Lift: Multi-Label Learning with Label-Specific Features

Multi-label learning deals with the problem where each example is represented by a single instance (feature vector) while associated with a set of class labels. Existing approaches learn from multi-label data by manipulating with identical feature set, i.e. the very instance representation of each e...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 37; no. 1; pp. 107 - 120
Main Authors Zhang, Min-Ling, Wu, Lei
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multi-label learning deals with the problem where each example is represented by a single instance (feature vector) while associated with a set of class labels. Existing approaches learn from multi-label data by manipulating with identical feature set, i.e. the very instance representation of each example is employed in the discrimination processes of all class labels. However, this popular strategy might be suboptimal as each label is supposed to possess specific characteristics of its own. In this paper, another strategy to learn from multi-label data is studied, where label-specific features are exploited to benefit the discrimination of different class labels. Accordingly, an intuitive yet effective algorithm named LIFT, i.e. multi-label learning with Label specific Features, is proposed. LIFT firstly constructs features specific to each label by conducting clustering analysis on its positive and negative instances, and then performs training and testing by querying the clustering results. Comprehensive experiments on a total of 17 benchmark data sets clearly validate the superiority of LIFT against other well-established multi-label learning algorithms as well as the effectiveness of label-specific features.
AbstractList Multi-label learning deals with the problem where each example is represented by a single instance (feature vector) while associated with a set of class labels. Existing approaches learn from multi-label data by manipulating with identical feature set, i.e. the very instance representation of each example is employed in the discrimination processes of all class labels. However, this popular strategy might be suboptimal as each label is supposed to possess specific characteristics of its own. In this paper, another strategy to learn from multi-label data is studied, where label-specific features are exploited to benefit the discrimination of different class labels. Accordingly, an intuitive yet effective algorithm named LIFT, i.e. multi-label learning with Label specific Features, is proposed. LIFT firstly constructs features specific to each label by conducting clustering analysis on its positive and negative instances, and then performs training and testing by querying the clustering results. Comprehensive experiments on a total of 17 benchmark data sets clearly validate the superiority of LIFT against other well-established multi-label learning algorithms as well as the effectiveness of label-specific features.
Multi-label learning deals with the problem where each example is represented by a single instance (feature vector) while associated with a set of class labels. Existing approaches learn from multi-label data by manipulating with identical feature set, i.e. the very instance representation of each example is employed in the discrimination processes of all class labels. However, this popular strategy might be suboptimal as each label is supposed to possess specific characteristics of its own. In this paper, another strategy to learn from multi-label data is studied, where label-specific features are exploited to benefit the discrimination of different class labels. Accordingly, an intuitive yet effective algorithm named Lift, i.e. multi-label learning with Label specIfic FeaTures, is proposed. Lift firstly constructs features specific to each label by conducting clustering analysis on its positive and negative instances, and then performs training and testing by querying the clustering results. Comprehensive experiments on a total of 17 benchmark data sets clearly validate the superiority of Lift against other well-established multi-label learning algorithms as well as the effectiveness oflabel-specific features.
