AutoRadAI: a versatile artificial intelligence framework validated for detecting extracapsular extension in prostate cancer

Preoperative identification of extracapsular extension (ECE) in prostate cancer (PCa) is crucial for effective treatment planning, as ECE presence significantly increases the risk of positive surgical margins and early biochemical recurrence following radical prostatectomy. AutoRadAI, an innovative...

Full description

Saved in:
Bibliographic Details
Published inBiology methods and protocols Vol. 10; no. 1; p. bpaf032
Main Authors Khosravi, Pegah, Saikali, Shady, Alipour, Abolfazl, Mohammadi, Saber, Boger, Maxwell, Diallo, Dalanda M, Smith, Christopher J, Moschovas, Marcio C, Hajirasouliha, Iman, Hung, Andrew J, Venkataraman, Srirama S, Patel, Vipul
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.01.2025
Subjects
Online AccessGet full text
ISSN2396-8923
2396-8923
DOI10.1093/biomethods/bpaf032

Cover

Abstract Preoperative identification of extracapsular extension (ECE) in prostate cancer (PCa) is crucial for effective treatment planning, as ECE presence significantly increases the risk of positive surgical margins and early biochemical recurrence following radical prostatectomy. AutoRadAI, an innovative artificial intelligence (AI) framework, was developed to address this clinical challenge while demonstrating broader potential for diverse medical imaging applications. The framework integrates T2-weighted MRI data with histopathology annotations, leveraging a dual convolutional neural network (multi-CNN) architecture. AutoRadAI comprises two key components: ProSliceFinder, which isolates prostate-relevant MRI slices, and ExCapNet, which evaluates ECE likelihood at the patient level. The system was trained and validated on a dataset of 1001 patients (510 ECE-positive, 491 ECE-negative cases). ProSliceFinder achieved an area under the ROC curve (AUC) of 0.92 (95% confidence interval [CI]: 0.89–0.94) for slice classification, while ExCapNet demonstrated robust performance with an AUC of 0.88 (95% CI: 0.83–0.92) for patient-level ECE detection. Additionally, AutoRadAI’s modular design ensures scalability and adaptability for applications beyond ECE detection. Validated through a user-friendly web-based interface for seamless clinical integration, AutoRadAI highlights the potential of AI-driven solutions in precision oncology. This framework improves diagnostic accuracy and streamlines preoperative staging, offering transformative applications in PCa management and beyond.
AbstractList Preoperative identification of extracapsular extension (ECE) in prostate cancer (PCa) is crucial for effective treatment planning, as ECE presence significantly increases the risk of positive surgical margins and early biochemical recurrence following radical prostatectomy. AutoRadAI, an innovative artificial intelligence (AI) framework, was developed to address this clinical challenge while demonstrating broader potential for diverse medical imaging applications. The framework integrates T2-weighted MRI data with histopathology annotations, leveraging a dual convolutional neural network (multi-CNN) architecture. AutoRadAI comprises two key components: ProSliceFinder, which isolates prostate-relevant MRI slices, and ExCapNet, which evaluates ECE likelihood at the patient level. The system was trained and validated on a dataset of 1001 patients (510 ECE-positive, 491 ECE-negative cases). ProSliceFinder achieved an area under the ROC curve (AUC) of 0.92 (95% confidence interval [CI]: 0.89–0.94) for slice classification, while ExCapNet demonstrated robust performance with an AUC of 0.88 (95% CI: 0.83–0.92) for patient-level ECE detection. Additionally, AutoRadAI’s modular design ensures scalability and adaptability for applications beyond ECE detection. Validated through a user-friendly web-based interface for seamless clinical integration, AutoRadAI highlights the potential of AI-driven solutions in precision oncology. This framework improves diagnostic accuracy and streamlines preoperative staging, offering transformative applications in PCa management and beyond.
Preoperative identification of extracapsular extension (ECE) in prostate cancer (PCa) is crucial for effective treatment planning, as ECE presence significantly increases the risk of positive surgical margins and early biochemical recurrence following radical prostatectomy. AutoRadAI, an innovative artificial intelligence (AI) framework, was developed to address this clinical challenge while demonstrating broader potential for diverse medical imaging applications. The framework integrates T2-weighted MRI data with histopathology annotations, leveraging a dual convolutional neural network (multi-CNN) architecture. AutoRadAI comprises two key components: ProSliceFinder, which isolates prostate-relevant MRI slices, and ExCapNet, which evaluates ECE likelihood at the patient level. The system was trained and validated on a dataset of 1001 patients (510 ECE-positive, 491 ECE-negative cases). ProSliceFinder achieved an area under the ROC curve (AUC) of 0.92 (95% confidence interval [CI]: 0.89-0.94) for slice classification, while ExCapNet demonstrated robust performance with an AUC of 0.88 (95% CI: 0.83-0.92) for patient-level ECE detection. Additionally, AutoRadAI's modular design ensures scalability and adaptability for applications beyond ECE detection. Validated through a user-friendly web-based interface for seamless clinical integration, AutoRadAI highlights the potential of AI-driven solutions in precision oncology. This framework improves diagnostic accuracy and streamlines preoperative staging, offering transformative applications in PCa management and beyond.Preoperative identification of extracapsular extension (ECE) in prostate cancer (PCa) is crucial for effective treatment planning, as ECE presence significantly increases the risk of positive surgical margins and early biochemical recurrence following radical prostatectomy. AutoRadAI, an innovative artificial intelligence (AI) framework, was developed to address this clinical challenge while demonstrating broader potential for diverse medical imaging applications. The framework integrates T2-weighted MRI data with histopathology annotations, leveraging a dual convolutional neural network (multi-CNN) architecture. AutoRadAI comprises two key components: ProSliceFinder, which isolates prostate-relevant MRI slices, and ExCapNet, which evaluates ECE likelihood at the patient level. The system was trained and validated on a dataset of 1001 patients (510 ECE-positive, 491 ECE-negative cases). ProSliceFinder achieved an area under the ROC curve (AUC) of 0.92 (95% confidence interval [CI]: 0.89-0.94) for slice classification, while ExCapNet demonstrated robust performance with an AUC of 0.88 (95% CI: 0.83-0.92) for patient-level ECE detection. Additionally, AutoRadAI's modular design ensures scalability and adaptability for applications beyond ECE detection. Validated through a user-friendly web-based interface for seamless clinical integration, AutoRadAI highlights the potential of AI-driven solutions in precision oncology. This framework improves diagnostic accuracy and streamlines preoperative staging, offering transformative applications in PCa management and beyond.
Author Saikali, Shady
Boger, Maxwell
Moschovas, Marcio C
Venkataraman, Srirama S
Khosravi, Pegah
Alipour, Abolfazl
Smith, Christopher J
Diallo, Dalanda M
Hung, Andrew J
Patel, Vipul
Mohammadi, Saber
Hajirasouliha, Iman
Author_xml – sequence: 1
  givenname: Pegah
  orcidid: 0000-0003-3497-2820
  surname: Khosravi
  fullname: Khosravi, Pegah
– sequence: 2
  givenname: Shady
  surname: Saikali
  fullname: Saikali, Shady
– sequence: 3
  givenname: Abolfazl
  surname: Alipour
  fullname: Alipour, Abolfazl
– sequence: 4
  givenname: Saber
  orcidid: 0000-0002-9218-1616
  surname: Mohammadi
  fullname: Mohammadi, Saber
– sequence: 5
  givenname: Maxwell
  surname: Boger
  fullname: Boger, Maxwell
– sequence: 6
  givenname: Dalanda M
  surname: Diallo
  fullname: Diallo, Dalanda M
– sequence: 7
  givenname: Christopher J
  surname: Smith
  fullname: Smith, Christopher J
– sequence: 8
  givenname: Marcio C
  surname: Moschovas
  fullname: Moschovas, Marcio C
– sequence: 9
  givenname: Iman
  orcidid: 0000-0002-0600-3371
  surname: Hajirasouliha
  fullname: Hajirasouliha, Iman
– sequence: 10
  givenname: Andrew J
  surname: Hung
  fullname: Hung, Andrew J
– sequence: 11
  givenname: Srirama S
  surname: Venkataraman
  fullname: Venkataraman, Srirama S
– sequence: 12
  givenname: Vipul
  surname: Patel
  fullname: Patel, Vipul
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40438790$$D View this record in MEDLINE/PubMed
BookMark eNpdkk1vFSEYhYmpsbX2D7gwJG7cXMvH3BlwY24aP5o0MTG6Ju8wL7fUGRiBudX0z5em11pdAeHh5LyH85wchBiQkJecveVMy9PexwnLZRzyaT-DY1I8IUdC6naltJAHj_aH5CTnK8YYV82aM_6MHDaskarT7IjcbJYSv8KwOX9Hge4wZSh-RAqpeOeth5H6UHAc_RaDReoSTHgd0w-6g9EPUHCgLiY6YEFbfNhS_FUSWJjzMkK6O2HIPoYqQ-cUc6lPqIWqlV6Qpw7GjCf79Zh8__jh29nn1cWXT-dnm4uVlaopK7d2nbQCJB86rbtW1aGU1lw7JdGte6XRtag64Gsr2qbroO8dh2ZoVN90gPKYvL_XnZd-wsFiqA5HMyc_QfptInjz703wl2Ybd4YLzjWXvCq82Suk-HPBXMzks62pQMC4ZCMFly1nrBUVff0fehWXFOp8laqhMy5FU6lXjy09ePnzMRUQ94CtmeWE7gHhzNwVwPwtgNkXQN4CeOeqTg
Cites_doi 10.3390/cancers14153687
10.3389/fonc.2024.1344050
10.1016/S1470-2045(19)30738-7
10.1038/s41598-022-08022-5
10.1038/s41598-023-49159-1
10.1038/pcan.2016.24
10.1111/bju.14026
10.1002/jmri.27599
10.1002/jmri.27678
10.1007/s00330-021-07856-3
10.1186/s40644-021-00414-6
10.1016/j.eururo.2020.09.037
10.1007/s11255-022-03365-4
10.3390/cancers14122821
10.1002/jmri.29247
10.1007/s00259-021-05381-5
10.1186/s41747-024-00452-2
10.1016/j.ejrad.2024.111798
10.1016/j.eururo.2019.09.005
10.1016/j.urolonc.2019.08.006
10.1186/s13244-023-01486-7
10.1186/s40644-024-00666-y
10.1016/S0140-6736(16)32401-1
10.1002/jmri.28608
10.1038/s41568-021-00408-3
10.1259/bjr.20190480
ContentType Journal Article
Copyright The Author(s) 2025. Published by Oxford University Press.
The Author(s) 2025. Published by Oxford University Press. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025. Published by Oxford University Press. 2025
Copyright_xml – notice: The Author(s) 2025. Published by Oxford University Press.
– notice: The Author(s) 2025. Published by Oxford University Press. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025. Published by Oxford University Press. 2025
DBID AAYXX
CITATION
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
DOI 10.1093/biomethods/bpaf032
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2396-8923
ExternalDocumentID PMC12119131
40438790
10_1093_biomethods_bpaf032
Genre Journal Article
GrantInformation_xml – fundername: ;
GroupedDBID 0R~
53G
AAFWJ
AAPXW
AAVAP
AAYXX
ABDBF
ABEJV
ABGNP
ABPTD
ABXVV
ACGFS
ACUHS
AENZO
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AMNDL
AVWKF
BAYMD
BBNVY
BENPR
BHPHI
CCPQU
CITATION
EBS
ESX
GROUPED_DOAJ
H13
HCIFZ
IAO
IHR
ISR
KSI
M7P
M~E
O9-
OAWHX
OJQWA
OK1
PEELM
PHGZM
PHGZT
PIMPY
PQGLB
PUEGO
RPM
TOX
EJD
ITC
NPM
PMFND
8FE
8FH
ABUWG
AZQEC
DWQXO
GNUQQ
LK8
PKEHL
PQEST
PQQKQ
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c384t-f5f73c2a31d79976889289919f83ef5b89ef6e87a15c26477abbf1a4d48b47ae3
IEDL.DBID BENPR
ISSN 2396-8923
IngestDate Thu Aug 21 18:37:05 EDT 2025
Fri Sep 05 16:03:31 EDT 2025
Sat Sep 06 07:08:18 EDT 2025
Sun Jun 01 01:35:27 EDT 2025
Wed Sep 10 05:38:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords extracapsular extension
deep learning
prostate cancer
MRI
artificial intelligence
Language English
License https://creativecommons.org/licenses/by/4.0
The Author(s) 2025. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c384t-f5f73c2a31d79976889289919f83ef5b89ef6e87a15c26477abbf1a4d48b47ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9218-1616
0000-0002-0600-3371
0000-0003-3497-2820
OpenAccessLink https://www.proquest.com/docview/3238701324?pq-origsite=%requestingapplication%
PMID 40438790
PQID 3238701324
PQPubID 7121356
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_12119131
proquest_miscellaneous_3213610062
proquest_journals_3238701324
pubmed_primary_40438790
crossref_primary_10_1093_biomethods_bpaf032
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Biology methods and protocols
PublicationTitleAlternate Biol Methods Protoc
PublicationYear 2025
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Sun (2025052819562840800_bpaf032-B3) 2023; 58
Glielmo (2025052819562840800_bpaf032-B5) 2024; 8
Khosravi (2025052819562840800_bpaf032-B17) 2021; 54
Wang (2025052819562840800_bpaf032-B8) 2024; 14
Katal (2025052819562840800_bpaf032-B6) 2024; 181
Gandaglia (2025052819562840800_bpaf032-B10) 2020; 77
Cuocolo (2025052819562840800_bpaf032-B25) 2021; 31
Hou (2025052819562840800_bpaf032-B15) 2021; 48
Maubon (2025052819562840800_bpaf032-B11) 2016; 19
Ström (2025052819562840800_bpaf032-B4) 2020; 21
Patel (2025052819562840800_bpaf032-B20) 2018; 121
Khosravi (2025052819562840800_bpaf032-B1) 2024; 60
Sighinolfi (2025052819562840800_bpaf032-B21) 2023; 55
Zhu (2025052819562840800_bpaf032-B22) 2023; 14
Moroianu (2025052819562840800_bpaf032-B16) 2022; 14
Song (2025052819562840800_bpaf032-B14) 2023; 109
Chui (2025052819562840800_bpaf032-B2) 2022; 14
Zhang (2025052819562840800_bpaf032-B12) 2019; 92
Jeong (2025052819562840800_bpaf032-B7) 2022; 12
Bai (2025052819562840800_bpaf032-B26) 2021; 54
He (2025052819562840800_bpaf032-B27) 2021; 21
Huang (2025052819562840800_bpaf032-B13) 2023; 13
Boehm (2025052819562840800_bpaf032-B18) 2022; 22
Guerra (2025052819562840800_bpaf032-B24) 2024; 24
Glaser (2025052819562840800_bpaf032-B19) 2019; 37
Ahmed (2025052819562840800_bpaf032-B23) 2017; 389
Diamand (2025052819562840800_bpaf032-B9) 2021; 79
References_xml – volume: 14
  year: 2022
  ident: 2025052819562840800_bpaf032-B2
  article-title: Transfer learning-based multi-scale denoising convolutional neural network for prostate cancer detection
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers14153687
– volume: 14
  start-page: 1344050
  year: 2024
  ident: 2025052819562840800_bpaf032-B8
  article-title: Imaging classification of prostate cancer with extracapsular extension and its impact on positive surgical margins after laparoscopic radical prostatectomy
  publication-title: Front Oncol
  doi: 10.3389/fonc.2024.1344050
– volume: 21
  start-page: 222
  year: 2020
  ident: 2025052819562840800_bpaf032-B4
  article-title: Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(19)30738-7
– volume: 12
  start-page: 4066
  year: 2022
  ident: 2025052819562840800_bpaf032-B7
  article-title: Prediction of surgical margin status and location after radical prostatectomy using positive biopsy sites on 12-core standard prostate biopsy
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-08022-5
– volume: 13
  start-page: 21849
  year: 2023
  ident: 2025052819562840800_bpaf032-B13
  article-title: Transfer learning with CNNs for efficient prostate cancer and BPH detection in transrectal ultrasound images
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-49159-1
– volume: 19
  start-page: 317
  year: 2016
  ident: 2025052819562840800_bpaf032-B11
  article-title: Impact of the extent of extraprostatic extension defined by Epstein’s method in patients with negative surgical margins and negative lymph node invasion
  publication-title: Prostate Cancer Prostatic Dis
  doi: 10.1038/pcan.2016.24
– volume: 109
  start-page: 3848
  year: 2023
  ident: 2025052819562840800_bpaf032-B14
  article-title: Artificial intelligence-aided detection for prostate cancer with multimodal routine health check-up data: an Asian multi-center study
  publication-title: Int J Surg
– volume: 121
  start-page: 373
  year: 2018
  ident: 2025052819562840800_bpaf032-B20
  article-title: A novel tool for predicting extracapsular extension during graded partial nerve sparing in radical prostatectomy
  publication-title: BJU Int
  doi: 10.1111/bju.14026
– volume: 54
  start-page: 462
  year: 2021
  ident: 2025052819562840800_bpaf032-B17
  article-title: A deep learning approach to diagnostic classification of prostate cancer using pathology-radiology fusion
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.27599
– volume: 54
  start-page: 1222
  year: 2021
  ident: 2025052819562840800_bpaf032-B26
  article-title: Multiparametric magnetic resonance imaging-based peritumoral radiomics for preoperative prediction of the presence of extracapsular extension with prostate cancer
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.27678
– volume: 31
  start-page: 7575
  year: 2021
  ident: 2025052819562840800_bpaf032-B25
  article-title: MRI index lesion radiomics and machine learning for detection of extraprostatic extension of disease: a multicenter study
  publication-title: Eur Radiol
  doi: 10.1007/s00330-021-07856-3
– volume: 21
  start-page: 46
  year: 2021
  ident: 2025052819562840800_bpaf032-B27
  article-title: MRI-based radiomics models to assess prostate cancer, extracapsular extension and positive surgical margins
  publication-title: Cancer Imaging
  doi: 10.1186/s40644-021-00414-6
– volume: 79
  start-page: 180
  year: 2021
  ident: 2025052819562840800_bpaf032-B9
  article-title: External validation of a multiparametric magnetic resonance imaging-based nomogram for the prediction of extracapsular extension and seminal vesicle invasion in prostate cancer patients undergoing radical prostatectomy
  publication-title: Eur Urol
  doi: 10.1016/j.eururo.2020.09.037
– volume: 55
  start-page: 93
  year: 2023
  ident: 2025052819562840800_bpaf032-B21
  article-title: Pre-operative prediction of extracapsular extension of prostate cancer: first external validation of the PRECE model on an independent dataset
  publication-title: Int Urol Nephrol
  doi: 10.1007/s11255-022-03365-4
– volume: 14
  year: 2022
  ident: 2025052819562840800_bpaf032-B16
  article-title: Computational detection of extraprostatic extension of prostate cancer on multiparametric MRI using deep learning
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers14122821
– volume: 60
  start-page: 2272
  year: 2024
  ident: 2025052819562840800_bpaf032-B1
  article-title: AI-enhanced detection of clinically relevant structural and functional anomalies in MRI: traversing the landscape of conventional to explainable approaches
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.29247
– volume: 48
  start-page: 3805
  year: 2021
  ident: 2025052819562840800_bpaf032-B15
  article-title: Artificial intelligence is a promising prospect for the detection of prostate cancer extracapsular extension with mpMRI: a two-center comparative study
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-021-05381-5
– volume: 8
  start-page: 62
  year: 2024
  ident: 2025052819562840800_bpaf032-B5
  article-title: Artificial intelligence in interventional radiology: state of the art
  publication-title: Eur Radiol Exp
  doi: 10.1186/s41747-024-00452-2
– volume: 181
  start-page: 111798
  year: 2024
  ident: 2025052819562840800_bpaf032-B6
  article-title: AI in radiology: from promise to practice—a guide to effective integration
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2024.111798
– volume: 77
  start-page: 733
  year: 2020
  ident: 2025052819562840800_bpaf032-B10
  article-title: The key combined value of multiparametric magnetic resonance imaging, and magnetic resonance imaging-targeted and concomitant systematic biopsies for the prediction of adverse pathological features in prostate cancer patients undergoing radical prostatectomy
  publication-title: Eur Urol
  doi: 10.1016/j.eururo.2019.09.005
– volume: 37
  start-page: 970
  year: 2019
  ident: 2025052819562840800_bpaf032-B19
  article-title: Evaluation of MSKCC Preprostatectomy nomogram in men who undergo MRI-targeted prostate biopsy prior to radical prostatectomy
  publication-title: Urol Oncol
  doi: 10.1016/j.urolonc.2019.08.006
– volume: 14
  start-page: 140
  year: 2023
  ident: 2025052819562840800_bpaf032-B22
  article-title: Diagnostic performance of prediction models for extraprostatic extension in prostate cancer: a systematic review and meta-analysis
  publication-title: Insights Imaging
  doi: 10.1186/s13244-023-01486-7
– volume: 24
  start-page: 24
  year: 2024
  ident: 2025052819562840800_bpaf032-B24
  article-title: Clinical application of machine learning models in patients with prostate cancer before prostatectomy
  publication-title: Cancer Imaging
  doi: 10.1186/s40644-024-00666-y
– volume: 389
  start-page: 815
  year: 2017
  ident: 2025052819562840800_bpaf032-B23
  article-title: Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(16)32401-1
– volume: 58
  start-page: 1067
  year: 2023
  ident: 2025052819562840800_bpaf032-B3
  article-title: Deep-learning models for detection and localization of visible clinically significant prostate cancer on multi-parametric MRI
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.28608
– volume: 22
  start-page: 114
  year: 2022
  ident: 2025052819562840800_bpaf032-B18
  article-title: Harnessing multimodal data integration to advance precision oncology
  publication-title: Nat Rev Cancer
  doi: 10.1038/s41568-021-00408-3
– volume: 92
  start-page: 20190480
  year: 2019
  ident: 2025052819562840800_bpaf032-B12
  article-title: Accuracy of multiparametric magnetic resonance imaging for detecting extracapsular extension in prostate cancer: a systematic review and meta-analysis
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20190480
SSID ssj0001845101
Score 2.2783313
Snippet Preoperative identification of extracapsular extension (ECE) in prostate cancer (PCa) is crucial for effective treatment planning, as ECE presence...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage bpaf032
SubjectTerms Artificial intelligence
Magnetic resonance imaging
Methods
Neural networks
Patients
Precision medicine
Prostate cancer
Prostatectomy
Title AutoRadAI: a versatile artificial intelligence framework validated for detecting extracapsular extension in prostate cancer
URI https://www.ncbi.nlm.nih.gov/pubmed/40438790
https://www.proquest.com/docview/3238701324
https://www.proquest.com/docview/3213610062
https://pubmed.ncbi.nlm.nih.gov/PMC12119131
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA46EXwR707niOCblLVN2qa-yBRFBS_IBnsraS44kG7u8iD-ec9ps80p-NKXpGnJOcm5f4eQs9BEgsXMenGaSI8r7ntCK-OFimkWKTCcS-D5x6f4rssfelHPOdzGLq1ydieWF7UeKPSRtxjIlgQDA_xy-OFh1yiMrroWGqtkDa5gAXy-dnXz9PK68LIIjkznqmXAem-VVe3Ym3ncyofS-ixclkh_1Mzf2ZI_xM_tFtl0eiNtV4TeJium2CHrVSfJz13y1Z5OBq9St-8vqKSYagE7_m4oMkaFEUH7P8A3qZ3lZFHgtD5a_ZqC-kq1waACiDMKl_ZIKglGNNi-tPSVo2MNlqFDrBSBV6hClhntke7tTef6znN9FTzFBJ94NrIJU6FkgU5SUEeESNHsClIrmLFRLlJjYyMSGUQqxEJVmec2kFxzkfNEGrZPasWgMIeEqihOtG-ZzUHMGW6ktSLwDYuFiUMbpHVyPtvbbFjBZ2RV2JtlC0pkjhJ10phtf-aO0jhbEL5OTufDcAgwsiELM5jinICBHujHsMRBRa355xA-SCSpXydiiY7zCQiwvTxS9N9KoO0K_o4FR___1zHZCLErcOmYaZDaZDQ1J6CqTPKm48dmaerDs_Pc-wYMOPLH
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD7ULaIv4t3VVkfQJwmbzEySSUHKqi27tl2ktNC3dDIXXJDsuhek-J_8jT0nl92ugm99zmQS5nwz5zbnOwDvuIuVSIQPkizVgTQyDJQ1LuBGWBEbdJwr4vmTUTI4l18v4ost-NPWwtC1yvZMrA5qOzEUI-8J1C0pJQbk_vRnQF2jKLvattCoYXHkrn6hyzb_OPyC8n3P-eHB2edB0HQVCIxQchH42KfCcC0im2aojJXKyOmIMq-E83GhMucTp1IdxYZTmaYuCh9paaUqZKqdwHnvwLakitYObH86GH07XUd1lCSQN9U5YSZ6VRU99YKe94qp9qHgmxrwH7P279uZN9Td4UN40NiprF8D6xFsufIx3K07V149gd_95WJyqm1_uMc0o6sdKOEfjhEQa04KNr5B9sl8eweMIbLHFGWwDM1lZh0lMVB9MlQSM200Ou3oa7MqNk-BPJyGTakyBV9hhiA6ewrnt7Liz6BTTkr3ApiJk9SGXvgC1aqTTnuvotCJRLmE-yjrwod2bfNpTdeR12l2ka8lkTeS6MJOu_x5s3Xn-RpoXXi7eoybjjIpunSTJY2JBNqdYYJTPK-ltfoc0RWpNAu7oDbkuBpAhN6bT8rx94rYu6bbE9HL___XG7g3ODs5zo-Ho6NXcJ9TR-IqKLQDncVs6XbRTFoUrxtsMri87e1wDeaDLZI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AutoRadAI%3A+a+versatile+artificial+intelligence+framework+validated+for+detecting+extracapsular+extension+in+prostate+cancer&rft.jtitle=Biology+methods+and+protocols&rft.au=Khosravi%2C+Pegah&rft.au=Saikali%2C+Shady&rft.au=Alipour%2C+Abolfazl&rft.au=Mohammadi%2C+Saber&rft.date=2025-01-01&rft.eissn=2396-8923&rft.volume=10&rft.issue=1&rft.spage=bpaf032&rft_id=info:doi/10.1093%2Fbiomethods%2Fbpaf032&rft_id=info%3Apmid%2F40438790&rft.externalDocID=40438790
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2396-8923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2396-8923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2396-8923&client=summon