AutoRadAI: a versatile artificial intelligence framework validated for detecting extracapsular extension in prostate cancer
Preoperative identification of extracapsular extension (ECE) in prostate cancer (PCa) is crucial for effective treatment planning, as ECE presence significantly increases the risk of positive surgical margins and early biochemical recurrence following radical prostatectomy. AutoRadAI, an innovative...
Saved in:
Published in | Biology methods and protocols Vol. 10; no. 1; p. bpaf032 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2396-8923 2396-8923 |
DOI | 10.1093/biomethods/bpaf032 |
Cover
Abstract | Preoperative identification of extracapsular extension (ECE) in prostate cancer (PCa) is crucial for effective treatment planning, as ECE presence significantly increases the risk of positive surgical margins and early biochemical recurrence following radical prostatectomy. AutoRadAI, an innovative artificial intelligence (AI) framework, was developed to address this clinical challenge while demonstrating broader potential for diverse medical imaging applications. The framework integrates T2-weighted MRI data with histopathology annotations, leveraging a dual convolutional neural network (multi-CNN) architecture. AutoRadAI comprises two key components: ProSliceFinder, which isolates prostate-relevant MRI slices, and ExCapNet, which evaluates ECE likelihood at the patient level. The system was trained and validated on a dataset of 1001 patients (510 ECE-positive, 491 ECE-negative cases). ProSliceFinder achieved an area under the ROC curve (AUC) of 0.92 (95% confidence interval [CI]: 0.89–0.94) for slice classification, while ExCapNet demonstrated robust performance with an AUC of 0.88 (95% CI: 0.83–0.92) for patient-level ECE detection. Additionally, AutoRadAI’s modular design ensures scalability and adaptability for applications beyond ECE detection. Validated through a user-friendly web-based interface for seamless clinical integration, AutoRadAI highlights the potential of AI-driven solutions in precision oncology. This framework improves diagnostic accuracy and streamlines preoperative staging, offering transformative applications in PCa management and beyond. |
---|---|
AbstractList | Preoperative identification of extracapsular extension (ECE) in prostate cancer (PCa) is crucial for effective treatment planning, as ECE presence significantly increases the risk of positive surgical margins and early biochemical recurrence following radical prostatectomy. AutoRadAI, an innovative artificial intelligence (AI) framework, was developed to address this clinical challenge while demonstrating broader potential for diverse medical imaging applications. The framework integrates T2-weighted MRI data with histopathology annotations, leveraging a dual convolutional neural network (multi-CNN) architecture. AutoRadAI comprises two key components: ProSliceFinder, which isolates prostate-relevant MRI slices, and ExCapNet, which evaluates ECE likelihood at the patient level. The system was trained and validated on a dataset of 1001 patients (510 ECE-positive, 491 ECE-negative cases). ProSliceFinder achieved an area under the ROC curve (AUC) of 0.92 (95% confidence interval [CI]: 0.89–0.94) for slice classification, while ExCapNet demonstrated robust performance with an AUC of 0.88 (95% CI: 0.83–0.92) for patient-level ECE detection. Additionally, AutoRadAI’s modular design ensures scalability and adaptability for applications beyond ECE detection. Validated through a user-friendly web-based interface for seamless clinical integration, AutoRadAI highlights the potential of AI-driven solutions in precision oncology. This framework improves diagnostic accuracy and streamlines preoperative staging, offering transformative applications in PCa management and beyond. Preoperative identification of extracapsular extension (ECE) in prostate cancer (PCa) is crucial for effective treatment planning, as ECE presence significantly