Recent advances and perspectives on thin electrolytes for high-energy-density solid-state lithium batteries

Solid-state lithium batteries (SSLBs) are promising next-generation energy storage devices due to their potential for high energy density and improved safety. The properties and physical parameters of the solid-state electrolyte (SSE), as a critical component of the battery, have a significant effec...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental science Vol. 14; no. 2; pp. 643 - 671
Main Authors Yang, Xiaofei, Adair, Keegan R, Gao, Xuejie, Sun, Xueliang
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Solid-state lithium batteries (SSLBs) are promising next-generation energy storage devices due to their potential for high energy density and improved safety. The properties and physical parameters of the solid-state electrolyte (SSE), as a critical component of the battery, have a significant effect on the electrochemical performance and energy density. In recent years, thick SSEs have been widely used in SSLBs but present several drawbacks in terms of increased internal resistance, additional inactive material content, low practical energy densities, and higher battery manufacturing costs. Reducing the thickness of SSEs and developing high-performance thin SSE-based SSLBs are essential for the commercialization of SSLBs. In this review, we comprehensively summarize the fabrication methods of thin SSEs, their rational design, and their manufacturing processes and applications in different SSLB systems. Moreover, advanced characterization techniques for understanding the Li + transport kinetics and structural evolution of SSEs at the interface are introduced. Additionally, the gravimetric/volumetric energy densities for various SSLB pouch cells with SSEs less than 100 μm thick are evaluated. Lastly, other cell design parameters are tuned to achieve gravimetric/volumetric energy densities over 300 W h kg −1 /500 W h L −1 , and the future directions of thin SSEs in SSLBs are speculated upon. This review summarizes the recent progress of thin solid-state electrolytes for high energy-density solid-state lithium batteries.
AbstractList Solid-state lithium batteries (SSLBs) are promising next-generation energy storage devices due to their potential for high energy density and improved safety. The properties and physical parameters of the solid-state electrolyte (SSE), as a critical component of the battery, have a significant effect on the electrochemical performance and energy density. In recent years, thick SSEs have been widely used in SSLBs but present several drawbacks in terms of increased internal resistance, additional inactive material content, low practical energy densities, and higher battery manufacturing costs. Reducing the thickness of SSEs and developing high-performance thin SSE-based SSLBs are essential for the commercialization of SSLBs. In this review, we comprehensively summarize the fabrication methods of thin SSEs, their rational design, and their manufacturing processes and applications in different SSLB systems. Moreover, advanced characterization techniques for understanding the Li+ transport kinetics and structural evolution of SSEs at the interface are introduced. Additionally, the gravimetric/volumetric energy densities for various SSLB pouch cells with SSEs less than 100 μm thick are evaluated. Lastly, other cell design parameters are tuned to achieve gravimetric/volumetric energy densities over 300 W h kg−1/500 W h L−1, and the future directions of thin SSEs in SSLBs are speculated upon.
Solid-state lithium batteries (SSLBs) are promising next-generation energy storage devices due to their potential for high energy density and improved safety. The properties and physical parameters of the solid-state electrolyte (SSE), as a critical component of the battery, have a significant effect on the electrochemical performance and energy density. In recent years, thick SSEs have been widely used in SSLBs but present several drawbacks in terms of increased internal resistance, additional inactive material content, low practical energy densities, and higher battery manufacturing costs. Reducing the thickness of SSEs and developing high-performance thin SSE-based SSLBs are essential for the commercialization of SSLBs. In this review, we comprehensively summarize the fabrication methods of thin SSEs, their rational design, and their manufacturing processes and applications in different SSLB systems. Moreover, advanced characterization techniques for understanding the Li + transport kinetics and structural evolution of SSEs at the interface are introduced. Additionally, the gravimetric/volumetric energy densities for various SSLB pouch cells with SSEs less than 100 μm thick are evaluated. Lastly, other cell design parameters are tuned to achieve gravimetric/volumetric energy densities over 300 W h kg −1 /500 W h L −1 , and the future directions of thin SSEs in SSLBs are speculated upon.
Solid-state lithium batteries (SSLBs) are promising next-generation energy storage devices due to their potential for high energy density and improved safety. The properties and physical parameters of the solid-state electrolyte (SSE), as a critical component of the battery, have a significant effect on the electrochemical performance and energy density. In recent years, thick SSEs have been widely used in SSLBs but present several drawbacks in terms of increased internal resistance, additional inactive material content, low practical energy densities, and higher battery manufacturing costs. Reducing the thickness of SSEs and developing high-performance thin SSE-based SSLBs are essential for the commercialization of SSLBs. In this review, we comprehensively summarize the fabrication methods of thin SSEs, their rational design, and their manufacturing processes and applications in different SSLB systems. Moreover, advanced characterization techniques for understanding the Li + transport kinetics and structural evolution of SSEs at the interface are introduced. Additionally, the gravimetric/volumetric energy densities for various SSLB pouch cells with SSEs less than 100 μm thick are evaluated. Lastly, other cell design parameters are tuned to achieve gravimetric/volumetric energy densities over 300 W h kg −1 /500 W h L −1 , and the future directions of thin SSEs in SSLBs are speculated upon. This review summarizes the recent progress of thin solid-state electrolytes for high energy-density solid-state lithium batteries.
Author Gao, Xuejie
Yang, Xiaofei
Adair, Keegan R
Sun, Xueliang
AuthorAffiliation Department of Mechanical and Materials Engineering
University of Western Ontario
AuthorAffiliation_xml – name: Department of Mechanical and Materials Engineering
– name: University of Western Ontario
Author_xml – sequence: 1
  givenname: Xiaofei
  surname: Yang
  fullname: Yang, Xiaofei
– sequence: 2
  givenname: Keegan R
  surname: Adair
  fullname: Adair, Keegan R
– sequence: 3
  givenname: Xuejie
  surname: Gao
  fullname: Gao, Xuejie
– sequence: 4
  givenname: Xueliang
