Lift: Multi-Label Learning with Label-Specific Features
Multi-label learning deals with the problem where each example is represented by a single instance (feature vector) while associated with a set of class labels. Existing approaches learn from multi-label data by manipulating with identical feature set, i.e. the very instance representation of each e...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 37; no. 1; pp. 107 - 120 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multi-label learning deals with the problem where each example is represented by a single instance (feature vector) while associated with a set of class labels. Existing approaches learn from multi-label data by manipulating with identical feature set, i.e. the very instance representation of each example is employed in the discrimination processes of all class labels. However, this popular strategy might be suboptimal as each label is supposed to possess specific characteristics of its own. In this paper, another strategy to learn from multi-label data is studied, where label-specific features are exploited to benefit the discrimination of different class labels. Accordingly, an intuitive yet effective algorithm named LIFT, i.e. multi-label learning with Label specific Features, is proposed. LIFT firstly constructs features specific to each label by conducting clustering analysis on its positive and negative instances, and then performs training and testing by querying the clustering results. Comprehensive experiments on a total of 17 benchmark data sets clearly validate the superiority of LIFT against other well-established multi-label learning algorithms as well as the effectiveness of label-specific features. |
---|---|
AbstractList | Multi-label learning deals with the problem where each example is represented by a single instance (feature vector) while associated with a set of class labels. Existing approaches learn from multi-label data by manipulating with identical feature set, i.e. the very instance representation of each example is employed in the discrimination processes of all class labels. However, this popular strategy might be suboptimal as each label is supposed to possess specific characteristics of its own. In this paper, another strategy to learn from multi-label data is studied, where label-specific features are exploited to benefit the discrimination of different class labels. Accordingly, an intuitive yet effective algorithm named LIFT, i.e. multi-label learning with Label specific Features, is proposed. LIFT firstly constructs features specific to each label by conducting clustering analysis on its positive and negative instances, and then performs training and testing by querying the clustering results. Comprehensive experiments on a total of 17 benchmark data sets clearly validate the superiority of LIFT against other well-established multi-label learning algorithms as well as the effectiveness of label-specific features. Multi-label learning deals with the problem where each example is represented by a single instance (feature vector) while associated with a set of class labels. Existing approaches learn from multi-label data by manipulating with identical feature set, i.e. the very instance representation of each example is employed in the discrimination processes of all class labels. However, this popular strategy might be suboptimal as each label is supposed to possess specific characteristics of its own. In this paper, another strategy to learn from multi-label data is studied, where label-specific features are exploited to benefit the discrimination of different class labels. Accordingly, an intuitive yet effective algorithm named Lift, i.e. multi-label learning with Label specIfic FeaTures, is proposed. Lift firstly constructs features specific to each label by conducting clustering analysis on its positive and negative instances, and then performs training and testing by querying the clustering results. Comprehensive experiments on a total of 17 benchmark data sets clearly validate the superiority of Lift against other well-established multi-label learning algorithms as well as the effectiveness oflabel-specific features. |
Author | Zhang, Min-Ling Wu, Lei |
Author_xml | – sequence: 1 givenname: Min-Ling surname: Zhang fullname: Zhang, Min-Ling email: zhangml@seu.edu.cn organization: School of Computer Science and Engineering, Southeast University, Nanjing, China – sequence: 2 givenname: Lei surname: Wu fullname: Wu, Lei email: wul@seu.edu.cn organization: School of Computer Science and Engineering, Southeast University, Nanjing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26353212$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1LHTEUhkOx1Kv2D1SQgW7czG2-Jh_difgFIxXUdUgyJ21k7sxtkqH47x29VxcupKsDh-d54Zx3D-0M4wAIfSN4SQjWP-5uTq6vlhQTvqSMaUWaT2hBicC1ppruoAUmgtZKUbWL9nJ-wDPZYPYF7VLBGkYJXSDZxlB-VtdTX2LdWgd91YJNQxx-V_9i-VO97OrbNfgYoq_OwZYpQT5An4PtM3zdzn10f352d3pZt78urk5P2tozxUsNIIO2IWihZSeFdZ0kjlDLu0Z6Cl4LzK3A1AfvMOeWB0EcZk4F3jmNHdtHx5vcdRr_TpCLWcXsoe_tAOOUDZGCYikF4_-BEtIwLpic0e_v0IdxSsN8iCFi_g0RiumZOtpSk1tBZ9Yprmx6NK_fmwG1AXwac04QjI_FljgOJdnYG4LNc1HmpSjzXJTZFjWr9J36mv6hdLiRIgC8CUI1kinMngBQ_JuH |
CODEN | ITPIDJ |
CitedBy_id | crossref_primary_10_1007_s40815_024_01776_2 crossref_primary_10_1109_JAS_2022_105518 crossref_primary_10_1007_s11704_018_7452_y crossref_primary_10_1007_s10489_024_05668_8 crossref_primary_10_1109_TCSS_2023_3253502 crossref_primary_10_1109_TPAMI_2020_2985210 crossref_primary_10_1093_bib_bbab012 crossref_primary_10_1007_s13042_021_01432_3 crossref_primary_10_1007_s00500_021_06645_w crossref_primary_10_1007_s11063_024_11439_w crossref_primary_10_1007_s10489_021_02868_4 crossref_primary_10_1007_s10618_021_00743_x crossref_primary_10_1007_s11704_023_3076_y crossref_primary_10_3390_su142215288 crossref_primary_10_1109_TCSVT_2021_3103782 crossref_primary_10_1145_3705006 crossref_primary_10_3390_make1040061 crossref_primary_10_1109_TKDE_2016_2608339 crossref_primary_10_1142_S021800142151006X crossref_primary_10_1016_j_eswa_2024_125351 crossref_primary_10_1016_j_ins_2019_04_021 crossref_primary_10_3390_e21060602 crossref_primary_10_1038_s41598_024_72765_6 crossref_primary_10_1109_TKDE_2021_3113514 crossref_primary_10_1016_j_bdr_2023_100383 crossref_primary_10_1016_j_knosys_2021_107414 crossref_primary_10_1109_TFUZZ_2022_3222941 crossref_primary_10_1109_TNNLS_2022_3208956 crossref_primary_10_1016_j_patcog_2021_108169 crossref_primary_10_1002_widm_1240 crossref_primary_10_3390_app12052488 crossref_primary_10_1007_s13042_020_01268_3 crossref_primary_10_1016_j_neucom_2019_11_071 crossref_primary_10_1186_s13321_019_0402_3 crossref_primary_10_1016_j_knosys_2019_04_002 crossref_primary_10_1109_TCYB_2021_3049630 crossref_primary_10_1002_cpe_5838 crossref_primary_10_1007_s10462_017_9556_4 crossref_primary_10_1109_ACCESS_2019_2950701 crossref_primary_10_1186_s40537_024_00961_2 crossref_primary_10_1007_s00521_020_04854_2 crossref_primary_10_1016_j_asoc_2018_12_016 crossref_primary_10_1016_j_patcog_2025_111365 crossref_primary_10_1109_TFUZZ_2021_3053844 crossref_primary_10_1109_TFUZZ_2024_3502073 crossref_primary_10_3390_math12132131 crossref_primary_10_1109_TMM_2024_3402534 crossref_primary_10_1007_s00500_020_04775_1 crossref_primary_10_1016_j_patcog_2020_107583 crossref_primary_10_1007_s13042_024_02343_9 crossref_primary_10_1007_s00500_023_08341_3 crossref_primary_10_1007_s10044_018_0711_6 crossref_primary_10_1016_j_knosys_2020_106298 crossref_primary_10_1186_s12859_025_06086_4 crossref_primary_10_1007_s13042_022_01692_7 crossref_primary_10_1016_j_patcog_2021_108518 crossref_primary_10_1016_j_asoc_2022_109071 crossref_primary_10_1016_j_engappai_2024_108178 crossref_primary_10_1016_j_patcog_2020_107344 crossref_primary_10_1109_ACCESS_2024_3403569 crossref_primary_10_1016_j_neucom_2020_04_134 crossref_primary_10_1145_3158675 crossref_primary_10_1007_s10489_020_02140_1 crossref_primary_10_1177_09544100211049935 crossref_primary_10_1016_j_ins_2021_12_104 crossref_primary_10_1007_s11042_023_17013_1 crossref_primary_10_1016_j_neucom_2020_01_005 crossref_primary_10_1016_j_patcog_2023_109357 crossref_primary_10_1016_j_patcog_2023_109356 crossref_primary_10_1016_j_knosys_2018_06_032 crossref_primary_10_1109_ACCESS_2019_2937188 crossref_primary_10_1109_ACCESS_2019_2930206 crossref_primary_10_1007_s12530_022_09428_2 crossref_primary_10_1016_j_knosys_2019_01_030 crossref_primary_10_1109_TSMC_2021_3062714 crossref_primary_10_1088_1742_6596_2425_1_012034 crossref_primary_10_1109_ACCESS_2020_2980219 crossref_primary_10_1007_s13042_023_02044_9 crossref_primary_10_1007_s10994_019_05783_5 crossref_primary_10_1007_s10489_023_05203_1 crossref_primary_10_1016_j_knosys_2024_112832 crossref_primary_10_1145_3458283 crossref_primary_10_1016_j_knosys_2017_12_008 crossref_primary_10_1109_TFUZZ_2024_3419144 crossref_primary_10_1016_j_ins_2017_08_038 crossref_primary_10_1109_TII_2017_2785321 crossref_primary_10_1109_TPAMI_2024_3416384 crossref_primary_10_1109_TFUZZ_2021_3115967 crossref_primary_10_1016_j_ins_2020_12_036 crossref_primary_10_1016_j_neucom_2022_09_085 crossref_primary_10_1093_bioinformatics_btaa434 crossref_primary_10_1016_j_patrec_2023_10_029 crossref_primary_10_1016_j_knosys_2022_109226 crossref_primary_10_1109_TMM_2023_3338080 crossref_primary_10_1145_3447586 crossref_primary_10_1007_s10489_022_03989_0 crossref_primary_10_1016_j_ipm_2022_103053 crossref_primary_10_1109_TPAMI_2023_3290797 crossref_primary_10_1016_j_knosys_2021_106757 crossref_primary_10_1016_j_neucom_2021_09_007 crossref_primary_10_1109_TMM_2021_3055959 crossref_primary_10_1109_TMM_2022_3219650 crossref_primary_10_1016_j_eswa_2022_118861 crossref_primary_10_1109_TPAMI_2021_3070215 crossref_primary_10_1007_s10489_023_05136_9 crossref_primary_10_1109_ACCESS_2024_3386841 crossref_primary_10_1007_s10489_020_02008_4 crossref_primary_10_1109_TCYB_2024_3433519 crossref_primary_10_1016_j_knosys_2025_113210 crossref_primary_10_1007_s10994_017_5638_4 crossref_primary_10_1007_s10115_024_02270_9 crossref_primary_10_1016_j_ins_2023_03_056 crossref_primary_10_1016_j_neucom_2018_02_079 crossref_primary_10_1007_s10115_025_02359_9 crossref_primary_10_1109_TETCI_2024_3399665 crossref_primary_10_1016_j_inffus_2025_103072 crossref_primary_10_1109_ACCESS_2019_2930468 crossref_primary_10_1142_S0218213017600119 crossref_primary_10_1109_TKDE_2024_3447878 crossref_primary_10_1142_S0218001415500202 crossref_primary_10_1109_TCYB_2019_2932439 crossref_primary_10_1007_s10489_024_05779_2 crossref_primary_10_1016_j_knosys_2024_111566 crossref_primary_10_1016_j_neunet_2019_10_002 crossref_primary_10_1007_s13042_024_02426_7 crossref_primary_10_1016_j_neunet_2025_107137 crossref_primary_10_1145_3451392 crossref_primary_10_1093_bioinformatics_btz757 crossref_primary_10_1016_j_asoc_2015_10_009 crossref_primary_10_1109_TMM_2020_3002185 crossref_primary_10_3390_math11081969 crossref_primary_10_1007_s10489_020_01715_2 crossref_primary_10_1109_TPAMI_2018_2845842 crossref_primary_10_1016_j_patcog_2017_01_014 crossref_primary_10_1016_j_knosys_2019_105066 crossref_primary_10_1016_j_eswa_2023_120887 crossref_primary_10_1016_j_ins_2024_121473 crossref_primary_10_1108_EL_09_2019_0207 crossref_primary_10_1109_ACCESS_2019_2927400 crossref_primary_10_1109_ACCESS_2019_2902467 crossref_primary_10_1016_j_imavis_2018_05_003 crossref_primary_10_1016_j_neunet_2024_106674 crossref_primary_10_1109_TETCI_2020_3044679 crossref_primary_10_1016_j_neucom_2020_06_101 crossref_primary_10_1007_s10489_022_04350_1 crossref_primary_10_1109_TCBB_2016_2603507 crossref_primary_10_1109_ACCESS_2020_2969238 crossref_primary_10_1109_TNNLS_2021_3105142 crossref_primary_10_1109_TIM_2021_3077667 crossref_primary_10_1109_ACCESS_2019_2931451 crossref_primary_10_1109_TFUZZ_2021_3082171 crossref_primary_10_1016_j_neucom_2015_04_024 crossref_primary_10_1145_3201407 crossref_primary_10_1007_s11042_018_6100_8 crossref_primary_10_1016_j_ijar_2022_08_008 crossref_primary_10_1109_TCYB_2020_3031832 crossref_primary_10_1016_j_knosys_2018_11_034 crossref_primary_10_1007_s10115_020_01527_3 crossref_primary_10_1109_TNNLS_2019_2944298 crossref_primary_10_1145_3700879 crossref_primary_10_1007_s00521_023_08617_7 crossref_primary_10_1016_j_ecolind_2023_110234 crossref_primary_10_1016_j_knosys_2016_04_012 crossref_primary_10_1109_TPWRS_2022_3223166 crossref_primary_10_1002_cpe_7067 crossref_primary_10_1016_j_ins_2019_10_022 crossref_primary_10_1109_TCYB_2020_3015269 crossref_primary_10_1016_j_neucom_2018_10_047 crossref_primary_10_1155_2018_6292143 crossref_primary_10_1016_j_neucom_2019_12_059 crossref_primary_10_1007_s40747_024_01498_w crossref_primary_10_1007_s13369_015_1876_6 crossref_primary_10_1080_24751839_2017_1364925 crossref_primary_10_1109_TPAMI_2022_3199784 crossref_primary_10_1109_TMM_2020_2966887 crossref_primary_10_1016_j_knosys_2024_112568 crossref_primary_10_2139_ssrn_4163294 crossref_primary_10_1007_s13042_017_0647_y crossref_primary_10_1016_j_neucom_2018_09_033 crossref_primary_10_1007_s10489_020_01878_y crossref_primary_10_1109_TMM_2019_2909860 crossref_primary_10_1109_TETCI_2023_3302653 crossref_primary_10_1016_j_knosys_2022_108601 crossref_primary_10_1111_exsy_12615 crossref_primary_10_1145_3319911 crossref_primary_10_1016_j_knosys_2021_106966 crossref_primary_10_1016_j_procs_2017_08_074 crossref_primary_10_1109_TCYB_2021_3104848 crossref_primary_10_3233_JIFS_213112 crossref_primary_10_1007_s11704_023_3396_y crossref_primary_10_1016_j_knosys_2021_106841 crossref_primary_10_1016_j_patcog_2022_109156 crossref_primary_10_1007_s11263_018_1131_1 crossref_primary_10_1109_ACCESS_2019_2934742 crossref_primary_10_1016_j_chemolab_2020_104216 crossref_primary_10_1007_s10462_022_10279_1 crossref_primary_10_1016_j_asoc_2018_05_013 crossref_primary_10_1109_TCYB_2017_2663838 crossref_primary_10_1002_int_22835 crossref_primary_10_1007_s13042_023_01858_x crossref_primary_10_1016_j_neucom_2017_07_044 crossref_primary_10_1007_s11042_022_13788_x crossref_primary_10_3233_IDA_216404 crossref_primary_10_1162_neco_a_01036 crossref_primary_10_1016_j_eswa_2022_119050 crossref_primary_10_1016_j_fss_2021_03_016 crossref_primary_10_1016_j_neunet_2019_04_011 crossref_primary_10_1016_j_patcog_2018_01_022 crossref_primary_10_1016_j_knosys_2018_07_003 crossref_primary_10_1016_j_ins_2022_02_011 crossref_primary_10_1016_j_ijar_2019_11_003 crossref_primary_10_3934_mbe_2021429 crossref_primary_10_1007_s10489_021_02799_0 crossref_primary_10_1007_s10489_023_04562_z crossref_primary_10_1007_s13042_024_02351_9 crossref_primary_10_1109_TPAMI_2021_3136592 crossref_primary_10_1109_TFUZZ_2022_3182441 crossref_primary_10_1016_j_ins_2023_119917 crossref_primary_10_1109_TNNLS_2024_3382911 crossref_primary_10_1109_TIP_2018_2864920 crossref_primary_10_1080_08982112_2022_2146511 crossref_primary_10_1016_j_jbi_2018_07_012 crossref_primary_10_1016_j_ins_2022_02_022 crossref_primary_10_1007_s11634_024_00589_3 crossref_primary_10_1093_bib_bbab414 crossref_primary_10_1007_s11045_017_0505_9 crossref_primary_10_1016_j_ins_2024_120870 crossref_primary_10_1109_TETCI_2021_3075717 crossref_primary_10_1007_s11432_023_4230_2 crossref_primary_10_1016_j_patrec_2020_06_021 crossref_primary_10_1007_s13042_022_01609_4 crossref_primary_10_1007_s13042_021_01371_z crossref_primary_10_1016_j_knosys_2024_111948 crossref_primary_10_1109_TFUZZ_2017_2735947 crossref_primary_10_1093_bioinformatics_btx278 crossref_primary_10_1016_j_ipm_2020_102240 crossref_primary_10_1108_ACI_11_2021_0301 crossref_primary_10_1109_TIP_2016_2549459 crossref_primary_10_1109_TCYB_2019_2894985 crossref_primary_10_1007_s00521_024_09810_y crossref_primary_10_1007_s13042_020_01244_x crossref_primary_10_1007_s11704_020_9294_7 crossref_primary_10_1016_j_patcog_2017_09_034 crossref_primary_10_1109_TAI_2023_3329079 crossref_primary_10_3390_math10111871 crossref_primary_10_1007_s13042_024_02114_6 crossref_primary_10_1007_s00500_021_05884_1 crossref_primary_10_1016_j_neucom_2015_06_010 crossref_primary_10_1007_s13042_023_01861_2 crossref_primary_10_1007_s11704_017_7031_7 crossref_primary_10_1016_j_ins_2025_122101 crossref_primary_10_1016_j_patcog_2021_108259 crossref_primary_10_1038_s41598_022_11316_3 crossref_primary_10_1016_j_matpr_2021_04_104 crossref_primary_10_1007_s10489_022_03386_7 crossref_primary_10_1007_s11704_016_5024_6 crossref_primary_10_1016_j_ijar_2022_02_002 crossref_primary_10_1016_j_neucom_2017_05_049 crossref_primary_10_1007_s13042_019_00956_z crossref_primary_10_1007_s12293_020_00316_3 crossref_primary_10_1093_bioinformatics_btab811 crossref_primary_10_1016_j_knosys_2021_107336 crossref_primary_10_3233_IDA_215985 crossref_primary_10_3390_sym14091828 crossref_primary_10_1109_TPAMI_2014_2339815 crossref_primary_10_1109_TNNLS_2023_3241921 crossref_primary_10_32604_jai_2024_049083 crossref_primary_10_1016_j_knosys_2020_105770 crossref_primary_10_1016_j_procs_2018_10_372 crossref_primary_10_1109_ACCESS_2019_2931035 crossref_primary_10_1109_ACCESS_2020_2980551 crossref_primary_10_3390_e18110405 crossref_primary_10_1109_TNNLS_2020_3027745 crossref_primary_10_3390_e25071071 crossref_primary_10_1109_ACCESS_2020_3001274 crossref_primary_10_1016_j_neunet_2018_09_003 crossref_primary_10_1007_s11263_020_01397_w crossref_primary_10_1142_S0219649220400171 crossref_primary_10_1007_s10844_018_0506_7 crossref_primary_10_3390_app10228093 crossref_primary_10_3390_e23121617 crossref_primary_10_3390_electronics13234754 crossref_primary_10_1016_j_inffus_2024_102775 crossref_primary_10_1007_s42979_021_00957_2 crossref_primary_10_1109_TCBB_2021_3088256 crossref_primary_10_1080_24751839_2017_1323486 crossref_primary_10_1016_j_eswa_2021_116187 crossref_primary_10_1002_cpe_7162 crossref_primary_10_1007_s11063_022_10945_z crossref_primary_10_1016_j_neucom_2017_12_068 crossref_primary_10_14801_jkiit_2024_22_2_43 crossref_primary_10_1109_ACCESS_2020_2972599 crossref_primary_10_1016_j_future_2018_04_094 crossref_primary_10_1016_j_asoc_2025_112757 crossref_primary_10_1016_j_patcog_2020_107423 crossref_primary_10_3390_math10111847 crossref_primary_10_1007_s10489_021_02674_y crossref_primary_10_1016_j_chemolab_2020_104148 crossref_primary_10_1007_s10994_020_05879_3 crossref_primary_10_1016_j_patrec_2019_08_009 crossref_primary_10_3390_app10093089 crossref_primary_10_1016_j_knosys_2023_110548 crossref_primary_10_1016_j_ijar_2018_10_009 crossref_primary_10_1016_j_ijar_2024_109349 crossref_primary_10_1016_j_knosys_2017_09_005 crossref_primary_10_1016_j_neucom_2018_02_010 crossref_primary_10_1007_s10489_022_03366_x crossref_primary_10_1007_s10489_024_05968_z crossref_primary_10_1016_j_knosys_2023_110426 crossref_primary_10_1016_j_patcog_2024_110684 crossref_primary_10_1109_TCYB_2020_2977133 crossref_primary_10_1007_s10489_022_03634_w crossref_primary_10_1016_j_engappai_2023_106837 crossref_primary_10_1016_j_neucom_2019_10_016 crossref_primary_10_1007_s40747_024_01562_5 crossref_primary_10_1016_j_eswa_2017_09_020 crossref_primary_10_1109_TIT_2022_3188708 crossref_primary_10_1007_s13042_016_0500_8 crossref_primary_10_1007_s10489_020_01807_z crossref_primary_10_1109_LSP_2016_2554361 crossref_primary_10_1109_ACCESS_2019_2962201 crossref_primary_10_1109_TFUZZ_2024_3382981 crossref_primary_10_1016_j_inffus_2023_101948 |
Cites_doi | 10.1109/DEVLRN.2010.5578864 10.1007/3-540-45065-3_4 10.1007/s10994-008-5064-8 10.2307/3001968 10.1145/1099554.1099591 10.1145/1291233.1291245 10.1145/1401890.1401939 10.1007/s10994-011-5271-6 10.1016/j.patcog.2004.03.009 10.1109/TKDE.2013.39 10.1016/j.patcog.2006.12.019 10.1007/3-540-44794-6_4 10.1016/j.artint.2008.08.002 10.1145/1557019.1557158 10.1145/1076034.1076080 10.1145/1754428.1754431 10.1145/1835804.1835930 10.1145/1281192.1281281 10.1145/1961189.1961199 10.1109/TKDE.2006.162 10.1145/1656274.1656278 10.1093/bioinformatics/btk048 10.1007/978-3-642-33460-3_48 10.1016/j.ijar.2011.01.007 10.1007/s10994-011-5256-5 10.1109/ICMLA.2005.47 10.1145/1076034.1076082 10.1080/01621459.1961.10482090 10.1016/j.patcog.2012.03.004 10.1007/s10994-011-5272-5 10.1007/s10994-011-5270-7 10.1016/j.patcog.2013.09.029 10.1145/331499.331504 10.1109/TKDE.2010.164 10.1109/TASL.2008.2008734 10.1109/ICDM.2008.74 10.1145/1386352.1386359 10.1002/aris.1440380105 10.1016/j.patcog.2010.07.015 10.1109/TMM.2011.2129498 10.1109/TPAMI.2014.2339815 10.1148/radiology.143.1.7063747 10.1023/A:1007649029923 10.1007/s10994-009-5127-5 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 F28 FR3 |
DOI | 10.1109/TPAMI.2014.2339815 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Technology Research Database Technology Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 2160-9292 1939-3539 |
EndPage | 120 |
ExternalDocumentID | 3624917841 26353212 10_1109_TPAMI_2014_2339815 6857380 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: MOE Program for New Century Excellent Talents in University grantid: NCET-13-0130 – fundername: National Science Foundation grantid: 61175049; 61222309 funderid: 10.13039/100000001 |
GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AGSQL AHBIQ AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 AAYXX CITATION RIG 5VS 9M8 ABFSI ADRHT AETEA AETIX AI. AIBXA AKJIK ALLEH FA8 H~9 IBMZZ ICLAB IFJZH NPM RNI RZB VH1 XJT 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 F28 FR3 |
ID | FETCH-LOGICAL-c384t-ee7f9aff9697d76abd71b12a4d57c2ec9604a602cfcb044a4f61b03b8f4db90b3 |
IEDL.DBID | RIE |
ISSN | 0162-8828 |
IngestDate | Fri Jul 11 15:38:40 EDT 2025 Thu Jul 10 18:05:50 EDT 2025 Sun Jun 29 16:02:30 EDT 2025 Mon Jul 21 05:51:16 EDT 2025 Thu Apr 24 23:04:31 EDT 2025 Tue Jul 01 03:18:21 EDT 2025 Wed Aug 27 08:36:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | label correlations label-specific features Machine learning multi-label learning |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c384t-ee7f9aff9697d76abd71b12a4d57c2ec9604a602cfcb044a4f61b03b8f4db90b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 26353212 |
PQID | 1663516839 |
PQPubID | 85458 |
PageCount | 14 |
ParticipantIDs | pubmed_primary_26353212 crossref_primary_10_1109_TPAMI_2014_2339815 crossref_citationtrail_10_1109_TPAMI_2014_2339815 proquest_miscellaneous_1762077634 proquest_journals_1663516839 proquest_miscellaneous_1711534637 ieee_primary_6857380 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-Jan.-1 2015-1-1 2015-Jan 20150101 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-Jan.-1 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
PublicationTitleAbbrev | TPAMI |
PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
PublicationYear | 2015 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref56 ref12 ref59 ref15 cabral (ref4) 2011 ref58 ref14 godbole (ref16) 2004 ref52 ref55 ref11 ref54 madjarov (ref29) 2011 ref17 ref19 (ref31) 0 loza mencía (ref28) 0 demšar (ref10) 2006; 7 ref51 ref50 snoek (ref41) 0 ref48 tsoumakas (ref45) 0 katakis (ref25) 0 ref43 ref49 yang (ref53) 0 guo (ref18) 0 ref7 trohidis (ref42) 0 clare (ref8) 2001 ref3 ref6 ref5 wang (ref47) 0 ref40 ueda (ref46) 2003 comité (ref9) 2003 ref35 ref34 ref37 ref36 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 tsoumakas (ref44) 2011; 12 ref23 ref26 ref20 ref22 ref21 ref27 ref60 elisseeff (ref13) 2002 |
References_xml | – ident: ref17 doi: 10.1109/DEVLRN.2010.5578864 – start-page: 35 year: 2003 ident: ref9 article-title: Learning multi-label altenating decision tree from texts and data publication-title: Lecture Notes in Computer Science 2734 doi: 10.1007/3-540-45065-3_4 – start-page: 325 year: 0 ident: ref42 article-title: Multilabel classification of music into emotions publication-title: Proc 9th Int Conf Music Inf Retrieval – ident: ref14 doi: 10.1007/s10994-008-5064-8 – ident: ref50 doi: 10.2307/3001968 – ident: ref15 doi: 10.1145/1099554.1099591 – ident: ref35 doi: 10.1145/1291233.1291245 – ident: ref23 doi: 10.1145/1401890.1401939 – start-page: 681 year: 2002 ident: ref13 article-title: A kernel method for multi-labelled classification publication-title: Advances in Neural Information Processing Systems 14 – ident: ref5 doi: 10.1007/s10994-011-5271-6 – ident: ref3 doi: 10.1016/j.patcog.2004.03.009 – ident: ref59 doi: 10.1109/TKDE.2013.39 – start-page: 1264 year: 0 ident: ref47 article-title: Multi-label classification: Inconsistency and class balanced $k$ -nearest neighbor publication-title: Proc 24th AAAI Conf Artif Intell – year: 0 ident: ref31 – ident: ref58 doi: 10.1016/j.patcog.2006.12.019 – start-page: 42 year: 2001 ident: ref8 article-title: Knowledge discovery in multi-label phenotype data publication-title: Lecture Notes in Computer Science 2168 doi: 10.1007/3-540-44794-6_4 – start-page: 412 year: 0 ident: ref53 article-title: A comparative study on feature selection in text categorization publication-title: Proc 14th Int Conf Mach Learn – volume: 7 start-page: 1 year: 2006 ident: ref10 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J Mach Learn Res – ident: ref21 doi: 10.1016/j.artint.2008.08.002 – ident: ref33 doi: 10.1145/1557019.1557158 – start-page: 721 year: 2003 ident: ref46 article-title: Parametric mixture models for multi-label text publication-title: Advances in Neural Information Processing Systems 15 – ident: ref54 doi: 10.1145/1076034.1076080 – ident: ref24 doi: 10.1145/1754428.1754431 – ident: ref56 doi: 10.1145/1835804.1835930 – ident: ref51 doi: 10.1145/1281192.1281281 – start-page: 190 year: 2011 ident: ref4 article-title: Matrix completion for multi-label image classification publication-title: Advances in Neural Information Processing Systems 24 – ident: ref6 doi: 10.1145/1961189.1961199 – start-page: 164 year: 2011 ident: ref29 article-title: Efficient two stage voting architecture for pairwise multi-label classification publication-title: Lecture Notes in Computer Science 6464 – ident: ref57 doi: 10.1109/TKDE.2006.162 – ident: ref19 doi: 10.1145/1656274.1656278 – ident: ref1 doi: 10.1093/bioinformatics/btk048 – start-page: 75 year: 0 ident: ref25 article-title: Multilabel text classification for automated tag suggestion publication-title: ECML PKDD Discovery Challenge 2008 – ident: ref26 doi: 10.1007/978-3-642-33460-3_48 – ident: ref2 doi: 10.1016/j.ijar.2011.01.007 – ident: ref38 doi: 10.1007/s10994-011-5256-5 – start-page: 22 year: 2004 ident: ref16 article-title: Discriminative methods for multi-labeled classification publication-title: Lecture Notes in Artificial Intelligence 3056 – ident: ref36 doi: 10.1109/ICMLA.2005.47 – volume: 12 start-page: 2411 year: 2011 ident: ref44 article-title: MULAN: A java library for multi-label learning publication-title: J Mach Learn Res – ident: ref60 doi: 10.1145/1076034.1076082 – year: 0 ident: ref45 article-title: Tutorial on learning from multi-label data publication-title: Proc Eur Conf Mach Learn Principles Practice Knowl Discov Databases – ident: ref12 doi: 10.1080/01621459.1961.10482090 – ident: ref30 doi: 10.1016/j.patcog.2012.03.004 – ident: ref39 doi: 10.1007/s10994-011-5272-5 – ident: ref52 doi: 10.1007/s10994-011-5270-7 – ident: ref32 doi: 10.1016/j.patcog.2013.09.029 – ident: ref22 doi: 10.1145/331499.331504 – ident: ref43 doi: 10.1109/TKDE.2010.164 – ident: ref34 doi: 10.1109/TASL.2008.2008734 – ident: ref37 doi: 10.1109/ICDM.2008.74 – ident: ref49 doi: 10.1145/1386352.1386359 – start-page: 2899 year: 0 ident: ref28 article-title: Pairwise learning of multilabel classifications with perceptrons publication-title: Proc Int Joint Conf Neural Netw – ident: ref11 doi: 10.1002/aris.1440380105 – ident: ref48 doi: 10.1016/j.patcog.2010.07.015 – ident: ref27 doi: 10.1109/TMM.2011.2129498 – ident: ref55 doi: 10.1109/TPAMI.2014.2339815 – ident: ref20 doi: 10.1148/radiology.143.1.7063747 – start-page: 421 year: 0 ident: ref41 article-title: The challenge problem for automated detection of 101 semantic concepts in multimedia publication-title: Proc 14th Annu ACM Int Conf Multimedia – ident: ref40 doi: 10.1023/A:1007649029923 – start-page: 1300 year: 0 ident: ref18 article-title: Multi-label classification using conditional dependency networks publication-title: Proc 22nd Int Joint Conf Artif Intell – ident: ref7 doi: 10.1007/s10994-009-5127-5 |
SSID | ssj0014503 |
Score | 2.6196685 |
Snippet | Multi-label learning deals with the problem where each example is represented by a single instance (feature vector) while associated with a set of class... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 107 |
SubjectTerms | Algorithm design and analysis Algorithms Clustering algorithms Correlation Discrimination Intelligence Labels Learning Lift Measurement Pattern analysis Strategy Text categorization Training Vectors |
Title | Lift: Multi-Label Learning with Label-Specific Features |
URI | https://ieeexplore.ieee.org/document/6857380 https://www.ncbi.nlm.nih.gov/pubmed/26353212 https://www.proquest.com/docview/1663516839 https://www.proquest.com/docview/1711534637 https://www.proquest.com/docview/1762077634 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RTvRQni3hUaVSb5Aljh075oZQEUVs1QNI3CKPH9UKtIsgufDrsZ2HALWotyiZKI5nJvlm7PkG4LupeCAd8Y5EbRGyVXmGxrpMOEcNIVjqSNc0_cXPr9nFTXmzBIdjLYy1Nm4-s5NwGNfyzUK3IVV2xKtS0MoH6B984NbVao0rBqyMXZA9gvEe7sOIoUAml0dXv0-mP8MuLjYpKJUVCe1qAgkLLUjx6n8UG6z8G2vGf87ZKkyH0XZbTW4nbYMT_fSGyPF_X2cNPvXgMz3prGUdlux8A1aHxg5p7-cb8PEFS-EmiMuZa47TWKqbXSq0d2nPyvonDWncNJ7LYid7N9NpQJWtj-K34Prsx9Xpedb3W8g0rViTWSucVM5JLoURXKERBEmhmCmFLqwOPC6K54V2GnPGFHOcYE6xcsygzJF-huX5Ym63IVVMkrIimiEaVimUHkihV5pER6X_TCRAhlmvdU9GHnpi3NUxKMllHZVWB6XVvdISOBjvue-oON6V3gwzPkr2k53A3qDcuvfWx5oE2EW4x4oJfBsvez8LiydqbhetlxEeO1PGqXhPhheBHomyBL50hjM-f7C3nb-PaxdW_OjLLrmzB8vNQ2v3Pdxp8Gu082cTqfaB |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4heig9lBZaGkrbVOLWZoljx465oQq0tLuIwyJxizx-IATardrk0l-P7TxUUIu4RclEsT0z8Te25xuAfVPxQDriHYnaIqxW5Rka6zLhHDWEYKkjXdP8jE8v2PfL8nINvo65MNbaePjMTsJl3Ms3K92GpbIDXpWCVj5Af-bn_ZJ02VrjngErYx1kj2G8j_tAYkiRyeXB4vxofhrOcbFJQamsSChYE2hYaEGKezNSLLHyf7QZZ52TTZgP7e0Om9xM2gYn-s8DKsendugVvOzhZ3rU2ctrWLPLLdgcSjukvadvwYu_eAq3QcyuXXOYxmTdbKbQ3qY9L-tVGhZy03gvi7Xs3bVOA65sfRz_Bi5OjhffpllfcSHTtGJNZq1wUjknuRRGcIVGECSFYqYUurA6MLkonhfaacwZU8xxgjnFyjGDMkf6FtaXq6V9B6likpQV0QzRsEqh9FAKfbwt0VHpfxQJkGHUa93TkYeqGLd1DEtyWUel1UFpda-0BL6M7_zsyDgeld4OIz5K9oOdwN6g3Lr31981CcCLcI8WE_g8PvaeFrZP1NKuWi8jPHqmjFPxmAwvAkESZQnsdIYzfn-wt91_t-sTPJ8u5rN6dnr24z1s-J6U3VLPHqw3v1r7wYOfBj9Gm78DF-D5yg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lift%3A+Multi-Label+Learning+with+Label-Specific+Features&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Zhang%2C+Min-Ling&rft.au=Wu%2C+Lei&rft.date=2015-01-01&rft.pub=IEEE&rft.issn=0162-8828&rft.volume=37&rft.issue=1&rft.spage=107&rft.epage=120&rft_id=info:doi/10.1109%2FTPAMI.2014.2339815&rft_id=info%3Apmid%2F26353212&rft.externalDocID=6857380 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |