Recent advances and perspectives on thin electrolytes for high-energy-density solid-state lithium batteries
Solid-state lithium batteries (SSLBs) are promising next-generation energy storage devices due to their potential for high energy density and improved safety. The properties and physical parameters of the solid-state electrolyte (SSE), as a critical component of the battery, have a significant effec...
Saved in:
Published in | Energy & environmental science Vol. 14; no. 2; pp. 643 - 671 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Solid-state lithium batteries (SSLBs) are promising next-generation energy storage devices due to their potential for high energy density and improved safety. The properties and physical parameters of the solid-state electrolyte (SSE), as a critical component of the battery, have a significant effect on the electrochemical performance and energy density. In recent years, thick SSEs have been widely used in SSLBs but present several drawbacks in terms of increased internal resistance, additional inactive material content, low practical energy densities, and higher battery manufacturing costs. Reducing the thickness of SSEs and developing high-performance thin SSE-based SSLBs are essential for the commercialization of SSLBs. In this review, we comprehensively summarize the fabrication methods of thin SSEs, their rational design, and their manufacturing processes and applications in different SSLB systems. Moreover, advanced characterization techniques for understanding the Li
+
transport kinetics and structural evolution of SSEs at the interface are introduced. Additionally, the gravimetric/volumetric energy densities for various SSLB pouch cells with SSEs less than 100 μm thick are evaluated. Lastly, other cell design parameters are tuned to achieve gravimetric/volumetric energy densities over 300 W h kg
−1
/500 W h L
−1
, and the future directions of thin SSEs in SSLBs are speculated upon.
This review summarizes the recent progress of thin solid-state electrolytes for high energy-density solid-state lithium batteries. |
---|---|
AbstractList | Solid-state lithium batteries (SSLBs) are promising next-generation energy storage devices due to their potential for high energy density and improved safety. The properties and physical parameters of the solid-state electrolyte (SSE), as a critical component of the battery, have a significant effect on the electrochemical performance and energy density. In recent years, thick SSEs have been widely used in SSLBs but present several drawbacks in terms of increased internal resistance, additional inactive material content, low practical energy densities, and higher battery manufacturing costs. Reducing the thickness of SSEs and developing high-performance thin SSE-based SSLBs are essential for the commercialization of SSLBs. In this review, we comprehensively summarize the fabrication methods of thin SSEs, their rational design, and their manufacturing processes and applications in different SSLB systems. Moreover, advanced characterization techniques for understanding the Li+ transport kinetics and structural evolution of SSEs at the interface are introduced. Additionally, the gravimetric/volumetric energy densities for various SSLB pouch cells with SSEs less than 100 μm thick are evaluated. Lastly, other cell design parameters are tuned to achieve gravimetric/volumetric energy densities over 300 W h kg−1/500 W h L−1, and the future directions of thin SSEs in SSLBs are speculated upon. Solid-state lithium batteries (SSLBs) are promising next-generation energy storage devices due to their potential for high energy density and improved safety. The properties and physical parameters of the solid-state electrolyte (SSE), as a critical component of the battery, have a significant effect on the electrochemical performance and energy density. In recent years, thick SSEs have been widely used in SSLBs but present several drawbacks in terms of increased internal resistance, additional inactive material content, low practical energy densities, and higher battery manufacturing costs. Reducing the thickness of SSEs and developing high-performance thin SSE-based SSLBs are essential for the commercialization of SSLBs. In this review, we comprehensively summarize the fabrication methods of thin SSEs, their rational design, and their manufacturing processes and applications in different SSLB systems. Moreover, advanced characterization techniques for understanding the Li + transport kinetics and structural evolution of SSEs at the interface are introduced. Additionally, the gravimetric/volumetric energy densities for various SSLB pouch cells with SSEs less than 100 μm thick are evaluated. Lastly, other cell design parameters are tuned to achieve gravimetric/volumetric energy densities over 300 W h kg −1 /500 W h L −1 , and the future directions of thin SSEs in SSLBs are speculated upon. Solid-state lithium batteries (SSLBs) are promising next-generation energy storage devices due to their potential for high energy density and improved safety. The properties and physical parameters of the solid-state electrolyte (SSE), as a critical component of the battery, have a significant effect on the electrochemical performance and energy density. In recent years, thick SSEs have been widely used in SSLBs but present several drawbacks in terms of increased internal resistance, additional inactive material content, low practical energy densities, and higher battery manufacturing costs. Reducing the thickness of SSEs and developing high-performance thin SSE-based SSLBs are essential for the commercialization of SSLBs. In this review, we comprehensively summarize the fabrication methods of thin SSEs, their rational design, and their manufacturing processes and applications in different SSLB systems. Moreover, advanced characterization techniques for understanding the Li + transport kinetics and structural evolution of SSEs at the interface are introduced. Additionally, the gravimetric/volumetric energy densities for various SSLB pouch cells with SSEs less than 100 μm thick are evaluated. Lastly, other cell design parameters are tuned to achieve gravimetric/volumetric energy densities over 300 W h kg −1 /500 W h L −1 , and the future directions of thin SSEs in SSLBs are speculated upon. This review summarizes the recent progress of thin solid-state electrolytes for high energy-density solid-state lithium batteries. |
Author | Gao, Xuejie Yang, Xiaofei Adair, Keegan R Sun, Xueliang |
AuthorAffiliation | Department of Mechanical and Materials Engineering University of Western Ontario |
AuthorAffiliation_xml | – name: Department of Mechanical and Materials Engineering – name: University of Western Ontario |
Author_xml | – sequence: 1 givenname: Xiaofei surname: Yang fullname: Yang, Xiaofei – sequence: 2 givenname: Keegan R surname: Adair fullname: Adair, Keegan R – sequence: 3 givenname: Xuejie surname: Gao fullname: Gao, Xuejie – sequence: 4 givenname: Xueliang surname: Sun fullname: Sun, Xueliang |
BookMark | eNptkd9LwzAQx4MouE1ffBcCvgnVS9OmzaPMTYWBIPpc0va6ZXZJTbJB_3ur8weIT3d8-Xzvju-NyaGxBgk5Y3DFgMvrGhAhzljSHJARy9IkSjMQh9-9kPExGXu_BhAxZHJEXp-wQhOoqnfKVOipMjXt0PkOq6B3g2ANDSttKLaD4mzbh0FsrKMrvVxFaNAt-6hG43XoqbetriMfVEDa6sG33dBShYBOoz8hR41qPZ5-1Ql5mc-ep_fR4vHuYXqziCqeJyFqUskYkyWUqRASVIk5k7JOeI4NcpElHCAXWQp5JjkvG0hEzZDnKYqqRMX5hFzs53bOvm3Rh2Jtt84MK4s4kTEHHks2ULCnKme9d9gUlR7u1tYEp3RbMCg-Ii1uYTb7jHQ-WC7_WDqnN8r1_8Pne9j56of7_Q9_B1Z4g3M |
CitedBy_id | crossref_primary_10_1016_j_cej_2021_130209 crossref_primary_10_1002_adma_202407443 crossref_primary_10_1002_smll_202307250 crossref_primary_10_1016_j_cej_2024_150455 crossref_primary_10_1016_j_est_2024_114737 crossref_primary_10_1016_j_jeurceramsoc_2025_117252 crossref_primary_10_1016_j_electacta_2022_141226 crossref_primary_10_1016_j_jpowsour_2023_233290 crossref_primary_10_1038_s41560_024_01676_7 crossref_primary_10_1002_batt_202400667 crossref_primary_10_1002_ange_202017281 crossref_primary_10_1002_batt_202200097 crossref_primary_10_3390_cryst11081008 crossref_primary_10_1016_j_cej_2021_132991 crossref_primary_10_1016_j_jpowsour_2024_235985 crossref_primary_10_26599_NRE_2023_9120050 crossref_primary_10_1016_j_ensm_2023_102918 crossref_primary_10_1016_j_ensm_2024_103606 crossref_primary_10_1016_j_jpowsour_2024_234539 crossref_primary_10_1039_D4TA01939C crossref_primary_10_1039_D4MH01037J crossref_primary_10_1016_j_ensm_2024_103961 crossref_primary_10_1002_adma_202405277 crossref_primary_10_1021_acs_chemrev_1c00594 crossref_primary_10_1016_j_cej_2021_130335 crossref_primary_10_1016_j_device_2024_100468 crossref_primary_10_1021_acsami_1c16978 crossref_primary_10_1002_adma_202401909 crossref_primary_10_1039_D1CC04059F crossref_primary_10_1016_j_cej_2024_150221 crossref_primary_10_1016_j_ensm_2021_07_028 crossref_primary_10_1021_acsanm_3c04931 crossref_primary_10_1016_j_elecom_2023_107467 crossref_primary_10_1039_D2TA00540A crossref_primary_10_1002_pssa_202100710 crossref_primary_10_1039_D1EE00551K crossref_primary_10_1002_adma_202202780 crossref_primary_10_1002_smll_202408986 crossref_primary_10_1016_j_etran_2023_100234 crossref_primary_10_1016_j_jelechem_2024_118631 crossref_primary_10_1039_D2CS00606E crossref_primary_10_1002_adma_202101275 crossref_primary_10_1002_adma_202402324 crossref_primary_10_1039_D2TA05021H crossref_primary_10_1016_j_jpowsour_2022_232349 crossref_primary_10_3390_batteries11030090 crossref_primary_10_1016_j_mtener_2021_100841 crossref_primary_10_1016_j_jechem_2025_01_015 crossref_primary_10_1016_j_cej_2024_157191 crossref_primary_10_1002_aenm_202202518 crossref_primary_10_1002_anie_202407892 crossref_primary_10_1016_j_jechem_2024_06_032 crossref_primary_10_1002_batt_202400636 crossref_primary_10_1039_D1EE01530C crossref_primary_10_1002_aenm_202204028 crossref_primary_10_1016_j_ceja_2022_100439 crossref_primary_10_1016_j_ensm_2023_103107 crossref_primary_10_1016_j_ensm_2022_01_015 crossref_primary_10_1016_j_jpowsour_2022_232139 crossref_primary_10_1002_apj_2747 crossref_primary_10_1016_j_compositesb_2022_109729 crossref_primary_10_1002_aenm_202301886 crossref_primary_10_1002_idm2_12045 crossref_primary_10_3390_en16052271 crossref_primary_10_3390_batteries10070255 crossref_primary_10_1039_D1QM01508G crossref_primary_10_1021_acsenergylett_1c02261 crossref_primary_10_1016_j_ensm_2024_103941 crossref_primary_10_1002_advs_202104277 crossref_primary_10_1016_j_matpr_2024_05_070 crossref_primary_10_1002_aenm_202303829 crossref_primary_10_1016_j_jpowsour_2024_235165 crossref_primary_10_1002_adfm_202305383 crossref_primary_10_1016_j_cej_2022_137035 crossref_primary_10_1038_s41578_022_00478_1 crossref_primary_10_1016_j_cjsc_2023_100048 crossref_primary_10_1016_j_ensm_2023_03_012 crossref_primary_10_1016_j_ensm_2021_04_016 crossref_primary_10_1002_chem_202400584 crossref_primary_10_1021_acs_energyfuels_1c01609 crossref_primary_10_1016_j_etran_2023_100252 crossref_primary_10_1021_acsnano_2c01038 crossref_primary_10_1002_anie_202421928 crossref_primary_10_1002_adma_202301892 crossref_primary_10_1021_jacs_3c02786 crossref_primary_10_1002_batt_202300056 crossref_primary_10_1038_s43246_024_00703_0 crossref_primary_10_1016_j_apmate_2023_100154 crossref_primary_10_1002_adfm_202101556 crossref_primary_10_3390_batteries10060186 crossref_primary_10_1016_j_cej_2022_136077 crossref_primary_10_1002_adfm_202102765 crossref_primary_10_1016_j_cej_2024_158145 crossref_primary_10_1016_j_gee_2022_05_002 crossref_primary_10_1021_acsenergylett_5c00078 crossref_primary_10_1002_ange_202421928 crossref_primary_10_1016_j_cej_2024_158829 crossref_primary_10_1002_inf2_12252 crossref_primary_10_1039_D3EE01677C crossref_primary_10_1016_j_electacta_2024_143791 crossref_primary_10_1002_adma_202301540 crossref_primary_10_1002_smtd_202300228 crossref_primary_10_1016_j_est_2023_110169 crossref_primary_10_1016_j_ensm_2023_02_008 crossref_primary_10_1016_j_ceramint_2022_06_232 crossref_primary_10_1016_j_chempr_2022_03_002 crossref_primary_10_1016_j_mtnano_2022_100194 crossref_primary_10_1016_j_etran_2023_100310 crossref_primary_10_1002_adfm_202416779 crossref_primary_10_1002_smll_202400272 crossref_primary_10_1002_anie_202017281 crossref_primary_10_1039_D4EE03104K crossref_primary_10_1021_jacs_3c14307 crossref_primary_10_1016_j_esci_2022_02_008 crossref_primary_10_1002_aenm_202303850 crossref_primary_10_1002_cnl2_188 crossref_primary_10_1002_smtd_202401610 crossref_primary_10_1002_adma_202209074 crossref_primary_10_1039_D4TA02413C crossref_primary_10_1007_s12274_022_4845_x crossref_primary_10_1016_j_jallcom_2022_166125 crossref_primary_10_1039_D3EE02705H crossref_primary_10_1002_aenm_202402891 crossref_primary_10_1016_j_jcis_2023_06_064 crossref_primary_10_1016_j_ensm_2022_01_052 crossref_primary_10_1016_j_est_2025_115777 crossref_primary_10_1021_acsami_4c12305 crossref_primary_10_1080_10420150_2024_2424757 crossref_primary_10_1016_j_jechem_2023_12_035 crossref_primary_10_1016_j_ensm_2024_103986 crossref_primary_10_1039_D4TA08975H crossref_primary_10_1016_j_jallcom_2023_172418 crossref_primary_10_1039_D3CS00439B crossref_primary_10_1021_acsami_4c18659 crossref_primary_10_1016_j_ensm_2022_09_011 crossref_primary_10_3390_batteries10010013 crossref_primary_10_1002_sus2_93 crossref_primary_10_1016_j_cej_2022_137994 crossref_primary_10_1021_acsaem_1c03654 crossref_primary_10_6023_A23070335 crossref_primary_10_1016_j_ensm_2021_10_047 crossref_primary_10_35534_spe_2023_10004 crossref_primary_10_2139_ssrn_4169685 crossref_primary_10_1016_j_joule_2022_05_020 crossref_primary_10_1016_j_cclet_2022_107947 crossref_primary_10_1039_D1EE03032A crossref_primary_10_1016_j_xinn_2021_100180 crossref_primary_10_2139_ssrn_4063569 crossref_primary_10_1002_cssc_202300504 crossref_primary_10_1016_j_electacta_2023_142438 crossref_primary_10_1039_D4RA07417C crossref_primary_10_1002_smll_202412054 crossref_primary_10_1002_aenm_202303641 crossref_primary_10_1039_D0TA12424A crossref_primary_10_1002_aenm_202201732 crossref_primary_10_1021_acs_chemrev_4c00584 crossref_primary_10_1016_j_jechem_2022_08_036 crossref_primary_10_1016_j_jpowsour_2024_234370 crossref_primary_10_1016_j_ensm_2022_12_039 crossref_primary_10_3390_cryst15010031 crossref_primary_10_1016_j_enchem_2021_100063 crossref_primary_10_1016_j_carbpol_2023_120958 crossref_primary_10_1016_j_jpowsour_2022_231773 crossref_primary_10_1038_s41467_021_24697_2 crossref_primary_10_1016_j_jelechem_2024_118915 crossref_primary_10_1007_s40242_021_0007_z crossref_primary_10_1002_adfm_202201465 crossref_primary_10_1016_j_cossms_2022_101003 crossref_primary_10_1002_adma_202205194 crossref_primary_10_1016_j_adna_2024_03_002 crossref_primary_10_1007_s11426_021_9985_x crossref_primary_10_2139_ssrn_3956812 crossref_primary_10_1016_j_etran_2024_100319 crossref_primary_10_1016_j_cej_2022_137661 crossref_primary_10_1080_10406638_2022_2150653 crossref_primary_10_1002_aenm_202402848 crossref_primary_10_1016_j_ensm_2023_01_016 crossref_primary_10_1016_j_heliyon_2024_e24493 crossref_primary_10_1039_D2CC02203F crossref_primary_10_1016_j_est_2023_108873 crossref_primary_10_1002_app_55601 crossref_primary_10_1115_1_4057039 crossref_primary_10_1039_D3TA07586A crossref_primary_10_1016_j_susmat_2023_e00635 crossref_primary_10_1016_j_cej_2022_140151 crossref_primary_10_1016_j_cej_2021_131948 crossref_primary_10_1021_jacs_3c11988 crossref_primary_10_1016_j_cej_2021_130632 crossref_primary_10_1002_aenm_202103530 crossref_primary_10_1016_j_jechem_2024_04_033 crossref_primary_10_1007_s10973_023_12514_5 crossref_primary_10_1002_ange_202407892 crossref_primary_10_1016_j_cej_2022_140846 crossref_primary_10_1007_s40843_024_3104_2 crossref_primary_10_1016_j_compscitech_2023_110327 crossref_primary_10_1016_j_memsci_2023_122080 crossref_primary_10_1039_D4QM00180J crossref_primary_10_1016_j_mattod_2023_11_016 crossref_primary_10_1016_j_cej_2024_151108 crossref_primary_10_1002_adfm_202106608 crossref_primary_10_1016_j_jcis_2025_02_155 crossref_primary_10_1021_acs_nanolett_4c02274 crossref_primary_10_1016_j_pmatsci_2023_101182 crossref_primary_10_1002_anie_202415617 crossref_primary_10_1016_j_ensm_2024_103492 crossref_primary_10_1016_j_jechem_2024_06_052 crossref_primary_10_1002_smll_202402164 crossref_primary_10_1002_anie_202424568 crossref_primary_10_1016_j_cej_2022_138414 crossref_primary_10_1021_acs_nanolett_1c01344 crossref_primary_10_1002_cssc_202300671 crossref_primary_10_1016_j_ensm_2023_102832 crossref_primary_10_1002_aenm_202301142 crossref_primary_10_1016_j_jpowsour_2023_232718 crossref_primary_10_1021_acsapm_3c00455 crossref_primary_10_1002_adma_202105329 crossref_primary_10_1016_j_ceja_2023_100532 crossref_primary_10_1016_j_est_2024_114090 crossref_primary_10_1039_D3TA00331K crossref_primary_10_1016_j_nanoen_2022_107130 crossref_primary_10_1021_acs_chemmater_4c01003 crossref_primary_10_1002_advs_202205233 crossref_primary_10_1039_D1TA06269G crossref_primary_10_1063_5_0251325 crossref_primary_10_1016_j_pmatsci_2023_101193 crossref_primary_10_1039_D3TA02448B crossref_primary_10_1007_s12598_022_02065_3 crossref_primary_10_23919_CHAIN_2024_000011 crossref_primary_10_1002_adfm_202410282 crossref_primary_10_1016_j_pmatsci_2024_101337 crossref_primary_10_1021_acsaem_1c02622 crossref_primary_10_1002_adfm_202303574 crossref_primary_10_1016_j_nxmate_2023_100049 crossref_primary_10_1002_adfm_202311633 crossref_primary_10_1016_j_mtnano_2022_100235 crossref_primary_10_1002_adfm_202201021 crossref_primary_10_1016_j_mattod_2022_03_014 crossref_primary_10_1039_D3EE03073C crossref_primary_10_1002_adfm_202315555 crossref_primary_10_1021_acs_nanolett_3c01892 crossref_primary_10_1039_D1TA10431D crossref_primary_10_1016_j_enbuild_2024_115063 crossref_primary_10_1016_j_etran_2021_100152 crossref_primary_10_1016_j_ensm_2023_103030 crossref_primary_10_1002_adfm_202300973 crossref_primary_10_1016_j_coco_2024_101871 crossref_primary_10_1016_j_cej_2024_150474 crossref_primary_10_18686_cest_v2i2_164 crossref_primary_10_1002_adfm_202307248 crossref_primary_10_1016_j_ensm_2021_06_035 crossref_primary_10_1016_j_hybadv_2024_100339 crossref_primary_10_1002_ange_202415617 crossref_primary_10_1016_j_jpowsour_2024_234797 crossref_primary_10_1021_acsnano_4c04429 crossref_primary_10_1002_anie_202300966 crossref_primary_10_1016_j_heliyon_2024_e28097 crossref_primary_10_1039_D3TA05650C crossref_primary_10_1002_aenm_202402929 crossref_primary_10_1002_batt_202200110 crossref_primary_10_1021_acsami_4c00866 crossref_primary_10_1016_j_jece_2024_113111 crossref_primary_10_1007_s40820_024_01389_2 crossref_primary_10_1002_adfm_202421054 crossref_primary_10_1002_ange_202424568 crossref_primary_10_1016_j_pmatsci_2023_101171 crossref_primary_10_1016_j_chempr_2022_01_002 crossref_primary_10_1016_j_cej_2022_138208 crossref_primary_10_1021_acsaem_2c03804 crossref_primary_10_1002_ange_202300966 crossref_primary_10_1016_j_supmat_2025_100097 crossref_primary_10_1002_aenm_202405505 crossref_primary_10_1039_D2TA07393E |
Cites_doi | 10.1021/acs.chemmater.0c02419 10.1021/acsenergylett.9b01847 10.1149/2.0951712jes 10.1080/10667857.2020.1713452 10.1039/C8TA10771H 10.1021/acs.nanolett.7b00715 10.1016/j.matt.2020.03.015 10.1039/C4RA06208F 10.1039/c3cp51986d 10.1038/srep07127 10.1002/anie.201710841 10.1021/acs.chemmater.5b02521 10.1038/s41467-020-19004-4 10.1016/j.mattod.2020.01.018 10.1016/j.jpowsour.2018.02.062 10.1038/natrevmats.2016.103 10.1038/s41560-019-0349-7 10.1038/s41565-019-0465-3 10.1038/35104644 10.1021/acsami.9b05212 10.1002/adma.201502636 10.1038/nenergy.2016.30 10.3938/jkps.69.617 10.1039/C9TA06520B 10.1021/acssuschemeng.9b01435 10.1038/s41560-020-0648-z 10.1016/j.nanoen.2019.05.002 10.1021/acs.chemrev.0c00101 10.1016/j.joule.2020.03.008 10.1021/acsami.8b06366 10.1021/acs.nanolett.6b03223 10.1039/C6EE03499C 10.1021/jacs.0c07060 10.1021/cr030203g 10.1021/acsenergylett.8b00249 10.1021/acs.jpcc.8b05431 10.1038/nenergy.2017.119 10.1039/C9EE02311A 10.1002/adma.201902029 10.1002/adfm.201910123 10.1002/batt.202000051 10.1116/1.5142859 10.1016/j.joule.2018.02.007 10.1021/acsami.5b07517 10.1126/sciadv.aao0713 10.1039/C9EE04007B 10.1016/j.nanoen.2018.12.001 10.1002/adma.201707132 10.1038/s41598-018-19398-8 10.1021/acs.nanolett.6b01754 10.1039/C7TA02730C 10.1016/j.ensm.2019.06.021 10.1002/aenm.201902767 10.1002/adfm.202005357 10.1002/aenm.202001191 10.1021/acs.jpclett.8b00240 10.1021/acsenergylett.9b00430 10.1016/j.ensm.2019.05.033 10.1007/s41918-019-00029-3 10.1039/C5TA03471J 10.1016/j.jpowsour.2018.04.019 10.1021/acs.nanolett.5b00326 10.1002/adma.201803075 10.1007/s41918-018-0010-3 10.1021/acs.chemmater.6b00610 10.1002/ente.201500297 10.1038/nmat3066 10.1021/am508111r 10.1016/j.etran.2019.100010 10.1016/j.ensm.2017.06.017 10.1016/j.ensm.2019.07.015 10.1016/j.ensm.2018.08.009 10.1038/s41565-020-0657-x 10.1016/j.mtener.2019.05.005 10.1016/j.matt.2020.02.008 10.1039/C8TA09069F 10.1039/C9CS00635D 10.1038/s41560-020-0575-z 10.1016/j.joule.2018.11.012 10.1002/advs.201700996 10.1021/acsenergylett.9b00816 10.1016/j.mseb.2016.07.011 10.1021/acs.jpcc.6b00318 10.1002/aenm.201901841 10.1002/smtd.201900261 10.1016/j.ssi.2015.06.001 10.1038/srep12307 10.1021/acs.nanolett.7b00221 10.1039/C5TA04902D 10.1039/C9EE01903K 10.1039/C7EE01004D 10.1016/j.jpowsour.2004.11.039 10.1039/C8TA12443D 10.1149/2.0301816jes 10.1039/C8EE02617C 10.1021/acs.chemrev.9b00783 10.1021/jacs.7b10864 10.1007/s11581-017-2353-x 10.1016/j.jallcom.2019.03.409 10.1021/acsami.0c04850 10.1002/aenm.201903753 10.1002/aenm.201800014 10.1002/anie.201909805 10.1016/j.jpowsour.2014.08.024 10.1021/acs.chemrev.9b00268 10.1016/j.nanoen.2020.104686 10.1039/D0EE01017K 10.1021/acsami.8b16536 10.1021/acs.nanolett.0c01156 10.1016/j.jpowsour.2017.04.014 10.1039/C6TA00402D 10.1021/acsenergylett.9b02739 10.1016/j.jallcom.2013.12.100 10.1021/acs.chemmater.7b04842 10.1002/adma.201906221 10.1021/acs.nanolett.5b00538 10.1038/s41578-019-0157-5 10.1073/pnas.1600422113 10.2320/matertrans.Y-M2016804 10.1016/j.jpowsour.2017.11.031 10.1016/j.chempr.2020.06.030 10.1016/j.ensm.2018.11.011 10.1016/j.ensm.2020.05.015 10.1016/j.jallcom.2015.05.067 10.1021/acsenergylett.9b00610 10.1038/s41467-018-04762-z 10.1039/C6MH00218H 10.1002/adma.201802661 10.1021/acs.chemmater.8b04051 10.1002/anie.201709305 10.1039/C6TA02294D 10.1039/D0EE00342E 10.1002/advs.201901036 10.1039/C5EE01604E 10.1021/acsenergylett.0c00251 10.1039/C9EE03828K 10.1016/j.mattod.2018.01.001 10.1016/j.ensm.2019.08.029 10.1016/j.mattod.2018.04.004 10.1038/s41560-018-0312-z 10.1002/adma.201807789 10.1039/C8EE00907D 10.1016/j.ensm.2019.08.001 10.1002/anie.201901938 10.1021/acs.jpclett.7b00593 10.1002/ange.201408008 10.1021/acsmaterialslett.9b00189 10.1016/j.nanoen.2016.06.010 10.1016/j.ensm.2020.01.009 10.1016/j.ceramint.2019.05.241 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
DOI | 10.1039/d0ee02714f |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1754-5706 |
EndPage | 671 |
ExternalDocumentID | 10_1039_D0EE02714F d0ee02714f |
GroupedDBID | 0-7 0R 29G 4.4 5GY 70 705 7~J AAEMU AAGNR AAIWI AANOJ ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFRAH AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX CS3 EBS ECGLT EE0 EF- GNO HZ H~N J3I JG M4U N9A O-G O9- P2P RCNCU RIG RPMJG RRC RSCEA SKA SLH TOV UCJ 0R~ 70~ AAJAE AARTK AAWGC AAXHV AAXPP AAYXX ABASK ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRZK AGEGJ AGRSR AHGCF AKBGW AKMSF ANUXI APEMP CITATION GGIMP H13 HZ~ RAOCF RVUXY 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
ID | FETCH-LOGICAL-c384t-f591119b0b56690abe8199d438efe36743008675087933bf046d1e385e6cbea33 |
ISSN | 1754-5692 |
IngestDate | Mon Jun 30 11:58:04 EDT 2025 Thu Apr 24 23:05:15 EDT 2025 Tue Jul 01 01:45:47 EDT 2025 Sat Jan 08 03:48:22 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c384t-f591119b0b56690abe8199d438efe36743008675087933bf046d1e385e6cbea33 |
Notes | Prof. Xueliang (Andy) Sun is a Canada Research Chair in the Development of Nanomaterials for Clean Energy, Fellow of the Royal Society of Canada and the Canadian Academy of Engineering and Full Professor at the University of Western Ontario, Canada. Dr Sun received his PhD in materials chemistry in 1999 from the University of Manchester, UK, which he followed up by working as a postdoctoral fellow at the University of British Columbia, Canada, and as a Research Associate at L'Institut National de la Recherche Scientifique (INRS), Canada. His current research interests are focused on advanced materials for electrochemical energy storage and conversion. Dr Xiaofei Yang is currently a postdoctoral associate in Prof. Xueliang (Andy) Sun's Nanomaterials and Energy Group. He received his BE degree in Chemical Engineering from Anhui University, China, in 2013 and his PhD degree from the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China, in 2018 under the supervision of Prof. Huamin Zhang. His research interests focus on Li-S batteries, all-solid-state Li-ion and Li-S batteries and battery interface studies via synchrotron X-ray characterization. Xuejie Gao is currently a PhD candidate in Prof. Xueliang (Andy) Sun's group at the University of Western Ontario, Canada. She received her BS degree in Chemistry in 2014 from Ludong University and obtained her MS degree in Chemistry in 2017 from Soochow University. Currently, her research interests focus on the development of 3D printing applied for lithium batteries. She is also co-supervised by Prof. T. K. Sham from Chemistry Department in the University of Western Ontario. Part of her work is related to the study of energy materials via synchrotron radiation. 10.1039/d0ee02714f Electronic supplementary information (ESI) available. See DOI Keegan R. Adair received his BSc in chemistry from the University of British Columbia in 2016. He is currently a PhD candidate in Prof. Xueliang (Andy) Sun's Nanomaterials and Energy Group at the University of Western Ontario, Canada. He has previous experience in the battery industry through internships at companies including E-One Moli Energy and General Motors R&D. His research interests include the design of nanomaterials for lithium metal batteries and nanoscale interfacial coatings for battery applications. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0374-1245 |
PQID | 2492303291 |
PQPubID | 2047494 |
PageCount | 29 |
ParticipantIDs | crossref_primary_10_1039_D0EE02714F rsc_primary_d0ee02714f crossref_citationtrail_10_1039_D0EE02714F proquest_journals_2492303291 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 20210101 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Energy & environmental science |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Fu (D0EE02714F-(cit44)/*[position()=1]) 2017; 10 Yang (D0EE02714F-(cit4)/*[position()=1]) 2020; 49 Li (D0EE02714F-(cit57)/*[position()=1]) 2020; 30 Wenzel (D0EE02714F-(cit134)/*[position()=1]) 2016; 28 Chen (D0EE02714F-(cit61)/*[position()=1]) 2016; 3 Li (D0EE02714F-(cit120)/*[position()=1]) 2020; 32 Lee (D0EE02714F-(cit23)/*[position()=1]) 2020; 5 Asano (D0EE02714F-(cit19)/*[position()=1]) 2018; 30 Hubaud (D0EE02714F-(cit118)/*[position()=1]) 2015; 644 Nam (D0EE02714F-(cit53)/*[position()=1]) 2015; 15 Ito (D0EE02714F-(cit74)/*[position()=1]) 2014; 271 Tippens (D0EE02714F-(cit130)/*[position()=1]) 2019; 4 Tarascon (D0EE02714F-(cit1)/*[position()=1]) 2001; 414 Schnell (D0EE02714F-(cit58)/*[position()=1]) 2018; 382 Whiteley (D0EE02714F-(cit55)/*[position()=1]) 2015; 27 Howlett (D0EE02714F-(cit56)/*[position()=1]) 2013; 15 Wenzel (D0EE02714F-(cit135)/*[position()=1]) 2015; 278 Cai (D0EE02714F-(cit86)/*[position()=1]) 2019; 13 Cheng (D0EE02714F-(cit113)/*[position()=1]) 2015; 7 Zhang (D0EE02714F-(cit138)/*[position()=1]) 2017; 5 Liang (D0EE02714F-(cit10)/*[position()=1]) 2019; 21 Liu (D0EE02714F-(cit11)/*[position()=1]) 2018; 389 Xiao (D0EE02714F-(cit108)/*[position()=1]) 2019; 5 Han (D0EE02714F-(cit81)/*[position()=1]) 2018; 2 Appetecchi (D0EE02714F-(cit63)/*[position()=1]) 2005; 143 Lou (D0EE02714F-(cit112)/*[position()=1]) 2020; 6 Manthiram (D0EE02714F-(cit8)/*[position()=1]) 2017; 2 Gong (D0EE02714F-(cit99)/*[position()=1]) 2018; 21 Liu (D0EE02714F-(cit29)/*[position()=1]) 2019; 1 Vinod Chandran (D0EE02714F-(cit114)/*[position()=1]) 2016; 120 Zhu (D0EE02714F-(cit85)/*[position()=1]) 2014; 4 Chen (D0EE02714F-(cit142)/*[position()=1]) 2020; 4 Tan (D0EE02714F-(cit77)/*[position()=1]) 2020; 15 Yamamoto (D0EE02714F-(cit93)/*[position()=1]) 2018; 8 Zhong (D0EE02714F-(cit80)/*[position()=1]) 2020; 30 Wang (D0EE02714F-(cit94)/*[position()=1]) 2019; 3 McOwen (D0EE02714F-(cit67)/*[position()=1]) 2018; 30 Nam (D0EE02714F-(cit107)/*[position()=1]) 2018; 375 Xie (D0EE02714F-(cit59)/*[position()=1]) 2019; 4 Seitzman (D0EE02714F-(cit129)/*[position()=1]) 2018; 165 Fu (D0EE02714F-(cit47)/*[position()=1]) 2016; 113 Li (D0EE02714F-(cit139)/*[position()=1]) 2016; 57 Wang (D0EE02714F-(cit60)/*[position()=1]) 2016; 4 Zhu (D0EE02714F-(cit89)/*[position()=1]) 2015; 7 Gao (D0EE02714F-(cit144)/*[position()=1]) 2020 Li (D0EE02714F-(cit18)/*[position()=1]) 2020; 20 Xu (D0EE02714F-(cit54)/*[position()=1]) 2019; 4 Liang (D0EE02714F-(cit148)/*[position()=1]) 2017; 2 Yi (D0EE02714F-(cit22)/*[position()=1]) 2017; 10 Duan (D0EE02714F-(cit90)/*[position()=1]) 2019; 31 Ates (D0EE02714F-(cit43)/*[position()=1]) 2019; 17 D0EE02714F-(cit122)/*[position()=1] Zhao (D0EE02714F-(cit73)/*[position()=1]) 2019; 4 Umeshbabu (D0EE02714F-(cit95)/*[position()=1]) 2019; 2 Stöffler (D0EE02714F-(cit119)/*[position()=1]) 2018; 122 Ganapathy (D0EE02714F-(cit116)/*[position()=1]) 2019; 4 Wang (D0EE02714F-(cit27)/*[position()=1]) 2020; 72 Xiang (D0EE02714F-(cit111)/*[position()=1]) 2020; 36 Sheil (D0EE02714F-(cit153)/*[position()=1]) 2020; 38 Yuan (D0EE02714F-(cit37)/*[position()=1]) 2020; 3 Kamaya (D0EE02714F-(cit12)/*[position()=1]) 2011; 10 Yang (D0EE02714F-(cit88)/*[position()=1]) 2020; 13 Chen (D0EE02714F-(cit121)/*[position()=1]) 2015; 3 Lin (D0EE02714F-(cit82)/*[position()=1]) 2018; 30 Duan (D0EE02714F-(cit83)/*[position()=1]) 2018; 10 Hitz (D0EE02714F-(cit46)/*[position()=1]) 2019; 22 Liu (D0EE02714F-(cit151)/*[position()=1]) 2018; 10 Kim (D0EE02714F-(cit68)/*[position()=1]) 2019; 9 Hu (D0EE02714F-(cit154)/*[position()=1]) 2020; 142 Kato (D0EE02714F-(cit13)/*[position()=1]) 2016; 1 Chen (D0EE02714F-(cit36)/*[position()=1]) 2019; 12 Judez (D0EE02714F-(cit97)/*[position()=1]) 2017; 8 Deng (D0EE02714F-(cit155)/*[position()=1]) 2020; 27 Cao (D0EE02714F-(cit145)/*[position()=1]) 2020; 3 Shen (D0EE02714F-(cit125)/*[position()=1]) 2018; 3 Chien (D0EE02714F-(cit133)/*[position()=1]) 2018; 9 Zhou (D0EE02714F-(cit7)/*[position()=1]) 2019; 31 Banerjee (D0EE02714F-(cit109)/*[position()=1]) 2020; 120 Nie (D0EE02714F-(cit110)/*[position()=1]) 2020; 5 Gao (D0EE02714F-(cit141)/*[position()=1]) 2020; 24 Bae (D0EE02714F-(cit49)/*[position()=1]) 2018; 57 Xiao (D0EE02714F-(cit30)/*[position()=1]) 2020; 5 Safanama (D0EE02714F-(cit117)/*[position()=1]) 2016; 4 Elia (D0EE02714F-(cit105)/*[position()=1]) 2015; 5 Liang (D0EE02714F-(cit152)/*[position()=1]) 2018; 6 Yang (D0EE02714F-(cit31)/*[position()=1]) 2019; 22 Jabbari (D0EE02714F-(cit38)/*[position()=1]) 2016; 212 Browne (D0EE02714F-(cit65)/*[position()=1]) 2020; 120 Wang (D0EE02714F-(cit91)/*[position()=1]) 2019; 6 Li (D0EE02714F-(cit14)/*[position()=1]) 2019; 12 Zhu (D0EE02714F-(cit42)/*[position()=1]) 2020 Ke (D0EE02714F-(cit126)/*[position()=1]) 2020; 26 Han (D0EE02714F-(cit76)/*[position()=1]) 2016; 16 Yang (D0EE02714F-(cit3)/*[position()=1]) 2018; 1 Yang (D0EE02714F-(cit32)/*[position()=1]) 2019; 61 Gao (D0EE02714F-(cit66)/*[position()=1]) 2019; 56 Hippauf (D0EE02714F-(cit137)/*[position()=1]) 2019; 21 Keller (D0EE02714F-(cit62)/*[position()=1]) 2017; 353 Harm (D0EE02714F-(cit115)/*[position()=1]) 2019; 31 Yang (D0EE02714F-(cit146)/*[position()=1]) 2020; 10 Wang (D0EE02714F-(cit149)/*[position()=1]) 2020; 11 Gao (D0EE02714F-(cit143)/*[position()=1]) 2020; 10 Peng (D0EE02714F-(cit69)/*[position()=1]) 2019; 7 Balaish (D0EE02714F-(cit103)/*[position()=1]) 2015; 127 Zhu (D0EE02714F-(cit102)/*[position()=1]) 2015; 8 Hood (D0EE02714F-(cit71)/*[position()=1]) 2018; 8 Le (D0EE02714F-(cit100)/*[position()=1]) 2019; 7 Chen (D0EE02714F-(cit21)/*[position()=1]) 2020; 120 Wan (D0EE02714F-(cit48)/*[position()=1]) 2019; 14 Wu (D0EE02714F-(cit87)/*[position()=1]) 2019; 9 Jiang (D0EE02714F-(cit41)/*[position()=1]) 2020; 32 Eshetu (D0EE02714F-(cit98)/*[position()=1]) 2017; 56 Xu (D0EE02714F-(cit45)/*[position()=1]) 2018; 15 Xue (D0EE02714F-(cit9)/*[position()=1]) 2015; 3 Su (D0EE02714F-(cit147)/*[position()=1]) 2020; 13 Han (D0EE02714F-(cit25)/*[position()=1]) 2019; 7 Duan (D0EE02714F-(cit72)/*[position()=1]) 2018; 140 Tao (D0EE02714F-(cit96)/*[position()=1]) 2017; 17 Wang (D0EE02714F-(cit75)/*[position()=1]) 2018; 30 Nagata (D0EE02714F-(cit26)/*[position()=1]) 2016; 4 Woo (D0EE02714F-(cit70)/*[position()=1]) 2016; 69 Huo (D0EE02714F-(cit28)/*[position()=1]) 2020; 13 Kazyak (D0EE02714F-(cit131)/*[position()=1]) 2020; 2 Xu (D0EE02714F-(cit2)/*[position()=1]) 2004; 104 Wood (D0EE02714F-(cit136)/*[position()=1]) 2018; 9 Gao (D0EE02714F-(cit84)/*[position()=1]) 2019; 791 Koerver (D0EE02714F-(cit140)/*[position()=1]) 2018; 11 Ma (D0EE02714F-(cit34)/*[position()=1]) 2018; 5 Liu (D0EE02714F-(cit24)/*[position()=1]) 2017; 3 Li (D0EE02714F-(cit33)/*[position()=1]) 2019; 11 Wang (D0EE02714F-(cit16)/*[position()=1]) 2019; 58 Kim (D0EE02714F-(cit50)/*[position()=1]) 2020; 5 Zhao (D0EE02714F-(cit5)/*[position()=1]) 2018; 2 Zhou (D0EE02714F-(cit17)/*[position()=1]) 2020; 13 Han (D0EE02714F-(cit150)/*[position()=1]) 2019; 4 Bonnet-Mercier (D0EE02714F-(cit104)/*[position()=1]) 2014; 4 Hovington (D0EE02714F-(cit106)/*[position()=1]) 2015; 15 Zhu (D0EE02714F-(cit101)/*[position()=1]) 2016; 26 Umeshbabu (D0EE02714F-(cit6)/*[position()=1]) 2019; 2 Li (D0EE02714F-(cit15)/*[position()=1]) 2020; 13 Sakuda (D0EE02714F-(cit40)/*[position()=1]) 2017; 164 Shen (D0EE02714F-(cit128)/*[position()=1]) 2020; 12 Li (D0EE02714F-(cit127)/*[position()=1]) 2019; 45 Zhang (D0EE02714F-(cit39)/*[position()=1]) 2014; 590 Dixit (D0EE02714F-(cit124)/*[position()=1]) 2019; 11 Ma (D0EE02714F-(cit132)/*[position()=1]) 2016; 16 Zhai (D0EE02714F-(cit52)/*[position()=1]) 2017; 17 Dai (D0EE02714F-(cit51)/*[position()=1]) 2019; 1 Shen (D0EE02714F-(cit92)/*[position()=1]) 2019; 7 Yan (D0EE02714F-(cit35)/*[position()=1]) 2017; 24 Chen (D0EE02714F-(cit123)/*[position()=1]) 2015; 27 Li (D0EE02714F-(cit20)/*[position()=1]) 2019; 58 |
References_xml | – issn: 2017 doi: Cobb Bae – issn: 2018 doi: Bae Rao Shrader – issn: 2004 doi: Lavoie Laliberte Dube Gagnon – volume: 32 start-page: 7019 year: 2020 ident: D0EE02714F-(cit120)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c02419 – volume: 4 start-page: 2668 year: 2019 ident: D0EE02714F-(cit59)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b01847 – volume: 164 start-page: A2474 year: 2017 ident: D0EE02714F-(cit40)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/2.0951712jes – start-page: 1 year: 2020 ident: D0EE02714F-(cit42)/*[position()=1] publication-title: Mater. Technol. doi: 10.1080/10667857.2020.1713452 – volume: 7 start-page: 3150 year: 2019 ident: D0EE02714F-(cit100)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA10771H – volume: 17 start-page: 3182 year: 2017 ident: D0EE02714F-(cit52)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b00715 – volume: 3 start-page: 57 year: 2020 ident: D0EE02714F-(cit145)/*[position()=1] publication-title: Matter doi: 10.1016/j.matt.2020.03.015 – volume: 4 start-page: 42278 year: 2014 ident: D0EE02714F-(cit85)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C4RA06208F – volume: 15 start-page: 13784 year: 2013 ident: D0EE02714F-(cit56)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp51986d – volume: 4 start-page: 7127 year: 2014 ident: D0EE02714F-(cit104)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep07127 – volume: 57 start-page: 2096 year: 2018 ident: D0EE02714F-(cit49)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201710841 – volume: 27 start-page: 5491 year: 2015 ident: D0EE02714F-(cit123)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b02521 – volume: 11 start-page: 5201 year: 2020 ident: D0EE02714F-(cit149)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-020-19004-4 – volume: 36 start-page: 139 year: 2020 ident: D0EE02714F-(cit111)/*[position()=1] publication-title: Mater. Today doi: 10.1016/j.mattod.2020.01.018 – volume: 382 start-page: 160 year: 2018 ident: D0EE02714F-(cit58)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.02.062 – volume: 2 start-page: 16103 year: 2017 ident: D0EE02714F-(cit8)/*[position()=1] publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.103 – volume: 4 start-page: 365 year: 2019 ident: D0EE02714F-(cit73)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/s41560-019-0349-7 – volume: 14 start-page: 705 year: 2019 ident: D0EE02714F-(cit48)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0465-3 – volume: 414 start-page: 359 year: 2001 ident: D0EE02714F-(cit1)/*[position()=1] publication-title: Nature doi: 10.1038/35104644 – volume: 11 start-page: 22745 year: 2019 ident: D0EE02714F-(cit33)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b05212 – volume: 27 start-page: 6922 year: 2015 ident: D0EE02714F-(cit55)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201502636 – volume: 1 start-page: 16030 year: 2016 ident: D0EE02714F-(cit13)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/nenergy.2016.30 – volume: 69 start-page: 617 year: 2016 ident: D0EE02714F-(cit70)/*[position()=1] publication-title: J. Korean Phys. Soc. doi: 10.3938/jkps.69.617 – volume: 7 start-page: 20861 year: 2019 ident: D0EE02714F-(cit92)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA06520B – volume: 7 start-page: 10751 year: 2019 ident: D0EE02714F-(cit69)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b01435 – volume: 5 start-page: 561 year: 2020 ident: D0EE02714F-(cit30)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/s41560-020-0648-z – volume: 61 start-page: 567 year: 2019 ident: D0EE02714F-(cit32)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.05.002 – volume: 120 start-page: 6878 year: 2020 ident: D0EE02714F-(cit109)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00101 – volume: 4 start-page: 938 year: 2020 ident: D0EE02714F-(cit142)/*[position()=1] publication-title: Joule doi: 10.1016/j.joule.2020.03.008 – volume: 10 start-page: 31240 year: 2018 ident: D0EE02714F-(cit151)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b06366 – volume: 16 start-page: 7030 year: 2016 ident: D0EE02714F-(cit132)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03223 – volume: 10 start-page: 860 year: 2017 ident: D0EE02714F-(cit22)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C6EE03499C – volume: 142 start-page: 18035 year: 2020 ident: D0EE02714F-(cit154)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c07060 – volume: 104 start-page: 4303 year: 2004 ident: D0EE02714F-(cit2)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr030203g – volume: 3 start-page: 1056 year: 2018 ident: D0EE02714F-(cit125)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00249 – volume: 122 start-page: 15954 year: 2018 ident: D0EE02714F-(cit119)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b05431 – volume: 2 start-page: 17119 year: 2017 ident: D0EE02714F-(cit148)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/nenergy.2017.119 – volume: 12 start-page: 2665 year: 2019 ident: D0EE02714F-(cit14)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C9EE02311A – volume: 31 start-page: 1902029 year: 2019 ident: D0EE02714F-(cit7)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201902029 – volume: 30 start-page: 1910123 year: 2020 ident: D0EE02714F-(cit57)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201910123 – volume: 3 start-page: 596 year: 2020 ident: D0EE02714F-(cit37)/*[position()=1] publication-title: Batteries Supercaps doi: 10.1002/batt.202000051 – volume: 38 start-page: 032411 year: 2020 ident: D0EE02714F-(cit153)/*[position()=1] publication-title: J. Vac. Sci. Technol., A doi: 10.1116/1.5142859 – volume: 2 start-page: 497 year: 2018 ident: D0EE02714F-(cit81)/*[position()=1] publication-title: Joule doi: 10.1016/j.joule.2018.02.007 – volume: 7 start-page: 23685 year: 2015 ident: D0EE02714F-(cit89)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b07517 – volume: 3 start-page: eaao0713 year: 2017 ident: D0EE02714F-(cit24)/*[position()=1] publication-title: Sci. Adv. doi: 10.1126/sciadv.aao0713 – volume: 13 start-page: 908 year: 2020 ident: D0EE02714F-(cit147)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C9EE04007B – volume: 56 start-page: 595 year: 2019 ident: D0EE02714F-(cit66)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.001 – volume: 30 start-page: e1707132 year: 2018 ident: D0EE02714F-(cit67)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201707132 – volume: 8 start-page: 1212 year: 2018 ident: D0EE02714F-(cit93)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/s41598-018-19398-8 – volume: 16 start-page: 4521 year: 2016 ident: D0EE02714F-(cit76)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b01754 – volume: 5 start-page: 9929 year: 2017 ident: D0EE02714F-(cit138)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA02730C – volume: 21 start-page: 308 year: 2019 ident: D0EE02714F-(cit10)/*[position()=1] publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.06.021 – volume: 9 start-page: 1902767 year: 2019 ident: D0EE02714F-(cit87)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201902767 – start-page: 2005357 year: 2020 ident: D0EE02714F-(cit144)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202005357 – volume: 10 start-page: 2001191 year: 2020 ident: D0EE02714F-(cit146)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202001191 – volume: 9 start-page: 1990 year: 2018 ident: D0EE02714F-(cit133)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b00240 – volume: 4 start-page: 1073 year: 2019 ident: D0EE02714F-(cit54)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b00430 – volume: 21 start-page: 390 year: 2019 ident: D0EE02714F-(cit137)/*[position()=1] publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.05.033 – volume: 2 start-page: 199 year: 2019 ident: D0EE02714F-(cit6)/*[position()=1] publication-title: Electrochem. Energy Rev. doi: 10.1007/s41918-019-00029-3 – volume: 3 start-page: 19218 year: 2015 ident: D0EE02714F-(cit9)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA03471J – volume: 389 start-page: 120 year: 2018 ident: D0EE02714F-(cit11)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.04.019 – volume: 15 start-page: 2671 year: 2015 ident: D0EE02714F-(cit106)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00326 – volume: 30 start-page: e1803075 year: 2018 ident: D0EE02714F-(cit19)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201803075 – volume: 1 start-page: 239 year: 2018 ident: D0EE02714F-(cit3)/*[position()=1] publication-title: Electrochem. Energy Rev. doi: 10.1007/s41918-018-0010-3 – volume: 28 start-page: 2400 year: 2016 ident: D0EE02714F-(cit134)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00610 – volume: 4 start-page: 484 year: 2016 ident: D0EE02714F-(cit26)/*[position()=1] publication-title: Energy Technol. doi: 10.1002/ente.201500297 – volume: 10 start-page: 682 year: 2011 ident: D0EE02714F-(cit12)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3066 – volume: 7 start-page: 2073 year: 2015 ident: D0EE02714F-(cit113)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am508111r – volume: 1 start-page: 100010 year: 2019 ident: D0EE02714F-(cit29)/*[position()=1] publication-title: eTransportation doi: 10.1016/j.etran.2019.100010 – volume: 10 start-page: 85 year: 2018 ident: D0EE02714F-(cit83)/*[position()=1] publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2017.06.017 – volume: 22 start-page: 194 year: 2019 ident: D0EE02714F-(cit31)/*[position()=1] publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.07.015 – volume: 15 start-page: 458 year: 2018 ident: D0EE02714F-(cit45)/*[position()=1] publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.08.009 – volume: 15 start-page: 170 year: 2020 ident: D0EE02714F-(cit77)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0657-x – volume: 13 start-page: 119 year: 2019 ident: D0EE02714F-(cit86)/*[position()=1] publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2019.05.005 – volume: 2 start-page: 1025 year: 2020 ident: D0EE02714F-(cit131)/*[position()=1] publication-title: Matter doi: 10.1016/j.matt.2020.02.008 – volume: 6 start-page: 23712 year: 2018 ident: D0EE02714F-(cit152)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA09069F – volume: 49 start-page: 2140 year: 2020 ident: D0EE02714F-(cit4)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00635D – volume: 5 start-page: 299 year: 2020 ident: D0EE02714F-(cit23)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/s41560-020-0575-z – volume: 2 start-page: 2583 year: 2018 ident: D0EE02714F-(cit5)/*[position()=1] publication-title: Joule doi: 10.1016/j.joule.2018.11.012 – volume: 5 start-page: 1700996 year: 2018 ident: D0EE02714F-(cit34)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201700996 – volume: 4 start-page: 1475 year: 2019 ident: D0EE02714F-(cit130)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b00816 – volume: 212 start-page: 39 year: 2016 ident: D0EE02714F-(cit38)/*[position()=1] publication-title: Mater. Sci. Eng., B doi: 10.1016/j.mseb.2016.07.011 – volume: 2 start-page: 199 year: 2019 ident: D0EE02714F-(cit95)/*[position()=1] publication-title: Electrochem. Energy Rev. doi: 10.1007/s41918-019-00029-3 – volume: 120 start-page: 8436 year: 2016 ident: D0EE02714F-(cit114)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b00318 – volume: 9 start-page: 1901841 year: 2019 ident: D0EE02714F-(cit68)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901841 – volume: 3 start-page: 1900261 year: 2019 ident: D0EE02714F-(cit94)/*[position()=1] publication-title: Small Methods doi: 10.1002/smtd.201900261 – volume: 278 start-page: 98 year: 2015 ident: D0EE02714F-(cit135)/*[position()=1] publication-title: Solid State Ionics doi: 10.1016/j.ssi.2015.06.001 – volume: 5 start-page: 12307 year: 2015 ident: D0EE02714F-(cit105)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep12307 – volume: 17 start-page: 2967 year: 2017 ident: D0EE02714F-(cit96)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b00221 – volume: 3 start-page: 22868 year: 2015 ident: D0EE02714F-(cit121)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA04902D – volume: 13 start-page: 127 year: 2020 ident: D0EE02714F-(cit28)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C9EE01903K – volume: 10 start-page: 1568 year: 2017 ident: D0EE02714F-(cit44)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C7EE01004D – volume: 143 start-page: 236 year: 2005 ident: D0EE02714F-(cit63)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2004.11.039 – volume: 7 start-page: 3895 year: 2019 ident: D0EE02714F-(cit25)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA12443D – volume: 165 start-page: A3732 year: 2018 ident: D0EE02714F-(cit129)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/2.0301816jes – volume: 12 start-page: 938 year: 2019 ident: D0EE02714F-(cit36)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C8EE02617C – ident: D0EE02714F-(cit122)/*[position()=1] – volume: 120 start-page: 2783 year: 2020 ident: D0EE02714F-(cit65)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00783 – volume: 140 start-page: 82 year: 2018 ident: D0EE02714F-(cit72)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10864 – volume: 24 start-page: 1545 year: 2017 ident: D0EE02714F-(cit35)/*[position()=1] publication-title: Ionics doi: 10.1007/s11581-017-2353-x – volume: 791 start-page: 923 year: 2019 ident: D0EE02714F-(cit84)/*[position()=1] publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.03.409 – volume: 12 start-page: 30313 year: 2020 ident: D0EE02714F-(cit128)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c04850 – volume: 10 start-page: 1903753 year: 2020 ident: D0EE02714F-(cit143)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903753 – volume: 8 start-page: 1800014 year: 2018 ident: D0EE02714F-(cit71)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800014 – volume: 58 start-page: 16427 year: 2019 ident: D0EE02714F-(cit20)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201909805 – volume: 271 start-page: 342 year: 2014 ident: D0EE02714F-(cit74)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.08.024 – volume: 120 start-page: 6820 year: 2020 ident: D0EE02714F-(cit21)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00268 – volume: 72 start-page: 104686 year: 2020 ident: D0EE02714F-(cit27)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104686 – volume: 13 start-page: 2056 year: 2020 ident: D0EE02714F-(cit17)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/D0EE01017K – volume: 11 start-page: 2022 year: 2019 ident: D0EE02714F-(cit124)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b16536 – volume: 20 start-page: 4384 year: 2020 ident: D0EE02714F-(cit18)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c01156 – volume: 353 start-page: 287 year: 2017 ident: D0EE02714F-(cit62)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.04.014 – volume: 4 start-page: 7718 year: 2016 ident: D0EE02714F-(cit117)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA00402D – volume: 5 start-page: 826 year: 2020 ident: D0EE02714F-(cit110)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b02739 – volume: 590 start-page: 147 year: 2014 ident: D0EE02714F-(cit39)/*[position()=1] publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2013.12.100 – volume: 30 start-page: 990 year: 2018 ident: D0EE02714F-(cit75)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b04842 – volume: 32 start-page: e1906221 year: 2020 ident: D0EE02714F-(cit41)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201906221 – volume: 15 start-page: 3317 year: 2015 ident: D0EE02714F-(cit53)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00538 – volume: 5 start-page: 105 year: 2019 ident: D0EE02714F-(cit108)/*[position()=1] publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-019-0157-5 – volume: 113 start-page: 7094 year: 2016 ident: D0EE02714F-(cit47)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1600422113 – volume: 57 start-page: 549 year: 2016 ident: D0EE02714F-(cit139)/*[position()=1] publication-title: Mater. Trans. doi: 10.2320/matertrans.Y-M2016804 – volume: 375 start-page: 93 year: 2018 ident: D0EE02714F-(cit107)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.11.031 – volume: 6 start-page: 2199 year: 2020 ident: D0EE02714F-(cit112)/*[position()=1] publication-title: Chemistry doi: 10.1016/j.chempr.2020.06.030 – volume: 17 start-page: 204 year: 2019 ident: D0EE02714F-(cit43)/*[position()=1] publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.11.011 – volume: 30 start-page: 385 year: 2020 ident: D0EE02714F-(cit80)/*[position()=1] publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.05.015 – volume: 644 start-page: 804 year: 2015 ident: D0EE02714F-(cit118)/*[position()=1] publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2015.05.067 – volume: 4 start-page: 1092 year: 2019 ident: D0EE02714F-(cit116)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b00610 – volume: 9 start-page: 2490 year: 2018 ident: D0EE02714F-(cit136)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-04762-z – volume: 3 start-page: 487 year: 2016 ident: D0EE02714F-(cit61)/*[position()=1] publication-title: Mater. Horiz. doi: 10.1039/C6MH00218H – volume: 30 start-page: e1802661 year: 2018 ident: D0EE02714F-(cit82)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201802661 – volume: 31 start-page: 1280 year: 2019 ident: D0EE02714F-(cit115)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b04051 – volume: 56 start-page: 15368 year: 2017 ident: D0EE02714F-(cit98)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201709305 – volume: 4 start-page: 8091 year: 2016 ident: D0EE02714F-(cit60)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA02294D – volume: 13 start-page: 1318 year: 2020 ident: D0EE02714F-(cit88)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/D0EE00342E – volume: 6 start-page: 1901036 year: 2019 ident: D0EE02714F-(cit91)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201901036 – volume: 8 start-page: 2782 year: 2015 ident: D0EE02714F-(cit102)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C5EE01604E – volume: 5 start-page: 718 year: 2020 ident: D0EE02714F-(cit50)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c00251 – volume: 13 start-page: 1429 year: 2020 ident: D0EE02714F-(cit15)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C9EE03828K – volume: 21 start-page: 594 year: 2018 ident: D0EE02714F-(cit99)/*[position()=1] publication-title: Mater. Today doi: 10.1016/j.mattod.2018.01.001 – volume: 26 start-page: 313 year: 2020 ident: D0EE02714F-(cit126)/*[position()=1] publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.08.029 – volume: 22 start-page: 50 year: 2019 ident: D0EE02714F-(cit46)/*[position()=1] publication-title: Mater. Today doi: 10.1016/j.mattod.2018.04.004 – volume: 4 start-page: 187 year: 2019 ident: D0EE02714F-(cit150)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/s41560-018-0312-z – volume: 31 start-page: 1807789 year: 2019 ident: D0EE02714F-(cit90)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201807789 – volume: 11 start-page: 2142 year: 2018 ident: D0EE02714F-(cit140)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00907D – volume: 24 start-page: 682 year: 2020 ident: D0EE02714F-(cit141)/*[position()=1] publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.08.001 – volume: 58 start-page: 8039 year: 2019 ident: D0EE02714F-(cit16)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201901938 – volume: 8 start-page: 1956 year: 2017 ident: D0EE02714F-(cit97)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b00593 – volume: 127 start-page: 446 year: 2015 ident: D0EE02714F-(cit103)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.201408008 – volume: 1 start-page: 354 year: 2019 ident: D0EE02714F-(cit51)/*[position()=1] publication-title: ACS Mater. Lett. doi: 10.1021/acsmaterialslett.9b00189 – volume: 26 start-page: 565 year: 2016 ident: D0EE02714F-(cit101)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.06.010 – volume: 27 start-page: 117 year: 2020 ident: D0EE02714F-(cit155)/*[position()=1] publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.01.009 – volume: 45 start-page: 18115 year: 2019 ident: D0EE02714F-(cit127)/*[position()=1] publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.05.241 |
SSID | ssj0062079 |
Score | 2.6910737 |
SecondaryResourceType | review_article |
Snippet | Solid-state lithium batteries (SSLBs) are promising next-generation energy storage devices due to their potential for high energy density and improved safety.... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 643 |
SubjectTerms | Batteries Commercialization Critical components Design parameters Electrochemical analysis Electrochemistry Electrolytes Electrolytic cells Energy Energy storage Fabrication Flux density Gravimetry Lithium Lithium batteries Manufacturing industry Molten salt electrolytes Physical properties Production costs Solid electrolytes Solid state Storage batteries |
Title | Recent advances and perspectives on thin electrolytes for high-energy-density solid-state lithium batteries |
URI | https://www.proquest.com/docview/2492303291 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELW27QUOFV8VWwqyBBeEXJzY8cbHAlsqEFxoxXJa2bFdAiVblc0Bfj3j2ElcsUjAJVo5H4oyb8fj8bw3CD0RpSpNLmfEGsYJd0wQnXlBACdpqXKZGePzkO_ei5Mz_mZRLCaTNmWXrPVh9XMjr-R_rApjYFfPkv0Hyw4PhQH4DfaFI1gYjn9lY4j5uhLxsI8f1JYvR_Zk3AnwoiCh2c3FD59l9YWFXqWY2I73R4yvYYdYHN61NqRjGHlm8ue6_fZMd_KbfaFhn8EPfEEPmoQn17MrR6h8irnoRa1WztZjaYCqQyWHted-B2GoAVJd3nbR2i_18JAPbRMHfULmPM1S5FmSpQiOdVZwUojQ9-7QJmMzKq55Y56gLk9cqwhyTnGWFqFxy28TAGVeP9VQa2G9nXE3TnND8eF4cgvt5LC6APe4c_T2xeuP_RQuctqJNA4v3evaMvl8vPt6JDMuT7au-t4xXYxyegvtxsUFPgpIuY0mtrmDbiaSk3fR14AZ3GMGA2Zwihm8arDHDE4xgwEzeANmcIIZHDGDB8zcQ2fH89OXJyQ23CAVK_mauMJPfVJTDUG-pEpbiBel4ay0zjJPV_ErYIgxS_DqTDvKhcksKwsrKm0VY3tou1k19j7CtCpoBV8OonHHlTLKFFpk1rmqKGU-k1P0tP94yyqq0fumKBfLriqCyeUrOp93H_p4ih4P114GDZaNVx30NljG_-j3pdfDhCANfM4U7YFdhvtHM-7_6cQDdGNE8gHaXl-19iFEoGv9KOLlFw9xioc |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+and+perspectives+on+thin+electrolytes+for+high-energy-density+solid-state+lithium+batteries&rft.jtitle=Energy+%26+environmental+science&rft.au=Yang%2C+Xiaofei&rft.au=Adair%2C+Keegan+R&rft.au=Gao%2C+Xuejie&rft.au=Sun%2C+Xueliang&rft.date=2021-01-01&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=14&rft.issue=2&rft.spage=643&rft.epage=671&rft_id=info:doi/10.1039%2Fd0ee02714f&rft.externalDocID=d0ee02714f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon |