tue Oct 15 23:53:51 EDT 2024 Sat Dec 16 12:11:13 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Biochemical networks Metabolomics Alternate paths Weighted networks Transcriptomics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3850-561ee4c15dbc59be27c5b9bc1dd0c6daa9d6f54b5994cb82c2a9936eef53f2df3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933632 |
PMID | 24592291 |
PQID | 1501548427 |
PQPubID | 54368 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3933632 proquest_miscellaneous_1504454237 proquest_journals_1501548427 crossref_primary_10_1007_s11693_013_9128_0 pubmed_primary_24592291 springer_journals_10_1007_s11693_013_9128_0 |
PublicationCentury | 2000 |
PublicationDate | 2014-03-00 |
PublicationDateYYYYMMDD | 2014-03-01 |
PublicationDate_xml | – month: 03 year: 2014 text: 2014-03-00 |
PublicationDecade | 2010 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht – name: Germany |
PublicationTitle | Systems and synthetic biology |
PublicationTitleAbbrev | Syst Synth Biol |
PublicationTitleAlternate | Syst Synth Biol |
PublicationYear | 2014 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | KayserAWeberJHechtVRinasUMetabolic flux analysis of Escherichia coli in glucose-limited continuous culture. I. Growth-rate-dependent metabolic efficiency at steady stateMicrobiology200515136937061:CAS:528:DC%2BD2MXis1yqs7Y%3D1575821610.1099/mic.0.27481-0 PalssonBThe challenges of in silico biologyNat Biotechnol20001811114711501:CAS:528:DC%2BD3cXnvFyktr0%3D1106243110.1038/81125 JozefczukSKlieSCatchpoleGSzymanskiJCuadros-InostrozaASteinhauserDSelbigJWillmitzerLMetabolomic and transcriptomic stress response of Escherichia coliMol Syst Biol201061364289032220461071 FlightMHDrug screening: shifting energy metabolismNat Rev Drug Discov2010942721:CAS:528:DC%2BC3cXktVGjtbw%3D2053584510.1038/nrd3146 Gleich DF (2009) Models and algorithms for pagerank sensitivity. Stanford University OgataHGotoSSatoKFujibuchiWBonoHKanehisaMKEGG: Kyoto encyclopedia of genes and genomesNucleic Acids Res199927129341:CAS:528:DyaK1MXpsVGltw%3D%3D148090984713510.1093/nar/27.1.29 FloydRWAlgorithm 97: shortest pathCommun ACM19625634510.1145/367766.368168 LiebermeisterWKlippEBringing metabolic networks to life: integration of kinetic, metabolic, and proteomic dataTheor Biol Med Model2006314217814391717367010.1186/1742-4682-3-42 DreyfussJMZuckerJDHoodHMOcasioLRSachsMSGalaganJEReconstruction and validation of a genome-scale metabolic model for the filamentous fungus Neurospora crassa using FARMPLoS Comput Biol201397e10031261:CAS:528:DC%2BC3sXht1Git7vF37306742393546710.1371/journal.pcbi.1003126 Zien A, Kuffner R, Zimmer R, Lengauer T (2000) Analysis of gene expression data with pathway scores. Proceedings of the 8th international conference intelligent systems molecular biology (ISMB) 8:407–417 Cornish-BowdenACárdenasMLMetabolic analysis in drug designC R Biol200332655095151:CAS:528:DC%2BD3sXkvFyksrw%3D1288687810.1016/S1631-0691(03)00117-3 CroesDCoucheFWodakSJvan HeldenJMetabolic PathFinding: inferring relevant pathways in biochemical networksNucleic Acids Res200533suppl 2W326W3301:CAS:528:DC%2BD2MXlslyqsb4%3D11601981598048310.1093/nar/gki437 HawickKAApplying enumerative, spectral and hybrid graph analyses to biological network dataSmall20111516 BatenkovDBoosting productivity with the boost graph libraryXRDS Crossroads ACM Mag Stud2011173313210.1145/1925041.1925054 PitkänenEJouhtenPRousuJInferring branching pathways in genome-scale metabolic networksBMC Syst Biol20093110327911031987461010.1186/1752-0509-3-103 Acuña V, Ferreira C, Freire A, Moreno E (2011) Solving the maximum edge biclique packing problem on unbalanced bipartite graphs. Discret Appl Math. doi:10.1016/j.dam.2011.09.019 MavrovouniotisMLGroup contributions for estimating standard gibbs energies of formation of biochemical compounds in aqueous solutionBiotechnol Bioeng19903610107010821:CAS:528:DyaK3MXlvVCntw%3D%3D1859504610.1002/bit.260361013 NoirelJOwSYSanguinettiGJaramilloAWrightPCAutomated extraction of meaningful pathways from quantitative proteomics dataBrief Funct Genomic Proteomic2008721361461:CAS:528:DC%2BD1cXnvVals7g%3D1832654410.1093/bfgp/eln011 AritaMFrom metabolic reactions to networks and pathwaysBact Mol Netw, Springer2012804931061:CAS:528:DC%2BC38XhslaitL3K10.1007/978-1-61779-361-5_6 Ma’ayanAInsights into the organization of biochemical regulatory networks using graph theory analysesJ Biol Chem20092849545154551894080610.1074/jbc.R800056200 AittokallioTSchwikowskiBGraph-based methods for analysing networks in cell biologyBrief Bioinform2006732432551:CAS:528:DC%2BD28XhtFOnu7jO1688017110.1093/bib/bbl022 CroesDCoucheFWodakSJvan HeldenJInferring meaningful pathways in weighted metabolic networksJ Mol Biol200635612222361:CAS:528:DC%2BD28XjvVOnug%3D%3D1633796210.1016/j.jmb.2005.09.079 ScottMSPerkinsTBunnellSPepinFThomasDYHallettMIdentifying regulatory subnetworks for a set of genesMol Cell Proteomics2005456836921:CAS:528:DC%2BD2MXktlSms70%3D1572237110.1074/mcp.M400110-MCP200 ScheerMGroteAChangASchomburgIMunarettoCRotherMSöhngenCStelzerMThieleJSchomburgD BRENDA, the enzyme information system inNucleic Acids Res201139suppl 1D670D6761:CAS:528:DC%2BC3sXivF2lsrg%3D30136862106282810.1093/nar/gkq1089 TennantDADuránRVGottliebETargeting metabolic transformation for cancer therapyNat Rev Cancer20101042672771:CAS:528:DC%2BC3cXjsFWjsL4%3D2030010610.1038/nrc2817 IdekerTThorssonVRanishJAChristmasRBuhlerJEngJKBumgarnerRGoodlettDRAebersoldRHoodLIntegrated genomic and proteomic analyses of a systematically perturbed metabolic networkScience200129255189299341:CAS:528:DC%2BD3MXjsVSrt7c%3D1134020610.1126/science.292.5518.929 IdekerTOzierOSchwikowskiBSiegelAFDiscovering regulatory and signalling circuits in molecular interaction networksBioinformatics200218suppl 1S233S2401216955210.1093/bioinformatics/18.suppl_1.S233 MiloRJorgensenPMoranUWeberGSpringerMBioNumbers—the database of key numbers in molecular and cell biologyNucleic Acids Res201038suppl 1D750D7531:CAS:528:DC%2BC3cXktl2nsQ%3D%3D28089401985493910.1093/nar/gkp889 ShannonPMarkielAOzierOBaligaNSWangJTRamageDAminNSchwikowskiBIdekerTCytoscape: a software environment for integrated models of biomolecular interaction networksGenome Res20031311249825041:CAS:528:DC%2BD3sXovFWrtr4%3D1459765810.1101/gr.1239303 VerkhedkarKDRamanKChandraNRVishveshwaraSMetabolome based reaction graphs of M. tuberculosis and M. leprae: a comparative network analysisPLoS ONE200729e88119645341784901010.1371/journal.pone.0000881 20535845 - Nat Rev Drug Discov. 2010 Apr;9(4):272 23935467 - PLoS Comput Biol. 2013;9(7):e1003126 12886878 - C R Biol. 2003 May;326(5):509-15 15758216 - Microbiology. 2005 Mar;151(Pt 3):693-706 9847135 - Nucleic Acids Res. 1999 Jan 1;27(1):29-34 19874610 - BMC Syst Biol. 2009 Oct 29;3:103 11062431 - Nat Biotechnol. 2000 Nov;18(11):1147-50 17173670 - Theor Biol Med Model. 2006 Dec 15;3:42 19854939 - Nucleic Acids Res. 2010 Jan;38(Database issue):D750-3 10977101 - Proc Int Conf Intell Syst Mol Biol. 2000;8:407-17 17849010 - PLoS One. 2007 Sep 12;2(9):e881 18940806 - J Biol Chem. 2009 Feb 27;284(9):5451-5 22144150 - Methods Mol Biol. 2012;804:93-106 18595046 - Biotechnol Bioeng. 1990 Dec 5;36(10):1070-82 16337962 - J Mol Biol. 2006 Feb 10;356(1):222-36 12169552 - Bioinformatics. 2002;18 Suppl 1:S233-40 20300106 - Nat Rev Cancer. 2010 Apr;10(4):267-77 20461071 - Mol Syst Biol. 2010 May 11;6:364 15722371 - Mol Cell Proteomics. 2005 May;4(5):683-92 21062828 - Nucleic Acids Res. 2011 Jan;39(Database issue):D670-6 11340206 - Science. 2001 May 4;292(5518):929-34 18326544 - Brief Funct Genomic Proteomic. 2008 Mar;7(2):136-46 15980483 - Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W326-30 16880171 - Brief Bioinform. 2006 Sep;7(3):243-55 14597658 - Genome Res. 2003 Nov;13(11):2498-504 KA Hawick (9128_CR12) 2011; 15 9128_CR1 B Palsson (9128_CR23) 2000; 18 M Scheer (9128_CR25) 2011; 39 H Ogata (9128_CR22) 1999; 27 E Pitkänen (9128_CR24) 2009; 3 J Noirel (9128_CR21) 2008; 7 A Kayser (9128_CR16) 2005; 151 T Ideker (9128_CR14) 2002; 18 MH Flight (9128_CR9) 2010; 9 S Jozefczuk (9128_CR15) 2010; 6 T Ideker (9128_CR13) 2001; 292 M Arita (9128_CR3) 2012; 804 D Croes (9128_CR6) 2005; 33 D Croes (9128_CR7) 2006; 356 RW Floyd (9128_CR10) 1962; 5 DA Tennant (9128_CR28) 2010; 10 9128_CR11 W Liebermeister (9128_CR17) 2006; 3 A Cornish-Bowden (9128_CR5) 2003; 326 KD Verkhedkar (9128_CR29) 2007; 2 D Batenkov (9128_CR4) 2011; 17 R Milo (9128_CR20) 2010; 38 T Aittokallio (9128_CR2) 2006; 7 ML Mavrovouniotis (9128_CR19) 1990; 36 P Shannon (9128_CR27) 2003; 13 9128_CR30 MS Scott (9128_CR26) 2005; 4 JM Dreyfuss (9128_CR8) 2013; 9 A Ma’ayan (9128_CR18) 2009; 284 |
References_xml | – ident: 9128_CR30 – volume: 3 start-page: 103 issue: 1 year: 2009 ident: 9128_CR24 publication-title: BMC Syst Biol doi: 10.1186/1752-0509-3-103 contributor: fullname: E Pitkänen – volume: 2 start-page: e881 issue: 9 year: 2007 ident: 9128_CR29 publication-title: PLoS ONE doi: 10.1371/journal.pone.0000881 contributor: fullname: KD Verkhedkar – volume: 151 start-page: 693 issue: 3 year: 2005 ident: 9128_CR16 publication-title: Microbiology doi: 10.1099/mic.0.27481-0 contributor: fullname: A Kayser – ident: 9128_CR11 – volume: 6 start-page: 364 issue: 1 year: 2010 ident: 9128_CR15 publication-title: Mol Syst Biol doi: 10.1038/msb.2010.18 contributor: fullname: S Jozefczuk – volume: 3 start-page: 42 issue: 1 year: 2006 ident: 9128_CR17 publication-title: Theor Biol Med Model doi: 10.1186/1742-4682-3-42 contributor: fullname: W Liebermeister – volume: 7 start-page: 243 issue: 3 year: 2006 ident: 9128_CR2 publication-title: Brief Bioinform doi: 10.1093/bib/bbl022 contributor: fullname: T Aittokallio – volume: 326 start-page: 509 issue: 5 year: 2003 ident: 9128_CR5 publication-title: C R Biol doi: 10.1016/S1631-0691(03)00117-3 contributor: fullname: A Cornish-Bowden – volume: 9 start-page: e1003126 issue: 7 year: 2013 ident: 9128_CR8 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1003126 contributor: fullname: JM Dreyfuss – volume: 804 start-page: 93 year: 2012 ident: 9128_CR3 publication-title: Bact Mol Netw, Springer doi: 10.1007/978-1-61779-361-5_6 contributor: fullname: M Arita – volume: 284 start-page: 5451 issue: 9 year: 2009 ident: 9128_CR18 publication-title: J Biol Chem doi: 10.1074/jbc.R800056200 contributor: fullname: A Ma’ayan – volume: 292 start-page: 929 issue: 5518 year: 2001 ident: 9128_CR13 publication-title: Science doi: 10.1126/science.292.5518.929 contributor: fullname: T Ideker – volume: 36 start-page: 1070 issue: 10 year: 1990 ident: 9128_CR19 publication-title: Biotechnol Bioeng doi: 10.1002/bit.260361013 contributor: fullname: ML Mavrovouniotis – volume: 15 start-page: 16 year: 2011 ident: 9128_CR12 publication-title: Small contributor: fullname: KA Hawick – volume: 33 start-page: W326 issue: suppl 2 year: 2005 ident: 9128_CR6 publication-title: Nucleic Acids Res doi: 10.1093/nar/gki437 contributor: fullname: D Croes – volume: 356 start-page: 222 issue: 1 year: 2006 ident: 9128_CR7 publication-title: J Mol Biol doi: 10.1016/j.jmb.2005.09.079 contributor: fullname: D Croes – volume: 9 start-page: 272 issue: 4 year: 2010 ident: 9128_CR9 publication-title: Nat Rev Drug Discov doi: 10.1038/nrd3146 contributor: fullname: MH Flight – volume: 18 start-page: S233 issue: suppl 1 year: 2002 ident: 9128_CR14 publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.suppl_1.S233 contributor: fullname: T Ideker – volume: 17 start-page: 31 issue: 3 year: 2011 ident: 9128_CR4 publication-title: XRDS Crossroads ACM Mag Stud doi: 10.1145/1925041.1925054 contributor: fullname: D Batenkov – volume: 38 start-page: D750 issue: suppl 1 year: 2010 ident: 9128_CR20 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp889 contributor: fullname: R Milo – volume: 4 start-page: 683 issue: 5 year: 2005 ident: 9128_CR26 publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M400110-MCP200 contributor: fullname: MS Scott – volume: 39 start-page: D670 issue: suppl 1 year: 2011 ident: 9128_CR25 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq1089 contributor: fullname: M Scheer – volume: 13 start-page: 2498 issue: 11 year: 2003 ident: 9128_CR27 publication-title: Genome Res doi: 10.1101/gr.1239303 contributor: fullname: P Shannon – ident: 9128_CR1 doi: 10.1016/j.dam.2011.09.019 – volume: 10 start-page: 267 issue: 4 year: 2010 ident: 9128_CR28 publication-title: Nat Rev Cancer doi: 10.1038/nrc2817 contributor: fullname: DA Tennant – volume: 27 start-page: 29 issue: 1 year: 1999 ident: 9128_CR22 publication-title: Nucleic Acids Res doi: 10.1093/nar/27.1.29 contributor: fullname: H Ogata – volume: 5 start-page: 345 issue: 6 year: 1962 ident: 9128_CR10 publication-title: Commun ACM doi: 10.1145/367766.368168 contributor: fullname: RW Floyd – volume: 18 start-page: 1147 issue: 11 year: 2000 ident: 9128_CR23 publication-title: Nat Biotechnol doi: 10.1038/81125 contributor: fullname: B Palsson – volume: 7 start-page: 136 issue: 2 year: 2008 ident: 9128_CR21 publication-title: Brief Funct Genomic Proteomic doi: 10.1093/bfgp/eln011 contributor: fullname: J Noirel |
SSID | ssj0057545 |
Score | 1.989554 |
Snippet | Metabolism forms an integral part of all cells and its study is important to understand the functioning of the system, to understand alterations that occur in... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Issue Title: Special Issue: Perspectives in Systems Biology Metabolism forms an... |
SourceID | pubmedcentral proquest crossref pubmed springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 47 |
SubjectTerms | Biomedical and Life Sciences Biomedicine Computational Biology/Bioinformatics Metabolomics Research Article Systems Biology |
SummonAdditionalLinks | – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9NAEB-8Hgfng5w9T6M9WcEnj8VmP9Lsk-jRowgWEYt9C9mPYMCmtR8P_vfObpJ-XLl7C-xCsjOb2d_szPwG4D1aPGd5ISiTRU4Fc4pqqxTNUyN4YtFjsb7e-ds4GU3E16mcNhduqyatsrWJwVDbufF35B8RuHh0Ldjg0-Iv9V2jfHS1aaFxAqcMPQXWgdMvw_H3H60tRiwS2hTH6QBdLs5kG9cMxXOeh4T67gYq9jTNhyfTEdw8zpq8FzoNJ9LdBTxroCT5XOv-OTxxVRfO6uaS_7rwdI9q8BJGv8IdKD4T9GfdzK1IWZGZW-Mm-FMaEoirVwQhLClD7W6ofyK69B21AqUAWc43iEtfwORu-PN2RJsuCtTwVPYpAiTnhIml1UYq7djASK20ia3tm8TmubJJIYWWSgmjU2ZYjpglca6QvGC24FfQqeaVewVEpXnOEWD41DZRcKMdei_KpNpz8gsuIvjQSjBb1GQZ2Y4W2Ys7Q3FnXtxZP4JeK-Os-W9W2U7LEbzbDuOO92GMvHLzTZgjhPTpPBG8rFWyfRsTUjGm4ggGB8raTvBs2ocjVfk7sGpzxXnCWQQ3rVr3PuuhRbx-fBFv4BwBlqhz1nrQWS837hpBzFq_bXbqfyeT74I priority: 102 providerName: ProQuest – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58IOhBfButsoInJdLsI80eiyhF0JPF3kL2EQzaVGx78N87u2n6sHrwFtglj5nN7Dc7M98AXKLFs4blPKQiz0JOrQyVkTLMEs1ZbNBjMa7e-fEp7nT5Q0_0VoBOjy7Kt5s6IukN9azWzdGGhK4ZgYwcq_IqrCN24C6Nq0vbtfVF9OEbE0dJC50sRkUdyfztFot70RLAXM6T_BEs9XvQ_Q5sT8AjaVfa3oUVW-7BRtVO8msPtubIBfeh8-JPPfGaoAdr-3ZIipL07QjV_l5o4qmqhwRBKyl8ta6veCKqcD20PIkA-RyMEYkeQPf-7vm2E076JoSaJaIZIiSylutIGKWFVJa2tFBS6ciYpo5NlkkT54IrISXXKqGaZohSYmtzwXJqcnYIa-WgtMdAZJJlDCGFS2bjOdPKor8idaIcCz9nPICrWoLpR0WPkc6IkJ24UxR36sSdNgNo1DJOJ3_KMEVA6rwmTlsBXEyHcY27wEVW2sHYz-FcuASeAI4qlUyfRrmQlMoogNaCsqYTHH_24khZvHoebSYZixkN4LpW69xr_fURJ_-afQqbiLB4lbTWgLXR59ieIYoZqXO_bL8B5bvqSQ priority: 102 providerName: Springer Nature |
Title | Weighting schemes in metabolic graphs for identifying biochemical routes |
URI | https://link.springer.com/article/10.1007/s11693-013-9128-0 https://www.ncbi.nlm.nih.gov/pubmed/24592291 https://www.proquest.com/docview/1501548427 https://search.proquest.com/docview/1504454237 https://pubmed.ncbi.nlm.nih.gov/PMC3933632 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS-tAEB-08kAPor6nxo-yDzz5iG32I8keqyhFUORhsbeQ_QgGbCq2PfjfO7tpqlW8eAmBXdjNzGT3N7szvwE4wRXPGlbwkIoiDzm1MlRGyjBPNWexQY_FuHznm9u4P-DXQzFcAdHkwvigfa3Ks-ppdFaVjz628nmkO02cWOfu5oKhFx4z2lmFVTTQxkWvl1-EH74ycZQm6GUxKpqrTJ8v56hHQlfQQEaOmdlRAXMhKZXR8r70BWx-jZn8dHHq96OrLdicA0nSqye8DSu22oFfdWnJ1x3Y-EA0-Bv6D_4EFN8JerN2ZCekrMjITtEEnkpNPG31hCCAJaXP3PXZT0SVrp6WJxQgL-MZotI_MLi6vL_oh_MaCqFmqeiGCI-s5ToSRmkhlaWJFkoqHRnT1bHJc2niQnAlpORapVTTHBFLbG0hWEFNwXahVY0ruw9EpnnOEF64wDZeMK0s-i5Sp8ox8nPGAzhtJJg911QZ2TspspN8hpLPnOSzbgBHjYyz-V8zyRCcOg-K0ySAv4tmtHd3iZFXdjzzfTgXLpgngL1aJYvRGl0GkCwpa9HBcWkvt6CJeU7tuUkF8K9R64dpffcRBz8e5xDWEXnxOpjtCFrTl5k9RnQzVW206WHShrXzy9u7_21v2_gc0N4bd0j6iQ |
link.rule.ids | 230,315,730,783,787,888,12070,21402,27938,27939,31733,31734,33758,33759,41537,42606,43324,43819,52248,53806,53808 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB61VKjlUAF9peVhpJ5aWWz8SOJThaqipQVOoO4tih9RI5UsZXcP_ffMOMnCgtpbJFtKPDOxv_HMfAPwEXe84GWtuNB1xZUIhltvDK8Kp2Tm0WPxVO98dp6NL9X3iZ70F26zPq1y2BPjRu2nju7IDxG4ELpWIv9y_YdT1yiKrvYtNJ7CM-LhIu78fLJ0uBCJxCbFaZGjwyWFHqKasXSOWEg49TYwKZE0r55Lj8Dm45zJB4HTeB4db8LLHkiyo07zW_AktNuw3rWW_LsNG_eIBl_B-Ge8AcVnht5suAoz1rTsKszRBH43jkXa6hlDAMuaWLkbq5-YbaifViQUYDfTBaLS13B5_O3i65j3PRS4k4UecYRHISiXam-dNjaI3GlrrEu9H7nMV5XxWa2V1cYoZwvhRIWIJQuh1rIWvpZvYK2dtuEdMFNUlUR4QYltqpbOBvRdjCssMfIrqRL4NEiwvO6oMso7UmQSd4niLknc5SiBnUHGZf_XzMo7HSdwsBxGe6cgRtWG6SLOUUpTMk8CbzuVLN8mlDZCmDSBfEVZywnEpb060ja_Iqe2NFJmUiTweVDrvc_61yLe_38R-_B8fHF2Wp6enP_4AC8Qaqkue20H1uY3i7CLcGZu96LN3gKBQfEN |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB5REFV7KJRSap6LxKnISbwPx3usgChAQRxARVws78PCgjgRSQ7tr2d2HYcE1As3S15pvfpmdr_xznwDcIA7njUs5yEVeRZyamWojJRhlmjOYoMRi3H1zheXcfeGn92K25lWXz5pX6uiUT72GmVx73MrBz3drPPEmlcXRwyj8JjR5sDkzQ-whD7bSupAvdqEkYT4_sRR0sZYi1FRX2j6qjknQBK6tgYycvrMThCYC0mpjOZPpzeU823m5KvrU38qdVbgrl5PlYzy0BiPVEP_eyX1-K4Fr8KXCVclv6ohX2HBlmuwXHWv_LsGn2e0DL9B94__yYrPBANm27NDUpSkZ0doZY-FJl4Ze0iQI5PCFwf7AiuiCteyy2sWkKf-GInvOtx0Tq6PuuGkTUOoWSJaITIwa7mOhFFaSGVpWwsllY6MaenYZJk0cS64ElJyrRKqaYakKLY2FyynJmffYbHsl_YHEJlkGUMG43LneM60shgeSZ0oJ_rPGQ_gZw1POqjUONIX3WUHa4qwpg7WtBXAdg1gOnHMYYr81wVpnLYD2J--Rpdy9yRZaftjP4Zz4fKFAtio8J7OVhtKAO05S5gOcHLd828QVC_bPQExgMPaZmY-63-L2Hz3PHvw8eq4k_4-vTzfgk_I83iVOrcNi6Onsd1BLjVSu95rngEfiRuj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weighting+schemes+in+metabolic+graphs+for+identifying+biochemical+routes&rft.jtitle=Systems+and+synthetic+biology&rft.au=Ghosh%2C+S.&rft.au=Baloni%2C+P.&rft.au=Vishveshwara%2C+S.&rft.au=Chandra%2C+N.&rft.date=2014-03-01&rft.issn=1872-5325&rft.eissn=1872-5333&rft.volume=8&rft.issue=1&rft.spage=47&rft.epage=57&rft_id=info:doi/10.1007%2Fs11693-013-9128-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11693_013_9128_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1872-5325&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1872-5325&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1872-5325&client=summon |