Computational morphology design of duplex structure considering interface debonding
A finite volume interface is an interface region with interface strength, and is most often generated during the fabrication (3D printing) of a duplex structure. However, it is often neglected in morphology design due to numerical complexity and computational difficulties. In addition, a sharp and p...
Saved in:
Published in | Composite structures Vol. 302; p. 116200 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A finite volume interface is an interface region with interface strength, and is most often generated during the fabrication (3D printing) of a duplex structure. However, it is often neglected in morphology design due to numerical complexity and computational difficulties. In addition, a sharp and perfect-bonding interface is usually assumed in literatures. However, such assumptions bring failure risks, thus limiting the industrial applicability of the morphology designs of duplex structures. This study aims to identify the optimal morphology design though a computational design method, considering the finite volume interface and debonding of a duplex structure. This method is based on topology optimization, which utilizes a level-set function for optimizing material distribution in the design space. To introduce finite volume interfaces in morphology design, a simple interface debonding model is integrated into implicit finite element analysis, based on the finite strain theory. Moreover, a distance function is employed to describe the interface region in addition to a level-set function for topology optimization. Further, a topological derivative based on an adjoint variable method is formulated for a debonding interface state in a nonlinear finite element analysis, which is incorporated in topology optimization to obtain the optimal duplex structures. The numerical demonstrations verified the applicability of the proposed approach. The zigzag interface was proven to be one of the features of the optimal duplex structures, considering interface debonding. The results also indicated the optimal duplex structures considering interface debonding to be non-symmetric, in which the interfaces are primarily enriched in compression areas to ensure structural integrity.
[Display omitted]
•Nonlinear topology optimization considering finite volume interface is proposed.•Nonlinear finite element analysis at finite strain with simple interface modeling is proposed.•Combined distance and level-set functions to generate a duplex structure with interface thickness.•Demonstrated finite strain and interface effect on duplex design. |
---|---|
AbstractList | A finite volume interface is an interface region with interface strength, and is most often generated during the fabrication (3D printing) of a duplex structure. However, it is often neglected in morphology design due to numerical complexity and computational difficulties. In addition, a sharp and perfect-bonding interface is usually assumed in literatures. However, such assumptions bring failure risks, thus limiting the industrial applicability of the morphology designs of duplex structures. This study aims to identify the optimal morphology design though a computational design method, considering the finite volume interface and debonding of a duplex structure. This method is based on topology optimization, which utilizes a level-set function for optimizing material distribution in the design space. To introduce finite volume interfaces in morphology design, a simple interface debonding model is integrated into implicit finite element analysis, based on the finite strain theory. Moreover, a distance function is employed to describe the interface region in addition to a level-set function for topology optimization. Further, a topological derivative based on an adjoint variable method is formulated for a debonding interface state in a nonlinear finite element analysis, which is incorporated in topology optimization to obtain the optimal duplex structures. The numerical demonstrations verified the applicability of the proposed approach. The zigzag interface was proven to be one of the features of the optimal duplex structures, considering interface debonding. The results also indicated the optimal duplex structures considering interface debonding to be non-symmetric, in which the interfaces are primarily enriched in compression areas to ensure structural integrity.
[Display omitted]
•Nonlinear topology optimization considering finite volume interface is proposed.•Nonlinear finite element analysis at finite strain with simple interface modeling is proposed.•Combined distance and level-set functions to generate a duplex structure with interface thickness.•Demonstrated finite strain and interface effect on duplex design. |
ArticleNumber | 116200 |
Author | Zhou, Jiaxin Watanabe, Ikumu Yamada, Takayuki |
Author_xml | – sequence: 1 givenname: Jiaxin surname: Zhou fullname: Zhou, Jiaxin organization: Research Center for Structural Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047 Japan – sequence: 2 givenname: Ikumu orcidid: 0000-0002-7693-1675 surname: Watanabe fullname: Watanabe, Ikumu email: WATANABE.Ikumu@nims.go.jp organization: Research Center for Structural Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047 Japan – sequence: 3 givenname: Takayuki orcidid: 0000-0002-5349-6690 surname: Yamada fullname: Yamada, Takayuki organization: Department of Strategic Studies, Institute of Engineering Innovation, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8656, Japan |
BookMark | eNqNkF1LwzAUhoNMcE7_Q_9Aaz7WLLkRdPgFAy_U65AmJzOjS0rSivv3dlQQvNGrAy_neQ_nOUezEAMgVBBcEUz41a4ycd_lPg2mryimtCKEU4xP0JyIlSwJFvUMzTHlrBSUsjN0nvMOYyyWhMzRy3qkh173PgbdFvuYuvfYxu2hsJD9NhTRFXboWvgsphtDgsLEkL2F5MO28KGH5LSBEWhisGN2gU6dbjNcfs8Feru_e10_lpvnh6f1zaY0TCz70mFMamuohJUxtpGcNcxKbYlkzJIl53zMsZQaE1fXVAvhGuDGrqSjTdNotkBi6jUp5pzAqS75vU4HRbA6ylE79SNHHeWoSc6IXv9CjZ8k9En79j8Ft1MBjA9-eEgqGw_BgPUJxl0b_d8lX-UVjXI |
CitedBy_id | crossref_primary_10_1016_j_compstruct_2024_117902 crossref_primary_10_1080_27660400_2024_2320691 crossref_primary_10_1002_adma_202302530 crossref_primary_10_1002_smll_202402685 crossref_primary_10_1007_s00158_023_03670_1 |
Cites_doi | 10.1016/j.matchar.2022.112159 10.1002/nme.5540 10.1016/S0022-5096(99)00043-5 10.1007/s00158-015-1370-5 10.1016/j.jcp.2003.09.032 10.1007/s00158-014-1074-2 10.1007/978-3-319-19440-0_24 10.1007/s00158-017-1688-2 10.1016/0045-7825(88)90086-2 10.1016/j.cma.2020.112887 10.1007/BF01650949 10.1016/j.cad.2008.07.004 10.1016/j.jmps.2021.104356 10.1016/j.cma.2003.10.008 10.1016/j.cma.2020.113114 10.1080/03052150903443780 10.1109/TMAG.2018.2824287 10.1016/j.compstruct.2012.05.002 10.1007/s00158-018-1953-z 10.1016/j.jsv.2013.01.029 10.1002/nme.3072 10.1006/jcph.2000.6581 10.1016/j.msec.2007.04.022 10.1007/s00158-014-1151-6 10.1007/s00158-014-1198-4 10.1016/j.bushor.2011.11.003 10.1016/j.jmps.2007.06.001 10.1016/j.applthermaleng.2016.10.134 10.1016/S0045-7825(02)00559-5 10.1016/j.compstruct.2013.12.021 10.1006/jcph.2001.6789 10.1108/RPJ-03-2014-0031 10.1016/j.cam.2019.05.016 10.1016/j.apm.2021.11.021 10.1007/s00158-013-0912-y 10.1016/j.cma.2016.05.016 10.1016/j.matdes.2020.109313 10.1007/s00170-013-5191-7 10.1080/14686996.2020.1788908 10.1002/nme.945 10.1016/j.mser.2018.04.001 10.1016/S0022-5096(96)00114-7 10.1016/j.jmps.2021.104628 10.1007/s00158-008-0315-7 10.1016/j.cma.2010.05.013 10.1007/s10999-005-0221-8 10.1016/j.cad.2015.12.002 10.1016/j.compstruct.2018.10.034 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.compstruct.2022.116200 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-1085 |
ExternalDocumentID | 10_1016_j_compstruct_2022_116200 S0263822322009321 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SSM SST SSZ T5K XPP ZMT ~02 ~G- 29F AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SET SEW SMS SSH WUQ |
ID | FETCH-LOGICAL-c384t-f0015dc29e7ccdb963b3d9ad1933d146667cc099a01f552a88fbe6cd79f2bbba3 |
IEDL.DBID | .~1 |
ISSN | 0263-8223 |
IngestDate | Tue Jul 01 03:54:18 EDT 2025 Thu Apr 24 22:57:57 EDT 2025 Fri Feb 23 02:40:23 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Topology optimization Multimaterial Interface property Finite strain Interface thickness |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c384t-f0015dc29e7ccdb963b3d9ad1933d146667cc099a01f552a88fbe6cd79f2bbba3 |
ORCID | 0000-0002-7693-1675 0000-0002-5349-6690 |
ParticipantIDs | crossref_primary_10_1016_j_compstruct_2022_116200 crossref_citationtrail_10_1016_j_compstruct_2022_116200 elsevier_sciencedirect_doi_10_1016_j_compstruct_2022_116200 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-15 |
PublicationDateYYYYMMDD | 2022-12-15 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Composite structures |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Liu, Matsunaka, Shimoda, Shibutani (b4) 2016; 3 Wang, Wang, Guo (b22) 2003; 192 Blasques, Stolpe (b16) 2012; 94 Behrou, Lawry, Maute (b34) 2017; 112 Churbanov, Vabishchevich (b53) 2019; 362 Lazarov, Sigmund (b19) 2011; 86 Sigmund, Torquato (b13) 1997; 45 Cui, Chen, Zhou (b30) 2016; 73 Harrysson, Cansizoglu, Marcellin-Little, Cormier, West (b40) 2008; 28 Berman (b48) 2012; 55 Kachanov (b49) 1986 Hilchenbach, Ramm (b33) 2015; 51 Zheng, Guo, Watanabe (b41) 2021; 198 Murakami (b51) 2012 Li, Zhang, Li (b7) 2022; 104 Bandyopadhyay, Heer (b39) 2018; 129 Gibiansky, Sigmund (b14) 2000; 48 Bendsøe, Kikuchi (b12) 1988; 71 Vermaak, Michailidis, Parry, Estevez, Allaire, Bréchet (b32) 2014; 50 Li, Kim, Jeswiet (b1) 2015; 51 Li, Wang, Sigmund, Zhang (b3) 2021; 151 Matsui, Terada (b20) 2004; 59 Wang, Mei, Wang (b26) 2004; 1 Bendsøe (b11) 1989; 1 Yamada, Izui, Nishiwaki, Takezawa (b46) 2010; 199 Zhuang, Xiong, Ding (b28) 2010; 42 Liu, Zhuang, Liu, Zhu (b44) 2013; 69 Liu, Luo, Kang (b35) 2016; 308 Kato, Lipka, Ramm (b17) 2009; 39 Osher, Santosa (b55) 2001; 171 Dbouk (b6) 2017; 112 Watanabe, Chen, Taniguchi, Kitano (b45) 2022; 191 Kang, Wu, Luo, Li (b31) 2019; 208 Kim, Seong, Kim, Yoo (b36) 2020; 367 Zhao, Zhang (b9) 2022; 158 Blasques (b15) 2014; 111 Kim, Mechefske, Kim (b2) 2013; 332 Liu, Shi, Kang (b37) 2020; 363 Yamada (b52) 2019; 6 Allaire, Jouve, Toader (b21) 2004; 194 Watanabe, Sun, Kitano, Goto (b38) 2020; 21 Zargham, Ward, Ramli, Badruddin (b10) 2016; 53 Kishimoto, Noguchi, Sato, Izui, Yamada, Nishiwaki (b29) 2017; 83 Watanabe, Terada, de Souza Neto, Peric (b50) 2008; 56 Vu, Bass, Williams, Dillard (b43) 2018; 22 Zheng, Chen, Guo, Samitsu, Watanabe (b42) 2022; 211 van Dijk, Maute, Langelaar, Van Keulen (b24) 2013; 48 Chen, Wang, Liu (b54) 2008; 40 Watanabe, Nakamura, Yuge, Setoyama, Iwata (b5) 2015 Sethian, Wiegmann (b23) 2000; 163 Faure, Michailidis, Parry, Vermaak, Estevez (b27) 2017; 56 Wang, Wang (b25) 2004; 193 Moore, Williams (b47) 2015; 21 Lee, Lee, Kim, Lee (b8) 2018; 54 Li, Kim (b18) 2018; 58 Wang (10.1016/j.compstruct.2022.116200_b26) 2004; 1 Kishimoto (10.1016/j.compstruct.2022.116200_b29) 2017; 83 Kato (10.1016/j.compstruct.2022.116200_b17) 2009; 39 Blasques (10.1016/j.compstruct.2022.116200_b16) 2012; 94 Liu (10.1016/j.compstruct.2022.116200_b44) 2013; 69 Bandyopadhyay (10.1016/j.compstruct.2022.116200_b39) 2018; 129 Sethian (10.1016/j.compstruct.2022.116200_b23) 2000; 163 Liu (10.1016/j.compstruct.2022.116200_b4) 2016; 3 Blasques (10.1016/j.compstruct.2022.116200_b15) 2014; 111 Kachanov (10.1016/j.compstruct.2022.116200_b49) 1986 Vermaak (10.1016/j.compstruct.2022.116200_b32) 2014; 50 Yamada (10.1016/j.compstruct.2022.116200_b46) 2010; 199 Watanabe (10.1016/j.compstruct.2022.116200_b38) 2020; 21 Zheng (10.1016/j.compstruct.2022.116200_b41) 2021; 198 Zhuang (10.1016/j.compstruct.2022.116200_b28) 2010; 42 Bendsøe (10.1016/j.compstruct.2022.116200_b12) 1988; 71 Watanabe (10.1016/j.compstruct.2022.116200_b45) 2022; 191 Wang (10.1016/j.compstruct.2022.116200_b22) 2003; 192 Vu (10.1016/j.compstruct.2022.116200_b43) 2018; 22 Kang (10.1016/j.compstruct.2022.116200_b31) 2019; 208 Murakami (10.1016/j.compstruct.2022.116200_b51) 2012 Liu (10.1016/j.compstruct.2022.116200_b37) 2020; 363 Watanabe (10.1016/j.compstruct.2022.116200_b50) 2008; 56 Osher (10.1016/j.compstruct.2022.116200_b55) 2001; 171 Lazarov (10.1016/j.compstruct.2022.116200_b19) 2011; 86 Liu (10.1016/j.compstruct.2022.116200_b35) 2016; 308 Li (10.1016/j.compstruct.2022.116200_b18) 2018; 58 Churbanov (10.1016/j.compstruct.2022.116200_b53) 2019; 362 Kim (10.1016/j.compstruct.2022.116200_b36) 2020; 367 Chen (10.1016/j.compstruct.2022.116200_b54) 2008; 40 Kim (10.1016/j.compstruct.2022.116200_b2) 2013; 332 Watanabe (10.1016/j.compstruct.2022.116200_b5) 2015 Li (10.1016/j.compstruct.2022.116200_b3) 2021; 151 Li (10.1016/j.compstruct.2022.116200_b7) 2022; 104 Harrysson (10.1016/j.compstruct.2022.116200_b40) 2008; 28 van Dijk (10.1016/j.compstruct.2022.116200_b24) 2013; 48 Lee (10.1016/j.compstruct.2022.116200_b8) 2018; 54 Matsui (10.1016/j.compstruct.2022.116200_b20) 2004; 59 Gibiansky (10.1016/j.compstruct.2022.116200_b14) 2000; 48 Cui (10.1016/j.compstruct.2022.116200_b30) 2016; 73 Wang (10.1016/j.compstruct.2022.116200_b25) 2004; 193 Zargham (10.1016/j.compstruct.2022.116200_b10) 2016; 53 Allaire (10.1016/j.compstruct.2022.116200_b21) 2004; 194 Bendsøe (10.1016/j.compstruct.2022.116200_b11) 1989; 1 Sigmund (10.1016/j.compstruct.2022.116200_b13) 1997; 45 Faure (10.1016/j.compstruct.2022.116200_b27) 2017; 56 Moore (10.1016/j.compstruct.2022.116200_b47) 2015; 21 Berman (10.1016/j.compstruct.2022.116200_b48) 2012; 55 Hilchenbach (10.1016/j.compstruct.2022.116200_b33) 2015; 51 Zhao (10.1016/j.compstruct.2022.116200_b9) 2022; 158 Yamada (10.1016/j.compstruct.2022.116200_b52) 2019; 6 Behrou (10.1016/j.compstruct.2022.116200_b34) 2017; 112 Zheng (10.1016/j.compstruct.2022.116200_b42) 2022; 211 Dbouk (10.1016/j.compstruct.2022.116200_b6) 2017; 112 Li (10.1016/j.compstruct.2022.116200_b1) 2015; 51 |
References_xml | – volume: 53 start-page: 1157 year: 2016 end-page: 1177 ident: b10 article-title: Topology optimization: a review for structural designs under vibration problems publication-title: Struct Multidiscip Optim – volume: 6 start-page: 647 year: 2019 end-page: 656 ident: b52 article-title: Geometric shape features extraction using a steady state partial differential equation system publication-title: J Comput Des Eng – volume: 199 start-page: 2876 year: 2010 end-page: 2891 ident: b46 article-title: A topology optimization method based on the level set method incorporating a fictitious interface energy publication-title: Comput Methods Appl Mech Engrg – volume: 55 start-page: 155 year: 2012 end-page: 162 ident: b48 article-title: 3-D printing: the new industrial revolution publication-title: Bus Horiz – start-page: 541 year: 2015 end-page: 555 ident: b5 article-title: Maximization of strengthening effect of microscopic morphology in duplex steels publication-title: Advanced structured materials – volume: 69 start-page: 2131 year: 2013 end-page: 2137 ident: b44 article-title: Additive manufacturing of steel–bronze bimetal by shaped metal deposition: interface characteristics and tensile properties publication-title: Int J Adv Manuf Technol – volume: 193 start-page: 469 year: 2004 end-page: 496 ident: b25 article-title: “Color” level sets: a multi-phase method for structural topology optimization with multiple materials publication-title: Comput Methods Appl Mech Engrg – year: 2012 ident: b51 article-title: Continuum damage mechanics – volume: 129 start-page: 1 year: 2018 end-page: 16 ident: b39 article-title: Additive manufacturing of multi-material structures publication-title: Mater Sci Eng R – volume: 94 start-page: 3278 year: 2012 end-page: 3289 ident: b16 article-title: Multi-material topology optimization of laminated composite beam cross sections publication-title: Compos Struct – volume: 198 year: 2021 ident: b41 article-title: A mathematically defined 3d auxetic metamaterial with tunable mechanical and conduction properties publication-title: Mater Des – volume: 1 start-page: 193 year: 1989 end-page: 202 ident: b11 article-title: Optimal shape design as a material distribution problem publication-title: Struct Optim – volume: 51 start-page: 1083 year: 2015 end-page: 1096 ident: b33 article-title: Optimization of multiphase structures considering damage publication-title: Struct Multidiscip Optim – volume: 191 year: 2022 ident: b45 article-title: Heterogeneous microstructure of duplex multilayer steel structure fabricated by wire and arc additive manufacturing publication-title: Mater Charact – volume: 208 start-page: 395 year: 2019 end-page: 406 ident: b31 article-title: Robust topology optimization of multi-material structures considering uncertain graded interface publication-title: Compos Struct – volume: 308 start-page: 113 year: 2016 end-page: 133 ident: b35 article-title: Multi-material topology optimization considering interface behavior via XFEM and level set method publication-title: Comput Methods Appl Mech Engrg – volume: 362 start-page: 55 year: 2019 end-page: 67 ident: b53 article-title: Numerical solution of boundary value problems for the eikonal equation in an anisotropic medium publication-title: J Comput Appl Math – volume: 211 year: 2022 ident: b42 article-title: Controllable inverse design of auxetic metamaterials using deep learning publication-title: Mater Des – volume: 332 start-page: 2873 year: 2013 end-page: 2883 ident: b2 article-title: Optimal damping layout in a shell structure using topology optimization publication-title: J Sound Vib – volume: 50 start-page: 623 year: 2014 end-page: 644 ident: b32 article-title: Material interface effects on the topology optimizationof multi-phase structures using a level set method publication-title: Struct Multidiscip Optim – volume: 45 start-page: 1037 year: 1997 end-page: 1067 ident: b13 article-title: Design of materials with extreme thermal expansion using a three-phase topology optimization method publication-title: J Mech Phys Solids – volume: 28 start-page: 366 year: 2008 end-page: 373 ident: b40 article-title: Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology publication-title: Mater Sci Eng: C – volume: 21 start-page: 675 year: 2015 end-page: 685 ident: b47 article-title: Fatigue properties of parts printed by PolyJet material jetting publication-title: Rapid Prototyp J – volume: 158 year: 2022 ident: b9 article-title: Topology optimization of hard-magnetic soft materials publication-title: J Mech Phys Solids – volume: 73 start-page: 41 year: 2016 end-page: 52 ident: b30 article-title: A level-set based multi-material topology optimization method using a reaction diffusion equation publication-title: Comput Aided Des – volume: 151 year: 2021 ident: b3 article-title: Design of composite structures with programmable elastic responses under finite deformations publication-title: J Mech Phys Solids – volume: 86 start-page: 765 year: 2011 end-page: 781 ident: b19 article-title: Filters in topology optimization based on Helmholtz-type differential equations publication-title: Internat J Numer Methods Engrg – volume: 104 start-page: 163 year: 2022 end-page: 187 ident: b7 article-title: Heat transfer augmentation in microchannel heat sink based on isogeometric topology optimization framework publication-title: Appl. Math. Model. – volume: 40 start-page: 951 year: 2008 end-page: 962 ident: b54 article-title: Shape feature control in structural topology optimization publication-title: Comput Aided Des – volume: 58 start-page: 1081 year: 2018 end-page: 1094 ident: b18 article-title: Multi-material topology optimization for practical lightweight design publication-title: Struct Multidiscip Optim – volume: 48 start-page: 437 year: 2013 end-page: 472 ident: b24 article-title: Level-set methods for structural topology optimization: a review publication-title: Struct Multidiscip Optim – volume: 22 start-page: 447 year: 2018 end-page: 461 ident: b43 article-title: Characterizing the effect of print orientation on interface integrity of multi-material jetting additive manufacturing publication-title: Addit Manuf – volume: 71 start-page: 197 year: 1988 end-page: 224 ident: b12 article-title: Generating optimal topologies in structural design using a homogenization method publication-title: Comput Methods Appl Mech Engrg – volume: 363 year: 2020 ident: b37 article-title: Multi-material structural topology optimization considering material interfacial stress constraints publication-title: Comput Methods Appl Mech Engrg – volume: 163 start-page: 489 year: 2000 end-page: 528 ident: b23 article-title: Structural boundary design via level set and immersed interface methods publication-title: J Comput Phys – volume: 51 start-page: 547 year: 2015 end-page: 564 ident: b1 article-title: Conceptual and detailed design of an automotive engine cradle by using topology, shape, and size optimization publication-title: Struct Multidiscip Optim – volume: 194 start-page: 363 year: 2004 end-page: 393 ident: b21 article-title: Structural optimization using sensitivity analysis and a level-set method publication-title: J Comput Phys – volume: 3 start-page: 15 year: 2016 end-page: 00360 ident: b4 article-title: Interface shape design of multi-material structures for delamination strength publication-title: Mech Eng J – volume: 112 start-page: 990 year: 2017 end-page: 1016 ident: b34 article-title: Level set topology optimization of structural problems with interface cohesion publication-title: Internat J Numer Methods Engrg – year: 1986 ident: b49 article-title: Introduction to continuum damage mechanics – volume: 56 start-page: 823 year: 2017 end-page: 837 ident: b27 article-title: Design of thermoelastic multi-material structures with graded interfaces using topology optimization publication-title: Struct Multidiscip Optim – volume: 42 start-page: 811 year: 2010 end-page: 831 ident: b28 article-title: Topology optimization of multi-material for the heat conduction problem based on the level set method publication-title: Eng Optim – volume: 56 start-page: 1105 year: 2008 end-page: 1125 ident: b50 article-title: Characterization of macroscopic tensile strength of polycrystalline metals with two-scale finite element analysis publication-title: J Mech Phys Solids – volume: 39 start-page: 63 year: 2009 ident: b17 article-title: Multiphase material optimization for fiber reinforced composites with strain softening publication-title: Struct Multidiscip Optim – volume: 192 start-page: 227 year: 2003 end-page: 246 ident: b22 article-title: A level set method for structural topology optimization publication-title: Comput Methods Appl Mech Engrg – volume: 21 start-page: 461 year: 2020 end-page: 470 ident: b38 article-title: Multiscale analysis of mechanical behavior of multilayer steel structures fabricated by wire and arc additive manufacturing publication-title: Sci Technol Adv Mater – volume: 367 year: 2020 ident: b36 article-title: Single variable-based multi-material structural optimization considering interface behavior publication-title: Comput Methods Appl Mech Engrg – volume: 111 start-page: 45 year: 2014 end-page: 55 ident: b15 article-title: Multi-material topology optimization of laminated composite beams with eigenfrequency constraints publication-title: Compos Struct – volume: 59 start-page: 1925 year: 2004 end-page: 1944 ident: b20 article-title: Continuous approximation of material distribution for topology optimization publication-title: Internat J Numer Methods Engrg – volume: 54 start-page: 1 year: 2018 end-page: 6 ident: b8 article-title: Multi-material topology optimization of magnetic actuator with segmented permanent magnets publication-title: IEEE Trans Magn – volume: 112 start-page: 841 year: 2017 end-page: 854 ident: b6 article-title: A review about the engineering design of optimal heat transfer systems using topology optimization publication-title: Appl Therm Eng – volume: 48 start-page: 461 year: 2000 end-page: 498 ident: b14 article-title: Multiphase composites with extremal bulk modulus publication-title: J Mech Phys Solids – volume: 1 start-page: 213 year: 2004 end-page: 239 ident: b26 article-title: Level-set method for design of multi-phase elastic and thermoelastic materials publication-title: Int J Mech Mater Des – volume: 83 start-page: 17 year: 2017 end-page: 00069 ident: b29 article-title: Topology optimization for multi-material structures based on the level set method publication-title: Trans JSME – volume: 171 start-page: 272 year: 2001 end-page: 288 ident: b55 article-title: Level set methods for optimization problems involving geometry and constraints: I. Frequencies of a two-density inhomogeneous drum publication-title: J Comput Phys – volume: 191 year: 2022 ident: 10.1016/j.compstruct.2022.116200_b45 article-title: Heterogeneous microstructure of duplex multilayer steel structure fabricated by wire and arc additive manufacturing publication-title: Mater Charact doi: 10.1016/j.matchar.2022.112159 – volume: 112 start-page: 990 issue: 8 year: 2017 ident: 10.1016/j.compstruct.2022.116200_b34 article-title: Level set topology optimization of structural problems with interface cohesion publication-title: Internat J Numer Methods Engrg doi: 10.1002/nme.5540 – volume: 48 start-page: 461 issue: 3 year: 2000 ident: 10.1016/j.compstruct.2022.116200_b14 article-title: Multiphase composites with extremal bulk modulus publication-title: J Mech Phys Solids doi: 10.1016/S0022-5096(99)00043-5 – volume: 211 year: 2022 ident: 10.1016/j.compstruct.2022.116200_b42 article-title: Controllable inverse design of auxetic metamaterials using deep learning publication-title: Mater Des – volume: 6 start-page: 647 year: 2019 ident: 10.1016/j.compstruct.2022.116200_b52 article-title: Geometric shape features extraction using a steady state partial differential equation system publication-title: J Comput Des Eng – volume: 53 start-page: 1157 issue: 6 year: 2016 ident: 10.1016/j.compstruct.2022.116200_b10 article-title: Topology optimization: a review for structural designs under vibration problems publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-015-1370-5 – volume: 194 start-page: 363 issue: 1 year: 2004 ident: 10.1016/j.compstruct.2022.116200_b21 article-title: Structural optimization using sensitivity analysis and a level-set method publication-title: J Comput Phys doi: 10.1016/j.jcp.2003.09.032 – volume: 50 start-page: 623 issue: 4 year: 2014 ident: 10.1016/j.compstruct.2022.116200_b32 article-title: Material interface effects on the topology optimizationof multi-phase structures using a level set method publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-014-1074-2 – year: 1986 ident: 10.1016/j.compstruct.2022.116200_b49 – start-page: 541 year: 2015 ident: 10.1016/j.compstruct.2022.116200_b5 article-title: Maximization of strengthening effect of microscopic morphology in duplex steels doi: 10.1007/978-3-319-19440-0_24 – volume: 56 start-page: 823 issue: 4 year: 2017 ident: 10.1016/j.compstruct.2022.116200_b27 article-title: Design of thermoelastic multi-material structures with graded interfaces using topology optimization publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-017-1688-2 – volume: 71 start-page: 197 issue: 2 year: 1988 ident: 10.1016/j.compstruct.2022.116200_b12 article-title: Generating optimal topologies in structural design using a homogenization method publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/0045-7825(88)90086-2 – volume: 363 year: 2020 ident: 10.1016/j.compstruct.2022.116200_b37 article-title: Multi-material structural topology optimization considering material interfacial stress constraints publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2020.112887 – volume: 1 start-page: 193 issue: 4 year: 1989 ident: 10.1016/j.compstruct.2022.116200_b11 article-title: Optimal shape design as a material distribution problem publication-title: Struct Optim doi: 10.1007/BF01650949 – volume: 40 start-page: 951 issue: 9 year: 2008 ident: 10.1016/j.compstruct.2022.116200_b54 article-title: Shape feature control in structural topology optimization publication-title: Comput Aided Des doi: 10.1016/j.cad.2008.07.004 – volume: 83 start-page: 17 issue: 849 year: 2017 ident: 10.1016/j.compstruct.2022.116200_b29 article-title: Topology optimization for multi-material structures based on the level set method publication-title: Trans JSME – volume: 151 year: 2021 ident: 10.1016/j.compstruct.2022.116200_b3 article-title: Design of composite structures with programmable elastic responses under finite deformations publication-title: J Mech Phys Solids doi: 10.1016/j.jmps.2021.104356 – volume: 193 start-page: 469 issue: 6–8 year: 2004 ident: 10.1016/j.compstruct.2022.116200_b25 article-title: “Color” level sets: a multi-phase method for structural topology optimization with multiple materials publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2003.10.008 – volume: 367 year: 2020 ident: 10.1016/j.compstruct.2022.116200_b36 article-title: Single variable-based multi-material structural optimization considering interface behavior publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2020.113114 – volume: 42 start-page: 811 issue: 9 year: 2010 ident: 10.1016/j.compstruct.2022.116200_b28 article-title: Topology optimization of multi-material for the heat conduction problem based on the level set method publication-title: Eng Optim doi: 10.1080/03052150903443780 – volume: 54 start-page: 1 issue: 7 year: 2018 ident: 10.1016/j.compstruct.2022.116200_b8 article-title: Multi-material topology optimization of magnetic actuator with segmented permanent magnets publication-title: IEEE Trans Magn doi: 10.1109/TMAG.2018.2824287 – volume: 94 start-page: 3278 issue: 11 year: 2012 ident: 10.1016/j.compstruct.2022.116200_b16 article-title: Multi-material topology optimization of laminated composite beam cross sections publication-title: Compos Struct doi: 10.1016/j.compstruct.2012.05.002 – volume: 58 start-page: 1081 issue: 3 year: 2018 ident: 10.1016/j.compstruct.2022.116200_b18 article-title: Multi-material topology optimization for practical lightweight design publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-018-1953-z – volume: 332 start-page: 2873 year: 2013 ident: 10.1016/j.compstruct.2022.116200_b2 article-title: Optimal damping layout in a shell structure using topology optimization publication-title: J Sound Vib doi: 10.1016/j.jsv.2013.01.029 – volume: 86 start-page: 765 issue: 6 year: 2011 ident: 10.1016/j.compstruct.2022.116200_b19 article-title: Filters in topology optimization based on Helmholtz-type differential equations publication-title: Internat J Numer Methods Engrg doi: 10.1002/nme.3072 – volume: 163 start-page: 489 issue: 2 year: 2000 ident: 10.1016/j.compstruct.2022.116200_b23 article-title: Structural boundary design via level set and immersed interface methods publication-title: J Comput Phys doi: 10.1006/jcph.2000.6581 – volume: 28 start-page: 366 issue: 3 year: 2008 ident: 10.1016/j.compstruct.2022.116200_b40 article-title: Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology publication-title: Mater Sci Eng: C doi: 10.1016/j.msec.2007.04.022 – volume: 51 start-page: 547 year: 2015 ident: 10.1016/j.compstruct.2022.116200_b1 article-title: Conceptual and detailed design of an automotive engine cradle by using topology, shape, and size optimization publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-014-1151-6 – volume: 51 start-page: 1083 issue: 5 year: 2015 ident: 10.1016/j.compstruct.2022.116200_b33 article-title: Optimization of multiphase structures considering damage publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-014-1198-4 – volume: 55 start-page: 155 year: 2012 ident: 10.1016/j.compstruct.2022.116200_b48 article-title: 3-D printing: the new industrial revolution publication-title: Bus Horiz doi: 10.1016/j.bushor.2011.11.003 – volume: 56 start-page: 1105 year: 2008 ident: 10.1016/j.compstruct.2022.116200_b50 article-title: Characterization of macroscopic tensile strength of polycrystalline metals with two-scale finite element analysis publication-title: J Mech Phys Solids doi: 10.1016/j.jmps.2007.06.001 – volume: 112 start-page: 841 year: 2017 ident: 10.1016/j.compstruct.2022.116200_b6 article-title: A review about the engineering design of optimal heat transfer systems using topology optimization publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.10.134 – volume: 192 start-page: 227 issue: 1–2 year: 2003 ident: 10.1016/j.compstruct.2022.116200_b22 article-title: A level set method for structural topology optimization publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/S0045-7825(02)00559-5 – volume: 111 start-page: 45 year: 2014 ident: 10.1016/j.compstruct.2022.116200_b15 article-title: Multi-material topology optimization of laminated composite beams with eigenfrequency constraints publication-title: Compos Struct doi: 10.1016/j.compstruct.2013.12.021 – volume: 171 start-page: 272 issue: 1 year: 2001 ident: 10.1016/j.compstruct.2022.116200_b55 article-title: Level set methods for optimization problems involving geometry and constraints: I. Frequencies of a two-density inhomogeneous drum publication-title: J Comput Phys doi: 10.1006/jcph.2001.6789 – volume: 21 start-page: 675 year: 2015 ident: 10.1016/j.compstruct.2022.116200_b47 article-title: Fatigue properties of parts printed by PolyJet material jetting publication-title: Rapid Prototyp J doi: 10.1108/RPJ-03-2014-0031 – volume: 362 start-page: 55 year: 2019 ident: 10.1016/j.compstruct.2022.116200_b53 article-title: Numerical solution of boundary value problems for the eikonal equation in an anisotropic medium publication-title: J Comput Appl Math doi: 10.1016/j.cam.2019.05.016 – volume: 104 start-page: 163 year: 2022 ident: 10.1016/j.compstruct.2022.116200_b7 article-title: Heat transfer augmentation in microchannel heat sink based on isogeometric topology optimization framework publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2021.11.021 – volume: 48 start-page: 437 issue: 3 year: 2013 ident: 10.1016/j.compstruct.2022.116200_b24 article-title: Level-set methods for structural topology optimization: a review publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-013-0912-y – volume: 308 start-page: 113 year: 2016 ident: 10.1016/j.compstruct.2022.116200_b35 article-title: Multi-material topology optimization considering interface behavior via XFEM and level set method publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2016.05.016 – volume: 198 year: 2021 ident: 10.1016/j.compstruct.2022.116200_b41 article-title: A mathematically defined 3d auxetic metamaterial with tunable mechanical and conduction properties publication-title: Mater Des doi: 10.1016/j.matdes.2020.109313 – volume: 69 start-page: 2131 issue: 9–12 year: 2013 ident: 10.1016/j.compstruct.2022.116200_b44 article-title: Additive manufacturing of steel–bronze bimetal by shaped metal deposition: interface characteristics and tensile properties publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-013-5191-7 – year: 2012 ident: 10.1016/j.compstruct.2022.116200_b51 – volume: 3 start-page: 15 issue: 1 year: 2016 ident: 10.1016/j.compstruct.2022.116200_b4 article-title: Interface shape design of multi-material structures for delamination strength publication-title: Mech Eng J – volume: 21 start-page: 461 issue: 1 year: 2020 ident: 10.1016/j.compstruct.2022.116200_b38 article-title: Multiscale analysis of mechanical behavior of multilayer steel structures fabricated by wire and arc additive manufacturing publication-title: Sci Technol Adv Mater doi: 10.1080/14686996.2020.1788908 – volume: 59 start-page: 1925 issue: 14 year: 2004 ident: 10.1016/j.compstruct.2022.116200_b20 article-title: Continuous approximation of material distribution for topology optimization publication-title: Internat J Numer Methods Engrg doi: 10.1002/nme.945 – volume: 129 start-page: 1 year: 2018 ident: 10.1016/j.compstruct.2022.116200_b39 article-title: Additive manufacturing of multi-material structures publication-title: Mater Sci Eng R doi: 10.1016/j.mser.2018.04.001 – volume: 45 start-page: 1037 issue: 6 year: 1997 ident: 10.1016/j.compstruct.2022.116200_b13 article-title: Design of materials with extreme thermal expansion using a three-phase topology optimization method publication-title: J Mech Phys Solids doi: 10.1016/S0022-5096(96)00114-7 – volume: 158 year: 2022 ident: 10.1016/j.compstruct.2022.116200_b9 article-title: Topology optimization of hard-magnetic soft materials publication-title: J Mech Phys Solids doi: 10.1016/j.jmps.2021.104628 – volume: 39 start-page: 63 issue: 1 year: 2009 ident: 10.1016/j.compstruct.2022.116200_b17 article-title: Multiphase material optimization for fiber reinforced composites with strain softening publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-008-0315-7 – volume: 22 start-page: 447 year: 2018 ident: 10.1016/j.compstruct.2022.116200_b43 article-title: Characterizing the effect of print orientation on interface integrity of multi-material jetting additive manufacturing publication-title: Addit Manuf – volume: 199 start-page: 2876 issue: 45–48 year: 2010 ident: 10.1016/j.compstruct.2022.116200_b46 article-title: A topology optimization method based on the level set method incorporating a fictitious interface energy publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2010.05.013 – volume: 1 start-page: 213 issue: 3 year: 2004 ident: 10.1016/j.compstruct.2022.116200_b26 article-title: Level-set method for design of multi-phase elastic and thermoelastic materials publication-title: Int J Mech Mater Des doi: 10.1007/s10999-005-0221-8 – volume: 73 start-page: 41 year: 2016 ident: 10.1016/j.compstruct.2022.116200_b30 article-title: A level-set based multi-material topology optimization method using a reaction diffusion equation publication-title: Comput Aided Des doi: 10.1016/j.cad.2015.12.002 – volume: 208 start-page: 395 year: 2019 ident: 10.1016/j.compstruct.2022.116200_b31 article-title: Robust topology optimization of multi-material structures considering uncertain graded interface publication-title: Compos Struct doi: 10.1016/j.compstruct.2018.10.034 |
SSID | ssj0008411 |
Score | 2.4112415 |
Snippet | A finite volume interface is an interface region with interface strength, and is most often generated during the fabrication (3D printing) of a duplex... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 116200 |
SubjectTerms | Finite strain Interface property Interface thickness Multimaterial Topology optimization |
Title | Computational morphology design of duplex structure considering interface debonding |
URI | https://dx.doi.org/10.1016/j.compstruct.2022.116200 |
Volume | 302 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6lXvQgPrE-Sg5e17rZ7AtPpViqYi-10NuSJ1Rqt5QWPPnbndlkbQVBwWOWzBK-TCYz4ZsZQq4ll8xGuQbrFycBDFQgklDAiVcaq4enKsZ85-dhMhjzx0k8aZBenQuDtEpv-51Nr6y1_9LxaHYW02lnBNFDBNcbaCSG5VUyOecpavnNx4bmkfGqBy9ODnC2Z_M4jhfStl2dVogUGQP7kTDMdfvpitq6dvoHZN_7i7TrlnRIGmZ-RPa2qggek5HrzOBf9ehbCdBVj-VUV_QMWlqq14uZeaduFeuloco36oQ_UCwZsbRCGRCQZZXmckLG_fuX3iDwvRICFWV8FVh0frRiuUmV0hKOlYx0LjT4Z5EGa4ioK_AGxW1o45iJLLPSJEqnuWVSShGdkua8nJszQg2HXdKaJbkEPI3OpdVZBHFKLrhNRdoiaQ1PoXwhcexnMStqxthrsQG2QGALB2yLhF-SC1dM4w8yd_UOFN8UowCb_6v0-b-kL8gujpC9EsaXpAkTzBX4ICvZrpSsTXa6D0-D4SeKQeA- |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEF5ED20PpU9qn3voNdi8E3oSqcT6uKjgbdknWKwRUejP70yysRYKLfSYZCcss7PfzizfzBDyKALhGT9VgH5h5MCDdHjkctjxUmH18FiGmO88HEXZNHidhbMa6VS5MEirtNhfYnqB1vZNy2qztZrPW2OIHnw43sAiMSzHZPIGVqcK66TR7vWz0Q6Qk6Bow4vjHRSwhJ6S5oXM7bJUKwSLngcQEnmY7vbTKbV38nRPyLF1GWm7nNUpqenlGTnaKyR4TsZlcwZ7sUffc9BecV9OVcHQoLmharta6A9azmK71lTaXp3wB4pVI9aGSw0CIi8yXS7ItPsy6WSObZfgSD8JNo5B_0dJL9WxlErAzhK-SrkCF81XAIioeAkOIX9yTRh6PEmM0JFUcWo8IQT3L0l9mS_1FaE6gIVSyotSEQSxVqkwKvEhVEl5YGIeN0lcqYdJW0scW1osWEUae2NfimWoWFYqtkncneSqrKfxB5nnagXYN9tgAPu_Sl__S_qBHGST4YANeqP-DTnEL0hmccNbUofB-g5cko24tyb3CTec4u8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+morphology+design+of+duplex+structure+considering+interface+debonding&rft.jtitle=Composite+structures&rft.au=Zhou%2C+Jiaxin&rft.au=Watanabe%2C+Ikumu&rft.au=Yamada%2C+Takayuki&rft.date=2022-12-15&rft.issn=0263-8223&rft.volume=302&rft.spage=116200&rft_id=info:doi/10.1016%2Fj.compstruct.2022.116200&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compstruct_2022_116200 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8223&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8223&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8223&client=summon |