increases the risk of positive surgical margins and early biochemical recurrence following radical prostatectomy. AutoRadAI, an innovative artificial intelligence (AI) framework, was developed to address this clinical challenge while demonstrating broader potential for diverse medical imaging applications. The framework integrates T2-weighted MRI data with histopathology annotations, leveraging a dual convolutional neural network (multi-CNN) architecture. AutoRadAI comprises two key components: ProSliceFinder, which isolates prostate-relevant MRI slices, and ExCapNet, which evaluates ECE likelihood at the patient level. The system was trained and validated on a dataset of 1001 patients (510 ECE-positive, 491 ECE-negative cases). ProSliceFinder achieved an area under the ROC curve (AUC) of 0.92 (95% confidence interval [CI]: 0.89-0.94) for slice classification, while ExCapNet demonstrated robust performance with an AUC of 0.88 (95% CI: 0.83-0.92) for patient-level ECE detection. Additionally, AutoRadAI's modular design ensures scalability and adaptability for applications beyond ECE detection. Validated through a user-friendly web-based interface for seamless clinical integration, AutoRadAI highlights the potential of AI-driven solutions in precision oncology. This framework improves diagnostic accuracy and streamlines preoperative staging, offering transformative applications in PCa management and beyond.Preoperative identification of extracapsular extension (ECE) in prostate cancer (PCa) is crucial for effective treatment planning, as ECE presence significantly increases the risk of positive surgical margins and early biochemical recurrence following radical prostatectomy. AutoRadAI, an innovative artificial intelligence (AI) framework, was developed to address this clinical challenge while demonstrating broader potential for diverse medical imaging applications. The framework integrates T2-weighted MRI data with histopathology annotations, leveraging a dual convolutional neural network (multi-CNN) architecture. AutoRadAI comprises two key components: ProSliceFinder, which isolates prostate-relevant MRI slices, and ExCapNet, which evaluates ECE likelihood at the patient level. The system was trained and validated on a dataset of 1001 patients (510 ECE-positive, 491 ECE-negative cases). ProSliceFinder achieved an area under the ROC curve (AUC) of 0.92 (95% confidence interval [CI]: 0.89-0.94) for slice classification, while ExCapNet demonstrated robust performance with an AUC of 0.88 (95% CI: 0.83-0.92) for patient-level ECE detection. Additionally, AutoRadAI's modular design ensures scalability and adaptability for applications beyond ECE detection. Validated through a user-friendly web-based interface for seamless clinical integration, AutoRadAI highlights the potential of AI-driven solutions in precision oncology. This framework improves diagnostic accuracy and streamlines preoperative staging, offering transformative applications in PCa management and beyond. |
Author | Saikali, Shady Boger, Maxwell Moschovas, Marcio C Venkataraman, Srirama S Khosravi, Pegah Alipour, Abolfazl Smith, Christopher J Diallo, Dalanda M Hung, Andrew J Patel, Vipul Mohammadi, Saber Hajirasouliha, Iman |
Author_xml | – sequence: 1 givenname: Pegah orcidid: 0000-0003-3497-2820 surname: Khosravi fullname: Khosravi, Pegah – sequence: 2 givenname: Shady surname: Saikali fullname: Saikali, Shady – sequence: 3 givenname: Abolfazl surname: Alipour fullname: Alipour, Abolfazl – sequence: 4 givenname: Saber orcidid: 0000-0002-9218-1616 surname: Mohammadi fullname: Mohammadi, Saber – sequence: 5 givenname: Maxwell surname: Boger fullname: Boger, Maxwell – sequence: 6 givenname: Dalanda M surname: Diallo fullname: Diallo, Dalanda M – sequence: 7 givenname: Christopher J surname: Smith fullname: Smith, Christopher J – sequence: 8 givenname: Marcio C surname: Moschovas fullname: Moschovas, Marcio C – sequence: 9 givenname: Iman orcidid: 0000-0002-0600-3371 surname: Hajirasouliha fullname: Hajirasouliha, Iman – sequence: 10 givenname: Andrew J surname: Hung fullname: Hung, Andrew J – sequence: 11 givenname: Srirama S surname: Venkataraman fullname: Venkataraman, Srirama S – sequence: 12 givenname: Vipul surname: Patel fullname: Patel, Vipul |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40438790$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkk1vFSEYhYmpsbX2D7gwJG7cXMvH3BlwY24aP5o0MTG6Ju8wL7fUGRiBudX0z5em11pdAeHh5LyH85wchBiQkJecveVMy9PexwnLZRzyaT-DY1I8IUdC6naltJAHj_aH5CTnK8YYV82aM_6MHDaskarT7IjcbJYSv8KwOX9Hge4wZSh-RAqpeOeth5H6UHAc_RaDReoSTHgd0w-6g9EPUHCgLiY6YEFbfNhS_FUSWJjzMkK6O2HIPoYqQ-cUc6lPqIWqlV6Qpw7GjCf79Zh8__jh29nn1cWXT-dnm4uVlaopK7d2nbQCJB86rbtW1aGU1lw7JdGte6XRtag64Gsr2qbroO8dh2ZoVN90gPKYvL_XnZd-wsFiqA5HMyc_QfptInjz703wl2Ybd4YLzjWXvCq82Suk-HPBXMzks62pQMC4ZCMFly1nrBUVff0fehWXFOp8laqhMy5FU6lXjy09ePnzMRUQ94CtmeWE7gHhzNwVwPwtgNkXQN4CeOeqTg |
Cites_doi | 10.3390/cancers14153687 10.3389/fonc.2024.1344050 10.1016/S1470-2045(19)30738-7 10.1038/s41598-022-08022-5 10.1038/s41598-023-49159-1 10.1038/pcan.2016.24 10.1111/bju.14026 10.1002/jmri.27599 10.1002/jmri.27678 10.1007/s00330-021-07856-3 10.1186/s40644-021-00414-6 10.1016/j.eururo.2020.09.037 10.1007/s11255-022-03365-4 10.3390/cancers14122821 10.1002/jmri.29247 10.1007/s00259-021-05381-5 10.1186/s41747-024-00452-2 10.1016/j.ejrad.2024.111798 10.1016/j.eururo.2019.09.005 10.1016/j.urolonc.2019.08.006 10.1186/s13244-023-01486-7 10.1186/s40644-024-00666-y 10.1016/S0140-6736(16)32401-1 10.1002/jmri.28608 10.1038/s41568-021-00408-3 10.1259/bjr.20190480 |
ContentType | Journal Article |
Copyright | The Author(s) 2025. Published by Oxford University Press. The Author(s) 2025. Published by Oxford University Press. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2025. Published by Oxford University Press. 2025 |
Copyright_xml | – notice: The Author(s) 2025. Published by Oxford University Press. – notice: The Author(s) 2025. Published by Oxford University Press. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2025. Published by Oxford University Press. 2025 |
DBID | AAYXX CITATION NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 5PM |
DOI | 10.1093/biomethods/bpaf032 |
DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2396-8923 |
ExternalDocumentID | PMC12119131 40438790 10_1093_biomethods_bpaf032 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; |
GroupedDBID | 0R~ 53G AAFWJ AAPXW AAVAP AAYXX ABDBF ABEJV ABGNP ABPTD ABXVV ACGFS ACUHS AENZO AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AMNDL AVWKF BAYMD BBNVY BENPR BHPHI CCPQU CITATION EBS ESX GROUPED_DOAJ H13 HCIFZ IAO IHR ISR KSI M7P M~E O9- OAWHX OJQWA OK1 PEELM PHGZM PHGZT PIMPY PQGLB PUEGO RPM TOX EJD ITC NPM PMFND 8FE 8FH ABUWG AZQEC DWQXO GNUQQ LK8 PKEHL PQEST PQQKQ PQUKI 7X8 5PM |
ID | FETCH-LOGICAL-c384t-f5f73c2a31d79976889289919f83ef5b89ef6e87a15c26477abbf1a4d48b47ae3 |
IEDL.DBID | BENPR |
ISSN | 2396-8923 |
IngestDate | Thu Aug 21 18:37:05 EDT 2025 Fri Sep 05 16:03:31 EDT 2025 Sat Sep 06 07:08:18 EDT 2025 Sun Jun 01 01:35:27 EDT 2025 Wed Sep 10 05:38:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | extracapsular extension deep learning prostate cancer MRI artificial intelligence |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 The Author(s) 2025. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c384t-f5f73c2a31d79976889289919f83ef5b89ef6e87a15c26477abbf1a4d48b47ae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9218-1616 0000-0002-0600-3371 0000-0003-3497-2820 |
OpenAccessLink | https://www.proquest.com/docview/3238701324?pq-origsite=%requestingapplication% |
PMID | 40438790 |
PQID | 3238701324 |
PQPubID | 7121356 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_12119131 proquest_miscellaneous_3213610062 proquest_journals_3238701324 pubmed_primary_40438790 crossref_primary_10_1093_biomethods_bpaf032 |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Biology methods and protocols |
PublicationTitleAlternate | Biol Methods Protoc |
PublicationYear | 2025 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Sun (2025052819562840800_bpaf032-B3) 2023; 58 Glielmo (2025052819562840800_bpaf032-B5) 2024; 8 Khosravi (2025052819562840800_bpaf032-B17) 2021; 54 Wang (2025052819562840800_bpaf032-B8) 2024; 14 Katal (2025052819562840800_bpaf032-B6) 2024; 181 Gandaglia (2025052819562840800_bpaf032-B10) 2020; 77 Cuocolo (2025052819562840800_bpaf032-B25) 2021; 31 Hou (2025052819562840800_bpaf032-B15) 2021; 48 Maubon (2025052819562840800_bpaf032-B11) 2016; 19 Ström (2025052819562840800_bpaf032-B4) 2020; 21 Patel (2025052819562840800_bpaf032-B20) 2018; 121 Khosravi (2025052819562840800_bpaf032-B1) 2024; 60 Sighinolfi (2025052819562840800_bpaf032-B21) 2023; 55 Zhu (2025052819562840800_bpaf032-B22) 2023; 14 Moroianu (2025052819562840800_bpaf032-B16) 2022; 14 Song (2025052819562840800_bpaf032-B14) 2023; 109 Chui (2025052819562840800_bpaf032-B2) 2022; 14 Zhang (2025052819562840800_bpaf032-B12) 2019; 92 Jeong (2025052819562840800_bpaf032-B7) 2022; 12 Bai (2025052819562840800_bpaf032-B26) 2021; 54 He (2025052819562840800_bpaf032-B27) 2021; 21 Huang (2025052819562840800_bpaf032-B13) 2023; 13 Boehm (2025052819562840800_bpaf032-B18) 2022; 22 Guerra (2025052819562840800_bpaf032-B24) 2024; 24 Glaser (2025052819562840800_bpaf032-B19) 2019; 37 Ahmed (2025052819562840800_bpaf032-B23) 2017; 389 Diamand (2025052819562840800_bpaf032-B9) 2021; 79 |
References_xml | – volume: 14 year: 2022 ident: 2025052819562840800_bpaf032-B2 article-title: Transfer learning-based multi-scale denoising convolutional neural network for prostate cancer detection publication-title: Cancers (Basel) doi: 10.3390/cancers14153687 – volume: 14 start-page: 1344050 year: 2024 ident: 2025052819562840800_bpaf032-B8 article-title: Imaging classification of prostate cancer with extracapsular extension and its impact on positive surgical margins after laparoscopic radical prostatectomy publication-title: Front Oncol doi: 10.3389/fonc.2024.1344050 – volume: 21 start-page: 222 year: 2020 ident: 2025052819562840800_bpaf032-B4 article-title: Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study publication-title: Lancet Oncol doi: 10.1016/S1470-2045(19)30738-7 – volume: 12 start-page: 4066 year: 2022 ident: 2025052819562840800_bpaf032-B7 article-title: Prediction of surgical margin status and location after radical prostatectomy using positive biopsy sites on 12-core standard prostate biopsy publication-title: Sci Rep doi: 10.1038/s41598-022-08022-5 – volume: 13 start-page: 21849 year: 2023 ident: 2025052819562840800_bpaf032-B13 article-title: Transfer learning with CNNs for efficient prostate cancer and BPH detection in transrectal ultrasound images publication-title: Sci Rep doi: 10.1038/s41598-023-49159-1 – volume: 19 start-page: 317 year: 2016 ident: 2025052819562840800_bpaf032-B11 article-title: Impact of the extent of extraprostatic extension defined by Epstein’s method in patients with negative surgical margins and negative lymph node invasion publication-title: Prostate Cancer Prostatic Dis doi: 10.1038/pcan.2016.24 – volume: 109 start-page: 3848 year: 2023 ident: 2025052819562840800_bpaf032-B14 article-title: Artificial intelligence-aided detection for prostate cancer with multimodal routine health check-up data: an Asian multi-center study publication-title: Int J Surg – volume: 121 start-page: 373 year: 2018 ident: 2025052819562840800_bpaf032-B20 article-title: A novel tool for predicting extracapsular extension during graded partial nerve sparing in radical prostatectomy publication-title: BJU Int doi: 10.1111/bju.14026 – volume: 54 start-page: 462 year: 2021 ident: 2025052819562840800_bpaf032-B17 article-title: A deep learning approach to diagnostic classification of prostate cancer using pathology-radiology fusion publication-title: J Magn Reson Imaging doi: 10.1002/jmri.27599 – volume: 54 start-page: 1222 year: 2021 ident: 2025052819562840800_bpaf032-B26 article-title: Multiparametric magnetic resonance imaging-based peritumoral radiomics for preoperative prediction of the presence of extracapsular extension with prostate cancer publication-title: J Magn Reson Imaging doi: 10.1002/jmri.27678 – volume: 31 start-page: 7575 year: 2021 ident: 2025052819562840800_bpaf032-B25 article-title: MRI index lesion radiomics and machine learning for detection of extraprostatic extension of disease: a multicenter study publication-title: Eur Radiol doi: 10.1007/s00330-021-07856-3 – volume: 21 start-page: 46 year: 2021 ident: 2025052819562840800_bpaf032-B27 article-title: MRI-based radiomics models to assess prostate cancer, extracapsular extension and positive surgical margins publication-title: Cancer Imaging doi: 10.1186/s40644-021-00414-6 – volume: 79 start-page: 180 year: 2021 ident: 2025052819562840800_bpaf032-B9 article-title: External validation of a multiparametric magnetic resonance imaging-based nomogram for the prediction of extracapsular extension and seminal vesicle invasion in prostate cancer patients undergoing radical prostatectomy publication-title: Eur Urol doi: 10.1016/j.eururo.2020.09.037 – volume: 55 start-page: 93 year: 2023 ident: 2025052819562840800_bpaf032-B21 article-title: Pre-operative prediction of extracapsular extension of prostate cancer: first external validation of the PRECE model on an independent dataset publication-title: Int Urol Nephrol doi: 10.1007/s11255-022-03365-4 – volume: 14 year: 2022 ident: 2025052819562840800_bpaf032-B16 article-title: Computational detection of extraprostatic extension of prostate cancer on multiparametric MRI using deep learning publication-title: Cancers (Basel) doi: 10.3390/cancers14122821 – volume: 60 start-page: 2272 year: 2024 ident: 2025052819562840800_bpaf032-B1 article-title: AI-enhanced detection of clinically relevant structural and functional anomalies in MRI: traversing the landscape of conventional to explainable approaches publication-title: J Magn Reson Imaging doi: 10.1002/jmri.29247 – volume: 48 start-page: 3805 year: 2021 ident: 2025052819562840800_bpaf032-B15 article-title: Artificial intelligence is a promising prospect for the detection of prostate cancer extracapsular extension with mpMRI: a two-center comparative study publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-021-05381-5 – volume: 8 start-page: 62 year: 2024 ident: 2025052819562840800_bpaf032-B5 article-title: Artificial intelligence in interventional radiology: state of the art publication-title: Eur Radiol Exp doi: 10.1186/s41747-024-00452-2 – volume: 181 start-page: 111798 year: 2024 ident: 2025052819562840800_bpaf032-B6 article-title: AI in radiology: from promise to practice—a guide to effective integration publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2024.111798 – volume: 77 start-page: 733 year: 2020 ident: 2025052819562840800_bpaf032-B10 article-title: The key combined value of multiparametric magnetic resonance imaging, and magnetic resonance imaging-targeted and concomitant systematic biopsies for the prediction of adverse pathological features in prostate cancer patients undergoing radical prostatectomy publication-title: Eur Urol doi: 10.1016/j.eururo.2019.09.005 – volume: 37 start-page: 970 year: 2019 ident: 2025052819562840800_bpaf032-B19 article-title: Evaluation of MSKCC Preprostatectomy nomogram in men who undergo MRI-targeted prostate biopsy prior to radical prostatectomy publication-title: Urol Oncol doi: 10.1016/j.urolonc.2019.08.006 – volume: 14 start-page: 140 year: 2023 ident: 2025052819562840800_bpaf032-B22 article-title: Diagnostic performance of prediction models for extraprostatic extension in prostate cancer: a systematic review and meta-analysis publication-title: Insights Imaging doi: 10.1186/s13244-023-01486-7 – volume: 24 start-page: 24 year: 2024 ident: 2025052819562840800_bpaf032-B24 article-title: Clinical application of machine learning models in patients with prostate cancer before prostatectomy publication-title: Cancer Imaging doi: 10.1186/s40644-024-00666-y – volume: 389 start-page: 815 year: 2017 ident: 2025052819562840800_bpaf032-B23 article-title: Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study publication-title: Lancet doi: 10.1016/S0140-6736(16)32401-1 – volume: 58 start-page: 1067 year: 2023 ident: 2025052819562840800_bpaf032-B3 article-title: Deep-learning models for detection and localization of visible clinically significant prostate cancer on multi-parametric MRI publication-title: J Magn Reson Imaging doi: 10.1002/jmri.28608 – volume: 22 start-page: 114 year: 2022 ident: 2025052819562840800_bpaf032-B18 article-title: Harnessing multimodal data integration to advance precision oncology publication-title: Nat Rev Cancer doi: 10.1038/s41568-021-00408-3 – volume: 92 start-page: 20190480 year: 2019 ident: 2025052819562840800_bpaf032-B12 article-title: Accuracy of multiparametric magnetic resonance imaging for detecting extracapsular extension in prostate cancer: a systematic review and meta-analysis publication-title: Br J Radiol doi: 10.1259/bjr.20190480 |
SSID | ssj0001845101 |
Score | 2.2783313 |
Snippet | Preoperative identification of extracapsular extension (ECE) in prostate cancer (PCa) is crucial for effective treatment planning, as ECE presence... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | bpaf032 |
SubjectTerms | Artificial intelligence Magnetic resonance imaging Methods Neural networks Patients Precision medicine Prostate cancer Prostatectomy |
Title | AutoRadAI: a versatile artificial intelligence framework validated for detecting extracapsular extension in prostate cancer |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40438790 https://www.proquest.com/docview/3238701324 https://www.proquest.com/docview/3213610062 https://pubmed.ncbi.nlm.nih.gov/PMC12119131 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA46EXwR707niOCblLVN2qa-yBRFBS_IBnsraS44kG7u8iD-ec9ps80p-NKXpGnJOcm5f4eQs9BEgsXMenGaSI8r7ntCK-OFimkWKTCcS-D5x6f4rssfelHPOdzGLq1ydieWF7UeKPSRtxjIlgQDA_xy-OFh1yiMrroWGqtkDa5gAXy-dnXz9PK68LIIjkznqmXAem-VVe3Ym3ncyofS-ixclkh_1Mzf2ZI_xM_tFtl0eiNtV4TeJium2CHrVSfJz13y1Z5OBq9St-8vqKSYagE7_m4oMkaFEUH7P8A3qZ3lZFHgtD5a_ZqC-kq1waACiDMKl_ZIKglGNNi-tPSVo2MNlqFDrBSBV6hClhntke7tTef6znN9FTzFBJ94NrIJU6FkgU5SUEeESNHsClIrmLFRLlJjYyMSGUQqxEJVmec2kFxzkfNEGrZPasWgMIeEqihOtG-ZzUHMGW6ktSLwDYuFiUMbpHVyPtvbbFjBZ2RV2JtlC0pkjhJ10phtf-aO0jhbEL5OTufDcAgwsiELM5jinICBHujHsMRBRa355xA-SCSpXydiiY7zCQiwvTxS9N9KoO0K_o4FR___1zHZCLErcOmYaZDaZDQ1J6CqTPKm48dmaerDs_Pc-wYMOPLH |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD7ULaIv4t3VVkfQJwmbzEySSUHKqi27tl2ktNC3dDIXXJDsuhek-J_8jT0nl92ugm99zmQS5nwz5zbnOwDvuIuVSIQPkizVgTQyDJQ1LuBGWBEbdJwr4vmTUTI4l18v4ost-NPWwtC1yvZMrA5qOzEUI-8J1C0pJQbk_vRnQF2jKLvattCoYXHkrn6hyzb_OPyC8n3P-eHB2edB0HQVCIxQchH42KfCcC0im2aojJXKyOmIMq-E83GhMucTp1IdxYZTmaYuCh9paaUqZKqdwHnvwLakitYObH86GH07XUd1lCSQN9U5YSZ6VRU99YKe94qp9qHgmxrwH7P279uZN9Td4UN40NiprF8D6xFsufIx3K07V149gd_95WJyqm1_uMc0o6sdKOEfjhEQa04KNr5B9sl8eweMIbLHFGWwDM1lZh0lMVB9MlQSM200Ou3oa7MqNk-BPJyGTakyBV9hhiA6ewrnt7Liz6BTTkr3ApiJk9SGXvgC1aqTTnuvotCJRLmE-yjrwod2bfNpTdeR12l2ka8lkTeS6MJOu_x5s3Xn-RpoXXi7eoybjjIpunSTJY2JBNqdYYJTPK-ltfoc0RWpNAu7oDbkuBpAhN6bT8rx94rYu6bbE9HL___XG7g3ODs5zo-Ho6NXcJ9TR-IqKLQDncVs6XbRTFoUrxtsMri87e1wDeaDLZI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AutoRadAI%3A+a+versatile+artificial+intelligence+framework+validated+for+detecting+extracapsular+extension+in+prostate+cancer&rft.jtitle=Biology+methods+and+protocols&rft.au=Khosravi%2C+Pegah&rft.au=Saikali%2C+Shady&rft.au=Alipour%2C+Abolfazl&rft.au=Mohammadi%2C+Saber&rft.date=2025-01-01&rft.eissn=2396-8923&rft.volume=10&rft.issue=1&rft.spage=bpaf032&rft_id=info:doi/10.1093%2Fbiomethods%2Fbpaf032&rft_id=info%3Apmid%2F40438790&rft.externalDocID=40438790 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2396-8923&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2396-8923&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2396-8923&client=summon |