The Cellular Chaperone Heat Shock Protein 90 Is Required for Foot-and-Mouth Disease Virus Capsid Precursor Processing and Assembly of Capsid Pentamers

Productive picornavirus infection requires the hijacking of host cell pathways to aid with the different stages of virus entry, synthesis of the viral polyprotein, and viral genome replication. Many picornaviruses, including foot-and-mouth disease virus (FMDV), assemble capsids via the multimerizati...

Full description

Saved in:
Bibliographic Details
Published inJournal of virology Vol. 92; no. 5
Main Authors Newman, Joseph, Asfor, Amin S, Berryman, Stephen, Jackson, Terry, Curry, Stephen, Tuthill, Tobias J
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Productive picornavirus infection requires the hijacking of host cell pathways to aid with the different stages of virus entry, synthesis of the viral polyprotein, and viral genome replication. Many picornaviruses, including foot-and-mouth disease virus (FMDV), assemble capsids via the multimerization of several copies of a single capsid precursor protein into a pentameric subunit which further encapsidates the RNA. Pentamer formation is preceded by co- and posttranslational modification of the capsid precursor (P1-2A) by viral and cellular enzymes and the subsequent rearrangement of P1-2A into a structure amenable to pentamer formation. We have developed a cell-free system to study FMDV pentamer assembly using recombinantly expressed FMDV capsid precursor and 3C protease. Using this assay, we have shown that two structurally different inhibitors of the cellular chaperone heat shock protein 90 (hsp90) impeded FMDV capsid precursor processing and subsequent pentamer formation. Treatment of FMDV permissive cells with the hsp90 inhibitor prior to infection reduced the endpoint titer by more than 10-fold while not affecting the activity of a subgenomic replicon, indicating that translation and replication of viral RNA were unaffected by the drug. FMDV of the family is a pathogen of huge economic importance to the livestock industry due to its effect on the restriction of livestock movement and necessary control measures required following an outbreak. The study of FMDV capsid assembly, and picornavirus capsid assembly more generally, has tended to be focused upon the formation of capsids from pentameric intermediates or the immediate cotranslational modification of the capsid precursor protein. Here, we describe a system to analyze the early stages of FMDV pentameric capsid intermediate assembly and demonstrate a novel requirement for the cellular chaperone hsp90 in the formation of these pentameric intermediates. We show the added complexity involved for this process to occur, which could be the basis for a novel antiviral control mechanism for FMDV.
AbstractList Productive picornavirus infection requires the hijacking of host cell pathways to aid with the different stages of virus entry, synthesis of the viral polyprotein, and viral genome replication. Many picornaviruses, including foot-and-mouth disease virus (FMDV), assemble capsids via the multimerization of several copies of a single capsid precursor protein into a pentameric subunit which further encapsidates the RNA. Pentamer formation is preceded by co- and posttranslational modification of the capsid precursor (P1-2A) by viral and cellular enzymes and the subsequent rearrangement of P1-2A into a structure amenable to pentamer formation. We have developed a cell-free system to study FMDV pentamer assembly using recombinantly expressed FMDV capsid precursor and 3C protease. Using this assay, we have shown that two structurally different inhibitors of the cellular chaperone heat shock protein 90 (hsp90) impeded FMDV capsid precursor processing and subsequent pentamer formation. Treatment of FMDV permissive cells with the hsp90 inhibitor prior to infection reduced the endpoint titer by more than 10-fold while not affecting the activity of a subgenomic replicon, indicating that translation and replication of viral RNA were unaffected by the drug. IMPORTANCE FMDV of the Picornaviridae family is a pathogen of huge economic importance to the livestock industry due to its effect on the restriction of livestock movement and necessary control measures required following an outbreak. The study of FMDV capsid assembly, and picornavirus capsid assembly more generally, has tended to be focused upon the formation of capsids from pentameric intermediates or the immediate cotranslational modification of the capsid precursor protein. Here, we describe a system to analyze the early stages of FMDV pentameric capsid intermediate assembly and demonstrate a novel requirement for the cellular chaperone hsp90 in the formation of these pentameric intermediates. We show the added complexity involved for this process to occur, which could be the basis for a novel antiviral control mechanism for FMDV.
ABSTRACT Productive picornavirus infection requires the hijacking of host cell pathways to aid with the different stages of virus entry, synthesis of the viral polyprotein, and viral genome replication. Many picornaviruses, including foot-and-mouth disease virus (FMDV), assemble capsids via the multimerization of several copies of a single capsid precursor protein into a pentameric subunit which further encapsidates the RNA. Pentamer formation is preceded by co- and posttranslational modification of the capsid precursor (P1-2A) by viral and cellular enzymes and the subsequent rearrangement of P1-2A into a structure amenable to pentamer formation. We have developed a cell-free system to study FMDV pentamer assembly using recombinantly expressed FMDV capsid precursor and 3C protease. Using this assay, we have shown that two structurally different inhibitors of the cellular chaperone heat shock protein 90 (hsp90) impeded FMDV capsid precursor processing and subsequent pentamer formation. Treatment of FMDV permissive cells with the hsp90 inhibitor prior to infection reduced the endpoint titer by more than 10-fold while not affecting the activity of a subgenomic replicon, indicating that translation and replication of viral RNA were unaffected by the drug. IMPORTANCE FMDV of the Picornaviridae family is a pathogen of huge economic importance to the livestock industry due to its effect on the restriction of livestock movement and necessary control measures required following an outbreak. The study of FMDV capsid assembly, and picornavirus capsid assembly more generally, has tended to be focused upon the formation of capsids from pentameric intermediates or the immediate cotranslational modification of the capsid precursor protein. Here, we describe a system to analyze the early stages of FMDV pentameric capsid intermediate assembly and demonstrate a novel requirement for the cellular chaperone hsp90 in the formation of these pentameric intermediates. We show the added complexity involved for this process to occur, which could be the basis for a novel antiviral control mechanism for FMDV.
Productive picornavirus infection requires the hijacking of host cell pathways to aid with the different stages of virus entry, synthesis of the viral polyprotein, and viral genome replication. Many picornaviruses, including foot-and-mouth disease virus (FMDV), assemble capsids via the multimerization of several copies of a single capsid precursor protein into a pentameric subunit which further encapsidates the RNA. Pentamer formation is preceded by co- and posttranslational modification of the capsid precursor (P1-2A) by viral and cellular enzymes and the subsequent rearrangement of P1-2A into a structure amenable to pentamer formation. We have developed a cell-free system to study FMDV pentamer assembly using recombinantly expressed FMDV capsid precursor and 3C protease. Using this assay, we have shown that two structurally different inhibitors of the cellular chaperone heat shock protein 90 (hsp90) impeded FMDV capsid precursor processing and subsequent pentamer formation. Treatment of FMDV permissive cells with the hsp90 inhibitor prior to infection reduced the endpoint titer by more than 10-fold while not affecting the activity of a subgenomic replicon, indicating that translation and replication of viral RNA were unaffected by the drug.IMPORTANCE FMDV of the Picornaviridae family is a pathogen of huge economic importance to the livestock industry due to its effect on the restriction of livestock movement and necessary control measures required following an outbreak. The study of FMDV capsid assembly, and picornavirus capsid assembly more generally, has tended to be focused upon the formation of capsids from pentameric intermediates or the immediate cotranslational modification of the capsid precursor protein. Here, we describe a system to analyze the early stages of FMDV pentameric capsid intermediate assembly and demonstrate a novel requirement for the cellular chaperone hsp90 in the formation of these pentameric intermediates. We show the added complexity involved for this process to occur, which could be the basis for a novel antiviral control mechanism for FMDV.
Productive picornavirus infection requires the hijacking of host cell pathways to aid with the different stages of virus entry, synthesis of the viral polyprotein, and viral genome replication. Many picornaviruses, including foot-and-mouth disease virus (FMDV), assemble capsids via the multimerization of several copies of a single capsid precursor protein into a pentameric subunit which further encapsidates the RNA. Pentamer formation is preceded by co- and posttranslational modification of the capsid precursor (P1-2A) by viral and cellular enzymes and the subsequent rearrangement of P1-2A into a structure amenable to pentamer formation. We have developed a cell-free system to study FMDV pentamer assembly using recombinantly expressed FMDV capsid precursor and 3C protease. Using this assay, we have shown that two structurally different inhibitors of the cellular chaperone heat shock protein 90 (hsp90) impeded FMDV capsid precursor processing and subsequent pentamer formation. Treatment of FMDV permissive cells with the hsp90 inhibitor prior to infection reduced the endpoint titer by more than 10-fold while not affecting the activity of a subgenomic replicon, indicating that translation and replication of viral RNA were unaffected by the drug. FMDV of the family is a pathogen of huge economic importance to the livestock industry due to its effect on the restriction of livestock movement and necessary control measures required following an outbreak. The study of FMDV capsid assembly, and picornavirus capsid assembly more generally, has tended to be focused upon the formation of capsids from pentameric intermediates or the immediate cotranslational modification of the capsid precursor protein. Here, we describe a system to analyze the early stages of FMDV pentameric capsid intermediate assembly and demonstrate a novel requirement for the cellular chaperone hsp90 in the formation of these pentameric intermediates. We show the added complexity involved for this process to occur, which could be the basis for a novel antiviral control mechanism for FMDV.
Author Berryman, Stephen
Curry, Stephen
Jackson, Terry
Tuthill, Tobias J
Newman, Joseph
Asfor, Amin S
Author_xml – sequence: 1
  givenname: Joseph
  surname: Newman
  fullname: Newman, Joseph
  organization: The Pirbright Institute, Pirbright, Surrey, United Kingdom
– sequence: 2
  givenname: Amin S
  surname: Asfor
  fullname: Asfor, Amin S
  organization: The Pirbright Institute, Pirbright, Surrey, United Kingdom
– sequence: 3
  givenname: Stephen
  surname: Berryman
  fullname: Berryman, Stephen
  organization: The Pirbright Institute, Pirbright, Surrey, United Kingdom
– sequence: 4
  givenname: Terry
  surname: Jackson
  fullname: Jackson, Terry
  organization: The Pirbright Institute, Pirbright, Surrey, United Kingdom
– sequence: 5
  givenname: Stephen
  surname: Curry
  fullname: Curry, Stephen
  organization: Department of Life Sciences, Imperial College London, London, United Kingdom
– sequence: 6
  givenname: Tobias J
  surname: Tuthill
  fullname: Tuthill, Tobias J
  email: toby.tuthill@pirbright.ac.uk
  organization: The Pirbright Institute, Pirbright, Surrey, United Kingdom toby.tuthill@pirbright.ac.uk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29212943$$D View this record in MEDLINE/PubMed
BookMark eNpVkU1PFTEUhhsDkQu6Y226dOFAv-ajGxMyilwDwSgSdk2nc4apzkwvPTMm_BF_r1XgBldd9DnP29N3n-xMYQJCDjk74lxUx5-v10eMK55nvHxBVpzpKstzrnbIijEhslxWN3tkH_EHS5gq1EuyJ7TgQiu5Ir-veqA1DMMy2Ejr3m4gJj89AzvTb31wP-mXGGbwE9WMrpF-hbvFR2hpFyI9DWHO7NRmF2GZe_rBI1gEeu3jgrS2G_RtGge3REx0EjlA9NMtTTP0BBHGZrinoduyMM12hIivyG5nB4TXj-cB-X768ao-y84vP63rk_PMyUrNWVfIQoIUTZEz1pXOFWWppIW0fuMKcMpV3EpbWNcIplknKiV125RWd0UuSycPyPsH72ZpRmhdyo92MJvoRxvvTbDe_H8z-d7chl8mr5hOUUnw9lEQw90COJvRo0v_aScICxqeKMYl0zyh7x5QFwNihG4bw5n5W6VJVZp_VRpeJvzN86dt4afu5B_Mn52M
CitedBy_id crossref_primary_10_1016_j_micpath_2019_103638
crossref_primary_10_1128_jvi_00171_23
crossref_primary_10_1128_JVI_00594_21
crossref_primary_10_1016_j_virusres_2020_197909
crossref_primary_10_1093_infdis_jiac426
crossref_primary_10_1016_j_fsi_2020_10_020
crossref_primary_10_1016_j_virol_2022_03_006
crossref_primary_10_1080_22221751_2020_1850183
crossref_primary_10_1128_jvi_00736_22
crossref_primary_10_1101_cshperspect_a034090
crossref_primary_10_1128_JVI_01393_19
crossref_primary_10_1128_mbio_01434_22
crossref_primary_10_1038_s41598_019_48170_9
crossref_primary_10_1371_journal_ppat_1007509
crossref_primary_10_1515_bmc_2022_0008
crossref_primary_10_3390_life11060500
crossref_primary_10_3390_v14102129
crossref_primary_10_1080_17460794_2024_2362016
crossref_primary_10_3389_fmicb_2018_02644
crossref_primary_10_1016_j_virusres_2023_199103
Cites_doi 10.1128/jvi.66.12.6849-6857.1992
10.1038/nature12029
10.1016/j.jviromet.2012.11.011
10.1038/nrmicro2030
10.1038/nrm2918
10.1128/jvi.66.7.4556-4563.1992
10.1099/vir.0.000187
10.1128/JVI.01863-13
10.1128/jvi.61.10.3181-3189.1987
10.1099/0022-1317-76-12-3089
10.1016/j.bbamcr.2011.10.008
10.1038/nmeth.2089
10.1016/j.jmb.2009.10.048
10.20506/rst.33.3.2318
10.1016/S0769-2617(83)80055-0
10.1016/0042-6822(67)90045-1
10.1099/vir.0.054122-0
10.1371/journal.pone.0077133
10.1016/j.tibs.2013.02.003
10.1099/vir.0.068197-0
10.1128/jvi.66.3.1520-1527.1992
10.1099/0022-1317-72-3-747
10.1002/pro.5560031005
10.3851/IMP1631
10.1128/jvi.71.12.9743-9752.1997
10.1073/pnas.0504400102
10.1002/0471143030.cb0503s00
10.1101/gad.1505307
10.1016/0042-6822(89)90219-5
10.1371/journal.ppat.1000797
10.1128/JVI.01587-06
10.1016/S0065-2776(08)60733-6
10.1016/0042-6822(75)90311-6
10.1099/vir.0.83385-0
10.1128/CMR.17.2.465-493.2004
10.1006/viro.1995.0030
10.1099/0022-1317-30-3-317
10.1128/jvi.42.3.1017-1028.1982
10.1128/JVI.01033-12
10.1128/MCB.00986-10
10.1128/mr.45.2.287-315.1981
10.1126/science.2994218
10.1099/vir.0.050492-0
10.1128/jvi.65.5.2372-2380.1991
10.1002/j.1460-2075.1989.tb08406.x
10.1038/327482a0
10.1016/j.jviromet.2014.08.020
10.1128/MMBR.00012-14
10.1002/pro.5560051107
10.1128/jvi.64.5.2433-2436.1990
10.1038/337709a0
10.1128/jvi.64.9.4099-4107.1990
10.1016/S0065-3527(08)60069-X
10.1128/JVI.01263-09
10.1038/317145a0
10.1371/journal.ppat.1004039
10.1007/s00280-004-0939-2
10.1016/j.cell.2015.01.032
10.1016/j.virol.2013.05.001
10.1021/jm980403y
10.1126/science.1068408
10.1128/JVI.00315-15
10.1016/j.cell.2007.07.036
10.1007/s12192-011-0262-x
10.1146/annurev.micro.56.012302.160757
10.1016/0042-6822(91)90091-O
10.1016/j.bbamcr.2011.11.007
10.1038/ng1583
10.1128/jvi.67.4.2336-2343.1993
ContentType Journal Article
Copyright Copyright © 2018 Newman et al.
Copyright © 2018 Newman et al. 2018 Newman et al.
Copyright_xml – notice: Copyright © 2018 Newman et al.
– notice: Copyright © 2018 Newman et al. 2018 Newman et al.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1128/JVI.01415-17
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Role of hsp90 in Foot-and-Mouth Disease Virus Processing
EISSN 1098-5514
Editor Gallagher, Tom
Editor_xml – sequence: 1
  givenname: Tom
  surname: Gallagher
  fullname: Gallagher, Tom
ExternalDocumentID 10_1128_JVI_01415_17
29212943
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BBS/E/I/00001411
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BBS/E/I/00007034
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BBS/E/I/00007039
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BBS/E/I/00001577
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BBS/E/I/00007037
– fundername: ;
  grantid: BBS/E/I/00001577
– fundername: ;
  grantid: BBS/E/I/00001411
GroupedDBID ---
-~X
0R~
18M
29L
2WC
39C
4.4
53G
5GY
5RE
5VS
85S
ABPPZ
ACGFO
ACNCT
ADBBV
AENEX
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CGR
CS3
CUY
CVF
DIK
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
N9A
NPM
O9-
OK1
P2P
RHF
RHI
RNS
RPM
RSF
TR2
UCJ
UPT
W2D
W8F
WH7
WOQ
YQT
~02
~KM
.55
.GJ
3O-
41~
6TJ
AAYJJ
AAYXX
AFFNX
AI.
C1A
CITATION
D0S
F20
MVM
OHT
VH1
X7M
Y6R
ZGI
ZXP
7X8
5PM
ID FETCH-LOGICAL-c384t-f6363e32b6500f7cc67743ae514bc6ec4c81a3a6acb2090f28439db7a9f6537c3
IEDL.DBID RPM
ISSN 0022-538X
IngestDate Tue Sep 17 21:26:06 EDT 2024
Fri Oct 25 07:11:08 EDT 2024
Thu Sep 12 17:16:52 EDT 2024
Sat Nov 02 12:31:15 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords foot-and-mouth disease virus
virus assembly
hsp90
polyprotein processing
picornavirus
Language English
License Copyright © 2018 Newman et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c384t-f6363e32b6500f7cc67743ae514bc6ec4c81a3a6acb2090f28439db7a9f6537c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present address: Stephen Curry, The Pirbright Institute, Woking, United Kingdom.
Citation Newman J, Asfor AS, Berryman S, Jackson T, Curry S, Tuthill TJ. 2018. The cellular chaperone heat shock protein 90 is required for foot-and-mouth disease virus capsid precursor processing and assembly of capsid pentamers. J Virol 92:e01415-17. https://doi.org/10.1128/JVI.01415-17.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5809743/
PMID 29212943
PQID 1974013091
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5809743
proquest_miscellaneous_1974013091
crossref_primary_10_1128_JVI_01415_17
pubmed_primary_29212943
PublicationCentury 2000
PublicationDate 2018-03-01
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Journal of virology
PublicationTitleAlternate J Virol
PublicationYear 2018
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_60_2
Alexandersen S (e_1_3_2_4_2) 2005; 288
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_50_2
e_1_3_2_71_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_65_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_63_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_69_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_67_2
e_1_3_2_61_2
Fry EE (e_1_3_2_27_2) 2010
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_74_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
Reed LJ (e_1_3_2_72_2) 1938; 27
e_1_3_2_70_2
Sambrook J (e_1_3_2_73_2) 1989
References_xml – ident: e_1_3_2_20_2
  doi: 10.1128/jvi.66.12.6849-6857.1992
– ident: e_1_3_2_2_2
  doi: 10.1038/nature12029
– ident: e_1_3_2_15_2
  doi: 10.1016/j.jviromet.2012.11.011
– volume-title: The picornaviruses
  year: 2010
  ident: e_1_3_2_27_2
  contributor:
    fullname: Fry EE
– ident: e_1_3_2_45_2
  doi: 10.1038/nrmicro2030
– ident: e_1_3_2_65_2
  doi: 10.1038/nrm2918
– volume: 27
  start-page: 493
  year: 1938
  ident: e_1_3_2_72_2
  article-title: A simple method for estimating fifty percent endpoints
  publication-title: Am J Hyg
  contributor:
    fullname: Reed LJ
– ident: e_1_3_2_60_2
  doi: 10.1128/jvi.66.7.4556-4563.1992
– ident: e_1_3_2_30_2
  doi: 10.1099/vir.0.000187
– ident: e_1_3_2_70_2
  doi: 10.1128/JVI.01863-13
– ident: e_1_3_2_35_2
  doi: 10.1128/jvi.61.10.3181-3189.1987
– ident: e_1_3_2_12_2
  doi: 10.1099/0022-1317-76-12-3089
– ident: e_1_3_2_49_2
  doi: 10.1016/j.bbamcr.2011.10.008
– ident: e_1_3_2_74_2
  doi: 10.1038/nmeth.2089
– ident: e_1_3_2_32_2
  doi: 10.1016/j.jmb.2009.10.048
– ident: e_1_3_2_71_2
  doi: 10.20506/rst.33.3.2318
– ident: e_1_3_2_5_2
  doi: 10.1016/S0769-2617(83)80055-0
– ident: e_1_3_2_10_2
  doi: 10.1016/0042-6822(67)90045-1
– ident: e_1_3_2_13_2
  doi: 10.1099/vir.0.054122-0
– ident: e_1_3_2_41_2
  doi: 10.1371/journal.pone.0077133
– ident: e_1_3_2_36_2
  doi: 10.1016/j.tibs.2013.02.003
– ident: e_1_3_2_33_2
  doi: 10.1099/vir.0.068197-0
– ident: e_1_3_2_43_2
  doi: 10.1128/jvi.66.3.1520-1527.1992
– ident: e_1_3_2_61_2
  doi: 10.1099/0022-1317-72-3-747
– ident: e_1_3_2_24_2
  doi: 10.1002/pro.5560031005
– ident: e_1_3_2_47_2
  doi: 10.3851/IMP1631
– ident: e_1_3_2_25_2
  doi: 10.1128/jvi.71.12.9743-9752.1997
– ident: e_1_3_2_63_2
  doi: 10.1073/pnas.0504400102
– ident: e_1_3_2_53_2
  doi: 10.1002/0471143030.cb0503s00
– ident: e_1_3_2_38_2
  doi: 10.1101/gad.1505307
– ident: e_1_3_2_34_2
  doi: 10.1016/0042-6822(89)90219-5
– ident: e_1_3_2_57_2
  doi: 10.1371/journal.ppat.1000797
– ident: e_1_3_2_52_2
  doi: 10.1128/JVI.01587-06
– ident: e_1_3_2_8_2
  doi: 10.1016/S0065-2776(08)60733-6
– ident: e_1_3_2_9_2
  doi: 10.1016/0042-6822(75)90311-6
– ident: e_1_3_2_50_2
  doi: 10.1099/vir.0.83385-0
– ident: e_1_3_2_6_2
  doi: 10.1128/CMR.17.2.465-493.2004
– ident: e_1_3_2_68_2
  doi: 10.1006/viro.1995.0030
– ident: e_1_3_2_11_2
  doi: 10.1099/0022-1317-30-3-317
– ident: e_1_3_2_56_2
  doi: 10.1128/jvi.42.3.1017-1028.1982
– ident: e_1_3_2_16_2
  doi: 10.1128/JVI.01033-12
– ident: e_1_3_2_66_2
  doi: 10.1128/MCB.00986-10
– ident: e_1_3_2_23_2
  doi: 10.1128/mr.45.2.287-315.1981
– ident: e_1_3_2_28_2
  doi: 10.1126/science.2994218
– ident: e_1_3_2_14_2
  doi: 10.1099/vir.0.050492-0
– ident: e_1_3_2_21_2
  doi: 10.1128/jvi.65.5.2372-2380.1991
– ident: e_1_3_2_55_2
  doi: 10.1002/j.1460-2075.1989.tb08406.x
– ident: e_1_3_2_18_2
  doi: 10.1038/327482a0
– ident: e_1_3_2_51_2
  doi: 10.1016/j.jviromet.2014.08.020
– ident: e_1_3_2_7_2
  doi: 10.1128/MMBR.00012-14
– ident: e_1_3_2_31_2
  doi: 10.1002/pro.5560051107
– ident: e_1_3_2_54_2
  doi: 10.1128/jvi.64.5.2433-2436.1990
– ident: e_1_3_2_26_2
  doi: 10.1038/337709a0
– ident: e_1_3_2_62_2
  doi: 10.1128/jvi.64.9.4099-4107.1990
– ident: e_1_3_2_22_2
  doi: 10.1016/S0065-3527(08)60069-X
– volume: 288
  start-page: 9
  year: 2005
  ident: e_1_3_2_4_2
  article-title: Foot-and-mouth disease: host range and pathogenesis
  publication-title: Curr Top Microbiol Immunol
  contributor:
    fullname: Alexandersen S
– ident: e_1_3_2_19_2
  doi: 10.1128/JVI.01263-09
– ident: e_1_3_2_29_2
  doi: 10.1038/317145a0
– ident: e_1_3_2_40_2
  doi: 10.1371/journal.ppat.1004039
– volume-title: Molecular cloning: a laboratory manual
  year: 1989
  ident: e_1_3_2_73_2
  contributor:
    fullname: Sambrook J
– ident: e_1_3_2_46_2
  doi: 10.1007/s00280-004-0939-2
– ident: e_1_3_2_3_2
  doi: 10.1016/j.cell.2015.01.032
– ident: e_1_3_2_42_2
  doi: 10.1016/j.virol.2013.05.001
– ident: e_1_3_2_48_2
  doi: 10.1021/jm980403y
– ident: e_1_3_2_67_2
  doi: 10.1126/science.1068408
– ident: e_1_3_2_44_2
  doi: 10.1128/JVI.00315-15
– ident: e_1_3_2_64_2
  doi: 10.1016/j.cell.2007.07.036
– ident: e_1_3_2_39_2
  doi: 10.1007/s12192-011-0262-x
– ident: e_1_3_2_58_2
  doi: 10.1146/annurev.micro.56.012302.160757
– ident: e_1_3_2_17_2
  doi: 10.1016/0042-6822(91)90091-O
– ident: e_1_3_2_37_2
  doi: 10.1016/j.bbamcr.2011.11.007
– ident: e_1_3_2_59_2
  doi: 10.1038/ng1583
– ident: e_1_3_2_69_2
  doi: 10.1128/jvi.67.4.2336-2343.1993
SSID ssj0014464
Score 2.4148347
Snippet Productive picornavirus infection requires the hijacking of host cell pathways to aid with the different stages of virus entry, synthesis of the viral...
ABSTRACT Productive picornavirus infection requires the hijacking of host cell pathways to aid with the different stages of virus entry, synthesis of the viral...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
SubjectTerms 3C Viral Proteases
Animals
Benzoquinones - pharmacology
Capsid Proteins - drug effects
Capsid Proteins - metabolism
Cell Line
Cell Survival
Cell-Free System
Cricetinae
Cysteine Endopeptidases - genetics
Cysteine Endopeptidases - metabolism
Foot-and-Mouth Disease - metabolism
Foot-and-Mouth Disease Virus - genetics
Foot-and-Mouth Disease Virus - growth & development
Foot-and-Mouth Disease Virus - metabolism
HSP90 Heat-Shock Proteins - drug effects
HSP90 Heat-Shock Proteins - metabolism
Isoxazoles - pharmacology
Lactams, Macrocyclic - pharmacology
Molecular Chaperones - metabolism
Protein Precursors - drug effects
Protein Precursors - metabolism
Protein Processing, Post-Translational
Resorcinols - pharmacology
RNA, Viral - genetics
RNA, Viral - metabolism
Structure and Assembly
Viral Proteins - drug effects
Viral Proteins - genetics
Viral Proteins - metabolism
Virus Assembly - genetics
Virus Assembly - physiology
Virus Replication
Title The Cellular Chaperone Heat Shock Protein 90 Is Required for Foot-and-Mouth Disease Virus Capsid Precursor Processing and Assembly of Capsid Pentamers
URI https://www.ncbi.nlm.nih.gov/pubmed/29212943
https://search.proquest.com/docview/1974013091
https://pubmed.ncbi.nlm.nih.gov/PMC5809743
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCbaAgV2GbZ2j-xRcMB2VGJbtiwdh2xBWiBDsa1FboYkS2iAxA7yOPSP7PeO8iNYttvOlgzbpMmP4kcS4GNihTCRdcxR9MNSzxVTMvaMe2HJGPJS2VA7PPsmpnfpzTybn0DW18I0pH1rFsNquRpWi4eGW7le2VHPExvdzsaZjAgG89EpnJKC9iF6lzqg-CbtW4TT3zzv2e6JHN3cXw8DsTFjcRi-lyiy2yrlxy7pH5z5N13yD_8zeQZPO-CIn9sHfA4nrrqA83aU5OMl_CJ549gtl4FWiqGqwG3qyuGUbC3-eCCrh7ehJcOiQhXh9Ra_u8ABdiUSasVJXe-Yrko2CxP18EubtcH7xWa_xbFek8rS9nA0v6XVXXEBOT2kPRjyxiuzfMTaH9YGRno4EX8Bd5OvP8dT1s1cYJbLdMe84II7nhhCbpHPrRWED7l2hKuMFc6mVsaaa6GtSSIVefJuXJUm18qLjOeWv4Szil7vNaAwyibcx4YQS5rq3GSENkktSmmczrUcwKf-sxfrtrVG0YQkiSxIUkUjqSLOB_Chl0lBuh8SGrpy9X5bxKqZJ0iQZwCvWhkd7tQLdwD5kfQOC0Jf7eMrpG5Nf-1Ovd7898638IRwlWypau_gbLfZu_eEXXbmqtHV3ypS77g
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIQQvjG8KA4wEj06T2HHiR9Stasc6TbBVfYtsx9Eq2qRq04fxh_D3cs5HRccTPNuOYt357ne-n-8APoVGCO0bSy1GP5TnTFKZBDlluTBoDFkmjXs7PLkQo2t-NotmBxB1b2Fq0r7Rc69YLL1iflNzK1dL0-94Yv3LySBKfITBrH8P7uN59XkXpLfJA4xweFckHMdnHd89TPpn07HnqI0RDVz7vVCi5Zac7Tulv5DmXcLkHx5oeATT7t8b4skPb1tpz_y8U9bxnzf3BB63mJR8aYafwoEtnsGDpkvl7XP4hapEBnaxcIxV4h4s2HVZWDJCM06-36BBJZeu2sO8INIn4w35Zh292GYEATEZlmVFVZHRiWvWR06ahBCZztfbDRmoFZ4GXO5u_Tc4u323gP6U4BriUtJLvbglZb6b68ju7rL9BVwPT68GI9q2c6CGJbyiuWCCWRZqBIV-HhsjEHoyZRGyaSOs4SYJFFNCGR360s_RcTKZ6VjJXEQsNuwlHBa4vddAhJYmZHmgEQxxrmIdIZBFjcsSbVWskh587uSZrpqqHWkd7YRJiiqQ1iqQBnEPPnbCTvFYuVyJKmy53aSBrFsVIprqwatG-LsvdVrTg3hPLXYTXMnu_REUdl26uxXum_9e-QEejq4m5-n5-OLrW3iE8C1pGHHHcFitt_YdQqRKv68PxG9QcxHB
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZgEYgL70d5DhIcnZcTJz6iLlW70FUF7KriEtmOra1ok6pND8sP4fcyzqPaLrc9exzF8jy-sT_PEPIx0pyrQBtqMPuhsWWCiiy0lFmu0RmyQmj3dnh6ysdn8ck8mV9p9dWQ9rVaeOVy5ZWLi4ZbuV5pv-eJ-bPpMMkChMHMXxfWv03uoM0GvE_UuwsEzHLivlA4js97znuU-SfnE8_RGxMauhZ8kUDvLWJ2GJj-Q5vXSZNXotDoIfnV_39LPvnt7Wrl6T_XSjveaIGPyIMOm8LnVuQxuWXKJ-Ru263y8in5iyoFQ7NcOuYquIcLZlOVBsbozuHHBTpWmLmqD4sSRACTLXw3jmZsCkBgDKOqqqksCzp1TfvguL0YgvPFZreFoVyjVeB0d_q_Renu_QLGVcA54K6mV2p5CZXdyzrSuzt0f0bORl9-Dse0a-tANcvimlrOODMsUggOA5tqzRGCMmkQuinNjY51FkomudQqCkRgMYAyUahUCssTlmr2nByVuLyXBLgSOmI2VAiK4limKkFAi5pXZMrIVGYD8qnf03zdVu_Im6wnynJUg7xRgzxMB-RDv-E5mpe7M5GlqXbbPBRNy0JEVQPyolWA_Zd6zRmQ9EA19gKudPfhCG54U8K72-BXN575ntybHY_yb5PTr6_JfURxWUuMe0OO6s3OvEWkVKt3jU38A9uXFEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Cellular+Chaperone+Heat+Shock+Protein+90+Is+Required+for+Foot-and-Mouth+Disease+Virus+Capsid+Precursor+Processing+and+Assembly+of+Capsid+Pentamers&rft.jtitle=Journal+of+virology&rft.au=Newman%2C+Joseph&rft.au=As%2C+Amin+S&rft.au=Berryman%2C+Stephen&rft.au=Jackson%2C+Terry&rft.date=2018-03-01&rft.eissn=1098-5514&rft.volume=92&rft.issue=5&rft_id=info:doi/10.1128%2FJVI.01415-17&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon