Deep convolutional neural networks combine Raman spectral signature of serum for prostate cancer bone metastases screening
Prostate cancer most frequently metastasizes to bone, resulting in abnormal bone metabolism and the release of components into the blood stream. Here, we evaluated the capacity of convolutional neural networks (CNNs) to use Raman data for screening of prostate cancer bone metastases. We used label-f...
Saved in:
Published in | Nanomedicine Vol. 29; p. 102245 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.10.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1549-9634 1549-9642 1549-9642 |
DOI | 10.1016/j.nano.2020.102245 |
Cover
Abstract | Prostate cancer most frequently metastasizes to bone, resulting in abnormal bone metabolism and the release of components into the blood stream. Here, we evaluated the capacity of convolutional neural networks (CNNs) to use Raman data for screening of prostate cancer bone metastases. We used label-free surface-enhanced Raman spectroscopy (SERS) to collect 1281 serum Raman spectra from 427 patients with prostate cancer, and then we constructed a CNN based on LetNet-5 to recognize prostate cancer patients with bone metastases. We then used 5-fold cross-validation method to train and test the CNN model and evaluated its actual performance. Our CNN model for bone metastases detection revealed a mean training accuracy of 99.51% ± 0.23%, mean testing accuracy of 81.70% ± 2.83%, mean testing sensitivity of 80.63% ± 5.07%, and mean testing specificity of 82.82% ± 2.94%.
Prostate cancer (PCA) most frequently metastasizes to bone, resulting in abnormal bone metabolism and release of components into the blood stream. We used label free surface-enhanced Raman spectroscopy (SERS) to analyze the components changes in blood and then developed a deep learning method (convolutional neural networks) to extract features of Raman spectra and recognize PCA patients of bone metastases. In the future, larger datasets will improve the model for rapid and automated BM screening to supplement PCA bone scans. [Display omitted]
•Prostate cancer most frequently metastasizes to bone, resulting in abnormal bone metabolism and releasing of components into the blood stream. Surface-enhanced Raman spectroscopy (SERS) has emerged as a powerful technique for blood components analysis. It is a good point to translate SERS to clinical practice.•The subject size is relative large; a total of 427 patients are included in this study.•Convolutional neural networks (CNN) are firstly utilized to analyze Raman spectra and develop a practical classification model. |
---|---|
AbstractList | Prostate cancer most frequently metastasizes to bone, resulting in abnormal bone metabolism and the release of components into the blood stream. Here, we evaluated the capacity of convolutional neural networks (CNNs) to use Raman data for screening of prostate cancer bone metastases. We used label-free surface-enhanced Raman spectroscopy (SERS) to collect 1281 serum Raman spectra from 427 patients with prostate cancer, and then we constructed a CNN based on LetNet-5 to recognize prostate cancer patients with bone metastases. We then used 5-fold cross-validation method to train and test the CNN model and evaluated its actual performance. Our CNN model for bone metastases detection revealed a mean training accuracy of 99.51% ± 0.23%, mean testing accuracy of 81.70% ± 2.83%, mean testing sensitivity of 80.63% ± 5.07%, and mean testing specificity of 82.82% ± 2.94%.
Prostate cancer (PCA) most frequently metastasizes to bone, resulting in abnormal bone metabolism and release of components into the blood stream. We used label free surface-enhanced Raman spectroscopy (SERS) to analyze the components changes in blood and then developed a deep learning method (convolutional neural networks) to extract features of Raman spectra and recognize PCA patients of bone metastases. In the future, larger datasets will improve the model for rapid and automated BM screening to supplement PCA bone scans. [Display omitted]
•Prostate cancer most frequently metastasizes to bone, resulting in abnormal bone metabolism and releasing of components into the blood stream. Surface-enhanced Raman spectroscopy (SERS) has emerged as a powerful technique for blood components analysis. It is a good point to translate SERS to clinical practice.•The subject size is relative large; a total of 427 patients are included in this study.•Convolutional neural networks (CNN) are firstly utilized to analyze Raman spectra and develop a practical classification model. Prostate cancer most frequently metastasizes to bone, resulting in abnormal bone metabolism and the release of components into the blood stream. Here, we evaluated the capacity of convolutional neural networks (CNNs) to use Raman data for screening of prostate cancer bone metastases. We used label-free surface-enhanced Raman spectroscopy (SERS) to collect 1281 serum Raman spectra from 427 patients with prostate cancer, and then we constructed a CNN based on LetNet-5 to recognize prostate cancer patients with bone metastases. We then used 5-fold cross-validation method to train and test the CNN model and evaluated its actual performance. Our CNN model for bone metastases detection revealed a mean training accuracy of 99.51% ± 0.23%, mean testing accuracy of 81.70% ± 2.83%, mean testing sensitivity of 80.63% ± 5.07%, and mean testing specificity of 82.82% ± 2.94%.Prostate cancer most frequently metastasizes to bone, resulting in abnormal bone metabolism and the release of components into the blood stream. Here, we evaluated the capacity of convolutional neural networks (CNNs) to use Raman data for screening of prostate cancer bone metastases. We used label-free surface-enhanced Raman spectroscopy (SERS) to collect 1281 serum Raman spectra from 427 patients with prostate cancer, and then we constructed a CNN based on LetNet-5 to recognize prostate cancer patients with bone metastases. We then used 5-fold cross-validation method to train and test the CNN model and evaluated its actual performance. Our CNN model for bone metastases detection revealed a mean training accuracy of 99.51% ± 0.23%, mean testing accuracy of 81.70% ± 2.83%, mean testing sensitivity of 80.63% ± 5.07%, and mean testing specificity of 82.82% ± 2.94%. |
ArticleNumber | 102245 |
Author | Dong, Baijun Wang, Yanqing Liu, Shupeng Xu, Fan Shao, Xiaoguang Qian, Hongyang Chen, Na Pan, Jiahua Zhu, Yinjie Xue, Wei Zhang, Heng |
Author_xml | – sequence: 1 givenname: Xiaoguang surname: Shao fullname: Shao, Xiaoguang organization: Department of Urology, RenJi hospital, school of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China – sequence: 2 givenname: Heng surname: Zhang fullname: Zhang, Heng organization: Shanghai Institute for Advanced Communication and Data science, Key laboratory of specialty Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai University, Shanghai, People’s Republic of China – sequence: 3 givenname: Yanqing surname: Wang fullname: Wang, Yanqing organization: Department of Urology, RenJi hospital, school of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China – sequence: 4 givenname: Hongyang surname: Qian fullname: Qian, Hongyang organization: Department of Urology, RenJi hospital, school of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China – sequence: 5 givenname: Yinjie surname: Zhu fullname: Zhu, Yinjie organization: Department of Urology, RenJi hospital, school of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China – sequence: 6 givenname: Baijun surname: Dong fullname: Dong, Baijun organization: Department of Urology, RenJi hospital, school of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China – sequence: 7 givenname: Fan surname: Xu fullname: Xu, Fan organization: Department of Urology, RenJi hospital, school of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China – sequence: 8 givenname: Na surname: Chen fullname: Chen, Na organization: Shanghai Institute for Advanced Communication and Data science, Key laboratory of specialty Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai University, Shanghai, People’s Republic of China – sequence: 9 givenname: Shupeng surname: Liu fullname: Liu, Shupeng email: liusp@shu.edu.cn organization: Shanghai Institute for Advanced Communication and Data science, Key laboratory of specialty Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai University, Shanghai, People’s Republic of China – sequence: 10 givenname: Jiahua surname: Pan fullname: Pan, Jiahua email: jiahua.pan@outlook.com organization: Department of Urology, RenJi hospital, school of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China – sequence: 11 givenname: Wei surname: Xue fullname: Xue, Wei email: uroxuewei@163.com organization: Department of Urology, RenJi hospital, school of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China |
BookMark | eNqFkE1PGzEQhi0UpAboH-jJx14SbK_3C_VSpS0gISEhOFve8Sxy2LVT2wuivx4vqXrIgZ7GmpnHmvc5IQvnHRLyhbM1Z7w6366ddn4tmJgbQsjyiCx5KdtVW0mx-Pcu5CdyEuOWsaJmrF2SPz8QdxS8e_bDlKx3eqAOp_Be0osPTzFPx846pHd61I7GHUKa59E-Op2mgNT3NGKYRtr7QHfBx6QTUtAOMNAuX0pHTDp3I0YaISA66x7PyHGvh4if_9ZT8vDr5_3manVze3m9-X6zgqKRaYWiMVhpU5mmBmFEaWQjyq7sOK9lXxjWtryDBstei6oAKAHASFHrvqwrZLI4JV_3_-bLfk8YkxptBBwG7dBPUQnJG86bup5Xm_0q5BAxYK_A5ixZS05sB8WZmnWrrZp1q1m32uvOqDhAd8GOOrx-DH3bQ5jzP1sMKoLFrM3YkC0r4-3H-MUBDoN1FvTwhK__g98A9wCyIw |
CitedBy_id | crossref_primary_10_3390_cancers14061535 crossref_primary_10_2147_IJN_S354590 crossref_primary_10_3390_chemosensors10110449 crossref_primary_10_1016_j_saa_2021_120571 crossref_primary_10_1186_s12916_025_03887_5 crossref_primary_10_3389_fonc_2021_665176 crossref_primary_10_1002_wnan_1917 crossref_primary_10_1021_acsmaterialslett_4c01267 crossref_primary_10_1002_jrs_6365 crossref_primary_10_1007_s11227_021_03630_w crossref_primary_10_1039_D3TC02271D crossref_primary_10_1016_j_vibspec_2024_103709 crossref_primary_10_1002_adfm_202103382 crossref_primary_10_1016_j_talanta_2024_126136 crossref_primary_10_1038_s41598_023_37900_9 crossref_primary_10_1002_jrs_6224 crossref_primary_10_1021_acsanm_2c02392 crossref_primary_10_1039_D4CS00460D crossref_primary_10_1002_jrs_6447 crossref_primary_10_3390_nano12152724 crossref_primary_10_1038_s41598_023_28479_2 crossref_primary_10_1155_2021_5755671 crossref_primary_10_1002_pros_24559 crossref_primary_10_3389_fonc_2022_908873 crossref_primary_10_1002_advs_202300668 crossref_primary_10_1155_2022_3070361 crossref_primary_10_1080_05704928_2020_1859525 crossref_primary_10_1016_j_chemolab_2022_104548 crossref_primary_10_1371_journal_pone_0254586 crossref_primary_10_1016_j_saa_2022_121603 crossref_primary_10_3390_cancers16152700 crossref_primary_10_3389_fcell_2021_823546 crossref_primary_10_1007_s00216_023_04730_7 |
Cites_doi | 10.7150/thno.32655 10.1016/j.eururo.2009.12.023 10.1038/s41591-018-0177-5 10.1007/s13244-018-0639-9 10.1002/ijc.11500 10.1093/jnci/dju013 10.1039/C7AN01371J 10.4238/gmr.15027707 10.1016/j.nano.2017.11.022 10.2147/IJN.S137756 10.1158/1078-0432.CCR-06-0931 10.1016/j.eururo.2012.02.020 10.1016/j.urology.2014.06.010 10.1016/j.talanta.2018.05.070 10.1016/j.urology.2009.11.049 10.1007/s10103-016-1976-x 10.1002/jbio.201200110 10.1148/radiol.2017162326 10.1016/j.eururo.2016.08.002 10.1016/j.aca.2016.12.010 10.1016/j.juro.2010.03.034 10.1021/acs.analchem.6b04588 10.1148/radiol.2017170706 10.1007/s00216-015-8610-9 10.1016/j.nano.2016.12.001 10.2147/IJN.S71811 10.2147/IJN.S186226 10.7150/thno.29875 10.3322/caac.21338 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1016/j.nano.2020.102245 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1549-9642 |
ExternalDocumentID | 10_1016_j_nano_2020_102245 S154996342030099X |
GrantInformation_xml | – fundername: Joint Research Foundation for Innovative Medical Technology of Shanghai Shenkang Hospital Development Center grantid: 16CR3049A – fundername: Shanghai Municipal Health Commission grantid: 201640247; 2019LJ11 – fundername: National Natural Science Foundation of China grantid: 81572536; 81672850; 81772742; 81702840; 81702542; 81972578; 81902863 funderid: https://doi.org/10.13039/501100001809 – fundername: Science and Technology Commission of Shanghai Municipality grantid: 16411969800; 19411967400; 19ZR1431000; 19XD1402300; 19YF1428400 funderid: https://doi.org/10.13039/501100003399 – fundername: Shanghai Municipal Education Commission grantid: 20152215; 20191906 funderid: https://doi.org/10.13039/501100003395 |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 123 1B1 1P~ 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AAAJQ AABXZ AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AARKO AATTM AAXKI AAXUO AAYWO ABBQC ABGSF ABMAC ABMZM ABUDA ABWVN ABXDB ABXRA ABZDS ACDAQ ACGFS ACIEU ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AEUPX AEVXI AEZYN AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGCQF AGEKW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALCLG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR BJAXD BKOJK BLXMC BNPGV CJTIS CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LUGTX M41 MAGPM MO0 N9A O-L O9- OAUVE OD~ OGGZJ OO0 OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SEL SES SEW SPC SSH SSI SSM SSP SST SSU SSZ T5K Z5R ~G- AACTN AAIAV AATCM ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW DOVZS EFLBG LCYCR RIG AAYXX AGRNS CITATION 7X8 |
ID | FETCH-LOGICAL-c384t-e28de6ad6d87c2d25d4825b5b1174f3d0991bc8e5fa263cc5cccd427af576e043 |
IEDL.DBID | AIKHN |
ISSN | 1549-9634 1549-9642 |
IngestDate | Thu Sep 04 16:16:05 EDT 2025 Tue Jul 01 01:49:57 EDT 2025 Thu Apr 24 23:10:20 EDT 2025 Fri Feb 23 02:48:33 EST 2024 Tue Aug 26 16:33:34 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bone metastasis Prostatic neoplasms Raman spectroscopy Convolutional neural networks |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c384t-e28de6ad6d87c2d25d4825b5b1174f3d0991bc8e5fa263cc5cccd427af576e043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2418118774 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2418118774 crossref_citationtrail_10_1016_j_nano_2020_102245 crossref_primary_10_1016_j_nano_2020_102245 elsevier_sciencedirect_doi_10_1016_j_nano_2020_102245 elsevier_clinicalkey_doi_10_1016_j_nano_2020_102245 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2020 2020-10-00 20201001 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: October 2020 |
PublicationDecade | 2020 |
PublicationTitle | Nanomedicine |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Kamiya, Suzuki, Yano, Endo, Takano, Komaru (bb0035) 2010; 75 Zhang, Mi, Tan, Xiang (bb0050) 2019; 9 Shao, Pan, Wang, Zhu, Xu, Shangguan (bb0060) 2017; 13 Chen, Zheng, Baade, Zhang, Zeng, Bray (bb0005) 2016; 66 Jung, Lein (bb0030) 2014; 1846 Lara PN, Jr., Ely B, Quinn DI, Mack PC, Tangen C, Gertz E. et al. Serum biomarkers of bone metabolism in castration-resistant prostate cancer patients with skeletal metastases: results from SWOG 0421.J Natl Cancer Inst 2014 Coleman RE: Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 2006 dju013. Pan, Shao, Zhu, Dong, Wang, Kang (bb0065) 2019; 14 Zhou, Liu, Wang, Jia, Zhou, Jiang (bb0130) 2018; 188 Norgaard M, Jensen AO, Jacobsen JB, Cetin K, Fryzek JP, Sørensen HT. Skeletal related events, bone metastasis and survival of prostate cancer: a population based cohort study in Denmark (1999 to 2007).J Urol 2010 Liu, Osadchy, Ashton, Foster, Solomon, Gibson (bb0085) 2017; 142 Feng, Huang, Lin, Chen, Xu, Li (bb0120) 2015; 10 Vargas-Obieta, Martinez-Espinosa, Martinez-Zerega, Jave-Suárez, Aguilar-Lemarroy, González-Solís (bb0100) 2016; 31 Yasaka, Akai, Abe, Kiryu (bb0145) 2018; 286 Huang, McWilliams, Lui, McLean, Lam, Zeng (bb0090) 2003; 107 Sathyavathi, Dingari, Barman, Prasad, Prabhakar, Narayana (bb0125) 2013; 6 Lakhani (bb0140) 2017; 284 Zhang, Wu, Zheng, Su, Chen, Ma (bb0150) 2019; 9 551. 6243s. Briganti A, Passoni N, Ferrari M, Capitanio U, Suardi N, Gallina A. et al. When to perform bone scan in patients with newly diagnosed prostate cancer: external validation of the currently available guidelines and proposal of a novel risk stratification tool.Eur Urol 2010 Coudray, Ocampo, Sakellaropoulos, Narula, Snuderl, Fenyö (bb0075) 2018; 24 Chen N, Rong M, Shao X, Zhang H, Liu S, Dong B. et al. Surface-enhanced Raman spectroscopy of serum accurately detects prostate cancer in patients with prostate-specific antigen levels of 4-10 ng/mL. Int J Nanomedicine 2017 Lecouvet, El Mouedden, Collette, Coche, Danse, Jamar (bb0110) 2012; 62 Wei, Li, Yang, Jia, Yang, Song (bb0040) 2016; 15 Westley, Xu, Thilaganathan, Carnell, Turner, Goodacre (bb0135) 2017; 89 Merdan, Womble, Miller, Barnett, Ye, Linsell (bb0015) 2014; 84 5399. Del Mistro, Cervo, Mansutti, Spizzo, Colombatti, Belmonte (bb0115) 2015; 407 162. Acquarelli, van Laarhoven, Gerretzen, Tran, Buydens, Marchiori (bb0080) 2017; 954 Shao, Zhang, Rong, Wang, Jia, Zhang (bb0095) 2018; 14 Cornford, Bellmunt, Bolla, Briers, De Santis, Gross (bb0025) 2017; 71 Yamashita, Nishio, Do, Togashi (bb0070) 2018; 9 Wei (10.1016/j.nano.2020.102245_bb0040) 2016; 15 Liu (10.1016/j.nano.2020.102245_bb0085) 2017; 142 Huang (10.1016/j.nano.2020.102245_bb0090) 2003; 107 Yasaka (10.1016/j.nano.2020.102245_bb0145) 2018; 286 Lakhani (10.1016/j.nano.2020.102245_bb0140) 2017; 284 Zhang (10.1016/j.nano.2020.102245_bb0050) 2019; 9 Cornford (10.1016/j.nano.2020.102245_bb0025) 2017; 71 Vargas-Obieta (10.1016/j.nano.2020.102245_bb0100) 2016; 31 Westley (10.1016/j.nano.2020.102245_bb0135) 2017; 89 Yamashita (10.1016/j.nano.2020.102245_bb0070) 2018; 9 Del Mistro (10.1016/j.nano.2020.102245_bb0115) 2015; 407 Chen (10.1016/j.nano.2020.102245_bb0005) 2016; 66 10.1016/j.nano.2020.102245_bb0055 10.1016/j.nano.2020.102245_bb0010 Zhang (10.1016/j.nano.2020.102245_bb0150) 2019; 9 Acquarelli (10.1016/j.nano.2020.102245_bb0080) 2017; 954 Feng (10.1016/j.nano.2020.102245_bb0120) 2015; 10 Lecouvet (10.1016/j.nano.2020.102245_bb0110) 2012; 62 Jung (10.1016/j.nano.2020.102245_bb0030) 2014; 1846 Merdan (10.1016/j.nano.2020.102245_bb0015) 2014; 84 Pan (10.1016/j.nano.2020.102245_bb0065) 2019; 14 Sathyavathi (10.1016/j.nano.2020.102245_bb0125) 2013; 6 Zhou (10.1016/j.nano.2020.102245_bb0130) 2018; 188 10.1016/j.nano.2020.102245_bb0105 Shao (10.1016/j.nano.2020.102245_bb0060) 2017; 13 Coudray (10.1016/j.nano.2020.102245_bb0075) 2018; 24 10.1016/j.nano.2020.102245_bb0045 10.1016/j.nano.2020.102245_bb0020 Shao (10.1016/j.nano.2020.102245_bb0095) 2018; 14 Kamiya (10.1016/j.nano.2020.102245_bb0035) 2010; 75 |
References_xml | – volume: 14 start-page: 451 year: 2018 ident: bb0095 article-title: Fast and non-invasive serum detection technology based on surface-enhanced Raman spectroscopy and multivariate statistical analysis for liver disease publication-title: Nanomedicine – volume: 188 start-page: 238 year: 2018 ident: bb0130 article-title: Classification analyses for prostate cancer, benign prostate hyperplasia and healthy subjects by SERS-based immunoassay of multiple tumour markers publication-title: Talanta – volume: 286 start-page: 887 year: 2018 ident: bb0145 article-title: Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: a preliminary study publication-title: Radiology – volume: 9 start-page: 491 year: 2019 ident: bb0050 article-title: Recent progress on liquid biopsy analysis using surface-enhanced Raman spectroscopy publication-title: Theranostics – volume: 24 start-page: 1559 year: 2018 ident: bb0075 article-title: Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning publication-title: Nat Med – reference: Norgaard M, Jensen AO, Jacobsen JB, Cetin K, Fryzek JP, Sørensen HT. Skeletal related events, bone metastasis and survival of prostate cancer: a population based cohort study in Denmark (1999 to 2007).J Urol 2010; – volume: 62 start-page: 68 year: 2012 ident: bb0110 article-title: Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace Tc 99m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer? publication-title: Eur Urol – volume: 10 start-page: 537 year: 2015 ident: bb0120 article-title: Surface-enhanced Raman spectroscopy of saliva proteins for the noninvasive differentiation of benign and malignant breast tumors publication-title: Int J Nanomedicine – volume: 6 start-page: 567 year: 2013 ident: bb0125 article-title: Raman spectroscopy provides a powerful, rapid diagnostic tool for the detection of tuberculous meningitis in ex vivo cerebrospinal fluid samples publication-title: J Biophotonics – reference: 162. – volume: 31 start-page: 1317 year: 2016 ident: bb0100 article-title: Breast cancer detection based on serum sample surface enhanced Raman spectroscopy publication-title: Lasers Med Sci – reference: Coleman RE: Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 2006; – reference: 5399. – volume: 75 start-page: 1446 year: 2010 ident: bb0035 article-title: Implications of serum bone turnover markers in prostate cancer patients with bone metastasis publication-title: Urology – volume: 407 start-page: 3271 year: 2015 ident: bb0115 article-title: Surface-enhanced Raman spectroscopy of urine for prostate cancer detection: a preliminary study publication-title: Anal Bioanal Chem – reference: Lara PN, Jr., Ely B, Quinn DI, Mack PC, Tangen C, Gertz E. et al. Serum biomarkers of bone metabolism in castration-resistant prostate cancer patients with skeletal metastases: results from SWOG 0421.J Natl Cancer Inst 2014; – volume: 13 start-page: 1051 year: 2017 ident: bb0060 article-title: Evaluation of expressed prostatic secretion and serum using surface-enhanced Raman spectroscopy for the noninvasive detection of prostate cancer, a preliminary study publication-title: Nanomedicine – volume: 9 start-page: 2541 year: 2019 ident: bb0150 article-title: Rapid histology of laryngeal squamous cell carcinoma with deep-learning based stimulated Raman scattering microscopy publication-title: Theranostics – volume: 14 start-page: 431 year: 2019 ident: bb0065 article-title: Surface-enhanced Raman spectroscopy before radical prostatectomy predicts biochemical recurrence better than CAPRA-S publication-title: Int J Nanomedicine – volume: 71 start-page: 630 year: 2017 ident: bb0025 article-title: EAU-ESTRO-SIOG guidelines on prostate cancer. Part II: treatment of relapsing, metastatic, and castration-resistant prostate cancer publication-title: Eur Urol – reference: Chen N, Rong M, Shao X, Zhang H, Liu S, Dong B. et al. Surface-enhanced Raman spectroscopy of serum accurately detects prostate cancer in patients with prostate-specific antigen levels of 4-10 ng/mL. Int J Nanomedicine 2017; – volume: 84 start-page: 793 year: 2014 ident: bb0015 article-title: Toward better use of bone scans among men with early-stage prostate cancer publication-title: Urology – volume: 107 start-page: 1047 year: 2003 ident: bb0090 article-title: Near-infrared Raman spectroscopy for optical diagnosis of lung cancer publication-title: Int J Cancer – reference: dju013. – volume: 9 start-page: 611 year: 2018 ident: bb0070 article-title: Convolutional neural networks: an overview and application in radiology publication-title: Insights Imaging – volume: 954 start-page: 22 year: 2017 ident: bb0080 article-title: Convolutional neural networks for vibrational spectroscopic data analysis publication-title: Anal Chim Acta – reference: Briganti A, Passoni N, Ferrari M, Capitanio U, Suardi N, Gallina A. et al. When to perform bone scan in patients with newly diagnosed prostate cancer: external validation of the currently available guidelines and proposal of a novel risk stratification tool.Eur Urol 2010; – volume: 284 start-page: 574 year: 2017 ident: bb0140 article-title: Sundaram B: Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks publication-title: Radiology – reference: 6243s. – volume: 66 start-page: 115 year: 2016 ident: bb0005 article-title: Cancer statistics in China, 2015 publication-title: CA Cancer J Clin – reference: 551. – volume: 15 year: 2016 ident: bb0040 article-title: Serum levels of PSA, ALP, ICTP, and BSP in prostate cancer patients and the significance of ROC curve in the diagnosis of prostate cancer bone metastases publication-title: Genet Mol Res – volume: 89 start-page: 2472 year: 2017 ident: bb0135 article-title: Absolute quantification of uric acid in human urine using surface enhanced Raman scattering with the standard addition method publication-title: Anal Chem – volume: 142 start-page: 4067 year: 2017 ident: bb0085 article-title: Deep convolutional neural networks for Raman spectrum recognition: a unified solution publication-title: Analyst – volume: 1846 start-page: 425 year: 2014 ident: bb0030 article-title: Bone turnover markers in serum and urine as diagnostic, prognostic and monitoring biomarkers of bone metastasis publication-title: Biochim Biophys Acta – volume: 9 start-page: 2541 year: 2019 ident: 10.1016/j.nano.2020.102245_bb0150 article-title: Rapid histology of laryngeal squamous cell carcinoma with deep-learning based stimulated Raman scattering microscopy publication-title: Theranostics doi: 10.7150/thno.32655 – volume: 1846 start-page: 425 year: 2014 ident: 10.1016/j.nano.2020.102245_bb0030 article-title: Bone turnover markers in serum and urine as diagnostic, prognostic and monitoring biomarkers of bone metastasis publication-title: Biochim Biophys Acta – ident: 10.1016/j.nano.2020.102245_bb0020 doi: 10.1016/j.eururo.2009.12.023 – volume: 24 start-page: 1559 year: 2018 ident: 10.1016/j.nano.2020.102245_bb0075 article-title: Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning publication-title: Nat Med doi: 10.1038/s41591-018-0177-5 – volume: 9 start-page: 611 year: 2018 ident: 10.1016/j.nano.2020.102245_bb0070 article-title: Convolutional neural networks: an overview and application in radiology publication-title: Insights Imaging doi: 10.1007/s13244-018-0639-9 – volume: 107 start-page: 1047 year: 2003 ident: 10.1016/j.nano.2020.102245_bb0090 article-title: Near-infrared Raman spectroscopy for optical diagnosis of lung cancer publication-title: Int J Cancer doi: 10.1002/ijc.11500 – ident: 10.1016/j.nano.2020.102245_bb0045 doi: 10.1093/jnci/dju013 – volume: 142 start-page: 4067 year: 2017 ident: 10.1016/j.nano.2020.102245_bb0085 article-title: Deep convolutional neural networks for Raman spectrum recognition: a unified solution publication-title: Analyst doi: 10.1039/C7AN01371J – volume: 15 year: 2016 ident: 10.1016/j.nano.2020.102245_bb0040 article-title: Serum levels of PSA, ALP, ICTP, and BSP in prostate cancer patients and the significance of ROC curve in the diagnosis of prostate cancer bone metastases publication-title: Genet Mol Res doi: 10.4238/gmr.15027707 – volume: 14 start-page: 451 year: 2018 ident: 10.1016/j.nano.2020.102245_bb0095 article-title: Fast and non-invasive serum detection technology based on surface-enhanced Raman spectroscopy and multivariate statistical analysis for liver disease publication-title: Nanomedicine doi: 10.1016/j.nano.2017.11.022 – ident: 10.1016/j.nano.2020.102245_bb0055 doi: 10.2147/IJN.S137756 – ident: 10.1016/j.nano.2020.102245_bb0105 doi: 10.1158/1078-0432.CCR-06-0931 – volume: 62 start-page: 68 year: 2012 ident: 10.1016/j.nano.2020.102245_bb0110 article-title: Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace Tc 99m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer? publication-title: Eur Urol doi: 10.1016/j.eururo.2012.02.020 – volume: 84 start-page: 793 year: 2014 ident: 10.1016/j.nano.2020.102245_bb0015 article-title: Toward better use of bone scans among men with early-stage prostate cancer publication-title: Urology doi: 10.1016/j.urology.2014.06.010 – volume: 188 start-page: 238 year: 2018 ident: 10.1016/j.nano.2020.102245_bb0130 article-title: Classification analyses for prostate cancer, benign prostate hyperplasia and healthy subjects by SERS-based immunoassay of multiple tumour markers publication-title: Talanta doi: 10.1016/j.talanta.2018.05.070 – volume: 75 start-page: 1446 year: 2010 ident: 10.1016/j.nano.2020.102245_bb0035 article-title: Implications of serum bone turnover markers in prostate cancer patients with bone metastasis publication-title: Urology doi: 10.1016/j.urology.2009.11.049 – volume: 31 start-page: 1317 year: 2016 ident: 10.1016/j.nano.2020.102245_bb0100 article-title: Breast cancer detection based on serum sample surface enhanced Raman spectroscopy publication-title: Lasers Med Sci doi: 10.1007/s10103-016-1976-x – volume: 6 start-page: 567 year: 2013 ident: 10.1016/j.nano.2020.102245_bb0125 article-title: Raman spectroscopy provides a powerful, rapid diagnostic tool for the detection of tuberculous meningitis in ex vivo cerebrospinal fluid samples publication-title: J Biophotonics doi: 10.1002/jbio.201200110 – volume: 284 start-page: 574 year: 2017 ident: 10.1016/j.nano.2020.102245_bb0140 article-title: Sundaram B: Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks publication-title: Radiology doi: 10.1148/radiol.2017162326 – volume: 71 start-page: 630 year: 2017 ident: 10.1016/j.nano.2020.102245_bb0025 article-title: EAU-ESTRO-SIOG guidelines on prostate cancer. Part II: treatment of relapsing, metastatic, and castration-resistant prostate cancer publication-title: Eur Urol doi: 10.1016/j.eururo.2016.08.002 – volume: 954 start-page: 22 year: 2017 ident: 10.1016/j.nano.2020.102245_bb0080 article-title: Convolutional neural networks for vibrational spectroscopic data analysis publication-title: Anal Chim Acta doi: 10.1016/j.aca.2016.12.010 – ident: 10.1016/j.nano.2020.102245_bb0010 doi: 10.1016/j.juro.2010.03.034 – volume: 89 start-page: 2472 year: 2017 ident: 10.1016/j.nano.2020.102245_bb0135 article-title: Absolute quantification of uric acid in human urine using surface enhanced Raman scattering with the standard addition method publication-title: Anal Chem doi: 10.1021/acs.analchem.6b04588 – volume: 286 start-page: 887 year: 2018 ident: 10.1016/j.nano.2020.102245_bb0145 article-title: Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: a preliminary study publication-title: Radiology doi: 10.1148/radiol.2017170706 – volume: 407 start-page: 3271 year: 2015 ident: 10.1016/j.nano.2020.102245_bb0115 article-title: Surface-enhanced Raman spectroscopy of urine for prostate cancer detection: a preliminary study publication-title: Anal Bioanal Chem doi: 10.1007/s00216-015-8610-9 – volume: 13 start-page: 1051 year: 2017 ident: 10.1016/j.nano.2020.102245_bb0060 article-title: Evaluation of expressed prostatic secretion and serum using surface-enhanced Raman spectroscopy for the noninvasive detection of prostate cancer, a preliminary study publication-title: Nanomedicine doi: 10.1016/j.nano.2016.12.001 – volume: 10 start-page: 537 year: 2015 ident: 10.1016/j.nano.2020.102245_bb0120 article-title: Surface-enhanced Raman spectroscopy of saliva proteins for the noninvasive differentiation of benign and malignant breast tumors publication-title: Int J Nanomedicine doi: 10.2147/IJN.S71811 – volume: 14 start-page: 431 year: 2019 ident: 10.1016/j.nano.2020.102245_bb0065 article-title: Surface-enhanced Raman spectroscopy before radical prostatectomy predicts biochemical recurrence better than CAPRA-S publication-title: Int J Nanomedicine doi: 10.2147/IJN.S186226 – volume: 9 start-page: 491 year: 2019 ident: 10.1016/j.nano.2020.102245_bb0050 article-title: Recent progress on liquid biopsy analysis using surface-enhanced Raman spectroscopy publication-title: Theranostics doi: 10.7150/thno.29875 – volume: 66 start-page: 115 year: 2016 ident: 10.1016/j.nano.2020.102245_bb0005 article-title: Cancer statistics in China, 2015 publication-title: CA Cancer J Clin doi: 10.3322/caac.21338 |
SSID | ssj0037009 |
Score | 2.470205 |
Snippet | Prostate cancer most frequently metastasizes to bone, resulting in abnormal bone metabolism and the release of components into the blood stream. Here, we... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 102245 |
SubjectTerms | Bone metastasis Convolutional neural networks Prostatic neoplasms Raman spectroscopy |
Title | Deep convolutional neural networks combine Raman spectral signature of serum for prostate cancer bone metastases screening |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S154996342030099X https://dx.doi.org/10.1016/j.nano.2020.102245 https://www.proquest.com/docview/2418118774 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SDZReSpu2NK9Fgd6Ku2tZkr3HsE3YPhJKHrA3oZchIetdsruXHvLbMyPLgYaQQk_GksY2ms_zQPMA-DyqhRdyVGc8oKcjhsZnJoxcViolfIEmh4q9AU_P1ORK_JjK6QaMu1wYCqtMsr-V6VFap5FB2s3B4vp6cEHFxRA-giNO0c6ZbsIWx2fLHmwdff85OesEclEOY6QHrc-IIOXOtGFejWkoB5DHIgacspqe109PJHVUPydv4U2yG9lR-2nvYCM02_DqNJ2Mv4c_30JYMIohT1jCxVSrMl5ipPcSZ2foBwd2bmamYTHHkuYphCOW92TzmiEi1zOGlixbUD4IWqLMETDumJ0j6SysDI4uw5KhvEEfGDXfB7g6Ob4cT7LUVyFzRSVWWeCVD8p45avScc-lF-gnWmlzdE_qwuNm5tZVQdaGq8I56ZzzgpemRuckDEXxEXoNvvMTMCtHZlgZawKJAptb9E5CpVSdmyDRHNiBvNtN7VLRcep9cau76LIbTRzQxAHdcmAHvjzSLNqSGy-uLjom6S6ZFMWfRo3wIpV8pPoLbv-kO-xwoPE_pMMV04T5eqnREqqodXspdv_z2Xvwmu7aSMF96K3u1uEALZ6V7cPm1_u8j7gen__63U_4fgCb4QML |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZpCm0uIX2Rd1Xorbi7liXZewx5sGmzObQJ7E3oMYaErHfJ7l5yyG_PjCwvtJQUcjJYM7bRjOeBvplh7OuglkGqQZ0JwExH9m3ILAx8VmotQ4Ehh46zAUeXengtf4zVeI0dd7UwBKtMtr-16dFapzu9tJu92c1N7zc1F0P1kQL1FOOc8Sv2WqqiJFzf98cVzqMo-xHnQdQZkafKmRbk1diGKgBFbGEgqKbp397pLzsdnc_ZFttMUSM_aj_sHVuD5j17M0rn4h_YwwnAjBOCPGkSElOnyniJOO85rk4wCwb-y05sw2OFJa0TgCM29-TTmqM-Licc41g-o2oQjEO5J7W4526KrBNYWLw7hzlHa4MZMPq9j-z67PTqeJilqQqZLyq5yEBUAbQNOlSlF0GoIDFLdMrlmJzURcCtzJ2vQNVW6MJ75b0PUpS2xtQE-rL4xNYbfOc2404NbL-yzgIZApc7zE2g0rrOLSgMBnZY3u2m8anlOE2-uDMdtuzWkAQMScC0Ethh31Y8s7bhxrPURSck05WSovEz6A-e5VIrrj-U7b98Xzo9MPgX0tGKbWC6nBuMgyoa3F7K3Rc--zN7O7waXZiL88ufe2yDVlrM4D5bX9wv4QBjn4U7jLr9BL0DAkE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+convolutional+neural+networks+combine+Raman+spectral+signature+of+serum+for+prostate+cancer+bone+metastases+screening&rft.jtitle=Nanomedicine&rft.au=Shao%2C+Xiaoguang&rft.au=Zhang%2C+Heng&rft.au=Wang%2C+Yanqing&rft.au=Qian%2C+Hongyang&rft.date=2020-10-01&rft.pub=Elsevier+Inc&rft.issn=1549-9634&rft.eissn=1549-9642&rft.volume=29&rft_id=info:doi/10.1016%2Fj.nano.2020.102245&rft.externalDocID=S154996342030099X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9634&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9634&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9634&client=summon |