Deep convolutional neural networks combine Raman spectral signature of serum for prostate cancer bone metastases screening

Prostate cancer most frequently metastasizes to bone, resulting in abnormal bone metabolism and the release of components into the blood stream. Here, we evaluated the capacity of convolutional neural networks (CNNs) to use Raman data for screening of prostate cancer bone metastases. We used label-f...

Full description

Saved in:
Bibliographic Details
Published inNanomedicine Vol. 29; p. 102245
Main Authors Shao, Xiaoguang, Zhang, Heng, Wang, Yanqing, Qian, Hongyang, Zhu, Yinjie, Dong, Baijun, Xu, Fan, Chen, Na, Liu, Shupeng, Pan, Jiahua, Xue, Wei
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.10.2020
Subjects
Online AccessGet full text
ISSN1549-9634
1549-9642
1549-9642
DOI10.1016/j.nano.2020.102245

Cover

Abstract Prostate cancer most frequently metastasizes to bone, resulting in abnormal bone metabolism and the release of components into the blood stream. Here, we evaluated the capacity of convolutional neural networks (CNNs) to use Raman data for screening of prostate cancer bone metastases. We used label-free surface-enhanced Raman spectroscopy (SERS) to collect 1281 serum Raman spectra from 427 patients with prostate cancer, and then we constructed a CNN based on LetNet-5 to recognize prostate cancer patients with bone metastases. We then used 5-fold cross-validation method to train and test the CNN model and evaluated its actual performance. Our CNN model for bone metastases detection revealed a mean training accuracy of 99.51% ± 0.23%, mean testing accuracy of 81.70% ± 2.83%, mean testing sensitivity of 80.63% ± 5.07%, and mean testing specificity of 82.82% ± 2.94%. Prostate cancer (PCA) most frequently metastasizes to bone, resulting in abnormal bone metabolism and release of components into the blood stream. We used label free surface-enhanced Raman spectroscopy (SERS) to analyze the components changes in blood and then developed a deep learning method (convolutional neural networks) to extract features of Raman spectra and recognize PCA patients of bone metastases. In the future, larger datasets will improve the model for rapid and automated BM screening to supplement PCA bone scans. [Display omitted] •Prostate cancer most frequently metastasizes to bone, resulting in abnormal bone metabolism and releasing of components into the blood stream. Surface-enhanced Raman spectroscopy (SERS) has emerged as a powerful technique for blood components analysis. It is a good point to translate SERS to clinical practice.•The subject size is relative large; a total of 427 patients are included in this study.•Convolutional neural networks (CNN) are firstly utilized to analyze Raman spectra and develop a practical classification model.
AbstractList Prostate cancer most frequently metastasizes to bone, resulting in abnormal bone metabolism and the release of components into the blood stream. Here, we evaluated the capacity of convolutional neural networks (CNNs) to use Raman data for screening of prostate cancer bone metastases. We used label-free surface-enhanced Raman spectroscopy (SERS) to collect 1281 serum Raman spectra from 427 patients with prostate cancer, and then we constructed a CNN based on LetNet-5 to recognize prostate cancer patients with bone metastases. We then used 5-fold cross-validation method to train and test the CNN model and evaluated its actual performance. Our CNN model for bone metastases detection revealed a mean training accuracy of 99.51% ± 0.23%, mean testing accuracy of 81.70% ± 2.83%, mean testing sensitivity of 80.63% ± 5.07%, and mean testing specificity of 82.82% ± 2.94%. Prostate cancer (PCA) most frequently metastasizes to bone, resulting in abnormal bone metabolism and release of components into the blood stream. We used label free surface-enhanced Raman spectroscopy (SERS) to analyze the components changes in blood and then developed a deep learning method (convolutional neural networks) to extract features of Raman spectra and recognize PCA patients of bone metastases. In the future, larger datasets will improve the model for rapid and automated BM screening to supplement PCA bone scans. [Display omitted] •Prostate cancer most frequently metastasizes to bone, resulting in abnormal bone metabolism and releasing of components into the blood stream. Surface-enhanced Raman spectroscopy (SERS) has emerged as a powerful technique for blood components analysis. It is a good point to translate SERS to clinical practice.•The subject size is relative large; a total of 427 patients are included in this study.•Convolutional neural networks (CNN) are firstly utilized to analyze Raman spectra and develop a practical classification model.
Prostate cancer most frequently metastasizes to bone, resulting in abnormal bone metabolism and the release of components into the blood stream. Here, we evaluated the capacity of convolutional neural networks (CNNs) to use Raman data for screening of prostate cancer bone metastases. We used label-free surface-enhanced Raman spectroscopy (SERS) to collect 1281 serum Raman spectra from 427 patients with prostate cancer, and then we constructed a CNN based on LetNet-5 to recognize prostate cancer patients with bone metastases. We then used 5-fold cross-validation method to train and test the CNN model and evaluated its actual performance. Our CNN model for bone metastases detection revealed a mean training accuracy of 99.51% ± 0.23%, mean testing accuracy of 81.70% ± 2.83%, mean testing sensitivity of 80.63% ± 5.07%, and mean testing specificity of 82.82% ± 2.94%.Prostate cancer most frequently metastasizes to bone, resulting in abnormal bone metabolism and the release of components into the blood stream. Here, we evaluated the capacity of convolutional neural networks (CNNs) to use Raman data for screening of prostate cancer bone metastases. We used label-free surface-enhanced Raman spectroscopy (SERS) to collect 1281 serum Raman spectra from 427 patients with prostate cancer, and then we constructed a CNN based on LetNet-5 to recognize prostate cancer patients with bone metastases. We then used 5-fold cross-validation method to train and test the CNN model and evaluated its actual performance. Our CNN model for bone metastases detection revealed a mean training accuracy of 99.51% ± 0.23%, mean testing accuracy of 81.70% ± 2.83%, mean testing sensitivity of 80.63% ± 5.07%, and mean testing specificity of 82.82% ± 2.94%.
ArticleNumber 102245
Author Dong, Baijun
Wang, Yanqing
Liu, Shupeng
Xu, Fan
Shao, Xiaoguang
Qian, Hongyang
Chen, Na
Pan, Jiahua
Zhu, Yinjie
Xue, Wei
Zhang, Heng
Author_xml – sequence: 1
  givenname: Xiaoguang
  surname: Shao
  fullname: Shao, Xiaoguang
  organization: Department of Urology, RenJi hospital, school of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
– sequence: 2
  givenname: Heng
  surname: Zhang
  fullname: Zhang, Heng
  organization: Shanghai Institute for Advanced Communication and Data science, Key laboratory of specialty Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai University, Shanghai, People’s Republic of China
– sequence: 3
  givenname: Yanqing
  surname: Wang
  fullname: Wang, Yanqing
  organization: Department of Urology, RenJi hospital, school of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
– sequence: 4
  givenname: Hongyang
  surname: Qian
  fullname: Qian, Hongyang
  organization: Department of Urology, RenJi hospital, school of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
– sequence: 5
  givenname: Yinjie
  surname: Zhu
  fullname: Zhu, Yinjie
  organization: Department of Urology, RenJi hospital, school of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
– sequence: 6
  givenname: Baijun
  surname: Dong
  fullname: Dong, Baijun
  organization: Department of Urology, RenJi hospital, school of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
– sequence: 7
  givenname: Fan
  surname: Xu
  fullname: Xu, Fan
  organization: Department of Urology, RenJi hospital, school of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
– sequence: 8
  givenname: Na
  surname: Chen
  fullname: Chen, Na
  organization: Shanghai Institute for Advanced Communication and Data science, Key laboratory of specialty Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai University, Shanghai, People’s Republic of China
– sequence: 9
  givenname: Shupeng
  surname: Liu
  fullname: Liu, Shupeng
  email: liusp@shu.edu.cn
  organization: Shanghai Institute for Advanced Communication and Data science, Key laboratory of specialty Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai University, Shanghai, People’s Republic of China
– sequence: 10
  givenname: Jiahua
  surname: Pan
  fullname: Pan, Jiahua
  email: jiahua.pan@outlook.com
  organization: Department of Urology, RenJi hospital, school of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
– sequence: 11
  givenname: Wei
  surname: Xue
  fullname: Xue, Wei
  email: uroxuewei@163.com
  organization: Department of Urology, RenJi hospital, school of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
BookMark eNqFkE1PGzEQhi0UpAboH-jJx14SbK_3C_VSpS0gISEhOFve8Sxy2LVT2wuivx4vqXrIgZ7GmpnHmvc5IQvnHRLyhbM1Z7w6366ddn4tmJgbQsjyiCx5KdtVW0mx-Pcu5CdyEuOWsaJmrF2SPz8QdxS8e_bDlKx3eqAOp_Be0osPTzFPx846pHd61I7GHUKa59E-Op2mgNT3NGKYRtr7QHfBx6QTUtAOMNAuX0pHTDp3I0YaISA66x7PyHGvh4if_9ZT8vDr5_3manVze3m9-X6zgqKRaYWiMVhpU5mmBmFEaWQjyq7sOK9lXxjWtryDBstei6oAKAHASFHrvqwrZLI4JV_3_-bLfk8YkxptBBwG7dBPUQnJG86bup5Xm_0q5BAxYK_A5ixZS05sB8WZmnWrrZp1q1m32uvOqDhAd8GOOrx-DH3bQ5jzP1sMKoLFrM3YkC0r4-3H-MUBDoN1FvTwhK__g98A9wCyIw
CitedBy_id crossref_primary_10_3390_cancers14061535
crossref_primary_10_2147_IJN_S354590
crossref_primary_10_3390_chemosensors10110449
crossref_primary_10_1016_j_saa_2021_120571
crossref_primary_10_1186_s12916_025_03887_5
crossref_primary_10_3389_fonc_2021_665176
crossref_primary_10_1002_wnan_1917
crossref_primary_10_1021_acsmaterialslett_4c01267
crossref_primary_10_1002_jrs_6365
crossref_primary_10_1007_s11227_021_03630_w
crossref_primary_10_1039_D3TC02271D
crossref_primary_10_1016_j_vibspec_2024_103709
crossref_primary_10_1002_adfm_202103382
crossref_primary_10_1016_j_talanta_2024_126136
crossref_primary_10_1038_s41598_023_37900_9
crossref_primary_10_1002_jrs_6224
crossref_primary_10_1021_acsanm_2c02392
crossref_primary_10_1039_D4CS00460D
crossref_primary_10_1002_jrs_6447
crossref_primary_10_3390_nano12152724
crossref_primary_10_1038_s41598_023_28479_2
crossref_primary_10_1155_2021_5755671
crossref_primary_10_1002_pros_24559
crossref_primary_10_3389_fonc_2022_908873
crossref_primary_10_1002_advs_202300668
crossref_primary_10_1155_2022_3070361
crossref_primary_10_1080_05704928_2020_1859525
crossref_primary_10_1016_j_chemolab_2022_104548
crossref_primary_10_1371_journal_pone_0254586
crossref_primary_10_1016_j_saa_2022_121603
crossref_primary_10_3390_cancers16152700
crossref_primary_10_3389_fcell_2021_823546
crossref_primary_10_1007_s00216_023_04730_7
Cites_doi 10.7150/thno.32655
10.1016/j.eururo.2009.12.023
10.1038/s41591-018-0177-5
10.1007/s13244-018-0639-9
10.1002/ijc.11500
10.1093/jnci/dju013
10.1039/C7AN01371J
10.4238/gmr.15027707
10.1016/j.nano.2017.11.022
10.2147/IJN.S137756
10.1158/1078-0432.CCR-06-0931
10.1016/j.eururo.2012.02.020
10.1016/j.urology.2014.06.010
10.1016/j.talanta.2018.05.070
10.1016/j.urology.2009.11.049
10.1007/s10103-016-1976-x
10.1002/jbio.201200110
10.1148/radiol.2017162326
10.1016/j.eururo.2016.08.002
10.1016/j.aca.2016.12.010
10.1016/j.juro.2010.03.034
10.1021/acs.analchem.6b04588
10.1148/radiol.2017170706
10.1007/s00216-015-8610-9
10.1016/j.nano.2016.12.001
10.2147/IJN.S71811
10.2147/IJN.S186226
10.7150/thno.29875
10.3322/caac.21338
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright © 2020 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.nano.2020.102245
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1549-9642
ExternalDocumentID 10_1016_j_nano_2020_102245
S154996342030099X
GrantInformation_xml – fundername: Joint Research Foundation for Innovative Medical Technology of Shanghai Shenkang Hospital Development Center
  grantid: 16CR3049A
– fundername: Shanghai Municipal Health Commission
  grantid: 201640247; 2019LJ11
– fundername: National Natural Science Foundation of China
  grantid: 81572536; 81672850; 81772742; 81702840; 81702542; 81972578; 81902863
  funderid: https://doi.org/10.13039/501100001809
– fundername: Science and Technology Commission of Shanghai Municipality
  grantid: 16411969800; 19411967400; 19ZR1431000; 19XD1402300; 19YF1428400
  funderid: https://doi.org/10.13039/501100003399
– fundername: Shanghai Municipal Education Commission
  grantid: 20152215; 20191906
  funderid: https://doi.org/10.13039/501100003395
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
123
1B1
1P~
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AAAJQ
AABXZ
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARKO
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABGSF
ABMAC
ABMZM
ABUDA
ABWVN
ABXDB
ABXRA
ABZDS
ACDAQ
ACGFS
ACIEU
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AEUPX
AEVXI
AEZYN
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGCQF
AGEKW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CJTIS
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LUGTX
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OD~
OGGZJ
OO0
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SEL
SES
SEW
SPC
SSH
SSI
SSM
SSP
SST
SSU
SSZ
T5K
Z5R
~G-
AACTN
AAIAV
AATCM
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
EFLBG
LCYCR
RIG
AAYXX
AGRNS
CITATION
7X8
ID FETCH-LOGICAL-c384t-e28de6ad6d87c2d25d4825b5b1174f3d0991bc8e5fa263cc5cccd427af576e043
IEDL.DBID AIKHN
ISSN 1549-9634
1549-9642
IngestDate Thu Sep 04 16:16:05 EDT 2025
Tue Jul 01 01:49:57 EDT 2025
Thu Apr 24 23:10:20 EDT 2025
Fri Feb 23 02:48:33 EST 2024
Tue Aug 26 16:33:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Bone metastasis
Prostatic neoplasms
Raman spectroscopy
Convolutional neural networks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c384t-e28de6ad6d87c2d25d4825b5b1174f3d0991bc8e5fa263cc5cccd427af576e043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2418118774
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2418118774
crossref_citationtrail_10_1016_j_nano_2020_102245
crossref_primary_10_1016_j_nano_2020_102245
elsevier_sciencedirect_doi_10_1016_j_nano_2020_102245
elsevier_clinicalkey_doi_10_1016_j_nano_2020_102245
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2020
2020-10-00
20201001
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationTitle Nanomedicine
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Kamiya, Suzuki, Yano, Endo, Takano, Komaru (bb0035) 2010; 75
Zhang, Mi, Tan, Xiang (bb0050) 2019; 9
Shao, Pan, Wang, Zhu, Xu, Shangguan (bb0060) 2017; 13
Chen, Zheng, Baade, Zhang, Zeng, Bray (bb0005) 2016; 66
Jung, Lein (bb0030) 2014; 1846
Lara PN, Jr., Ely B, Quinn DI, Mack PC, Tangen C, Gertz E. et al. Serum biomarkers of bone metabolism in castration-resistant prostate cancer patients with skeletal metastases: results from SWOG 0421.J Natl Cancer Inst 2014
Coleman RE: Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 2006
dju013.
Pan, Shao, Zhu, Dong, Wang, Kang (bb0065) 2019; 14
Zhou, Liu, Wang, Jia, Zhou, Jiang (bb0130) 2018; 188
Norgaard M, Jensen AO, Jacobsen JB, Cetin K, Fryzek JP, Sørensen HT. Skeletal related events, bone metastasis and survival of prostate cancer: a population based cohort study in Denmark (1999 to 2007).J Urol 2010
Liu, Osadchy, Ashton, Foster, Solomon, Gibson (bb0085) 2017; 142
Feng, Huang, Lin, Chen, Xu, Li (bb0120) 2015; 10
Vargas-Obieta, Martinez-Espinosa, Martinez-Zerega, Jave-Suárez, Aguilar-Lemarroy, González-Solís (bb0100) 2016; 31
Yasaka, Akai, Abe, Kiryu (bb0145) 2018; 286
Huang, McWilliams, Lui, McLean, Lam, Zeng (bb0090) 2003; 107
Sathyavathi, Dingari, Barman, Prasad, Prabhakar, Narayana (bb0125) 2013; 6
Lakhani (bb0140) 2017; 284
Zhang, Wu, Zheng, Su, Chen, Ma (bb0150) 2019; 9
551.
6243s.
Briganti A, Passoni N, Ferrari M, Capitanio U, Suardi N, Gallina A. et al. When to perform bone scan in patients with newly diagnosed prostate cancer: external validation of the currently available guidelines and proposal of a novel risk stratification tool.Eur Urol 2010
Coudray, Ocampo, Sakellaropoulos, Narula, Snuderl, Fenyö (bb0075) 2018; 24
Chen N, Rong M, Shao X, Zhang H, Liu S, Dong B. et al. Surface-enhanced Raman spectroscopy of serum accurately detects prostate cancer in patients with prostate-specific antigen levels of 4-10 ng/mL. Int J Nanomedicine 2017
Lecouvet, El Mouedden, Collette, Coche, Danse, Jamar (bb0110) 2012; 62
Wei, Li, Yang, Jia, Yang, Song (bb0040) 2016; 15
Westley, Xu, Thilaganathan, Carnell, Turner, Goodacre (bb0135) 2017; 89
Merdan, Womble, Miller, Barnett, Ye, Linsell (bb0015) 2014; 84
5399.
Del Mistro, Cervo, Mansutti, Spizzo, Colombatti, Belmonte (bb0115) 2015; 407
162.
Acquarelli, van Laarhoven, Gerretzen, Tran, Buydens, Marchiori (bb0080) 2017; 954
Shao, Zhang, Rong, Wang, Jia, Zhang (bb0095) 2018; 14
Cornford, Bellmunt, Bolla, Briers, De Santis, Gross (bb0025) 2017; 71
Yamashita, Nishio, Do, Togashi (bb0070) 2018; 9
Wei (10.1016/j.nano.2020.102245_bb0040) 2016; 15
Liu (10.1016/j.nano.2020.102245_bb0085) 2017; 142
Huang (10.1016/j.nano.2020.102245_bb0090) 2003; 107
Yasaka (10.1016/j.nano.2020.102245_bb0145) 2018; 286
Lakhani (10.1016/j.nano.2020.102245_bb0140) 2017; 284
Zhang (10.1016/j.nano.2020.102245_bb0050) 2019; 9
Cornford (10.1016/j.nano.2020.102245_bb0025) 2017; 71
Vargas-Obieta (10.1016/j.nano.2020.102245_bb0100) 2016; 31
Westley (10.1016/j.nano.2020.102245_bb0135) 2017; 89
Yamashita (10.1016/j.nano.2020.102245_bb0070) 2018; 9
Del Mistro (10.1016/j.nano.2020.102245_bb0115) 2015; 407
Chen (10.1016/j.nano.2020.102245_bb0005) 2016; 66
10.1016/j.nano.2020.102245_bb0055
10.1016/j.nano.2020.102245_bb0010
Zhang (10.1016/j.nano.2020.102245_bb0150) 2019; 9
Acquarelli (10.1016/j.nano.2020.102245_bb0080) 2017; 954
Feng (10.1016/j.nano.2020.102245_bb0120) 2015; 10
Lecouvet (10.1016/j.nano.2020.102245_bb0110) 2012; 62
Jung (10.1016/j.nano.2020.102245_bb0030) 2014; 1846
Merdan (10.1016/j.nano.2020.102245_bb0015) 2014; 84
Pan (10.1016/j.nano.2020.102245_bb0065) 2019; 14
Sathyavathi (10.1016/j.nano.2020.102245_bb0125) 2013; 6
Zhou (10.1016/j.nano.2020.102245_bb0130) 2018; 188
10.1016/j.nano.2020.102245_bb0105
Shao (10.1016/j.nano.2020.102245_bb0060) 2017; 13
Coudray (10.1016/j.nano.2020.102245_bb0075) 2018; 24
10.1016/j.nano.2020.102245_bb0045
10.1016/j.nano.2020.102245_bb0020
Shao (10.1016/j.nano.2020.102245_bb0095) 2018; 14
Kamiya (10.1016/j.nano.2020.102245_bb0035) 2010; 75
References_xml – volume: 14
  start-page: 451
  year: 2018
  ident: bb0095
  article-title: Fast and non-invasive serum detection technology based on surface-enhanced Raman spectroscopy and multivariate statistical analysis for liver disease
  publication-title: Nanomedicine
– volume: 188
  start-page: 238
  year: 2018
  ident: bb0130
  article-title: Classification analyses for prostate cancer, benign prostate hyperplasia and healthy subjects by SERS-based immunoassay of multiple tumour markers
  publication-title: Talanta
– volume: 286
  start-page: 887
  year: 2018
  ident: bb0145
  article-title: Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: a preliminary study
  publication-title: Radiology
– volume: 9
  start-page: 491
  year: 2019
  ident: bb0050
  article-title: Recent progress on liquid biopsy analysis using surface-enhanced Raman spectroscopy
  publication-title: Theranostics
– volume: 24
  start-page: 1559
  year: 2018
  ident: bb0075
  article-title: Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning
  publication-title: Nat Med
– reference: Norgaard M, Jensen AO, Jacobsen JB, Cetin K, Fryzek JP, Sørensen HT. Skeletal related events, bone metastasis and survival of prostate cancer: a population based cohort study in Denmark (1999 to 2007).J Urol 2010;
– volume: 62
  start-page: 68
  year: 2012
  ident: bb0110
  article-title: Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace Tc 99m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer?
  publication-title: Eur Urol
– volume: 10
  start-page: 537
  year: 2015
  ident: bb0120
  article-title: Surface-enhanced Raman spectroscopy of saliva proteins for the noninvasive differentiation of benign and malignant breast tumors
  publication-title: Int J Nanomedicine
– volume: 6
  start-page: 567
  year: 2013
  ident: bb0125
  article-title: Raman spectroscopy provides a powerful, rapid diagnostic tool for the detection of tuberculous meningitis in ex vivo cerebrospinal fluid samples
  publication-title: J Biophotonics
– reference: 162.
– volume: 31
  start-page: 1317
  year: 2016
  ident: bb0100
  article-title: Breast cancer detection based on serum sample surface enhanced Raman spectroscopy
  publication-title: Lasers Med Sci
– reference: Coleman RE: Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 2006;
– reference: 5399.
– volume: 75
  start-page: 1446
  year: 2010
  ident: bb0035
  article-title: Implications of serum bone turnover markers in prostate cancer patients with bone metastasis
  publication-title: Urology
– volume: 407
  start-page: 3271
  year: 2015
  ident: bb0115
  article-title: Surface-enhanced Raman spectroscopy of urine for prostate cancer detection: a preliminary study
  publication-title: Anal Bioanal Chem
– reference: Lara PN, Jr., Ely B, Quinn DI, Mack PC, Tangen C, Gertz E. et al. Serum biomarkers of bone metabolism in castration-resistant prostate cancer patients with skeletal metastases: results from SWOG 0421.J Natl Cancer Inst 2014;
– volume: 13
  start-page: 1051
  year: 2017
  ident: bb0060
  article-title: Evaluation of expressed prostatic secretion and serum using surface-enhanced Raman spectroscopy for the noninvasive detection of prostate cancer, a preliminary study
  publication-title: Nanomedicine
– volume: 9
  start-page: 2541
  year: 2019
  ident: bb0150
  article-title: Rapid histology of laryngeal squamous cell carcinoma with deep-learning based stimulated Raman scattering microscopy
  publication-title: Theranostics
– volume: 14
  start-page: 431
  year: 2019
  ident: bb0065
  article-title: Surface-enhanced Raman spectroscopy before radical prostatectomy predicts biochemical recurrence better than CAPRA-S
  publication-title: Int J Nanomedicine
– volume: 71
  start-page: 630
  year: 2017
  ident: bb0025
  article-title: EAU-ESTRO-SIOG guidelines on prostate cancer. Part II: treatment of relapsing, metastatic, and castration-resistant prostate cancer
  publication-title: Eur Urol
– reference: Chen N, Rong M, Shao X, Zhang H, Liu S, Dong B. et al. Surface-enhanced Raman spectroscopy of serum accurately detects prostate cancer in patients with prostate-specific antigen levels of 4-10 ng/mL. Int J Nanomedicine 2017;
– volume: 84
  start-page: 793
  year: 2014
  ident: bb0015
  article-title: Toward better use of bone scans among men with early-stage prostate cancer
  publication-title: Urology
– volume: 107
  start-page: 1047
  year: 2003
  ident: bb0090
  article-title: Near-infrared Raman spectroscopy for optical diagnosis of lung cancer
  publication-title: Int J Cancer
– reference: dju013.
– volume: 9
  start-page: 611
  year: 2018
  ident: bb0070
  article-title: Convolutional neural networks: an overview and application in radiology
  publication-title: Insights Imaging
– volume: 954
  start-page: 22
  year: 2017
  ident: bb0080
  article-title: Convolutional neural networks for vibrational spectroscopic data analysis
  publication-title: Anal Chim Acta
– reference: Briganti A, Passoni N, Ferrari M, Capitanio U, Suardi N, Gallina A. et al. When to perform bone scan in patients with newly diagnosed prostate cancer: external validation of the currently available guidelines and proposal of a novel risk stratification tool.Eur Urol 2010;
– volume: 284
  start-page: 574
  year: 2017
  ident: bb0140
  article-title: Sundaram B: Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks
  publication-title: Radiology
– reference: 6243s.
– volume: 66
  start-page: 115
  year: 2016
  ident: bb0005
  article-title: Cancer statistics in China, 2015
  publication-title: CA Cancer J Clin
– reference: 551.
– volume: 15
  year: 2016
  ident: bb0040
  article-title: Serum levels of PSA, ALP, ICTP, and BSP in prostate cancer patients and the significance of ROC curve in the diagnosis of prostate cancer bone metastases
  publication-title: Genet Mol Res
– volume: 89
  start-page: 2472
  year: 2017
  ident: bb0135
  article-title: Absolute quantification of uric acid in human urine using surface enhanced Raman scattering with the standard addition method
  publication-title: Anal Chem
– volume: 142
  start-page: 4067
  year: 2017
  ident: bb0085
  article-title: Deep convolutional neural networks for Raman spectrum recognition: a unified solution
  publication-title: Analyst
– volume: 1846
  start-page: 425
  year: 2014
  ident: bb0030
  article-title: Bone turnover markers in serum and urine as diagnostic, prognostic and monitoring biomarkers of bone metastasis
  publication-title: Biochim Biophys Acta
– volume: 9
  start-page: 2541
  year: 2019
  ident: 10.1016/j.nano.2020.102245_bb0150
  article-title: Rapid histology of laryngeal squamous cell carcinoma with deep-learning based stimulated Raman scattering microscopy
  publication-title: Theranostics
  doi: 10.7150/thno.32655
– volume: 1846
  start-page: 425
  year: 2014
  ident: 10.1016/j.nano.2020.102245_bb0030
  article-title: Bone turnover markers in serum and urine as diagnostic, prognostic and monitoring biomarkers of bone metastasis
  publication-title: Biochim Biophys Acta
– ident: 10.1016/j.nano.2020.102245_bb0020
  doi: 10.1016/j.eururo.2009.12.023
– volume: 24
  start-page: 1559
  year: 2018
  ident: 10.1016/j.nano.2020.102245_bb0075
  article-title: Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0177-5
– volume: 9
  start-page: 611
  year: 2018
  ident: 10.1016/j.nano.2020.102245_bb0070
  article-title: Convolutional neural networks: an overview and application in radiology
  publication-title: Insights Imaging
  doi: 10.1007/s13244-018-0639-9
– volume: 107
  start-page: 1047
  year: 2003
  ident: 10.1016/j.nano.2020.102245_bb0090
  article-title: Near-infrared Raman spectroscopy for optical diagnosis of lung cancer
  publication-title: Int J Cancer
  doi: 10.1002/ijc.11500
– ident: 10.1016/j.nano.2020.102245_bb0045
  doi: 10.1093/jnci/dju013
– volume: 142
  start-page: 4067
  year: 2017
  ident: 10.1016/j.nano.2020.102245_bb0085
  article-title: Deep convolutional neural networks for Raman spectrum recognition: a unified solution
  publication-title: Analyst
  doi: 10.1039/C7AN01371J
– volume: 15
  year: 2016
  ident: 10.1016/j.nano.2020.102245_bb0040
  article-title: Serum levels of PSA, ALP, ICTP, and BSP in prostate cancer patients and the significance of ROC curve in the diagnosis of prostate cancer bone metastases
  publication-title: Genet Mol Res
  doi: 10.4238/gmr.15027707
– volume: 14
  start-page: 451
  year: 2018
  ident: 10.1016/j.nano.2020.102245_bb0095
  article-title: Fast and non-invasive serum detection technology based on surface-enhanced Raman spectroscopy and multivariate statistical analysis for liver disease
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2017.11.022
– ident: 10.1016/j.nano.2020.102245_bb0055
  doi: 10.2147/IJN.S137756
– ident: 10.1016/j.nano.2020.102245_bb0105
  doi: 10.1158/1078-0432.CCR-06-0931
– volume: 62
  start-page: 68
  year: 2012
  ident: 10.1016/j.nano.2020.102245_bb0110
  article-title: Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace Tc 99m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer?
  publication-title: Eur Urol
  doi: 10.1016/j.eururo.2012.02.020
– volume: 84
  start-page: 793
  year: 2014
  ident: 10.1016/j.nano.2020.102245_bb0015
  article-title: Toward better use of bone scans among men with early-stage prostate cancer
  publication-title: Urology
  doi: 10.1016/j.urology.2014.06.010
– volume: 188
  start-page: 238
  year: 2018
  ident: 10.1016/j.nano.2020.102245_bb0130
  article-title: Classification analyses for prostate cancer, benign prostate hyperplasia and healthy subjects by SERS-based immunoassay of multiple tumour markers
  publication-title: Talanta
  doi: 10.1016/j.talanta.2018.05.070
– volume: 75
  start-page: 1446
  year: 2010
  ident: 10.1016/j.nano.2020.102245_bb0035
  article-title: Implications of serum bone turnover markers in prostate cancer patients with bone metastasis
  publication-title: Urology
  doi: 10.1016/j.urology.2009.11.049
– volume: 31
  start-page: 1317
  year: 2016
  ident: 10.1016/j.nano.2020.102245_bb0100
  article-title: Breast cancer detection based on serum sample surface enhanced Raman spectroscopy
  publication-title: Lasers Med Sci
  doi: 10.1007/s10103-016-1976-x
– volume: 6
  start-page: 567
  year: 2013
  ident: 10.1016/j.nano.2020.102245_bb0125
  article-title: Raman spectroscopy provides a powerful, rapid diagnostic tool for the detection of tuberculous meningitis in ex vivo cerebrospinal fluid samples
  publication-title: J Biophotonics
  doi: 10.1002/jbio.201200110
– volume: 284
  start-page: 574
  year: 2017
  ident: 10.1016/j.nano.2020.102245_bb0140
  article-title: Sundaram B: Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks
  publication-title: Radiology
  doi: 10.1148/radiol.2017162326
– volume: 71
  start-page: 630
  year: 2017
  ident: 10.1016/j.nano.2020.102245_bb0025
  article-title: EAU-ESTRO-SIOG guidelines on prostate cancer. Part II: treatment of relapsing, metastatic, and castration-resistant prostate cancer
  publication-title: Eur Urol
  doi: 10.1016/j.eururo.2016.08.002
– volume: 954
  start-page: 22
  year: 2017
  ident: 10.1016/j.nano.2020.102245_bb0080
  article-title: Convolutional neural networks for vibrational spectroscopic data analysis
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2016.12.010
– ident: 10.1016/j.nano.2020.102245_bb0010
  doi: 10.1016/j.juro.2010.03.034
– volume: 89
  start-page: 2472
  year: 2017
  ident: 10.1016/j.nano.2020.102245_bb0135
  article-title: Absolute quantification of uric acid in human urine using surface enhanced Raman scattering with the standard addition method
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.6b04588
– volume: 286
  start-page: 887
  year: 2018
  ident: 10.1016/j.nano.2020.102245_bb0145
  article-title: Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: a preliminary study
  publication-title: Radiology
  doi: 10.1148/radiol.2017170706
– volume: 407
  start-page: 3271
  year: 2015
  ident: 10.1016/j.nano.2020.102245_bb0115
  article-title: Surface-enhanced Raman spectroscopy of urine for prostate cancer detection: a preliminary study
  publication-title: Anal Bioanal Chem
  doi: 10.1007/s00216-015-8610-9
– volume: 13
  start-page: 1051
  year: 2017
  ident: 10.1016/j.nano.2020.102245_bb0060
  article-title: Evaluation of expressed prostatic secretion and serum using surface-enhanced Raman spectroscopy for the noninvasive detection of prostate cancer, a preliminary study
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2016.12.001
– volume: 10
  start-page: 537
  year: 2015
  ident: 10.1016/j.nano.2020.102245_bb0120
  article-title: Surface-enhanced Raman spectroscopy of saliva proteins for the noninvasive differentiation of benign and malignant breast tumors
  publication-title: Int J Nanomedicine
  doi: 10.2147/IJN.S71811
– volume: 14
  start-page: 431
  year: 2019
  ident: 10.1016/j.nano.2020.102245_bb0065
  article-title: Surface-enhanced Raman spectroscopy before radical prostatectomy predicts biochemical recurrence better than CAPRA-S
  publication-title: Int J Nanomedicine
  doi: 10.2147/IJN.S186226
– volume: 9
  start-page: 491
  year: 2019
  ident: 10.1016/j.nano.2020.102245_bb0050
  article-title: Recent progress on liquid biopsy analysis using surface-enhanced Raman spectroscopy
  publication-title: Theranostics
  doi: 10.7150/thno.29875
– volume: 66
  start-page: 115
  year: 2016
  ident: 10.1016/j.nano.2020.102245_bb0005
  article-title: Cancer statistics in China, 2015
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21338
SSID ssj0037009
Score 2.470205
Snippet Prostate cancer most frequently metastasizes to bone, resulting in abnormal bone metabolism and the release of components into the blood stream. Here, we...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102245
SubjectTerms Bone metastasis
Convolutional neural networks
Prostatic neoplasms
Raman spectroscopy
Title Deep convolutional neural networks combine Raman spectral signature of serum for prostate cancer bone metastases screening
URI https://www.clinicalkey.com/#!/content/1-s2.0-S154996342030099X
https://dx.doi.org/10.1016/j.nano.2020.102245
https://www.proquest.com/docview/2418118774
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SDZReSpu2NK9Fgd6Ku2tZkr3HsE3YPhJKHrA3oZchIetdsruXHvLbMyPLgYaQQk_GksY2ms_zQPMA-DyqhRdyVGc8oKcjhsZnJoxcViolfIEmh4q9AU_P1ORK_JjK6QaMu1wYCqtMsr-V6VFap5FB2s3B4vp6cEHFxRA-giNO0c6ZbsIWx2fLHmwdff85OesEclEOY6QHrc-IIOXOtGFejWkoB5DHIgacspqe109PJHVUPydv4U2yG9lR-2nvYCM02_DqNJ2Mv4c_30JYMIohT1jCxVSrMl5ipPcSZ2foBwd2bmamYTHHkuYphCOW92TzmiEi1zOGlixbUD4IWqLMETDumJ0j6SysDI4uw5KhvEEfGDXfB7g6Ob4cT7LUVyFzRSVWWeCVD8p45avScc-lF-gnWmlzdE_qwuNm5tZVQdaGq8I56ZzzgpemRuckDEXxEXoNvvMTMCtHZlgZawKJAptb9E5CpVSdmyDRHNiBvNtN7VLRcep9cau76LIbTRzQxAHdcmAHvjzSLNqSGy-uLjom6S6ZFMWfRo3wIpV8pPoLbv-kO-xwoPE_pMMV04T5eqnREqqodXspdv_z2Xvwmu7aSMF96K3u1uEALZ6V7cPm1_u8j7gen__63U_4fgCb4QML
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZpCm0uIX2Rd1Xorbi7liXZewx5sGmzObQJ7E3oMYaErHfJ7l5yyG_PjCwvtJQUcjJYM7bRjOeBvplh7OuglkGqQZ0JwExH9m3ILAx8VmotQ4Ehh46zAUeXengtf4zVeI0dd7UwBKtMtr-16dFapzu9tJu92c1N7zc1F0P1kQL1FOOc8Sv2WqqiJFzf98cVzqMo-xHnQdQZkafKmRbk1diGKgBFbGEgqKbp397pLzsdnc_ZFttMUSM_aj_sHVuD5j17M0rn4h_YwwnAjBOCPGkSElOnyniJOO85rk4wCwb-y05sw2OFJa0TgCM29-TTmqM-Licc41g-o2oQjEO5J7W4526KrBNYWLw7hzlHa4MZMPq9j-z67PTqeJilqQqZLyq5yEBUAbQNOlSlF0GoIDFLdMrlmJzURcCtzJ2vQNVW6MJ75b0PUpS2xtQE-rL4xNYbfOc2404NbL-yzgIZApc7zE2g0rrOLSgMBnZY3u2m8anlOE2-uDMdtuzWkAQMScC0Ethh31Y8s7bhxrPURSck05WSovEz6A-e5VIrrj-U7b98Xzo9MPgX0tGKbWC6nBuMgyoa3F7K3Rc--zN7O7waXZiL88ufe2yDVlrM4D5bX9wv4QBjn4U7jLr9BL0DAkE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+convolutional+neural+networks+combine+Raman+spectral+signature+of+serum+for+prostate+cancer+bone+metastases+screening&rft.jtitle=Nanomedicine&rft.au=Shao%2C+Xiaoguang&rft.au=Zhang%2C+Heng&rft.au=Wang%2C+Yanqing&rft.au=Qian%2C+Hongyang&rft.date=2020-10-01&rft.pub=Elsevier+Inc&rft.issn=1549-9634&rft.eissn=1549-9642&rft.volume=29&rft_id=info:doi/10.1016%2Fj.nano.2020.102245&rft.externalDocID=S154996342030099X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9634&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9634&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9634&client=summon