  surname: Sun
  fullname: Sun, Xueliang
BookMark eNptkd9LwzAQx4MouE1ffBcCvgnVS9OmzaPMTYWBIPpc0va6ZXZJTbJB_3ur8weIT3d8-Xzvju-NyaGxBgk5Y3DFgMvrGhAhzljSHJARy9IkSjMQh9-9kPExGXu_BhAxZHJEXp-wQhOoqnfKVOipMjXt0PkOq6B3g2ANDSttKLaD4mzbh0FsrKMrvVxFaNAt-6hG43XoqbetriMfVEDa6sG33dBShYBOoz8hR41qPZ5-1Ql5mc-ep_fR4vHuYXqziCqeJyFqUskYkyWUqRASVIk5k7JOeI4NcpElHCAXWQp5JjkvG0hEzZDnKYqqRMX5hFzs53bOvm3Rh2Jtt84MK4s4kTEHHks2ULCnKme9d9gUlR7u1tYEp3RbMCg-Ii1uYTb7jHQ-WC7_WDqnN8r1_8Pne9j56of7_Q9_B1Z4g3M
CitedBy_id crossref_primary_10_1016_j_cej_2021_130209
crossref_primary_10_1002_adma_202407443
crossref_primary_10_1002_smll_202307250
crossref_primary_10_1016_j_cej_2024_150455
crossref_primary_10_1016_j_est_2024_114737
crossref_primary_10_1016_j_jeurceramsoc_2025_117252
crossref_primary_10_1016_j_electacta_2022_141226
crossref_primary_10_1016_j_jpowsour_2023_233290
crossref_primary_10_1038_s41560_024_01676_7
crossref_primary_10_1002_batt_202400667
crossref_primary_10_1002_ange_202017281
crossref_primary_10_1002_batt_202200097
crossref_primary_10_3390_cryst11081008
crossref_primary_10_1016_j_cej_2021_132991
crossref_primary_10_1016_j_jpowsour_2024_235985
crossref_primary_10_26599_NRE_2023_9120050
crossref_primary_10_1016_j_ensm_2023_102918
crossref_primary_10_1016_j_ensm_2024_103606
crossref_primary_10_1016_j_jpowsour_2024_234539
crossref_primary_10_1039_D4TA01939C
crossref_primary_10_1039_D4MH01037J
crossref_primary_10_1016_j_ensm_2024_103961
crossref_primary_10_1002_adma_202405277
crossref_primary_10_1021_acs_chemrev_1c00594
crossref_primary_10_1016_j_cej_2021_130335
crossref_primary_10_1016_j_device_2024_100468
crossref_primary_10_1021_acsami_1c16978
crossref_primary_10_1002_adma_202401909
crossref_primary_10_1039_D1CC04059F
crossref_primary_10_1016_j_cej_2024_150221
crossref_primary_10_1016_j_ensm_2021_07_028
crossref_primary_10_1021_acsanm_3c04931
crossref_primary_10_1016_j_elecom_2023_107467
crossref_primary_10_1039_D2TA00540A
crossref_primary_10_1002_pssa_202100710
crossref_primary_10_1039_D1EE00551K
crossref_primary_10_1002_adma_202202780
crossref_primary_10_1002_smll_202408986
crossref_primary_10_1016_j_etran_2023_100234
crossref_primary_10_1016_j_jelechem_2024_118631
crossref_primary_10_1039_D2CS00606E
crossref_primary_10_1002_adma_202101275
crossref_primary_10_1002_adma_202402324
crossref_primary_10_1039_D2TA05021H
crossref_primary_10_1016_j_jpowsour_2022_232349
crossref_primary_10_3390_batteries11030090
crossref_primary_10_1016_j_mtener_2021_100841
crossref_primary_10_1016_j_jechem_2025_01_015
crossref_primary_10_1016_j_cej_2024_157191
crossref_primary_10_1002_aenm_202202518
crossref_primary_10_1002_anie_202407892
crossref_primary_10_1016_j_jechem_2024_06_032
crossref_primary_10_1002_batt_202400636
crossref_primary_10_1039_D1EE01530C
crossref_primary_10_1002_aenm_202204028
crossref_primary_10_1016_j_ceja_2022_100439
crossref_primary_10_1016_j_ensm_2023_103107
crossref_primary_10_1016_j_ensm_2022_01_015
crossref_primary_10_1016_j_jpowsour_2022_232139
crossref_primary_10_1002_apj_2747
crossref_primary_10_1016_j_compositesb_2022_109729
crossref_primary_10_1002_aenm_202301886
crossref_primary_10_1002_idm2_12045
crossref_primary_10_3390_en16052271
crossref_primary_10_3390_batteries10070255
crossref_primary_10_1039_D1QM01508G
crossref_primary_10_1021_acsenergylett_1c02261
crossref_primary_10_1016_j_ensm_2024_103941
crossref_primary_10_1002_advs_202104277
crossref_primary_10_1016_j_matpr_2024_05_070
crossref_primary_10_1002_aenm_202303829
crossref_primary_10_1016_j_jpowsour_2024_235165
crossref_primary_10_1002_adfm_202305383
crossref_primary_10_1016_j_cej_2022_137035
crossref_primary_10_1038_s41578_022_00478_1
crossref_primary_10_1016_j_cjsc_2023_100048
crossref_primary_10_1016_j_ensm_2023_03_012
crossref_primary_10_1016_j_ensm_2021_04_016
crossref_primary_10_1002_chem_202400584
crossref_primary_10_1021_acs_energyfuels_1c01609
crossref_primary_10_1016_j_etran_2023_100252
crossref_primary_10_1021_acsnano_2c01038
crossref_primary_10_1002_anie_202421928
crossref_primary_10_1002_adma_202301892
crossref_primary_10_1021_jacs_3c02786
crossref_primary_10_1002_batt_202300056
crossref_primary_10_1038_s43246_024_00703_0
crossref_primary_10_1016_j_apmate_2023_100154
crossref_primary_10_1002_adfm_202101556
crossref_primary_10_3390_batteries10060186
crossref_primary_10_1016_j_cej_2022_136077
crossref_primary_10_1002_adfm_202102765
crossref_primary_10_1016_j_cej_2024_158145
crossref_primary_10_1016_j_gee_2022_05_002
crossref_primary_10_1021_acsenergylett_5c00078
crossref_primary_10_1002_ange_202421928
crossref_primary_10_1016_j_cej_2024_158829
crossref_primary_10_1002_inf2_12252
crossref_primary_10_1039_D3EE01677C
crossref_primary_10_1016_j_electacta_2024_143791
crossref_primary_10_1002_adma_202301540
crossref_primary_10_1002_smtd_202300228
crossref_primary_10_1016_j_est_2023_110169
crossref_primary_10_1016_j_ensm_2023_02_008
crossref_primary_10_1016_j_ceramint_2022_06_232
crossref_primary_10_1016_j_chempr_2022_03_002
crossref_primary_10_1016_j_mtnano_2022_100194
crossref_primary_10_1016_j_etran_2023_100310
crossref_primary_10_1002_adfm_202416779
crossref_primary_10_1002_smll_202400272
crossref_primary_10_1002_anie_202017281
crossref_primary_10_1039_D4EE03104K
crossref_primary_10_1021_jacs_3c14307
crossref_primary_10_1016_j_esci_2022_02_008
crossref_primary_10_1002_aenm_202303850
crossref_primary_10_1002_cnl2_188
crossref_primary_10_1002_smtd_202401610
crossref_primary_10_1002_adma_202209074
crossref_primary_10_1039_D4TA02413C
crossref_primary_10_1007_s12274_022_4845_x
crossref_primary_10_1016_j_jallcom_2022_166125
crossref_primary_10_1039_D3EE02705H
crossref_primary_10_1002_aenm_202402891
crossref_primary_10_1016_j_jcis_2023_06_064
crossref_primary_10_1016_j_ensm_2022_01_052
crossref_primary_10_1016_j_est_2025_115777
crossref_primary_10_1021_acsami_4c12305
crossref_primary_10_1080_10420150_2024_2424757
crossref_primary_10_1016_j_jechem_2023_12_035
crossref_primary_10_1016_j_ensm_2024_103986
crossref_primary_10_1039_D4TA08975H
crossref_primary_10_1016_j_jallcom_2023_172418
crossref_primary_10_1039_D3CS00439B
crossref_primary_10_1021_acsami_4c18659
crossref_primary_10_1016_j_ensm_2022_09_011
crossref_primary_10_3390_batteries10010013
crossref_primary_10_1002_sus2_93
crossref_primary_10_1016_j_cej_2022_137994
crossref_primary_10_1021_acsaem_1c03654
crossref_primary_10_6023_A23070335
crossref_primary_10_1016_j_ensm_2021_10_047
crossref_primary_10_35534_spe_2023_10004
crossref_primary_10_2139_ssrn_4169685
crossref_primary_10_1016_j_joule_2022_05_020
crossref_primary_10_1016_j_cclet_2022_107947
crossref_primary_10_1039_D1EE03032A
crossref_primary_10_1016_j_xinn_2021_100180
crossref_primary_10_2139_ssrn_4063569
crossref_primary_10_1002_cssc_202300504
crossref_primary_10_1016_j_electacta_2023_142438
crossref_primary_10_1039_D4RA07417C
crossref_primary_10_1002_smll_202412054
crossref_primary_10_1002_aenm_202303641
crossref_primary_10_1039_D0TA12424A
crossref_primary_10_1002_aenm_202201732
crossref_primary_10_1021_acs_chemrev_4c00584
crossref_primary_10_1016_j_jechem_2022_08_036
crossref_primary_10_1016_j_jpowsour_2024_234370
crossref_primary_10_1016_j_ensm_2022_12_039
crossref_primary_10_3390_cryst15010031
crossref_primary_10_1016_j_enchem_2021_100063
crossref_primary_10_1016_j_carbpol_2023_120958
crossref_primary_10_1016_j_jpowsour_2022_231773
crossref_primary_10_1038_s41467_021_24697_2
crossref_primary_10_1016_j_jelechem_2024_118915
crossref_primary_10_1007_s40242_021_0007_z
crossref_primary_10_1002_adfm_202201465
crossref_primary_10_1016_j_cossms_2022_101003
crossref_primary_10_1002_adma_202205194
crossref_primary_10_1016_j_adna_2024_03_002
crossref_primary_10_1007_s11426_021_9985_x
crossref_primary_10_2139_ssrn_3956812
crossref_primary_10_1016_j_etran_2024_100319
crossref_primary_10_1016_j_cej_2022_137661
crossref_primary_10_1080_10406638_2022_2150653
crossref_primary_10_1002_aenm_202402848
crossref_primary_10_1016_j_ensm_2023_01_016
crossref_primary_10_1016_j_heliyon_2024_e24493
crossref_primary_10_1039_D2CC02203F
crossref_primary_10_1016_j_est_2023_108873
crossref_primary_10_1002_app_55601
crossref_primary_10_1115_1_4057039
crossref_primary_10_1039_D3TA07586A
crossref_primary_10_1016_j_susmat_2023_e00635
crossref_primary_10_1016_j_cej_2022_140151
crossref_primary_10_1016_j_cej_2021_131948
crossref_primary_10_1021_jacs_3c11988
crossref_primary_10_1016_j_cej_2021_130632
crossref_primary_10_1002_aenm_202103530
crossref_primary_10_1016_j_jechem_2024_04_033
crossref_primary_10_1007_s10973_023_12514_5
crossref_primary_10_1002_ange_202407892
crossref_primary_10_1016_j_cej_2022_140846
crossref_primary_10_1007_s40843_024_3104_2
crossref_primary_10_1016_j_compscitech_2023_110327
crossref_primary_10_1016_j_memsci_2023_122080
crossref_primary_10_1039_D4QM00180J
crossref_primary_10_1016_j_mattod_2023_11_016
crossref_primary_10_1016_j_cej_2024_151108
crossref_primary_10_1002_adfm_202106608
crossref_primary_10_1016_j_jcis_2025_02_155
crossref_primary_10_1021_acs_nanolett_4c02274
crossref_primary_10_1016_j_pmatsci_2023_101182
crossref_primary_10_1002_anie_202415617
crossref_primary_10_1016_j_ensm_2024_103492
crossref_primary_10_1016_j_jechem_2024_06_052
crossref_primary_10_1002_smll_202402164
crossref_primary_10_1002_anie_202424568
crossref_primary_10_1016_j_cej_2022_138414
crossref_primary_10_1021_acs_nanolett_1c01344
crossref_primary_10_1002_cssc_202300671
crossref_primary_10_1016_j_ensm_2023_102832
crossref_primary_10_1002_aenm_202301142
crossref_primary_10_1016_j_jpowsour_2023_232718
crossref_primary_10_1021_acsapm_3c00455
crossref_primary_10_1002_adma_202105329
crossref_primary_10_1016_j_ceja_2023_100532
crossref_primary_10_1016_j_est_2024_114090
crossref_primary_10_1039_D3TA00331K
crossref_primary_10_1016_j_nanoen_2022_107130
crossref_primary_10_1021_acs_chemmater_4c01003
crossref_primary_10_1002_advs_202205233
crossref_primary_10_1039_D1TA06269G
crossref_primary_10_1063_5_0251325
crossref_primary_10_1016_j_pmatsci_2023_101193
crossref_primary_10_1039_D3TA02448B
crossref_primary_10_1007_s12598_022_02065_3
crossref_primary_10_23919_CHAIN_2024_000011
crossref_primary_10_1002_adfm_202410282
crossref_primary_10_1016_j_pmatsci_2024_101337
crossref_primary_10_1021_acsaem_1c02622
crossref_primary_10_1002_adfm_202303574
crossref_primary_10_1016_j_nxmate_2023_100049
crossref_primary_10_1002_adfm_202311633
crossref_primary_10_1016_j_mtnano_2022_100235
crossref_primary_10_1002_adfm_202201021
crossref_primary_10_1016_j_mattod_2022_03_014
crossref_primary_10_1039_D3EE03073C
crossref_primary_10_1002_adfm_202315555
crossref_primary_10_1021_acs_nanolett_3c01892
crossref_primary_10_1039_D1TA10431D
crossref_primary_10_1016_j_enbuild_2024_115063
crossref_primary_10_1016_j_etran_2021_100152
crossref_primary_10_1016_j_ensm_2023_103030
crossref_primary_10_1002_adfm_202300973
crossref_primary_10_1016_j_coco_2024_101871
crossref_primary_10_1016_j_cej_2024_150474
crossref_primary_10_18686_cest_v2i2_164
crossref_primary_10_1002_adfm_202307248
crossref_primary_10_1016_j_ensm_2021_06_035
crossref_primary_10_1016_j_hybadv_2024_100339
crossref_primary_10_1002_ange_202415617
crossref_primary_10_1016_j_jpowsour_2024_234797
crossref_primary_10_1021_acsnano_4c04429
crossref_primary_10_1002_anie_202300966
crossref_primary_10_1016_j_heliyon_2024_e28097
crossref_primary_10_1039_D3TA05650C
crossref_primary_10_1002_aenm_202402929
crossref_primary_10_1002_batt_202200110
crossref_primary_10_1021_acsami_4c00866
crossref_primary_10_1016_j_jece_2024_113111
crossref_primary_10_1007_s40820_024_01389_2
crossref_primary_10_1002_adfm_202421054
crossref_primary_10_1002_ange_202424568
crossref_primary_10_1016_j_pmatsci_2023_101171
crossref_primary_10_1016_j_chempr_2022_01_002
crossref_primary_10_1016_j_cej_2022_138208
crossref_primary_10_1021_acsaem_2c03804
crossref_primary_10_1002_ange_202300966
crossref_primary_10_1016_j_supmat_2025_100097
crossref_primary_10_1002_aenm_202405505
crossref_primary_10_1039_D2TA07393E
Cites_doi 10.1021/acs.chemmater.0c02419
10.1021/acsenergylett.9b01847
10.1149/2.0951712jes
10.1080/10667857.2020.1713452
10.1039/C8TA10771H
10.1021/acs.nanolett.7b00715
10.1016/j.matt.2020.03.015
10.1039/C4RA06208F
10.1039/c3cp51986d
10.1038/srep07127
10.1002/anie.201710841
10.1021/acs.chemmater.5b02521
10.1038/s41467-020-19004-4
10.1016/j.mattod.2020.01.018
10.1016/j.jpowsour.2018.02.062
10.1038/natrevmats.2016.103
10.1038/s41560-019-0349-7
10.1038/s41565-019-0465-3
10.1038/35104644
10.1021/acsami.9b05212
10.1002/adma.201502636
10.1038/nenergy.2016.30
10.3938/jkps.69.617
10.1039/C9TA06520B
10.1021/acssuschemeng.9b01435
10.1038/s41560-020-0648-z
10.1016/j.nanoen.2019.05.002
10.1021/acs.chemrev.0c00101
10.1016/j.joule.2020.03.008
10.1021/acsami.8b06366
10.1021/acs.nanolett.6b03223
10.1039/C6EE03499C
10.1021/jacs.0c07060
10.1021/cr030203g
10.1021/acsenergylett.8b00249
10.1021/acs.jpcc.8b05431
10.1038/nenergy.2017.119
10.1039/C9EE02311A
10.1002/adma.201902029
10.1002/adfm.201910123
10.1002/batt.202000051
10.1116/1.5142859
10.1016/j.joule.2018.02.007
10.1021/acsami.5b07517
10.1126/sciadv.aao0713
10.1039/C9EE04007B
10.1016/j.nanoen.2018.12.001
10.1002/adma.201707132
10.1038/s41598-018-19398-8
10.1021/acs.nanolett.6b01754
10.1039/C7TA02730C
10.1016/j.ensm.2019.06.021
10.1002/aenm.201902767
10.1002/adfm.202005357
10.1002/aenm.202001191
10.1021/acs.jpclett.8b00240
10.1021/acsenergylett.9b00430
10.1016/j.ensm.2019.05.033
10.1007/s41918-019-00029-3
10.1039/C5TA03471J
10.1016/j.jpowsour.2018.04.019
10.1021/acs.nanolett.5b00326
10.1002/adma.201803075
10.1007/s41918-018-0010-3
10.1021/acs.chemmater.6b00610
10.1002/ente.201500297
10.1038/nmat3066
10.1021/am508111r
10.1016/j.etran.2019.100010
10.1016/j.ensm.2017.06.017
10.1016/j.ensm.2019.07.015
10.1016/j.ensm.2018.08.009
10.1038/s41565-020-0657-x
10.1016/j.mtener.2019.05.005
10.1016/j.matt.2020.02.008
10.1039/C8TA09069F
10.1039/C9CS00635D
10.1038/s41560-020-0575-z
10.1016/j.joule.2018.11.012
10.1002/advs.201700996
10.1021/acsenergylett.9b00816
10.1016/j.mseb.2016.07.011
10.1021/acs.jpcc.6b00318
10.1002/aenm.201901841
10.1002/smtd.201900261
10.1016/j.ssi.2015.06.001
10.1038/srep12307
10.1021/acs.nanolett.7b00221
10.1039/C5TA04902D
10.1039/C9EE01903K
10.1039/C7EE01004D
10.1016/j.jpowsour.2004.11.039