Author Zhang, Min-Ling
Wu, Lei
Author_xml – sequence: 1
  givenname: Min-Ling
  surname: Zhang
  fullname: Zhang, Min-Ling
  email: zhangml@seu.edu.cn
  organization: School of Computer Science and Engineering, Southeast University, Nanjing, China
– sequence: 2
  givenname: Lei
  surname: Wu
  fullname: Wu, Lei
  email: wul@seu.edu.cn
  organization: School of Computer Science and Engineering, Southeast University, Nanjing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26353212$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1LHTEUhkOx1Kv2D1SQgW7czG2-Jh_difgFIxXUdUgyJ21k7sxtkqH47x29VxcupKsDh-d54Zx3D-0M4wAIfSN4SQjWP-5uTq6vlhQTvqSMaUWaT2hBicC1ppruoAUmgtZKUbWL9nJ-wDPZYPYF7VLBGkYJXSDZxlB-VtdTX2LdWgd91YJNQxx-V_9i-VO97OrbNfgYoq_OwZYpQT5An4PtM3zdzn10f352d3pZt78urk5P2tozxUsNIIO2IWihZSeFdZ0kjlDLu0Z6Cl4LzK3A1AfvMOeWB0EcZk4F3jmNHdtHx5vcdRr_TpCLWcXsoe_tAOOUDZGCYikF4_-BEtIwLpic0e_v0IdxSsN8iCFi_g0RiumZOtpSk1tBZ9Yprmx6NK_fmwG1AXwac04QjI_FljgOJdnYG4LNc1HmpSjzXJTZFjWr9J36mv6hdLiRIgC8CUI1kinMngBQ_JuH
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1007_s40815_024_01776_2
crossref_primary_10_1109_JAS_2022_105518
crossref_primary_10_1007_s11704_018_7452_y
crossref_primary_10_1007_s10489_024_05668_8
crossref_primary_10_1109_TCSS_2023_3253502
crossref_primary_10_1109_TPAMI_2020_2985210
crossref_primary_10_1093_bib_bbab012
crossref_primary_10_1007_s13042_021_01432_3
crossref_primary_10_1007_s00500_021_06645_w
crossref_primary_10_1007_s11063_024_11439_w
crossref_primary_10_1007_s10489_021_02868_4
crossref_primary_10_1007_s10618_021_00743_x
crossref_primary_10_1007_s11704_023_3076_y
crossref_primary_10_3390_su142215288
crossref_primary_10_1109_TCSVT_2021_3103782
crossref_primary_10_1145_3705006
crossref_primary_10_3390_make1040061
crossref_primary_10_1109_TKDE_2016_2608339
crossref_primary_10_1142_S021800142151006X
crossref_primary_10_1016_j_eswa_2024_125351
crossref_primary_10_1016_j_ins_2019_04_021
crossref_primary_10_3390_e21060602
crossref_primary_10_1038_s41598_024_72765_6
crossref_primary_10_1109_TKDE_2021_3113514
crossref_primary_10_1016_j_bdr_2023_100383
crossref_primary_10_1016_j_knosys_2021_107414
crossref_primary_10_1109_TFUZZ_2022_3222941
crossref_primary_10_1109_TNNLS_2022_3208956
crossref_primary_10_1016_j_patcog_2021_108169
crossref_primary_10_1002_widm_1240
crossref_primary_10_3390_app12052488
crossref_primary_10_1007_s13042_020_01268_3
crossref_primary_10_1016_j_neucom_2019_11_071
crossref_primary_10_1186_s13321_019_0402_3
crossref_primary_10_1016_j_knosys_2019_04_002
crossref_primary_10_1109_TCYB_2021_3049630
crossref_primary_10_1002_cpe_5838
crossref_primary_10_1007_s10462_017_9556_4
crossref_primary_10_1109_ACCESS_2019_2950701
crossref_primary_10_1186_s40537_024_00961_2
crossref_primary_10_1007_s00521_020_04854_2
crossref_primary_10_1016_j_asoc_2018_12_016
crossref_primary_10_1016_j_patcog_2025_111365
crossref_primary_10_1109_TFUZZ_2021_3053844
crossref_primary_10_1109_TFUZZ_2024_3502073
crossref_primary_10_3390_math12132131
crossref_primary_10_1109_TMM_2024_3402534
crossref_primary_10_1007_s00500_020_04775_1
crossref_primary_10_1016_j_patcog_2020_107583
crossref_primary_10_1007_s13042_024_02343_9
crossref_primary_10_1007_s00500_023_08341_3
crossref_primary_10_1007_s10044_018_0711_6
crossref_primary_10_1016_j_knosys_2020_106298
crossref_primary_10_1186_s12859_025_06086_4
crossref_primary_10_1007_s13042_022_01692_7
crossref_primary_10_1016_j_patcog_2021_108518
crossref_primary_10_1016_j_asoc_2022_109071
crossref_primary_10_1016_j_engappai_2024_108178
crossref_primary_10_1016_j_patcog_2020_107344
crossref_primary_10_1109_ACCESS_2024_3403569
crossref_primary_10_1016_j_neucom_2020_04_134
crossref_primary_10_1145_3158675
crossref_primary_10_1007_s10489_020_02140_1
crossref_primary_10_1177_09544100211049935
crossref_primary_10_1016_j_ins_2021_12_104
crossref_primary_10_1007_s11042_023_17013_1
crossref_primary_10_1016_j_neucom_2020_01_005
crossref_primary_10_1016_j_patcog_2023_109357
crossref_primary_10_1016_j_patcog_2023_109356
crossref_primary_10_1016_j_knosys_2018_06_032
crossref_primary_10_1109_ACCESS_2019_2937188
crossref_primary_10_1109_ACCESS_2019_2930206
crossref_primary_10_1007_s12530_022_09428_2
crossref_primary_10_1016_j_knosys_2019_01_030
crossref_primary_10_1109_TSMC_2021_3062714
crossref_primary_10_1088_1742_6596_2425_1_012034
crossref_primary_10_1109_ACCESS_2020_2980219
crossref_primary_10_1007_s13042_023_02044_9
crossref_primary_10_1007_s10994_019_05783_5
crossref_primary_10_1007_s10489_023_05203_1
crossref_primary_10_1016_j_knosys_2024_112832
crossref_primary_10_1145_3458283
crossref_primary_10_1016_j_knosys_2017_12_008
crossref_primary_10_1109_TFUZZ_2024_3419144
crossref_primary_10_1016_j_ins_2017_08_038
crossref_primary_10_1109_TII_2017_2785321
crossref_primary_10_1109_TPAMI_2024_3416384
crossref_primary_10_1109_TFUZZ_2021_3115967
crossref_primary_10_1016_j_ins_2020_12_036
crossref_primary_10_1016_j_neucom_2022_09_085
crossref_primary_10_1093_bioinformatics_btaa434
crossref_primary_10_1016_j_patrec_2023_10_029
crossref_primary_10_1016_j_knosys_2022_109226
crossref_primary_10_1109_TMM_2023_3338080
crossref_primary_10_1145_3447586
crossref_primary_10_1007_s10489_022_03989_0
crossref_primary_10_1016_j_ipm_2022_103053
crossref_primary_10_1109_TPAMI_2023_3290797
crossref_primary_10_1016_j_knosys_2021_106757
crossref_primary_10_1016_j_neucom_2021_09_007
crossref_primary_10_1109_TMM_2021_3055959
crossref_primary_10_1109_TMM_2022_3219650
crossref_primary_10_1016_j_eswa_2022_118861
crossref_primary_10_1109_TPAMI_2021_3070215
crossref_primary_10_1007_s10489_023_05136_9
crossref_primary_10_1109_ACCESS_2024_3386841
crossref_primary_10_1007_s10489_020_02008_4
crossref_primary_10_1109_TCYB_2024_3433519
crossref_primary_10_1016_j_knosys_2025_113210
crossref_primary_10_1007_s10994_017_5638_4
crossref_primary_10_1007_s10115_024_02270_9
crossref_primary_10_1016_j_ins_2023_03_056
crossref_primary_10_1016_j_neucom_2018_02_079
crossref_primary_10_1007_s10115_025_02359_9
crossref_primary_10_1109_TETCI_2024_3399665
crossref_primary_10_1016_j_inffus_2025_103072
crossref_primary_10_1109_ACCESS_2019_2930468
crossref_primary_10_1142_S0218213017600119
crossref_primary_10_1109_TKDE_2024_3447878
crossref_primary_10_1142_S0218001415500202
crossref_primary_10_1109_TCYB_2019_2932439
crossref_primary_10_1007_s10489_024_05779_2
crossref_primary_10_1016_j_knosys_2024_111566
crossref_primary_10_1016_j_neunet_2019_10_002
crossref_primary_10_1007_s13042_024_02426_7
crossref_primary_10_1016_j_neunet_2025_107137
crossref_primary_10_1145_3451392
crossref_primary_10_1093_bioinformatics_btz757
crossref_primary_10_1016_j_asoc_2015_10_009
crossref_primary_10_1109_TMM_2020_3002185
crossref_primary_10_3390_math11081969
crossref_primary_10_1007_s10489_020_01715_2
crossref_primary_10_1109_TPAMI_2018_2845842
crossref_primary_10_1016_j_patcog_2017_01_014
crossref_primary_10_1016_j_knosys_2019_105066
crossref_primary_10_1016_j_eswa_2023_120887
crossref_primary_10_1016_j_ins_2024_121473
crossref_primary_10_1108_EL_09_2019_0207
crossref_primary_10_1109_ACCESS_2019_2927400
crossref_primary_10_1109_ACCESS_2019_2902467
crossref_primary_10_1016_j_imavis_2018_05_003
crossref_primary_10_1016_j_neunet_2024_106674
crossref_primary_10_1109_TETCI_2020_3044679
crossref_primary_10_1016_j_neucom_2020_06_101
crossref_primary_10_1007_s10489_022_04350_1
crossref_primary_10_1109_TCBB_2016_2603507
crossref_primary_10_1109_ACCESS_2020_2969238
crossref_primary_10_1109_TNNLS_2021_3105142
crossref_primary_10_1109_TIM_2021_3077667
crossref_primary_10_1109_ACCESS_2019_2931451
crossref_primary_10_1109_TFUZZ_2021_3082171
crossref_primary_10_1016_j_neucom_2015_04_024
crossref_primary_10_1145_3201407
crossref_primary_10_1007_s11042_018_6100_8
crossref_primary_10_1016_j_ijar_2022_08_008
crossref_primary_10_1109_TCYB_2020_3031832
crossref_primary_10_1016_j_knosys_2018_11_034
crossref_primary_10_1007_s10115_020_01527_3
crossref_primary_10_1109_TNNLS_2019_2944298
crossref_primary_10_1145_3700879
crossref_primary_10_1007_s00521_023_08617_7
crossref_primary_10_1016_j_ecolind_2023_110234
crossref_primary_10_1016_j_knosys_2016_04_012
crossref_primary_10_1109_TPWRS_2022_3223166
crossref_primary_10_1002_cpe_7067
crossref_primary_10_1016_j_ins_2019_10_022
crossref_primary_10_1109_TCYB_2020_3015269
crossref_primary_10_1016_j_neucom_2018_10_047
crossref_primary_10_1155_2018_6292143
crossref_primary_10_1016_j_neucom_2019_12_059
crossref_primary_10_1007_s40747_024_01498_w
crossref_primary_10_1007_s13369_015_1876_6
crossref_primary_10_1080_24751839_2017_1364925
crossref_primary_10_1109_TPAMI_2022_3199784
crossref_primary_10_1109_TMM_2020_2966887
crossref_primary_10_1016_j_knosys_2024_112568
crossref_primary_10_2139_ssrn_4163294
crossref_primary_10_1007_s13042_017_0647_y
crossref_primary_10_1016_j_neucom_2018_09_033
crossref_primary_10_1007_s10489_020_01878_y
crossref_primary_10_1109_TMM_2019_2909860
crossref_primary_10_1109_TETCI_2023_3302653
crossref_primary_10_1016_j_knosys_2022_108601
crossref_primary_10_1111_exsy_12615
crossref_primary_10_1145_3319911
crossref_primary_10_1016_j_knosys_2021_106966
crossref_primary_10_1016_j_procs_2017_08_074
crossref_primary_10_1109_TCYB_2021_3104848
crossref_primary_10_3233_JIFS_213112
crossref_primary_10_1007_s11704_023_3396_y
crossref_primary_10_1016_j_knosys_2021_106841
crossref_primary_10_1016_j_patcog_2022_109156
crossref_primary_10_1007_s11263_018_1131_1
crossref_primary_10_1109_ACCESS_2019_2934742
crossref_primary_10_1016_j_chemolab_2020_104216
crossref_primary_10_1007_s10462_022_10279_1
crossref_primary_10_1016_j_asoc_2018_05_013
crossref_primary_10_1109_TCYB_2017_2663838
crossref_primary_10_1002_int_22835
crossref_primary_10_1007_s13042_023_01858_x
crossref_primary_10_1016_j_neucom_2017_07_044
crossref_primary_10_1007_s11042_022_13788_x
crossref_primary_10_3233_IDA_216404
crossref_primary_10_1162_neco_a_01036
crossref_primary_10_1016_j_eswa_2022_119050
crossref_primary_10_1016_j_fss_2021_03_016
crossref_primary_10_1016_j_neunet_2019_04_011
crossref_primary_10_1016_j_patcog_2018_01_022
crossref_primary_10_1016_j_knosys_2018_07_003
crossref_primary_10_1016_j_ins_2022_02_011
crossref_primary_10_1016_j_ijar_2019_11_003
crossref_primary_10_3934_mbe_2021429
crossref_primary_10_1007_s10489_021_02799_0
crossref_primary_10_1007_s10489_023_04562_z
crossref_primary_10_1007_s13042_024_02351_9
crossref_primary_10_1109_TPAMI_2021_3136592
crossref_primary_10_1109_TFUZZ_2022_3182441
crossref_primary_10_1016_j_ins_2023_119917
crossref_primary_10_1109_TNNLS_2024_3382911
crossref_primary_10_1109_TIP_2018_2864920
crossref_primary_10_1080_08982112_2022_2146511
crossref_primary_10_1016_j_jbi_2018_07_012
crossref_primary_10_1016_j_ins_2022_02_022
crossref_primary_10_1007_s11634_024_00589_3
crossref_primary_10_1093_bib_bbab414
crossref_primary_10_1007_s11045_017_0505_9
crossref_primary_10_1016_j_ins_2024_120870
crossref_primary_10_1109_TETCI_2021_3075717
crossref_primary_10_1007_s11432_023_4230_2
crossref_primary_10_1016_j_patrec_2020_06_021
crossref_primary_10_1007_s13042_022_01609_4
crossref_primary_10_1007_s13042_021_01371_z
crossref_primary_10_1016_j_knosys_2024_111948
crossref_primary_10_1109_TFUZZ_2017_2735947
crossref_primary_10_1093_bioinformatics_btx278
crossref_primary_10_1016_j_ipm_2020_102240
crossref_primary_10_1108_ACI_11_2021_0301
crossref_primary_10_1109_TIP_2016_2549459
crossref_primary_10_1109_TCYB_2019_2894985
crossref_primary_10_1007_s00521_024_09810_y
crossref_primary_10_1007_s13042_020_01244_x
crossref_primary_10_1007_s11704_020_9294_7
crossref_primary_10_1016_j_patcog_2017_09_034
crossref_primary_10_1109_TAI_2023_3329079
crossref_primary_10_3390_math10111871
crossref_primary_10_1007_s13042_024_02114_6
crossref_primary_10_1007_s00500_021_05884_1
crossref_primary_10_1016_j_neucom_2015_06_010
crossref_primary_10_1007_s13042_023_01861_2
crossref_primary_10_1007_s11704_017_7031_7
crossref_primary_10_1016_j_ins_2025_122101
crossref_primary_10_1016_j_patcog_2021_108259
crossref_primary_10_1038_s41598_022_11316_3
crossref_primary_10_1016_j_matpr_2021_04_104
crossref_primary_10_1007_s10489_022_03386_7
crossref_primary_10_1007_s11704_016_5024_6
crossref_primary_10_1016_j_ijar_2022_02_002
crossref_primary_10_1016_j_neucom_2017_05_049
crossref_primary_10_1007_s13042_019_00956_z
crossref_primary_10_1007_s12293_020_00316_3
crossref_primary_10_1093_bioinformatics_btab811
crossref_primary_10_1016_j_knosys_2021_107336
crossref_primary_10_3233_IDA_215985
crossref_primary_10_3390_sym14091828
crossref_primary_10_1109_TPAMI_2014_2339815
crossref_primary_10_1109_TNNLS_2023_3241921
crossref_primary_10_32604_jai_2024_049083
crossref_primary_10_1016_j_knosys_2020_105770
crossref_primary_10_1016_j_procs_2018_10_372
crossref_primary_10_1109_ACCESS_2019_2931035
crossref_primary_10_1109_ACCESS_2020_2980551
crossref_primary_10_3390_e18110405
crossref_primary_10_1109_TNNLS_2020_3027745
crossref_primary_10_3390_e25071071
crossref_primary_10_1109_ACCESS_2020_3001274
crossref_primary_10_1016_j_neunet_2018_09_003
crossref_primary_10_1007_s11263_020_01397_w
crossref_primary_10_1142_S0219649220400171
crossref_primary_10_1007_s10844_018_0506_7
crossref_primary_10_3390_app10228093
crossref_primary_10_3390_e23121617
crossref_primary_10_3390_electronics13234754
crossref_primary_10_1016_j_inffus_2024_102775
crossref_primary_10_1007_s42979_021_00957_2
crossref_primary_10_1109_TCBB_2021_3088256
crossref_primary_10_1080_24751839_2017_1323486
crossref_primary_10_1016_j_eswa_2021_116187
crossref_primary_10_1002_cpe_7162
crossref_primary_10_1007_s11063_022_10945_z
crossref_primary_10_1016_j_neucom_2017_12_068
crossref_primary_10_14801_jkiit_2024_22_2_43
crossref_primary_10_1109_ACCESS_2020_2972599
crossref_primary_10_1016_j_future_2018_04_094
crossref_primary_10_1016_j_asoc_2025_112757
crossref_primary_10_1016_j_patcog_2020_107423
crossref_primary_10_3390_math10111847
crossref_primary_10_1007_s10489_021_02674_y
crossref_primary_10_1016_j_chemolab_2020_104148
crossref_primary_10_1007_s10994_020_05879_3
crossref_primary_10_1016_j_patrec_2019_08_009
crossref_primary_10_3390_app10093089
crossref_primary_10_1016_j_knosys_2023_110548
crossref_primary_10_1016_j_ijar_2018_10_009
crossref_primary_10_1016_j_ijar_2024_109349
crossref_primary_10_1016_j_knosys_2017_09_005
crossref_primary_10_1016_j_neucom_2018_02_010
crossref_primary_10_1007_s10489_022_03366_x
crossref_primary_10_1007_s10489_024_05968_z
crossref_primary_10_1016_j_knosys_2023_110426
crossref_primary_10_1016_j_patcog_2024_110684
crossref_primary_10_1109_TCYB_2020_2977133
crossref_primary_10_1007_s10489_022_03634_w
crossref_primary_10_1016_j_engappai_2023_106837
crossref_primary_10_1016_j_neucom_2019_10_016
crossref_primary_10_1007_s40747_024_01562_5
crossref_primary_10_1016_j_eswa_2017_09_020
crossref_primary_10_1109_TIT_2022_3188708
crossref_primary_10_1007_s13042_016_0500_8
crossref_primary_10_1007_s10489_020_01807_z
crossref_primary_10_1109_LSP_2016_2554361
crossref_primary_10_1109_ACCESS_2019_2962201
crossref_primary_10_1109_TFUZZ_2024_3382981
crossref_primary_10_1016_j_inffus_2023_101948
Cites_doi 10.1109/DEVLRN.2010.5578864
10.1007/3-540-45065-3_4
10.1007/s10994-008-5064-8
10.2307/3001968
10.1145/1099554.1099591
10.1145/1291233.1291245
10.1145/1401890.1401939
10.1007/s10994-011-5271-6
10.1016/j.patcog.2004.03.009
10.1109/TKDE.2013.39
10.1016/j.patcog.2006.12.019
10.1007/3-540-44794-6_4
10.1016/j.artint.2008.08.002
10.1145/1557019.1557158
10.1145/1076034.1076080
10.1145/1754428.1754431
10.1145/1835804.1835930
10.1145/1281192.1281281
10.1145/1961189.1961199
10.1109/TKDE.2006.162
10.1145/1656274.1656278
10.1093/bioinformatics/btk048
10.1007/978-3-642-33460-3_48
10.1016/j.ijar.2011.01.007
10.1007/s10994-011-5256-5
10.1109/ICMLA.2005.47
10.1145/1076034.1076082
10.1080/01621459.1961.10482090
10.1016/j.patcog.2012.03.004
10.1007/s10994-011-5272-5
10.1007/s10994-011-5270-7
10.1016/j.patcog.2013.09.029
10.1145/331499.331504
10.1109/TKDE.2010.164
10.1109/TASL.2008.2008734
10.1109/ICDM.2008.74
10.1145/1386352.1386359
10.1002/aris.1440380105
10.1016/j.patcog.2010.07.015
10.1109/TMM.2011.2129498
10.1109/TPAMI.2014.2339815
10.1148/radiology.143.1.7063747
10.1023/A:1007649029923
10.1007/s10994-009-5127-5
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
DOI 10.1109/TPAMI.2014.2339815
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Technology Research Database
Technology Research Database
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 120
ExternalDocumentID 3624917841
26353212
10_1109_TPAMI_2014_2339815
6857380
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: MOE Program for New Century Excellent Talents in University
  grantid: NCET-13-0130
– fundername: National Science Foundation
  grantid: 61175049; 61222309
  funderid: 10.13039/100000001
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AGSQL
AHBIQ
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
RIG
5VS
9M8
ABFSI
ADRHT
AETEA
AETIX
AI.
AIBXA
AKJIK
ALLEH
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
RNI
RZB
VH1
XJT
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
ID FETCH-LOGICAL-c384t-ee7f9aff9697d76abd71b12a4d57c2ec9604a602cfcb044a4f61b03b8f4db90b3
IEDL.DBID RIE
ISSN 0162-8828
IngestDate Fri Jul 11 15:38:40 EDT 2025
Thu Jul 10 18:05:50 EDT 2025
Sun Jun 29 16:02:30 EDT 2025
Mon Jul 21 05:51:16 EDT 2025
Thu Apr 24 23:04:31 EDT 2025
Tue Jul 01 03:18:21 EDT 2025
Wed Aug 27 08:36:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords label correlations
label-specific features
Machine learning
multi-label learning
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c384t-ee7f9aff9697d76abd71b12a4d57c2ec9604a602cfcb044a4f61b03b8f4db90b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26353212
PQID 1663516839
PQPubID 85458
PageCount 14
ParticipantIDs pubmed_primary_26353212
crossref_primary_10_1109_TPAMI_2014_2339815
crossref_citationtrail_10_1109_TPAMI_2014_2339815
proquest_miscellaneous_1762077634
proquest_journals_1663516839
proquest_miscellaneous_1711534637
ieee_primary_6857380
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-Jan.-1
2015-1-1
2015-Jan
20150101
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-Jan.-1
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2015
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref12
ref59
ref15
cabral (ref4) 2011
ref58
ref14
godbole (ref16) 2004
ref52
ref55
ref11
ref54
madjarov (ref29) 2011
ref17
ref19
(ref31) 0
loza mencía (ref28) 0
demšar (ref10) 2006; 7
ref51
ref50
snoek (ref41) 0
ref48
tsoumakas (ref45) 0
katakis (ref25) 0
ref43
ref49
yang (ref53) 0
guo (ref18) 0
ref7
trohidis (ref42) 0
clare (ref8) 2001
ref3
ref6
ref5
wang (ref47) 0
ref40
ueda (ref46) 2003
comité (ref9) 2003
ref35
ref34
ref37
ref36
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
tsoumakas (ref44) 2011; 12
ref23
ref26
ref20
ref22
ref21
ref27
ref60
elisseeff (ref13) 2002
References_xml – ident: ref17
  doi: 10.1109/DEVLRN.2010.5578864
– start-page: 35
  year: 2003
  ident: ref9
  article-title: Learning multi-label altenating decision tree from texts and data
  publication-title: Lecture Notes in Computer Science 2734
  doi: 10.1007/3-540-45065-3_4
– start-page: 325
  year: 0
  ident: ref42
  article-title: Multilabel classification of music into emotions
  publication-title: Proc 9th Int Conf Music Inf Retrieval
– ident: ref14
  doi: 10.1007/s10994-008-5064-8
– ident: ref50
  doi: 10.2307/3001968
– ident: ref15
  doi: 10.1145/1099554.1099591
– ident: ref35
  doi: 10.1145/1291233.1291245
– ident: ref23
  doi: 10.1145/1401890.1401939
– start-page: 681
  year: 2002
  ident: ref13
  article-title: A kernel method for multi-labelled classification
  publication-title: Advances in Neural Information Processing Systems 14
– ident: ref5
  doi: 10.1007/s10994-011-5271-6
– ident: ref3
  doi: 10.1016/j.patcog.2004.03.009
– ident: ref59
  doi: 10.1109/TKDE.2013.39
– start-page: 1264
  year: 0
  ident: ref47
  article-title: Multi-label classification: Inconsistency and class balanced $k$ -nearest neighbor
  publication-title: Proc 24th AAAI Conf Artif Intell
– year: 0
  ident: ref31
– ident: ref58
  doi: 10.1016/j.patcog.2006.12.019
– start-page: 42
  year: 2001
  ident: ref8
  article-title: Knowledge discovery in multi-label phenotype data
  publication-title: Lecture Notes in Computer Science 2168
  doi: 10.1007/3-540-44794-6_4
– start-page: 412
  year: 0
  ident: ref53
  article-title: A comparative study on feature selection in text categorization
  publication-title: Proc 14th Int Conf Mach Learn
– volume: 7
  start-page: 1
  year: 2006
  ident: ref10
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J Mach Learn Res
– ident: ref21
  doi: 10.1016/j.artint.2008.08.002
– ident: ref33
  doi: 10.1145/1557019.1557158
– start-page: 721
  year: 2003
  ident: ref46
  article-title: Parametric mixture models for multi-label text
  publication-title: Advances in Neural Information Processing Systems 15
– ident: ref54
  doi: 10.1145/1076034.1076080
– ident: ref24
  doi: 10.1145/1754428.1754431
– ident: ref56
  doi: 10.1145/1835804.1835930
– ident: ref51
  doi: 10.1145/1281192.1281281
– start-page: 190
  year: 2011
  ident: ref4
  article-title: Matrix completion for multi-label image classification
  publication-title: Advances in Neural Information Processing Systems 24
– ident: ref6
  doi: 10.1145/1961189.1961199
– start-page: 164
  year: 2011
  ident: ref29
  article-title: Efficient two stage voting architecture for pairwise multi-label classification
  publication-title: Lecture Notes in Computer Science 6464
– ident: ref57
  doi: 10.1109/TKDE.2006.162
– ident: ref19
  doi: 10.1145/1656274.1656278
– ident: ref1
  doi: 10.1093/bioinformatics/btk048
– start-page: 75
  year: 0
  ident: ref25
  article-title: Multilabel text classification for automated tag suggestion
  publication-title: ECML PKDD Discovery Challenge 2008
– ident: ref26
  doi: 10.1007/978-3-642-33460-3_48
– ident: ref2
  doi: 10.1016/j.ijar.2011.01.007
– ident: ref38
  doi: 10.1007/s10994-011-5256-5
– start-page: 22
  year: 2004
  ident: ref16
  article-title: Discriminative methods for multi-labeled classification
  publication-title: Lecture Notes in Artificial Intelligence 3056
– ident: ref36
  doi: 10.1109/ICMLA.2005.47
– volume: 12
  start-page: 2411
  year: 2011
  ident: ref44
  article-title: MULAN: A java library for multi-label learning
  publication-title: J Mach Learn Res
– ident: ref60
  doi: 10.1145/1076034.1076082
– year: 0
  ident: ref45
  article-title: Tutorial on learning from multi-label data
  publication-title: Proc Eur Conf Mach Learn Principles Practice Knowl Discov Databases
– ident: ref12
  doi: 10.1080/01621459.1961.10482090
– ident: ref30
  doi: 10.1016/j.patcog.2012.03.004
– ident: ref39
  doi: 10.1007/s10994-011-5272-5
– ident: ref52
  doi: 10.1007/s10994-011-5270-7
– ident: ref32
  doi: 10.1016/j.patcog.2013.09.029
– ident: ref22
  doi: 10.1145/331499.331504
– ident: ref43
  doi: 10.1109/TKDE.2010.164
– ident: ref34
  doi: 10.1109/TASL.2008.2008734
– ident: ref37
  doi: 10.1109/ICDM.2008.74
– ident: ref49
  doi: 10.1145/1386352.1386359
– start-page: 2899
  year: 0
  ident: ref28
  article-title: Pairwise learning of multilabel classifications with perceptrons
  publication-title: Proc Int Joint Conf Neural Netw
– ident: ref11
  doi: 10.1002/aris.1440380105
– ident: ref48
  doi: 10.1016/j.patcog.2010.07.015
– ident: ref27
  doi: 10.1109/TMM.2011.2129498
– ident: ref55
  doi: 10.1109/TPAMI.2014.2339815
– ident: ref20
  doi: 10.1148/radiology.143.1.7063747
– start-page: 421
  year: 0
  ident: ref41
  article-title: The challenge problem for automated detection of 101 semantic concepts in multimedia
  publication-title: Proc 14th Annu ACM Int Conf Multimedia
– ident: ref40
  doi: 10.1023/A:1007649029923
– start-page: 1300
  year: 0
  ident: ref18
  article-title: Multi-label classification using conditional dependency networks
  publication-title: Proc 22nd Int Joint Conf Artif Intell
– ident: ref7
  doi: 10.1007/s10994-009-5127-5
SSID ssj0014503
Score 2.6196685
Snippet Multi-label learning deals with the problem where each example is represented by a single instance (feature vector) while associated with a set of class...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 107
SubjectTerms Algorithm design and analysis
Algorithms
Clustering algorithms
Correlation
Discrimination
Intelligence
Labels
Learning
Lift
Measurement
Pattern analysis
Strategy
Text categorization
Training
Vectors
Title Lift: Multi-Label Learning with Label-Specific Features
URI https://ieeexplore.ieee.org/document/6857380
https://www.ncbi.nlm.nih.gov/pubmed/26353212
https://www.proquest.com/docview/1663516839
https://www.proquest.com/docview/1711534637
https://www.proquest.com/docview/1762077634
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RTvRQni3hUaVSb5Aljh075oZQEUVs1QNI3CKPH9UKtIsgufDrsZ2HALWotyiZKI5nJvlm7PkG4LupeCAd8Y5EbRGyVXmGxrpMOEcNIVjqSNc0_cXPr9nFTXmzBIdjLYy1Nm4-s5NwGNfyzUK3IVV2xKtS0MoH6B984NbVao0rBqyMXZA9gvEe7sOIoUAml0dXv0-mP8MuLjYpKJUVCe1qAgkLLUjx6n8UG6z8G2vGf87ZKkyH0XZbTW4nbYMT_fSGyPF_X2cNPvXgMz3prGUdlux8A1aHxg5p7-cb8PEFS-EmiMuZa47TWKqbXSq0d2nPyvonDWncNJ7LYid7N9NpQJWtj-K34Prsx9Xpedb3W8g0rViTWSucVM5JLoURXKERBEmhmCmFLqwOPC6K54V2GnPGFHOcYE6xcsygzJF-huX5Ym63IVVMkrIimiEaVimUHkihV5pER6X_TCRAhlmvdU9GHnpi3NUxKMllHZVWB6XVvdISOBjvue-oON6V3gwzPkr2k53A3qDcuvfWx5oE2EW4x4oJfBsvez8LiydqbhetlxEeO1PGqXhPhheBHomyBL50hjM-f7C3nb-PaxdW_OjLLrmzB8vNQ2v3Pdxp8Gu082cTqfaB
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4heig9lBZaGkrbVOLWZoljx465oQq0tLuIwyJxizx-IATardrk0l-P7TxUUIu4RclEsT0z8Te25xuAfVPxQDriHYnaIqxW5Rka6zLhHDWEYKkjXdP8jE8v2PfL8nINvo65MNbaePjMTsJl3Ms3K92GpbIDXpWCVj5Af-bn_ZJ02VrjngErYx1kj2G8j_tAYkiRyeXB4vxofhrOcbFJQamsSChYE2hYaEGKezNSLLHyf7QZZ52TTZgP7e0Om9xM2gYn-s8DKsendugVvOzhZ3rU2ctrWLPLLdgcSjukvadvwYu_eAq3QcyuXXOYxmTdbKbQ3qY9L-tVGhZy03gvi7Xs3bVOA65sfRz_Bi5OjhffpllfcSHTtGJNZq1wUjknuRRGcIVGECSFYqYUurA6MLkonhfaacwZU8xxgjnFyjGDMkf6FtaXq6V9B6likpQV0QzRsEqh9FAKfbwt0VHpfxQJkGHUa93TkYeqGLd1DEtyWUel1UFpda-0BL6M7_zsyDgeld4OIz5K9oOdwN6g3Lr31981CcCLcI8WE_g8PvaeFrZP1NKuWi8jPHqmjFPxmAwvAkESZQnsdIYzfn-wt91_t-sTPJ8u5rN6dnr24z1s-J6U3VLPHqw3v1r7wYOfBj9Gm78DF-D5yg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lift%3A+Multi-Label+Learning+with+Label-Specific+Features&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Zhang%2C+Min-Ling&rft.au=Wu%2C+Lei&rft.date=2015-01-01&rft.pub=IEEE&rft.issn=0162-8828&rft.volume=37&rft.issue=1&rft.spage=107&rft.epage=120&rft_id=info:doi/10.1109%2FTPAMI.2014.2339815&rft_id=info%3Apmid%2F26353212&rft.externalDocID=6857380
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon