Weighting schemes in metabolic graphs for identifying biochemical routes

Metabolism forms an integral part of all cells and its study is important to understand the functioning of the system, to understand alterations that occur in disease state and hence for subsequent applications in drug discovery. Reconstruction of genome-scale metabolic graphs from genomics and othe...

Full description

Saved in:
Bibliographic Details
Published inSystems and synthetic biology Vol. 8; no. 1; pp. 47 - 57
Main Authors Ghosh, S., Baloni, P., Vishveshwara, S., Chandra, N.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.03.2014
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metabolism forms an integral part of all cells and its study is important to understand the functioning of the system, to understand alterations that occur in disease state and hence for subsequent applications in drug discovery. Reconstruction of genome-scale metabolic graphs from genomics and other molecular or biochemical data is now feasible. Few methods have also been reported for inferring biochemical pathways from these networks. However, given the large scale and complex inter-connections in the networks, the problem of identifying biochemical routes is not trivial and some questions still remain open. In particular, how a given path is altered in perturbed conditions remains a difficult problem, warranting development of improved methods. Here we report a comparison of 6 different weighting schemes to derive node and edge weights for a metabolic graph, weights reflecting various kinetic, thermodynamic parameters as well as abundances inferred from transcriptome data. Using a network of 50 nodes and 107 edges of carbohydrate metabolism, we show that kinetic parameter derived weighting schemes K M S K M P and K M K c a t fare best. However, these are limited by their extent of availability, highlighting the usefulness of omics data under such conditions. Interestingly, transcriptome derived weights yield paths with best scores, but are inadequate to discriminate the theoretical paths. The method is tested on a system of Escherichia coli stress response. The approach illustrated here is generic in nature and can be used in the analysis for metabolic network from any species and perhaps more importantly for comparing condition-specific networks.
AbstractList Metabolism forms an integral part of all cells and its study is important to understand the functioning of the system, to understand alterations that occur in disease state and hence for subsequent applications in drug discovery. Reconstruction of genome-scale metabolic graphs from genomics and other molecular or biochemical data is now feasible. Few methods have also been reported for inferring biochemical pathways from these networks. However, given the large scale and complex inter-connections in the networks, the problem of identifying biochemical routes is not trivial and some questions still remain open. In particular, how a given path is altered in perturbed conditions remains a difficult problem, warranting development of improved methods. Here we report a comparison of 6 different weighting schemes to derive node and edge weights for a metabolic graph, weights reflecting various kinetic, thermodynamic parameters as well as abundances inferred from transcriptome data. Using a network of 50 nodes and 107 edges of carbohydrate metabolism, we show that kinetic parameter derived weighting schemes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left[ {\left( {\frac{{K_{M}^{S} }}{{ K_{M}^{P } }}} \right){\text{ and }}\left( { \frac{{K_{M} }}{{K_{cat} }} } \right)} \right]$$\end{document} fare best. However, these are limited by their extent of availability, highlighting the usefulness of omics data under such conditions. Interestingly, transcriptome derived weights yield paths with best scores, but are inadequate to discriminate the theoretical paths. The method is tested on a system of Escherichia coli stress response. The approach illustrated here is generic in nature and can be used in the analysis for metabolic network from any species and perhaps more importantly for comparing condition-specific networks.
Metabolism forms an integral part of all cells and its study is important to understand the functioning of the system, to understand alterations that occur in disease state and hence for subsequent applications in drug discovery. Reconstruction of genome-scale metabolic graphs from genomics and other molecular or biochemical data is now feasible. Few methods have also been reported for inferring biochemical pathways from these networks. However, given the large scale and complex inter-connections in the networks, the problem of identifying biochemical routes is not trivial and some questions still remain open. In particular, how a given path is altered in perturbed conditions remains a difficult problem, warranting development of improved methods. Here we report a comparison of 6 different weighting schemes to derive node and edge weights for a metabolic graph, weights reflecting various kinetic, thermodynamic parameters as well as abundances inferred from transcriptome data. Using a network of 50 nodes and 107 edges of carbohydrate metabolism, we show that kinetic parameter derived weighting schemes [Formula: see text] fare best. However, these are limited by their extent of availability, highlighting the usefulness of omics data under such conditions. Interestingly, transcriptome derived weights yield paths with best scores, but are inadequate to discriminate the theoretical paths. The method is tested on a system of Escherichia coli stress response. The approach illustrated here is generic in nature and can be used in the analysis for metabolic network from any species and perhaps more importantly for comparing condition-specific networks.
Metabolism forms an integral part of all cells and its study is important to understand the functioning of the system, to understand alterations that occur in disease state and hence for subsequent applications in drug discovery. Reconstruction of genome-scale metabolic graphs from genomics and other molecular or biochemical data is now feasible. Few methods have also been reported for inferring biochemical pathways from these networks. However, given the large scale and complex inter-connections in the networks, the problem of identifying biochemical routes is not trivial and some questions still remain open. In particular, how a given path is altered in perturbed conditions remains a difficult problem, warranting development of improved methods. Here we report a comparison of 6 different weighting schemes to derive node and edge weights for a metabolic graph, weights reflecting various kinetic, thermodynamic parameters as well as abundances inferred from transcriptome data. Using a network of 50 nodes and 107 edges of carbohydrate metabolism, we show that kinetic parameter derived weighting schemes K M S K M P and K M K c a t fare best. However, these are limited by their extent of availability, highlighting the usefulness of omics data under such conditions. Interestingly, transcriptome derived weights yield paths with best scores, but are inadequate to discriminate the theoretical paths. The method is tested on a system of Escherichia coli stress response. The approach illustrated here is generic in nature and can be used in the analysis for metabolic network from any species and perhaps more importantly for comparing condition-specific networks.
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Issue Title: Special Issue: Perspectives in Systems Biology Metabolism forms an integral part of all cells and its study is important to understand the functioning of the system, to understand alterations that occur in disease state and hence for subsequent applications in drug discovery. Reconstruction of genome-scale metabolic graphs from genomics and other molecular or biochemical data is now feasible. Few methods have also been reported for inferring biochemical pathways from these networks. However, given the large scale and complex inter-connections in the networks, the problem of identifying biochemical routes is not trivial and some questions still remain open. In particular, how a given path is altered in perturbed conditions remains a difficult problem, warranting development of improved methods. Here we report a comparison of 6 different weighting schemes to derive node and edge weights for a metabolic graph, weights reflecting various kinetic, thermodynamic parameters as well as abundances inferred from transcriptome data. Using a network of 50 nodes and 107 edges of carbohydrate metabolism, we show that kinetic parameter derived weighting schemes ... fare best. However, these are limited by their extent of availability, highlighting the usefulness of omics data under such conditions. Interestingly, transcriptome derived weights yield paths with best scores, but are inadequate to discriminate the theoretical paths. The method is tested on a system of Escherichia coli stress response. The approach illustrated here is generic in nature and can be used in the analysis for metabolic network from any species and perhaps more importantly for comparing condition-specific networks. [PUBLICATION ABSTRACT]
Author Vishveshwara, S.
Ghosh, S.
Chandra, N.
Baloni, P.
Author_xml – sequence: 1
  givenname: S.
  surname: Ghosh
  fullname: Ghosh, S.
  organization: I.I.Sc. Mathematics Initiative, Indian Institute of Science
– sequence: 2
  givenname: P.
  surname: Baloni
  fullname: Baloni, P.
  organization: Department of Biochemistry, Indian Institute of Science
– sequence: 3
  givenname: S.
  surname: Vishveshwara
  fullname: Vishveshwara, S.
  organization: Molecular Biophysics Unit, Indian Institute of Science
– sequence: 4
  givenname: N.
  surname: Chandra
  fullname: Chandra, N.
  email: nchandra@biochem.iisc.ernet.in
  organization: Department of Biochemistry, Indian Institute of Science
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24592291$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtr3TAQRkVIyav9Ad0UQzfZuNFrbGsTKKFpCoFsGrIUkjz2VbClG8ku5N_X5qaXJNCVBubMpxnOKTkMMSAhnxn9xiitLzJjlRIlZaJUjDclPSAnrKl5CUKIw33N4Zic5vxIKdQg4YgccwmKc8VOyM0D-n4z-dAX2W1wxFz4UIw4GRsH74o-me0mF11MhW8xTL57Xlnr40p7Z4YixXnC_JF86MyQ8dPLe0bur3_8vropb-9-_rr6fls60QAtoWKI0jForQNlkdcOrLKOtS11VWuMaqsOpAWlpLMNd9woJSrEDkTH206ckctd7na2I7Zu2SmZQW-TH0161tF4_bYT_Eb38Y8WSohK8CXg_CUgxacZ86RHnx0OgwkY56wZUClBclEv6Nd36GOcU1jOWykGspF8pdiOcinmnLDbL8OoXj3pnSe9eNKrJ02XmS-vr9hP_BOzAHwH5KUVekyvvv5v6l-11aFF
CitedBy_id crossref_primary_10_1093_bfgp_elw002
Cites_doi 10.1186/1752-0509-3-103
10.1371/journal.pone.0000881
10.1099/mic.0.27481-0
10.1038/msb.2010.18
10.1186/1742-4682-3-42
10.1093/bib/bbl022
10.1016/S1631-0691(03)00117-3
10.1371/journal.pcbi.1003126
10.1007/978-1-61779-361-5_6
10.1074/jbc.R800056200
10.1126/science.292.5518.929
10.1002/bit.260361013
10.1093/nar/gki437
10.1016/j.jmb.2005.09.079
10.1038/nrd3146
10.1093/bioinformatics/18.suppl_1.S233
10.1145/1925041.1925054
10.1093/nar/gkp889
10.1074/mcp.M400110-MCP200
10.1093/nar/gkq1089
10.1101/gr.1239303
10.1016/j.dam.2011.09.019
10.1038/nrc2817
10.1093/nar/27.1.29
10.1145/367766.368168
10.1038/81125
10.1093/bfgp/eln011
ContentType Journal Article
Copyright Springer Science+Business Media Dordrecht 2013
Springer Science+Business Media Dordrecht 2014
Copyright_xml – notice: Springer Science+Business Media Dordrecht 2013
– notice: Springer Science+Business Media Dordrecht 2014
DBID NPM
AAYXX
CITATION
3V.
7X7
7XB
88A
88I
8AO
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M2P
M7P
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1007/s11693-013-9128-0
DatabaseName PubMed
CrossRef
ProQuest Central (Corporate)
ProQuest_Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Science Database
Biological Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed

ProQuest Central Student
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Biology
EISSN 1872-5333
EndPage 57
ExternalDocumentID 3228196071
10_1007_s11693_013_9128_0
24592291
Genre Journal Article
Feature
GroupedDBID -56
-5G
-BR
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
1N0
29Q
2LR
2VQ
2WC
2~H
30V
3V.
4.4
408
40D
5VS
67N
67Z
6NX
7X7
88A
88I
8AO
8FE
8FH
8FI
8FJ
8TC
8UJ
95.
95~
96X
AAIAL
AAPBV
AARHV
AARTL
AAWCG
AAYQN
ABJNI
ABJOX
ABMNI
ABTEG
ABTMW
ABUWG
ACCUX
ACGFS
ACGOD
ACOMO
ACPRK
ADBBV
ADHIR
ADINQ
ADKPE
ADRFC
AEGNC
AEOHA
AEPYU
AETLH
AFGCZ
AFKRA
AFLOW
AFNRJ
AFWTZ
AGJBK
AGQMX
AGWIL
AHAVH
AHBYD
AHMBA
AHSBF
AIIXL
AJBLW
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AOIJS
AZQEC
BAWUL
BBNVY
BENPR
BGNMA
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DIK
DWQXO
E3Z
EBS
EJD
EN4
ESBYG
F5P
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GNUQQ
GQ6
GQ7
GX1
HCIFZ
HF~
HG6
HLICF
HMCUK
HMJXF
HRMNR
HYE
HZ~
IJ-
IXC
IXE
IZQ
I~X
J0Z
JBSCW
KDC
KOV
LK8
M0L
M2P
M4Y
M7P
MA-
NU0
O9-
O93
O9I
OK1
PF0
PQQKQ
PROAC
Q2X
QOS
R9I
RIG
RPM
RPX
RSV
S1Z
S27
S3A
S3B
SAP
SBL
SDH
SHX
SOJ
SZN
T13
TR2
TSK
TUC
U2A
U9L
UG4
UKHRP
VC2
W48
WJK
WK8
Z45
ZOVNA
~A9
~KM
AAYZH
AFBBN
NPM
AAYXX
CITATION
7XB
8FK
K9.
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c3850-561ee4c15dbc59be27c5b9bc1dd0c6daa9d6f54b5994cb82c2a9936eef53f2df3
IEDL.DBID RPM
ISSN 1872-5325
IngestDate Tue Sep 17 21:08:57 EDT 2024
Fri Oct 25 03:21:03 EDT 2024
Thu Oct 10 16:38:11 EDT 2024
Fri Aug 23 00:44:48 EDT 2024
Tue Oct 15 23:53:51 EDT 2024
Sat Dec 16 12:11:13 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Biochemical networks
Metabolomics
Alternate paths
Weighted networks
Transcriptomics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3850-561ee4c15dbc59be27c5b9bc1dd0c6daa9d6f54b5994cb82c2a9936eef53f2df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933632
PMID 24592291
PQID 1501548427
PQPubID 54368
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3933632
proquest_miscellaneous_1504454237
proquest_journals_1501548427
crossref_primary_10_1007_s11693_013_9128_0
pubmed_primary_24592291
springer_journals_10_1007_s11693_013_9128_0
PublicationCentury 2000
PublicationDate 2014-03-00
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-00
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Germany
PublicationTitle Systems and synthetic biology
PublicationTitleAbbrev Syst Synth Biol
PublicationTitleAlternate Syst Synth Biol
PublicationYear 2014
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References KayserAWeberJHechtVRinasUMetabolic flux analysis of Escherichia coli in glucose-limited continuous culture. I. Growth-rate-dependent metabolic efficiency at steady stateMicrobiology200515136937061:CAS:528:DC%2BD2MXis1yqs7Y%3D1575821610.1099/mic.0.27481-0
PalssonBThe challenges of in silico biologyNat Biotechnol20001811114711501:CAS:528:DC%2BD3cXnvFyktr0%3D1106243110.1038/81125
JozefczukSKlieSCatchpoleGSzymanskiJCuadros-InostrozaASteinhauserDSelbigJWillmitzerLMetabolomic and transcriptomic stress response of Escherichia coliMol Syst Biol201061364289032220461071
FlightMHDrug screening: shifting energy metabolismNat Rev Drug Discov2010942721:CAS:528:DC%2BC3cXktVGjtbw%3D2053584510.1038/nrd3146
Gleich DF (2009) Models and algorithms for pagerank sensitivity. Stanford University
OgataHGotoSSatoKFujibuchiWBonoHKanehisaMKEGG: Kyoto encyclopedia of genes and genomesNucleic Acids Res199927129341:CAS:528:DyaK1MXpsVGltw%3D%3D148090984713510.1093/nar/27.1.29
FloydRWAlgorithm 97: shortest pathCommun ACM19625634510.1145/367766.368168
LiebermeisterWKlippEBringing metabolic networks to life: integration of kinetic, metabolic, and proteomic dataTheor Biol Med Model2006314217814391717367010.1186/1742-4682-3-42
DreyfussJMZuckerJDHoodHMOcasioLRSachsMSGalaganJEReconstruction and validation of a genome-scale metabolic model for the filamentous fungus Neurospora crassa using FARMPLoS Comput Biol201397e10031261:CAS:528:DC%2BC3sXht1Git7vF37306742393546710.1371/journal.pcbi.1003126
Zien A, Kuffner R, Zimmer R, Lengauer T (2000) Analysis of gene expression data with pathway scores. Proceedings of the 8th international conference intelligent systems molecular biology (ISMB) 8:407–417
Cornish-BowdenACárdenasMLMetabolic analysis in drug designC R Biol200332655095151:CAS:528:DC%2BD3sXkvFyksrw%3D1288687810.1016/S1631-0691(03)00117-3
CroesDCoucheFWodakSJvan HeldenJMetabolic PathFinding: inferring relevant pathways in biochemical networksNucleic Acids Res200533suppl 2W326W3301:CAS:528:DC%2BD2MXlslyqsb4%3D11601981598048310.1093/nar/gki437
HawickKAApplying enumerative, spectral and hybrid graph analyses to biological network dataSmall20111516
BatenkovDBoosting productivity with the boost graph libraryXRDS Crossroads ACM Mag Stud2011173313210.1145/1925041.1925054
PitkänenEJouhtenPRousuJInferring branching pathways in genome-scale metabolic networksBMC Syst Biol20093110327911031987461010.1186/1752-0509-3-103
Acuña V, Ferreira C, Freire A, Moreno E (2011) Solving the maximum edge biclique packing problem on unbalanced bipartite graphs. Discret Appl Math. doi:10.1016/j.dam.2011.09.019
MavrovouniotisMLGroup contributions for estimating standard gibbs energies of formation of biochemical compounds in aqueous solutionBiotechnol Bioeng19903610107010821:CAS:528:DyaK3MXlvVCntw%3D%3D1859504610.1002/bit.260361013
NoirelJOwSYSanguinettiGJaramilloAWrightPCAutomated extraction of meaningful pathways from quantitative proteomics dataBrief Funct Genomic Proteomic2008721361461:CAS:528:DC%2BD1cXnvVals7g%3D1832654410.1093/bfgp/eln011
AritaMFrom metabolic reactions to networks and pathwaysBact Mol Netw, Springer2012804931061:CAS:528:DC%2BC38XhslaitL3K10.1007/978-1-61779-361-5_6
Ma’ayanAInsights into the organization of biochemical regulatory networks using graph theory analysesJ Biol Chem20092849545154551894080610.1074/jbc.R800056200
AittokallioTSchwikowskiBGraph-based methods for analysing networks in cell biologyBrief Bioinform2006732432551:CAS:528:DC%2BD28XhtFOnu7jO1688017110.1093/bib/bbl022
CroesDCoucheFWodakSJvan HeldenJInferring meaningful pathways in weighted metabolic networksJ Mol Biol200635612222361:CAS:528:DC%2BD28XjvVOnug%3D%3D1633796210.1016/j.jmb.2005.09.079
ScottMSPerkinsTBunnellSPepinFThomasDYHallettMIdentifying regulatory subnetworks for a set of genesMol Cell Proteomics2005456836921:CAS:528:DC%2BD2MXktlSms70%3D1572237110.1074/mcp.M400110-MCP200
ScheerMGroteAChangASchomburgIMunarettoCRotherMSöhngenCStelzerMThieleJSchomburgD BRENDA, the enzyme information system inNucleic Acids Res201139suppl 1D670D6761:CAS:528:DC%2BC3sXivF2lsrg%3D30136862106282810.1093/nar/gkq1089
TennantDADuránRVGottliebETargeting metabolic transformation for cancer therapyNat Rev Cancer20101042672771:CAS:528:DC%2BC3cXjsFWjsL4%3D2030010610.1038/nrc2817
IdekerTThorssonVRanishJAChristmasRBuhlerJEngJKBumgarnerRGoodlettDRAebersoldRHoodLIntegrated genomic and proteomic analyses of a systematically perturbed metabolic networkScience200129255189299341:CAS:528:DC%2BD3MXjsVSrt7c%3D1134020610.1126/science.292.5518.929
IdekerTOzierOSchwikowskiBSiegelAFDiscovering regulatory and signalling circuits in molecular interaction networksBioinformatics200218suppl 1S233S2401216955210.1093/bioinformatics/18.suppl_1.S233
MiloRJorgensenPMoranUWeberGSpringerMBioNumbers—the database of key numbers in molecular and cell biologyNucleic Acids Res201038suppl 1D750D7531:CAS:528:DC%2BC3cXktl2nsQ%3D%3D28089401985493910.1093/nar/gkp889
ShannonPMarkielAOzierOBaligaNSWangJTRamageDAminNSchwikowskiBIdekerTCytoscape: a software environment for integrated models of biomolecular interaction networksGenome Res20031311249825041:CAS:528:DC%2BD3sXovFWrtr4%3D1459765810.1101/gr.1239303
VerkhedkarKDRamanKChandraNRVishveshwaraSMetabolome based reaction graphs of M. tuberculosis and M. leprae: a comparative network analysisPLoS ONE200729e88119645341784901010.1371/journal.pone.0000881
20535845 - Nat Rev Drug Discov. 2010 Apr;9(4):272
23935467 - PLoS Comput Biol. 2013;9(7):e1003126
12886878 - C R Biol. 2003 May;326(5):509-15
15758216 - Microbiology. 2005 Mar;151(Pt 3):693-706
9847135 - Nucleic Acids Res. 1999 Jan 1;27(1):29-34
19874610 - BMC Syst Biol. 2009 Oct 29;3:103
11062431 - Nat Biotechnol. 2000 Nov;18(11):1147-50
17173670 - Theor Biol Med Model. 2006 Dec 15;3:42
19854939 - Nucleic Acids Res. 2010 Jan;38(Database issue):D750-3
10977101 - Proc Int Conf Intell Syst Mol Biol. 2000;8:407-17
17849010 - PLoS One. 2007 Sep 12;2(9):e881
18940806 - J Biol Chem. 2009 Feb 27;284(9):5451-5
22144150 - Methods Mol Biol. 2012;804:93-106
18595046 - Biotechnol Bioeng. 1990 Dec 5;36(10):1070-82
16337962 - J Mol Biol. 2006 Feb 10;356(1):222-36
12169552 - Bioinformatics. 2002;18 Suppl 1:S233-40
20300106 - Nat Rev Cancer. 2010 Apr;10(4):267-77
20461071 - Mol Syst Biol. 2010 May 11;6:364
15722371 - Mol Cell Proteomics. 2005 May;4(5):683-92
21062828 - Nucleic Acids Res. 2011 Jan;39(Database issue):D670-6
11340206 - Science. 2001 May 4;292(5518):929-34
18326544 - Brief Funct Genomic Proteomic. 2008 Mar;7(2):136-46
15980483 - Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W326-30
16880171 - Brief Bioinform. 2006 Sep;7(3):243-55
14597658 - Genome Res. 2003 Nov;13(11):2498-504
KA Hawick (9128_CR12) 2011; 15
9128_CR1
B Palsson (9128_CR23) 2000; 18
M Scheer (9128_CR25) 2011; 39
H Ogata (9128_CR22) 1999; 27
E Pitkänen (9128_CR24) 2009; 3
J Noirel (9128_CR21) 2008; 7
A Kayser (9128_CR16) 2005; 151
T Ideker (9128_CR14) 2002; 18
MH Flight (9128_CR9) 2010; 9
S Jozefczuk (9128_CR15) 2010; 6
T Ideker (9128_CR13) 2001; 292
M Arita (9128_CR3) 2012; 804
D Croes (9128_CR6) 2005; 33
D Croes (9128_CR7) 2006; 356
RW Floyd (9128_CR10) 1962; 5
DA Tennant (9128_CR28) 2010; 10
9128_CR11
W Liebermeister (9128_CR17) 2006; 3
A Cornish-Bowden (9128_CR5) 2003; 326
KD Verkhedkar (9128_CR29) 2007; 2
D Batenkov (9128_CR4) 2011; 17
R Milo (9128_CR20) 2010; 38
T Aittokallio (9128_CR2) 2006; 7
ML Mavrovouniotis (9128_CR19) 1990; 36
P Shannon (9128_CR27) 2003; 13
9128_CR30
MS Scott (9128_CR26) 2005; 4
JM Dreyfuss (9128_CR8) 2013; 9
A Ma’ayan (9128_CR18) 2009; 284
References_xml – ident: 9128_CR30
– volume: 3
  start-page: 103
  issue: 1
  year: 2009
  ident: 9128_CR24
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-3-103
  contributor:
    fullname: E Pitkänen
– volume: 2
  start-page: e881
  issue: 9
  year: 2007
  ident: 9128_CR29
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0000881
  contributor:
    fullname: KD Verkhedkar
– volume: 151
  start-page: 693
  issue: 3
  year: 2005
  ident: 9128_CR16
  publication-title: Microbiology
  doi: 10.1099/mic.0.27481-0
  contributor:
    fullname: A Kayser
– ident: 9128_CR11
– volume: 6
  start-page: 364
  issue: 1
  year: 2010
  ident: 9128_CR15
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2010.18
  contributor:
    fullname: S Jozefczuk
– volume: 3
  start-page: 42
  issue: 1
  year: 2006
  ident: 9128_CR17
  publication-title: Theor Biol Med Model
  doi: 10.1186/1742-4682-3-42
  contributor:
    fullname: W Liebermeister
– volume: 7
  start-page: 243
  issue: 3
  year: 2006
  ident: 9128_CR2
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbl022
  contributor:
    fullname: T Aittokallio
– volume: 326
  start-page: 509
  issue: 5
  year: 2003
  ident: 9128_CR5
  publication-title: C R Biol
  doi: 10.1016/S1631-0691(03)00117-3
  contributor:
    fullname: A Cornish-Bowden
– volume: 9
  start-page: e1003126
  issue: 7
  year: 2013
  ident: 9128_CR8
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1003126
  contributor:
    fullname: JM Dreyfuss
– volume: 804
  start-page: 93
  year: 2012
  ident: 9128_CR3
  publication-title: Bact Mol Netw, Springer
  doi: 10.1007/978-1-61779-361-5_6
  contributor:
    fullname: M Arita
– volume: 284
  start-page: 5451
  issue: 9
  year: 2009
  ident: 9128_CR18
  publication-title: J Biol Chem
  doi: 10.1074/jbc.R800056200
  contributor:
    fullname: A Ma’ayan
– volume: 292
  start-page: 929
  issue: 5518
  year: 2001
  ident: 9128_CR13
  publication-title: Science
  doi: 10.1126/science.292.5518.929
  contributor:
    fullname: T Ideker
– volume: 36
  start-page: 1070
  issue: 10
  year: 1990
  ident: 9128_CR19
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.260361013
  contributor:
    fullname: ML Mavrovouniotis
– volume: 15
  start-page: 16
  year: 2011
  ident: 9128_CR12
  publication-title: Small
  contributor:
    fullname: KA Hawick
– volume: 33
  start-page: W326
  issue: suppl 2
  year: 2005
  ident: 9128_CR6
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki437
  contributor:
    fullname: D Croes
– volume: 356
  start-page: 222
  issue: 1
  year: 2006
  ident: 9128_CR7
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2005.09.079
  contributor:
    fullname: D Croes
– volume: 9
  start-page: 272
  issue: 4
  year: 2010
  ident: 9128_CR9
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd3146
  contributor:
    fullname: MH Flight
– volume: 18
  start-page: S233
  issue: suppl 1
  year: 2002
  ident: 9128_CR14
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.suppl_1.S233
  contributor:
    fullname: T Ideker
– volume: 17
  start-page: 31
  issue: 3
  year: 2011
  ident: 9128_CR4
  publication-title: XRDS Crossroads ACM Mag Stud
  doi: 10.1145/1925041.1925054
  contributor:
    fullname: D Batenkov
– volume: 38
  start-page: D750
  issue: suppl 1
  year: 2010
  ident: 9128_CR20
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkp889
  contributor:
    fullname: R Milo
– volume: 4
  start-page: 683
  issue: 5
  year: 2005
  ident: 9128_CR26
  publication-title: Mol Cell Proteomics
  doi: 10.1074/mcp.M400110-MCP200
  contributor:
    fullname: MS Scott
– volume: 39
  start-page: D670
  issue: suppl 1
  year: 2011
  ident: 9128_CR25
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq1089
  contributor:
    fullname: M Scheer
– volume: 13
  start-page: 2498
  issue: 11
  year: 2003
  ident: 9128_CR27
  publication-title: Genome Res
  doi: 10.1101/gr.1239303
  contributor:
    fullname: P Shannon
– ident: 9128_CR1
  doi: 10.1016/j.dam.2011.09.019
– volume: 10
  start-page: 267
  issue: 4
  year: 2010
  ident: 9128_CR28
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2817
  contributor:
    fullname: DA Tennant
– volume: 27
  start-page: 29
  issue: 1
  year: 1999
  ident: 9128_CR22
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/27.1.29
  contributor:
    fullname: H Ogata
– volume: 5
  start-page: 345
  issue: 6
  year: 1962
  ident: 9128_CR10
  publication-title: Commun ACM
  doi: 10.1145/367766.368168
  contributor:
    fullname: RW Floyd
– volume: 18
  start-page: 1147
  issue: 11
  year: 2000
  ident: 9128_CR23
  publication-title: Nat Biotechnol
  doi: 10.1038/81125
  contributor:
    fullname: B Palsson
– volume: 7
  start-page: 136
  issue: 2
  year: 2008
  ident: 9128_CR21
  publication-title: Brief Funct Genomic Proteomic
  doi: 10.1093/bfgp/eln011
  contributor:
    fullname: J Noirel
SSID ssj0057545
Score 1.989554
Snippet Metabolism forms an integral part of all cells and its study is important to understand the functioning of the system, to understand alterations that occur in...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Issue Title: Special Issue: Perspectives in Systems Biology Metabolism forms an...
SourceID pubmedcentral
proquest
crossref
pubmed
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 47
SubjectTerms Biomedical and Life Sciences
Biomedicine
Computational Biology/Bioinformatics
Metabolomics
Research Article
Systems Biology
SummonAdditionalLinks – databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9NAEB-8Hgfng5w9T6M9WcEnj8VmP9Lsk-jRowgWEYt9C9mPYMCmtR8P_vfObpJ-XLl7C-xCsjOb2d_szPwG4D1aPGd5ISiTRU4Fc4pqqxTNUyN4YtFjsb7e-ds4GU3E16mcNhduqyatsrWJwVDbufF35B8RuHh0Ldjg0-Iv9V2jfHS1aaFxAqcMPQXWgdMvw_H3H60tRiwS2hTH6QBdLs5kG9cMxXOeh4T67gYq9jTNhyfTEdw8zpq8FzoNJ9LdBTxroCT5XOv-OTxxVRfO6uaS_7rwdI9q8BJGv8IdKD4T9GfdzK1IWZGZW-Mm-FMaEoirVwQhLClD7W6ofyK69B21AqUAWc43iEtfwORu-PN2RJsuCtTwVPYpAiTnhIml1UYq7djASK20ia3tm8TmubJJIYWWSgmjU2ZYjpglca6QvGC24FfQqeaVewVEpXnOEWD41DZRcKMdei_KpNpz8gsuIvjQSjBb1GQZ2Y4W2Ys7Q3FnXtxZP4JeK-Os-W9W2U7LEbzbDuOO92GMvHLzTZgjhPTpPBG8rFWyfRsTUjGm4ggGB8raTvBs2ocjVfk7sGpzxXnCWQQ3rVr3PuuhRbx-fBFv4BwBlqhz1nrQWS837hpBzFq_bXbqfyeT74I
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58IOhBfButsoInJdLsI80eiyhF0JPF3kL2EQzaVGx78N87u2n6sHrwFtglj5nN7Dc7M98AXKLFs4blPKQiz0JOrQyVkTLMEs1ZbNBjMa7e-fEp7nT5Q0_0VoBOjy7Kt5s6IukN9azWzdGGhK4ZgYwcq_IqrCN24C6Nq0vbtfVF9OEbE0dJC50sRkUdyfztFot70RLAXM6T_BEs9XvQ_Q5sT8AjaVfa3oUVW-7BRtVO8msPtubIBfeh8-JPPfGaoAdr-3ZIipL07QjV_l5o4qmqhwRBKyl8ta6veCKqcD20PIkA-RyMEYkeQPf-7vm2E076JoSaJaIZIiSylutIGKWFVJa2tFBS6ciYpo5NlkkT54IrISXXKqGaZohSYmtzwXJqcnYIa-WgtMdAZJJlDCGFS2bjOdPKor8idaIcCz9nPICrWoLpR0WPkc6IkJ24UxR36sSdNgNo1DJOJ3_KMEVA6rwmTlsBXEyHcY27wEVW2sHYz-FcuASeAI4qlUyfRrmQlMoogNaCsqYTHH_24khZvHoebSYZixkN4LpW69xr_fURJ_-afQqbiLB4lbTWgLXR59ieIYoZqXO_bL8B5bvqSQ
  priority: 102
  providerName: Springer Nature
Title Weighting schemes in metabolic graphs for identifying biochemical routes
URI https://link.springer.com/article/10.1007/s11693-013-9128-0
https://www.ncbi.nlm.nih.gov/pubmed/24592291
https://www.proquest.com/docview/1501548427
https://search.proquest.com/docview/1504454237
https://pubmed.ncbi.nlm.nih.gov/PMC3933632
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS-tAEB-08kAPor6nxo-yDzz5iG32I8keqyhFUORhsbeQ_QgGbCq2PfjfO7tpqlW8eAmBXdjNzGT3N7szvwE4wRXPGlbwkIoiDzm1MlRGyjBPNWexQY_FuHznm9u4P-DXQzFcAdHkwvigfa3Ks-ppdFaVjz628nmkO02cWOfu5oKhFx4z2lmFVTTQxkWvl1-EH74ycZQm6GUxKpqrTJ8v56hHQlfQQEaOmdlRAXMhKZXR8r70BWx-jZn8dHHq96OrLdicA0nSqye8DSu22oFfdWnJ1x3Y-EA0-Bv6D_4EFN8JerN2ZCekrMjITtEEnkpNPG31hCCAJaXP3PXZT0SVrp6WJxQgL-MZotI_MLi6vL_oh_MaCqFmqeiGCI-s5ToSRmkhlaWJFkoqHRnT1bHJc2niQnAlpORapVTTHBFLbG0hWEFNwXahVY0ruw9EpnnOEF64wDZeMK0s-i5Sp8ox8nPGAzhtJJg911QZ2TspspN8hpLPnOSzbgBHjYyz-V8zyRCcOg-K0ySAv4tmtHd3iZFXdjzzfTgXLpgngL1aJYvRGl0GkCwpa9HBcWkvt6CJeU7tuUkF8K9R64dpffcRBz8e5xDWEXnxOpjtCFrTl5k9RnQzVW206WHShrXzy9u7_21v2_gc0N4bd0j6iQ
link.rule.ids 230,315,730,783,787,888,12070,21402,27938,27939,31733,31734,33758,33759,41537,42606,43324,43819,52248,53806,53808
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB61VKjlUAF9peVhpJ5aWWz8SOJThaqipQVOoO4tih9RI5UsZXcP_ffMOMnCgtpbJFtKPDOxv_HMfAPwEXe84GWtuNB1xZUIhltvDK8Kp2Tm0WPxVO98dp6NL9X3iZ70F26zPq1y2BPjRu2nju7IDxG4ELpWIv9y_YdT1yiKrvYtNJ7CM-LhIu78fLJ0uBCJxCbFaZGjwyWFHqKasXSOWEg49TYwKZE0r55Lj8Dm45zJB4HTeB4db8LLHkiyo07zW_AktNuw3rWW_LsNG_eIBl_B-Ge8AcVnht5suAoz1rTsKszRBH43jkXa6hlDAMuaWLkbq5-YbaifViQUYDfTBaLS13B5_O3i65j3PRS4k4UecYRHISiXam-dNjaI3GlrrEu9H7nMV5XxWa2V1cYoZwvhRIWIJQuh1rIWvpZvYK2dtuEdMFNUlUR4QYltqpbOBvRdjCssMfIrqRL4NEiwvO6oMso7UmQSd4niLknc5SiBnUHGZf_XzMo7HSdwsBxGe6cgRtWG6SLOUUpTMk8CbzuVLN8mlDZCmDSBfEVZywnEpb060ja_Iqe2NFJmUiTweVDrvc_61yLe_38R-_B8fHF2Wp6enP_4AC8Qaqkue20H1uY3i7CLcGZu96LN3gKBQfEN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB5REFV7KJRSap6LxKnISbwPx3usgChAQRxARVws78PCgjgRSQ7tr2d2HYcE1As3S15pvfpmdr_xznwDcIA7njUs5yEVeRZyamWojJRhlmjOYoMRi3H1zheXcfeGn92K25lWXz5pX6uiUT72GmVx73MrBz3drPPEmlcXRwyj8JjR5sDkzQ-whD7bSupAvdqEkYT4_sRR0sZYi1FRX2j6qjknQBK6tgYycvrMThCYC0mpjOZPpzeU823m5KvrU38qdVbgrl5PlYzy0BiPVEP_eyX1-K4Fr8KXCVclv6ohX2HBlmuwXHWv_LsGn2e0DL9B94__yYrPBANm27NDUpSkZ0doZY-FJl4Ze0iQI5PCFwf7AiuiCteyy2sWkKf-GInvOtx0Tq6PuuGkTUOoWSJaITIwa7mOhFFaSGVpWwsllY6MaenYZJk0cS64ElJyrRKqaYakKLY2FyynJmffYbHsl_YHEJlkGUMG43LneM60shgeSZ0oJ_rPGQ_gZw1POqjUONIX3WUHa4qwpg7WtBXAdg1gOnHMYYr81wVpnLYD2J--Rpdy9yRZaftjP4Zz4fKFAtio8J7OVhtKAO05S5gOcHLd828QVC_bPQExgMPaZmY-63-L2Hz3PHvw8eq4k_4-vTzfgk_I83iVOrcNi6Onsd1BLjVSu95rngEfiRuj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weighting+schemes+in+metabolic+graphs+for+identifying+biochemical+routes&rft.jtitle=Systems+and+synthetic+biology&rft.au=Ghosh%2C+S.&rft.au=Baloni%2C+P.&rft.au=Vishveshwara%2C+S.&rft.au=Chandra%2C+N.&rft.date=2014-03-01&rft.issn=1872-5325&rft.eissn=1872-5333&rft.volume=8&rft.issue=1&rft.spage=47&rft.epage=57&rft_id=info:doi/10.1007%2Fs11693-013-9128-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11693_013_9128_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1872-5325&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1872-5325&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1872-5325&client=summon