10.1039/C8TA12443D
10.1149/2.0301816jes
10.1039/C8EE02617C
10.1021/acs.chemrev.9b00783
10.1021/jacs.7b10864
10.1007/s11581-017-2353-x
10.1016/j.jallcom.2019.03.409
10.1021/acsami.0c04850
10.1002/aenm.201903753
10.1002/aenm.201800014
10.1002/anie.201909805
10.1016/j.jpowsour.2014.08.024
10.1021/acs.chemrev.9b00268
10.1016/j.nanoen.2020.104686
10.1039/D0EE01017K
10.1021/acsami.8b16536
10.1021/acs.nanolett.0c01156
10.1016/j.jpowsour.2017.04.014
10.1039/C6TA00402D
10.1021/acsenergylett.9b02739
10.1016/j.jallcom.2013.12.100
10.1021/acs.chemmater.7b04842
10.1002/adma.201906221
10.1021/acs.nanolett.5b00538
10.1038/s41578-019-0157-5
10.1073/pnas.1600422113
10.2320/matertrans.Y-M2016804
10.1016/j.jpowsour.2017.11.031
10.1016/j.chempr.2020.06.030
10.1016/j.ensm.2018.11.011
10.1016/j.ensm.2020.05.015
10.1016/j.jallcom.2015.05.067
10.1021/acsenergylett.9b00610
10.1038/s41467-018-04762-z
10.1039/C6MH00218H
10.1002/adma.201802661
10.1021/acs.chemmater.8b04051
10.1002/anie.201709305
10.1039/C6TA02294D
10.1039/D0EE00342E
10.1002/advs.201901036
10.1039/C5EE01604E
10.1021/acsenergylett.0c00251
10.1039/C9EE03828K
10.1016/j.mattod.2018.01.001
10.1016/j.ensm.2019.08.029
10.1016/j.mattod.2018.04.004
10.1038/s41560-018-0312-z
10.1002/adma.201807789
10.1039/C8EE00907D
10.1016/j.ensm.2019.08.001
10.1002/anie.201901938
10.1021/acs.jpclett.7b00593
10.1002/ange.201408008
10.1021/acsmaterialslett.9b00189
10.1016/j.nanoen.2016.06.010
10.1016/j.ensm.2020.01.009
10.1016/j.ceramint.2019.05.241
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
DOI 10.1039/d0ee02714f
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Technology Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1754-5706
EndPage 671
ExternalDocumentID 10_1039_D0EE02714F
d0ee02714f
GroupedDBID 0-7
0R
29G
4.4
5GY
70
705
7~J
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFRAH
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
CS3
EBS
ECGLT
EE0
EF-
GNO
HZ
H~N
J3I
JG
M4U
N9A
O-G
O9-
P2P
RCNCU
RIG
RPMJG
RRC
RSCEA
SKA
SLH
TOV
UCJ
0R~
70~
AAJAE
AARTK
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRZK
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
RVUXY
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
ID FETCH-LOGICAL-c384t-f591119b0b56690abe8199d438efe36743008675087933bf046d1e385e6cbea33
ISSN 1754-5692
IngestDate Mon Jun 30 11:58:04 EDT 2025
Thu Apr 24 23:05:15 EDT 2025
Tue Jul 01 01:45:47 EDT 2025
Sat Jan 08 03:48:22 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c384t-f591119b0b56690abe8199d438efe36743008675087933bf046d1e385e6cbea33
Notes Prof. Xueliang (Andy) Sun is a Canada Research Chair in the Development of Nanomaterials for Clean Energy, Fellow of the Royal Society of Canada and the Canadian Academy of Engineering and Full Professor at the University of Western Ontario, Canada. Dr Sun received his PhD in materials chemistry in 1999 from the University of Manchester, UK, which he followed up by working as a postdoctoral fellow at the University of British Columbia, Canada, and as a Research Associate at L'Institut National de la Recherche Scientifique (INRS), Canada. His current research interests are focused on advanced materials for electrochemical energy storage and conversion.
Dr Xiaofei Yang is currently a postdoctoral associate in Prof. Xueliang (Andy) Sun's Nanomaterials and Energy Group. He received his BE degree in Chemical Engineering from Anhui University, China, in 2013 and his PhD degree from the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China, in 2018 under the supervision of Prof. Huamin Zhang. His research interests focus on Li-S batteries, all-solid-state Li-ion and Li-S batteries and battery interface studies via synchrotron X-ray characterization.
Xuejie Gao is currently a PhD candidate in Prof. Xueliang (Andy) Sun's group at the University of Western Ontario, Canada. She received her BS degree in Chemistry in 2014 from Ludong University and obtained her MS degree in Chemistry in 2017 from Soochow University. Currently, her research interests focus on the development of 3D printing applied for lithium batteries. She is also co-supervised by Prof. T. K. Sham from Chemistry Department in the University of Western Ontario. Part of her work is related to the study of energy materials via synchrotron radiation.
10.1039/d0ee02714f
Electronic supplementary information (ESI) available. See DOI
Keegan R. Adair received his BSc in chemistry from the University of British Columbia in 2016. He is currently a PhD candidate in Prof. Xueliang (Andy) Sun's Nanomaterials and Energy Group at the University of Western Ontario, Canada. He has previous experience in the battery industry through internships at companies including E-One Moli Energy and General Motors R&D. His research interests include the design of nanomaterials for lithium metal batteries and nanoscale interfacial coatings for battery applications.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0374-1245
PQID 2492303291
PQPubID 2047494
PageCount 29
ParticipantIDs crossref_primary_10_1039_D0EE02714F
rsc_primary_d0ee02714f
crossref_citationtrail_10_1039_D0EE02714F
proquest_journals_2492303291
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 20210101
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Energy & environmental science
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Fu (D0EE02714F-(cit44)/*[position()=1]) 2017; 10
Yang (D0EE02714F-(cit4)/*[position()=1]) 2020; 49
Li (D0EE02714F-(cit57)/*[position()=1]) 2020; 30
Wenzel (D0EE02714F-(cit134)/*[position()=1]) 2016; 28
Chen (D0EE02714F-(cit61)/*[position()=1]) 2016; 3
Li (D0EE02714F-(cit120)/*[position()=1]) 2020; 32
Lee (D0EE02714F-(cit23)/*[position()=1]) 2020; 5
Asano (D0EE02714F-(cit19)/*[position()=1]) 2018; 30
Hubaud (D0EE02714F-(cit118)/*[position()=1]) 2015; 644
Nam (D0EE02714F-(cit53)/*[position()=1]) 2015; 15
Ito (D0EE02714F-(cit74)/*[position()=1]) 2014; 271
Tippens (D0EE02714F-(cit130)/*[position()=1]) 2019; 4
Tarascon (D0EE02714F-(cit1)/*[position()=1]) 2001; 414
Schnell (D0EE02714F-(cit58)/*[position()=1]) 2018; 382
Whiteley (D0EE02714F-(cit55)/*[position()=1]) 2015; 27
Howlett (D0EE02714F-(cit56)/*[position()=1]) 2013; 15
Wenzel (D0EE02714F-(cit135)/*[position()=1]) 2015; 278
Cai (D0EE02714F-(cit86)/*[position()=1]) 2019; 13
Cheng (D0EE02714F-(cit113)/*[position()=1]) 2015; 7
Zhang (D0EE02714F-(cit138)/*[position()=1]) 2017; 5
Liang (D0EE02714F-(cit10)/*[position()=1]) 2019; 21
Liu (D0EE02714F-(cit11)/*[position()=1]) 2018; 389
Xiao (D0EE02714F-(cit108)/*[position()=1]) 2019; 5
Han (D0EE02714F-(cit81)/*[position()=1]) 2018; 2
Appetecchi (D0EE02714F-(cit63)/*[position()=1]) 2005; 143
Lou (D0EE02714F-(cit112)/*[position()=1]) 2020; 6
Manthiram (D0EE02714F-(cit8)/*[position()=1]) 2017; 2
Gong (D0EE02714F-(cit99)/*[position()=1]) 2018; 21
Liu (D0EE02714F-(cit29)/*[position()=1]) 2019; 1
Vinod Chandran (D0EE02714F-(cit114)/*[position()=1]) 2016; 120
Zhu (D0EE02714F-(cit85)/*[position()=1]) 2014; 4
Chen (D0EE02714F-(cit142)/*[position()=1]) 2020; 4
Tan (D0EE02714F-(cit77)/*[position()=1]) 2020; 15
Yamamoto (D0EE02714F-(cit93)/*[position()=1]) 2018; 8
Zhong (D0EE02714F-(cit80)/*[position()=1]) 2020; 30
Wang (D0EE02714F-(cit94)/*[position()=1]) 2019; 3
McOwen (D0EE02714F-(cit67)/*[position()=1]) 2018; 30
Nam (D0EE02714F-(cit107)/*[position()=1]) 2018; 375
Xie (D0EE02714F-(cit59)/*[position()=1]) 2019; 4
Seitzman (D0EE02714F-(cit129)/*[position()=1]) 2018; 165
Fu (D0EE02714F-(cit47)/*[position()=1]) 2016; 113
Li (D0EE02714F-(cit139)/*[position()=1]) 2016; 57
Wang (D0EE02714F-(cit60)/*[position()=1]) 2016; 4
Zhu (D0EE02714F-(cit89)/*[position()=1]) 2015; 7
Gao (D0EE02714F-(cit144)/*[position()=1]) 2020
Li (D0EE02714F-(cit18)/*[position()=1]) 2020; 20
Xu (D0EE02714F-(cit54)/*[position()=1]) 2019; 4
Liang (D0EE02714F-(cit148)/*[position()=1]) 2017; 2
Yi (D0EE02714F-(cit22)/*[position()=1]) 2017; 10
Duan (D0EE02714F-(cit90)/*[position()=1]) 2019; 31
Ates (D0EE02714F-(cit43)/*[position()=1]) 2019; 17
D0EE02714F-(cit122)/*[position()=1]
Zhao (D0EE02714F-(cit73)/*[position()=1]) 2019; 4
Umeshbabu (D0EE02714F-(cit95)/*[position()=1]) 2019; 2
Stöffler (D0EE02714F-(cit119)/*[position()=1]) 2018; 122
Ganapathy (D0EE02714F-(cit116)/*[position()=1]) 2019; 4
Wang (D0EE02714F-(cit27)/*[position()=1]) 2020; 72
Xiang (D0EE02714F-(cit111)/*[position()=1]) 2020; 36
Sheil (D0EE02714F-(cit153)/*[position()=1]) 2020; 38
Yuan (D0EE02714F-(cit37)/*[position()=1]) 2020; 3
Kamaya (D0EE02714F-(cit12)/*[position()=1]) 2011; 10
Yang (D0EE02714F-(cit88)/*[position()=1]) 2020; 13
Chen (D0EE02714F-(cit121)/*[position()=1]) 2015; 3
Lin (D0EE02714F-(cit82)/*[position()=1]) 2018; 30
Duan (D0EE02714F-(cit83)/*[position()=1]) 2018; 10
Hitz (D0EE02714F-(cit46)/*[position()=1]) 2019; 22
Liu (D0EE02714F-(cit151)/*[position()=1]) 2018; 10
Kim (D0EE02714F-(cit68)/*[position()=1]) 2019; 9
Hu (D0EE02714F-(cit154)/*[position()=1]) 2020; 142
Kato (D0EE02714F-(cit13)/*[position()=1]) 2016; 1
Chen (D0EE02714F-(cit36)/*[position()=1]) 2019; 12
Judez (D0EE02714F-(cit97)/*[position()=1]) 2017; 8
Deng (D0EE02714F-(cit155)/*[position()=1]) 2020; 27
Cao (D0EE02714F-(cit145)/*[position()=1]) 2020; 3
Shen (D0EE02714F-(cit125)/*[position()=1]) 2018; 3
Chien (D0EE02714F-(cit133)/*[position()=1]) 2018; 9
Zhou (D0EE02714F-(cit7)/*[position()=1]) 2019; 31
Banerjee (D0EE02714F-(cit109)/*[position()=1]) 2020; 120
Nie (D0EE02714F-(cit110)/*[position()=1]) 2020; 5
Gao (D0EE02714F-(cit141)/*[position()=1]) 2020; 24
Bae (D0EE02714F-(cit49)/*[position()=1]) 2018; 57
Xiao (D0EE02714F-(cit30)/*[position()=1]) 2020; 5
Safanama (D0EE02714F-(cit117)/*[position()=1]) 2016; 4
Elia (D0EE02714F-(cit105)/*[position()=1]) 2015; 5
Liang (D0EE02714F-(cit152)/*[position()=1]) 2018; 6
Yang (D0EE02714F-(cit31)/*[position()=1]) 2019; 22
Jabbari (D0EE02714F-(cit38)/*[position()=1]) 2016; 212
Browne (D0EE02714F-(cit65)/*[position()=1]) 2020; 120
Wang (D0EE02714F-(cit91)/*[position()=1]) 2019; 6
Li (D0EE02714F-(cit14)/*[position()=1]) 2019; 12
Zhu (D0EE02714F-(cit42)/*[position()=1]) 2020
Ke (D0EE02714F-(cit126)/*[position()=1]) 2020; 26
Han (D0EE02714F-(cit76)/*[position()=1]) 2016; 16
Yang (D0EE02714F-(cit3)/*[position()=1]) 2018; 1
Yang (D0EE02714F-(cit32)/*[position()=1]) 2019; 61
Gao (D0EE02714F-(cit66)/*[position()=1]) 2019; 56
Hippauf (D0EE02714F-(cit137)/*[position()=1]) 2019; 21
Keller (D0EE02714F-(cit62)/*[position()=1]) 2017; 353
Harm (D0EE02714F-(cit115)/*[position()=1]) 2019; 31
Yang (D0EE02714F-(cit146)/*[position()=1]) 2020; 10
Wang (D0EE02714F-(cit149)/*[position()=1]) 2020; 11
Gao (D0EE02714F-(cit143)/*[position()=1]) 2020; 10
Peng (D0EE02714F-(cit69)/*[position()=1]) 2019; 7
Balaish (D0EE02714F-(cit103)/*[position()=1]) 2015; 127
Zhu (D0EE02714F-(cit102)/*[position()=1]) 2015; 8
Hood (D0EE02714F-(cit71)/*[position()=1]) 2018; 8
Le (D0EE02714F-(cit100)/*[position()=1]) 2019; 7
Chen (D0EE02714F-(cit21)/*[position()=1]) 2020; 120
Wan (D0EE02714F-(cit48)/*[position()=1]) 2019; 14
Wu (D0EE02714F-(cit87)/*[position()=1]) 2019; 9
Jiang (D0EE02714F-(cit41)/*[position()=1]) 2020; 32
Eshetu (D0EE02714F-(cit98)/*[position()=1]) 2017; 56
Xu (D0EE02714F-(cit45)/*[position()=1]) 2018; 15
Xue (D0EE02714F-(cit9)/*[position()=1]) 2015; 3
Su (D0EE02714F-(cit147)/*[position()=1]) 2020; 13
Han (D0EE02714F-(cit25)/*[position()=1]) 2019; 7
Duan (D0EE02714F-(cit72)/*[position()=1]) 2018; 140
Tao (D0EE02714F-(cit96)/*[position()=1]) 2017; 17
Wang (D0EE02714F-(cit75)/*[position()=1]) 2018; 30
Nagata (D0EE02714F-(cit26)/*[position()=1]) 2016; 4
Woo (D0EE02714F-(cit70)/*[position()=1]) 2016; 69
Huo (D0EE02714F-(cit28)/*[position()=1]) 2020; 13
Kazyak (D0EE02714F-(cit131)/*[position()=1]) 2020; 2
Xu (D0EE02714F-(cit2)/*[position()=1]) 2004; 104
Wood (D0EE02714F-(cit136)/*[position()=1]) 2018; 9
Gao (D0EE02714F-(cit84)/*[position()=1]) 2019; 791
Koerver (D0EE02714F-(cit140)/*[position()=1]) 2018; 11
Ma (D0EE02714F-(cit34)/*[position()=1]) 2018; 5
Liu (D0EE02714F-(cit24)/*[position()=1]) 2017; 3
Li (D0EE02714F-(cit33)/*[position()=1]) 2019; 11
Wang (D0EE02714F-(cit16)/*[position()=1]) 2019; 58
Kim (D0EE02714F-(cit50)/*[position()=1]) 2020; 5
Zhao (D0EE02714F-(cit5)/*[position()=1]) 2018; 2
Zhou (D0EE02714F-(cit17)/*[position()=1]) 2020; 13
Han (D0EE02714F-(cit150)/*[position()=1]) 2019; 4
Bonnet-Mercier (D0EE02714F-(cit104)/*[position()=1]) 2014; 4
Hovington (D0EE02714F-(cit106)/*[position()=1]) 2015; 15
Zhu (D0EE02714F-(cit101)/*[position()=1]) 2016; 26
Umeshbabu (D0EE02714F-(cit6)/*[position()=1]) 2019; 2
Li (D0EE02714F-(cit15)/*[position()=1]) 2020; 13
Sakuda (D0EE02714F-(cit40)/*[position()=1]) 2017; 164
Shen (D0EE02714F-(cit128)/*[position()=1]) 2020; 12
Li (D0EE02714F-(cit127)/*[position()=1]) 2019; 45
Zhang (D0EE02714F-(cit39)/*[position()=1]) 2014; 590
Dixit (D0EE02714F-(cit124)/*[position()=1]) 2019; 11
Ma (D0EE02714F-(cit132)/*[position()=1]) 2016; 16
Zhai (D0EE02714F-(cit52)/*[position()=1]) 2017; 17
Dai (D0EE02714F-(cit51)/*[position()=1]) 2019; 1
Shen (D0EE02714F-(cit92)/*[position()=1]) 2019; 7
Yan (D0EE02714F-(cit35)/*[position()=1]) 2017; 24
Chen (D0EE02714F-(cit123)/*[position()=1]) 2015; 27
Li (D0EE02714F-(cit20)/*[position()=1]) 2019; 58
References_xml – issn: 2017
  doi: Cobb Bae
– issn: 2018
  doi: Bae Rao Shrader
– issn: 2004
  doi: Lavoie Laliberte Dube Gagnon
– volume: 32
  start-page: 7019
  year: 2020
  ident: D0EE02714F-(cit120)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c02419
– volume: 4
  start-page: 2668
  year: 2019
  ident: D0EE02714F-(cit59)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b01847
– volume: 164
  start-page: A2474
  year: 2017
  ident: D0EE02714F-(cit40)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0951712jes
– start-page: 1
  year: 2020
  ident: D0EE02714F-(cit42)/*[position()=1]
  publication-title: Mater. Technol.
  doi: 10.1080/10667857.2020.1713452
– volume: 7
  start-page: 3150
  year: 2019
  ident: D0EE02714F-(cit100)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA10771H
– volume: 17
  start-page: 3182
  year: 2017
  ident: D0EE02714F-(cit52)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b00715
– volume: 3
  start-page: 57
  year: 2020
  ident: D0EE02714F-(cit145)/*[position()=1]
  publication-title: Matter
  doi: 10.1016/j.matt.2020.03.015
– volume: 4
  start-page: 42278
  year: 2014
  ident: D0EE02714F-(cit85)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C4RA06208F
– volume: 15
  start-page: 13784
  year: 2013
  ident: D0EE02714F-(cit56)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp51986d
– volume: 4
  start-page: 7127
  year: 2014
  ident: D0EE02714F-(cit104)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep07127
– volume: 57
  start-page: 2096
  year: 2018
  ident: D0EE02714F-(cit49)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201710841
– volume: 27
  start-page: 5491
  year: 2015
  ident: D0EE02714F-(cit123)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b02521
– volume: 11
  start-page: 5201
  year: 2020
  ident: D0EE02714F-(cit149)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19004-4
– volume: 36
  start-page: 139
  year: 2020
  ident: D0EE02714F-(cit111)/*[position()=1]
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2020.01.018
– volume: 382
  start-page: 160
  year: 2018
  ident: D0EE02714F-(cit58)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.02.062
– volume: 2
  start-page: 16103
  year: 2017
  ident: D0EE02714F-(cit8)/*[position()=1]
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.103
– volume: 4
  start-page: 365
  year: 2019
  ident: D0EE02714F-(cit73)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0349-7
– volume: 14
  start-page: 705
  year: 2019
  ident: D0EE02714F-(cit48)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0465-3
– volume: 414
  start-page: 359
  year: 2001
  ident: D0EE02714F-(cit1)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/35104644
– volume: 11
  start-page: 22745
  year: 2019
  ident: D0EE02714F-(cit33)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b05212
– volume: 27
  start-page: 6922
  year: 2015
  ident: D0EE02714F-(cit55)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502636
– volume: 1
  start-page: 16030
  year: 2016
  ident: D0EE02714F-(cit13)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.30
– volume: 69
  start-page: 617
  year: 2016
  ident: D0EE02714F-(cit70)/*[position()=1]
  publication-title: J. Korean Phys. Soc.
  doi: 10.3938/jkps.69.617
– volume: 7
  start-page: 20861
  year: 2019
  ident: D0EE02714F-(cit92)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA06520B
– volume: 7
  start-page: 10751
  year: 2019
  ident: D0EE02714F-(cit69)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.9b01435
– volume: 5
  start-page: 561
  year: 2020
  ident: D0EE02714F-(cit30)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0648-z
– volume: 61
  start-page: 567
  year: 2019
  ident: D0EE02714F-(cit32)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.05.002
– volume: 120
  start-page: 6878
  year: 2020
  ident: D0EE02714F-(cit109)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00101
– volume: 4
  start-page: 938
  year: 2020
  ident: D0EE02714F-(cit142)/*[position()=1]
  publication-title: Joule
  doi: 10.1016/j.joule.2020.03.008
– volume: 10
  start-page: 31240
  year: 2018
  ident: D0EE02714F-(cit151)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b06366
– volume: 16
  start-page: 7030
  year: 2016
  ident: D0EE02714F-(cit132)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03223
– volume: 10
  start-page: 860
  year: 2017
  ident: D0EE02714F-(cit22)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE03499C
– volume: 142
  start-page: 18035
  year: 2020
  ident: D0EE02714F-(cit154)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c07060
– volume: 104
  start-page: 4303
  year: 2004
  ident: D0EE02714F-(cit2)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr030203g
– volume: 3
  start-page: 1056
  year: 2018
  ident: D0EE02714F-(cit125)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00249
– volume: 122
  start-page: 15954
  year: 2018
  ident: D0EE02714F-(cit119)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b05431
– volume: 2
  start-page: 17119
  year: 2017
  ident: D0EE02714F-(cit148)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.119
– volume: 12
  start-page: 2665
  year: 2019
  ident: D0EE02714F-(cit14)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE02311A
– volume: 31
  start-page: 1902029
  year: 2019
  ident: D0EE02714F-(cit7)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902029
– volume: 30
  start-page: 1910123
  year: 2020
  ident: D0EE02714F-(cit57)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201910123
– volume: 3
  start-page: 596
  year: 2020
  ident: D0EE02714F-(cit37)/*[position()=1]
  publication-title: Batteries Supercaps
  doi: 10.1002/batt.202000051
– volume: 38
  start-page: 032411
  year: 2020
  ident: D0EE02714F-(cit153)/*[position()=1]
  publication-title: J. Vac. Sci. Technol., A
  doi: 10.1116/1.5142859
– volume: 2
  start-page: 497
  year: 2018
  ident: D0EE02714F-(cit81)/*[position()=1]
  publication-title: Joule
  doi: 10.1016/j.joule.2018.02.007
– volume: 7
  start-page: 23685
  year: 2015
  ident: D0EE02714F-(cit89)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b07517
– volume: 3
  start-page: eaao0713
  year: 2017
  ident: D0EE02714F-(cit24)/*[position()=1]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aao0713
– volume: 13
  start-page: 908
  year: 2020
  ident: D0EE02714F-(cit147)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE04007B
– volume: 56
  start-page: 595
  year: 2019
  ident: D0EE02714F-(cit66)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.001
– volume: 30
  start-page: e1707132
  year: 2018
  ident: D0EE02714F-(cit67)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201707132
– volume: 8
  start-page: 1212
  year: 2018
  ident: D0EE02714F-(cit93)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-19398-8
– volume: 16
  start-page: 4521
  year: 2016
  ident: D0EE02714F-(cit76)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01754
– volume: 5
  start-page: 9929
  year: 2017
  ident: D0EE02714F-(cit138)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA02730C
– volume: 21
  start-page: 308
  year: 2019
  ident: D0EE02714F-(cit10)/*[position()=1]
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.06.021
– volume: 9
  start-page: 1902767
  year: 2019
  ident: D0EE02714F-(cit87)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201902767
– start-page: 2005357
  year: 2020
  ident: D0EE02714F-(cit144)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202005357
– volume: 10
  start-page: 2001191
  year: 2020
  ident: D0EE02714F-(cit146)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202001191
– volume: 9
  start-page: 1990
  year: 2018
  ident: D0EE02714F-(cit133)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b00240
– volume: 4
  start-page: 1073
  year: 2019
  ident: D0EE02714F-(cit54)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b00430
– volume: 21
  start-page: 390
  year: 2019
  ident: D0EE02714F-(cit137)/*[position()=1]
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.05.033
– volume: 2
  start-page: 199
  year: 2019
  ident: D0EE02714F-(cit6)/*[position()=1]
  publication-title: Electrochem. Energy Rev.
  doi: 10.1007/s41918-019-00029-3
– volume: 3
  start-page: 19218
  year: 2015
  ident: D0EE02714F-(cit9)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA03471J
– volume: 389
  start-page: 120
  year: 2018
  ident: D0EE02714F-(cit11)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.04.019
– volume: 15
  start-page: 2671
  year: 2015
  ident: D0EE02714F-(cit106)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b00326
– volume: 30
  start-page: e1803075
  year: 2018
  ident: D0EE02714F-(cit19)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803075
– volume: 1
  start-page: 239
  year: 2018
  ident: D0EE02714F-(cit3)/*[position()=1]
  publication-title: Electrochem. Energy Rev.
  doi: 10.1007/s41918-018-0010-3
– volume: 28
  start-page: 2400
  year: 2016
  ident: D0EE02714F-(cit134)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b00610
– volume: 4
  start-page: 484
  year: 2016
  ident: D0EE02714F-(cit26)/*[position()=1]
  publication-title: Energy Technol.
  doi: 10.1002/ente.201500297
– volume: 10
  start-page: 682
  year: 2011
  ident: D0EE02714F-(cit12)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3066
– volume: 7
  start-page: 2073
  year: 2015
  ident: D0EE02714F-(cit113)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am508111r
– volume: 1
  start-page: 100010
  year: 2019
  ident: D0EE02714F-(cit29)/*[position()=1]
  publication-title: eTransportation
  doi: 10.1016/j.etran.2019.100010
– volume: 10
  start-page: 85
  year: 2018
  ident: D0EE02714F-(cit83)/*[position()=1]
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2017.06.017
– volume: 22
  start-page: 194
  year: 2019
  ident: D0EE02714F-(cit31)/*[position()=1]
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.07.015
– volume: 15
  start-page: 458
  year: 2018
  ident: D0EE02714F-(cit45)/*[position()=1]
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.08.009
– volume: 15
  start-page: 170
  year: 2020
  ident: D0EE02714F-(cit77)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-0657-x
– volume: 13
  start-page: 119
  year: 2019
  ident: D0EE02714F-(cit86)/*[position()=1]
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2019.05.005
– volume: 2
  start-page: 1025
  year: 2020
  ident: D0EE02714F-(cit131)/*[position()=1]
  publication-title: Matter
  doi: 10.1016/j.matt.2020.02.008
– volume: 6
  start-page: 23712
  year: 2018
  ident: D0EE02714F-(cit152)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA09069F
– volume: 49
  start-page: 2140
  year: 2020
  ident: D0EE02714F-(cit4)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00635D
– volume: 5
  start-page: 299
  year: 2020
  ident: D0EE02714F-(cit23)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0575-z
– volume: 2
  start-page: 2583
  year: 2018
  ident: D0EE02714F-(cit5)/*[position()=1]
  publication-title: Joule
  doi: 10.1016/j.joule.2018.11.012
– volume: 5
  start-page: 1700996
  year: 2018
  ident: D0EE02714F-(cit34)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700996
– volume: 4
  start-page: 1475
  year: 2019
  ident: D0EE02714F-(cit130)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b00816
– volume: 212
  start-page: 39
  year: 2016
  ident: D0EE02714F-(cit38)/*[position()=1]
  publication-title: Mater. Sci. Eng., B
  doi: 10.1016/j.mseb.2016.07.011
– volume: 2
  start-page: 199
  year: 2019
  ident: D0EE02714F-(cit95)/*[position()=1]
  publication-title: Electrochem. Energy Rev.
  doi: 10.1007/s41918-019-00029-3
– volume: 120
  start-page: 8436
  year: 2016
  ident: D0EE02714F-(cit114)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b00318
– volume: 9
  start-page: 1901841
  year: 2019
  ident: D0EE02714F-(cit68)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901841
– volume: 3
  start-page: 1900261
  year: 2019
  ident: D0EE02714F-(cit94)/*[position()=1]
  publication-title: Small Methods
  doi: 10.1002/smtd.201900261
– volume: 278
  start-page: 98
  year: 2015
  ident: D0EE02714F-(cit135)/*[position()=1]
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2015.06.001
– volume: 5
  start-page: 12307
  year: 2015
  ident: D0EE02714F-(cit105)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep12307
– volume: 17
  start-page: 2967
  year: 2017
  ident: D0EE02714F-(cit96)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b00221
– volume: 3
  start-page: 22868
  year: 2015
  ident: D0EE02714F-(cit121)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA04902D
– volume: 13
  start-page: 127
  year: 2020
  ident: D0EE02714F-(cit28)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE01903K
– volume: 10
  start-page: 1568
  year: 2017
  ident: D0EE02714F-(cit44)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE01004D
– volume: 143
  start-page: 236
  year: 2005
  ident: D0EE02714F-(cit63)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2004.11.039
– volume: 7
  start-page: 3895
  year: 2019
  ident: D0EE02714F-(cit25)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA12443D
– volume: 165
  start-page: A3732
  year: 2018
  ident: D0EE02714F-(cit129)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0301816jes
– volume: 12
  start-page: 938
  year: 2019
  ident: D0EE02714F-(cit36)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE02617C
– ident: D0EE02714F-(cit122)/*[position()=1]
– volume: 120
  start-page: 2783
  year: 2020
  ident: D0EE02714F-(cit65)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00783
– volume: 140
  start-page: 82
  year: 2018
  ident: D0EE02714F-(cit72)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10864
– volume: 24
  start-page: 1545
  year: 2017
  ident: D0EE02714F-(cit35)/*[position()=1]
  publication-title: Ionics
  doi: 10.1007/s11581-017-2353-x
– volume: 791
  start-page: 923
  year: 2019
  ident: D0EE02714F-(cit84)/*[position()=1]
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.03.409
– volume: 12
  start-page: 30313
  year: 2020
  ident: D0EE02714F-(cit128)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c04850
– volume: 10
  start-page: 1903753
  year: 2020
  ident: D0EE02714F-(cit143)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903753
– volume: 8
  start-page: 1800014
  year: 2018
  ident: D0EE02714F-(cit71)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800014
– volume: 58
  start-page: 16427
  year: 2019
  ident: D0EE02714F-(cit20)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201909805
– volume: 271
  start-page: 342
  year: 2014
  ident: D0EE02714F-(cit74)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.08.024
– volume: 120
  start-page: 6820
  year: 2020
  ident: D0EE02714F-(cit21)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00268
– volume: 72
  start-page: 104686
  year: 2020
  ident: D0EE02714F-(cit27)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104686
– volume: 13
  start-page: 2056
  year: 2020
  ident: D0EE02714F-(cit17)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE01017K
– volume: 11
  start-page: 2022
  year: 2019
  ident: D0EE02714F-(cit124)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b16536
– volume: 20
  start-page: 4384
  year: 2020
  ident: D0EE02714F-(cit18)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c01156
– volume: 353
  start-page: 287
  year: 2017
  ident: D0EE02714F-(cit62)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.04.014
– volume: 4
  start-page: 7718
  year: 2016
  ident: D0EE02714F-(cit117)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA00402D
– volume: 5
  start-page: 826
  year: 2020
  ident: D0EE02714F-(cit110)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b02739
– volume: 590
  start-page: 147
  year: 2014
  ident: D0EE02714F-(cit39)/*[position()=1]
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2013.12.100
– volume: 30
  start-page: 990
  year: 2018
  ident: D0EE02714F-(cit75)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b04842
– volume: 32
  start-page: e1906221
  year: 2020
  ident: D0EE02714F-(cit41)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201906221
– volume: 15
  start-page: 3317
  year: 2015
  ident: D0EE02714F-(cit53)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b00538
– volume: 5
  start-page: 105
  year: 2019
  ident: D0EE02714F-(cit108)/*[position()=1]
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-019-0157-5
– volume: 113
  start-page: 7094
  year: 2016
  ident: D0EE02714F-(cit47)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1600422113
– volume: 57
  start-page: 549
  year: 2016
  ident: D0EE02714F-(cit139)/*[position()=1]
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.Y-M2016804
– volume: 375
  start-page: 93
  year: 2018
  ident: D0EE02714F-(cit107)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.11.031
– volume: 6
  start-page: 2199
  year: 2020
  ident: D0EE02714F-(cit112)/*[position()=1]
  publication-title: Chemistry
  doi: 10.1016/j.chempr.2020.06.030
– volume: 17
  start-page: 204
  year: 2019
  ident: D0EE02714F-(cit43)/*[position()=1]
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.11.011
– volume: 30
  start-page: 385
  year: 2020
  ident: D0EE02714F-(cit80)/*[position()=1]
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.05.015
– volume: 644
  start-page: 804
  year: 2015
  ident: D0EE02714F-(cit118)/*[position()=1]
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2015.05.067
– volume: 4
  start-page: 1092
  year: 2019
  ident: D0EE02714F-(cit116)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b00610
– volume: 9
  start-page: 2490
  year: 2018
  ident: D0EE02714F-(cit136)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04762-z
– volume: 3
  start-page: 487
  year: 2016
  ident: D0EE02714F-(cit61)/*[position()=1]
  publication-title: Mater. Horiz.
  doi: 10.1039/C6MH00218H
– volume: 30
  start-page: e1802661
  year: 2018
  ident: D0EE02714F-(cit82)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802661
– volume: 31
  start-page: 1280
  year: 2019
  ident: D0EE02714F-(cit115)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b04051
– volume: 56
  start-page: 15368
  year: 2017
  ident: D0EE02714F-(cit98)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201709305
– volume: 4
  start-page: 8091
  year: 2016
  ident: D0EE02714F-(cit60)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA02294D
– volume: 13
  start-page: 1318
  year: 2020
  ident: D0EE02714F-(cit88)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE00342E
– volume: 6
  start-page: 1901036
  year: 2019
  ident: D0EE02714F-(cit91)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201901036
– volume: 8
  start-page: 2782
  year: 2015
  ident: D0EE02714F-(cit102)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE01604E
– volume: 5
  start-page: 718
  year: 2020
  ident: D0EE02714F-(cit50)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c00251
– volume: 13
  start-page: 1429
  year: 2020
  ident: D0EE02714F-(cit15)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE03828K
– volume: 21
  start-page: 594
  year: 2018
  ident: D0EE02714F-(cit99)/*[position()=1]
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2018.01.001
– volume: 26
  start-page: 313
  year: 2020
  ident: D0EE02714F-(cit126)/*[position()=1]
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.08.029
– volume: 22
  start-page: 50
  year: 2019
  ident: D0EE02714F-(cit46)/*[position()=1]
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2018.04.004
– volume: 4
  start-page: 187
  year: 2019
  ident: D0EE02714F-(cit150)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0312-z
– volume: 31
  start-page: 1807789
  year: 2019
  ident: D0EE02714F-(cit90)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807789
– volume: 11
  start-page: 2142
  year: 2018
  ident: D0EE02714F-(cit140)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00907D
– volume: 24
  start-page: 682
  year: 2020
  ident: D0EE02714F-(cit141)/*[position()=1]
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.08.001
– volume: 58
  start-page: 8039
  year: 2019
  ident: D0EE02714F-(cit16)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201901938
– volume: 8
  start-page: 1956
  year: 2017
  ident: D0EE02714F-(cit97)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b00593
– volume: 127
  start-page: 446
  year: 2015
  ident: D0EE02714F-(cit103)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.201408008
– volume: 1
  start-page: 354
  year: 2019
  ident: D0EE02714F-(cit51)/*[position()=1]
  publication-title: ACS Mater. Lett.
  doi: 10.1021/acsmaterialslett.9b00189
– volume: 26
  start-page: 565
  year: 2016
  ident: D0EE02714F-(cit101)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.06.010
– volume: 27
  start-page: 117
  year: 2020
  ident: D0EE02714F-(cit155)/*[position()=1]
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.01.009
– volume: 45
  start-page: 18115
  year: 2019
  ident: D0EE02714F-(cit127)/*[position()=1]
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.05.241
SSID ssj0062079
Score 2.6910737
SecondaryResourceType review_article
Snippet Solid-state lithium batteries (SSLBs) are promising next-generation energy storage devices due to their potential for high energy density and improved safety....
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 643
SubjectTerms Batteries
Commercialization
Critical components
Design parameters
Electrochemical analysis
Electrochemistry
Electrolytes
Electrolytic cells
Energy
Energy storage
Fabrication
Flux density
Gravimetry
Lithium
Lithium batteries
Manufacturing industry
Molten salt electrolytes
Physical properties
Production costs
Solid electrolytes
Solid state
Storage batteries
Title Recent advances and perspectives on thin electrolytes for high-energy-density solid-state lithium batteries
URI https://www.proquest.com/docview/2492303291
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELW27QUOFV8VWwqyBBeEXJzY8cbHAlsqEFxoxXJa2bFdAiVblc0Bfj3j2ElcsUjAJVo5H4oyb8fj8bw3CD0RpSpNLmfEGsYJd0wQnXlBACdpqXKZGePzkO_ei5Mz_mZRLCaTNmWXrPVh9XMjr-R_rApjYFfPkv0Hyw4PhQH4DfaFI1gYjn9lY4j5uhLxsI8f1JYvR_Zk3AnwoiCh2c3FD59l9YWFXqWY2I73R4yvYYdYHN61NqRjGHlm8ue6_fZMd_KbfaFhn8EPfEEPmoQn17MrR6h8irnoRa1WztZjaYCqQyWHted-B2GoAVJd3nbR2i_18JAPbRMHfULmPM1S5FmSpQiOdVZwUojQ9-7QJmMzKq55Y56gLk9cqwhyTnGWFqFxy28TAGVeP9VQa2G9nXE3TnND8eF4cgvt5LC6APe4c_T2xeuP_RQuctqJNA4v3evaMvl8vPt6JDMuT7au-t4xXYxyegvtxsUFPgpIuY0mtrmDbiaSk3fR14AZ3GMGA2Zwihm8arDHDE4xgwEzeANmcIIZHDGDB8zcQ2fH89OXJyQ23CAVK_mauMJPfVJTDUG-pEpbiBel4ay0zjJPV_ErYIgxS_DqTDvKhcksKwsrKm0VY3tou1k19j7CtCpoBV8OonHHlTLKFFpk1rmqKGU-k1P0tP94yyqq0fumKBfLriqCyeUrOp93H_p4ih4P114GDZaNVx30NljG_-j3pdfDhCANfM4U7YFdhvtHM-7_6cQDdGNE8gHaXl-19iFEoGv9KOLlFw9xioc
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+and+perspectives+on+thin+electrolytes+for+high-energy-density+solid-state+lithium+batteries&rft.jtitle=Energy+%26+environmental+science&rft.au=Yang%2C+Xiaofei&rft.au=Adair%2C+Keegan+R&rft.au=Gao%2C+Xuejie&rft.au=Sun%2C+Xueliang&rft.date=2021-01-01&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=14&rft.issue=2&rft.spage=643&rft.epage=671&rft_id=info:doi/10.1039%2Fd0ee02714f&rft.externalDocID=d0ee02714f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon