Efficient Semisupervised MEDLINE Document Clustering With MeSH-Semantic and Global-Content Constraints
For clustering biomedical documents, we can consider three different types of information: the local-content (LC) information from documents, the global-content (GC) information from the whole MEDLINE collections, and the medical subject heading (MeSH)-semantic (MS) information. Previous methods for...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 43; no. 4; pp. 1265 - 1276 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.08.2013
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For clustering biomedical documents, we can consider three different types of information: the local-content (LC) information from documents, the global-content (GC) information from the whole MEDLINE collections, and the medical subject heading (MeSH)-semantic (MS) information. Previous methods for clustering biomedical documents are not necessarily effective for integrating different types of information, by which only one or two types of information have been used. Recently, the performance of MEDLINE document clustering has been enhanced by linearly combining both the LC and MS information. However, the simple linear combination could be ineffective because of the limitation of the representation space for combining different types of information (similarities) with different reliability. To overcome the limitation, we propose a new semisupervised spectral clustering method, i.e., SSNCut, for clustering over the LC similarities, with two types of constraints: must-link (ML) constraints on document pairs with high MS (or GC) similarities and cannot-link (CL) constraints on those with low similarities. We empirically demonstrate the performance of SSNCut on MEDLINE document clustering, by using 100 data sets of MEDLINE records. Experimental results show that SSNCut outperformed a linear combination method and several well-known semisupervised clustering methods, being statistically significant. Furthermore, the performance of SSNCut with constraints from both MS and GC similarities outperformed that from only one type of similarities. Another interesting finding was that ML constraints more effectively worked than CL constraints, since CL constraints include around 10% incorrect ones, whereas this number was only 1% for ML constraints. |
---|---|
AbstractList | For clustering biomedical documents, we can consider three different types of information: the local-content (LC) information from documents, the global-content (GC) information from the whole MEDLINE collections, and the medical subject heading (MeSH)-semantic (MS) information. Previous methods for clustering biomedical documents are not necessarily effective for integrating different types of information, by which only one or two types of information have been used. Recently, the performance of MEDLINE document clustering has been enhanced by linearly combining both the LC and MS information. However, the simple linear combination could be ineffective because of the limitation of the representation space for combining different types of information (similarities) with different reliability. To overcome the limitation, we propose a new semisupervised spectral clustering method, i.e., SSNCut, for clustering over the LC similarities, with two types of constraints: must-link (ML) constraints on document pairs with high MS (or GC) similarities and cannot-link (CL) constraints on those with low similarities. We empirically demonstrate the performance of SSNCut on MEDLINE document clustering, by using 100 data sets of MEDLINE records. Experimental results show that SSNCut outperformed a linear combination method and several well-known semisupervised clustering methods, being statistically significant. Furthermore, the performance of SSNCut with constraints from both MS and GC similarities outperformed that from only one type of similarities. Another interesting finding was that ML constraints more effectively worked than CL constraints, since CL constraints include around 10% incorrect ones, whereas this number was only 1% for ML constraints. For clustering biomedical documents, we can consider three different types of information: the local-content (LC) information from documents, the global-content (GC) information from the whole MEDLINE collections, and the medical subject heading (MeSH)-semantic (MS) information. Previous methods for clustering biomedical documents are not necessarily effective for integrating different types of information, by which only one or two types of information have been used. Recently, the performance of MEDLINE document clustering has been enhanced by linearly combining both the LC and MS information. However, the simple linear combination could be ineffective because of the limitation of the representation space for combining different types of information (similarities) with different reliability. To overcome the limitation, we propose a new semisupervised spectral clustering method, i.e., SSNCut, for clustering over the LC similarities, with two types of constraints: must-link (ML) constraints on document pairs with high MS (or GC) similarities and cannot-link (CL) constraints on those with low similarities. We empirically demonstrate the performance of SSNCut on MEDLINE document clustering, by using 100 data sets of MEDLINE records. Experimental results show that SSNCut outperformed a linear combination method and several well-known semisupervised clustering methods, being statistically significant. Furthermore, the performance of SSNCut with constraints from both MS and GC similarities outperformed that from only one type of similarities. Another interesting finding was that ML constraints more effectively worked than CL constraints, since CL constraints include around 10% incorrect ones, whereas this number was only 1% for ML constraints.For clustering biomedical documents, we can consider three different types of information: the local-content (LC) information from documents, the global-content (GC) information from the whole MEDLINE collections, and the medical subject heading (MeSH)-semantic (MS) information. Previous methods for clustering biomedical documents are not necessarily effective for integrating different types of information, by which only one or two types of information have been used. Recently, the performance of MEDLINE document clustering has been enhanced by linearly combining both the LC and MS information. However, the simple linear combination could be ineffective because of the limitation of the representation space for combining different types of information (similarities) with different reliability. To overcome the limitation, we propose a new semisupervised spectral clustering method, i.e., SSNCut, for clustering over the LC similarities, with two types of constraints: must-link (ML) constraints on document pairs with high MS (or GC) similarities and cannot-link (CL) constraints on those with low similarities. We empirically demonstrate the performance of SSNCut on MEDLINE document clustering, by using 100 data sets of MEDLINE records. Experimental results show that SSNCut outperformed a linear combination method and several well-known semisupervised clustering methods, being statistically significant. Furthermore, the performance of SSNCut with constraints from both MS and GC similarities outperformed that from only one type of similarities. Another interesting finding was that ML constraints more effectively worked than CL constraints, since CL constraints include around 10% incorrect ones, whereas this number was only 1% for ML constraints. |
Author | Wei Feng Mamitsuka, Hiroshi Jun Gu Jia Zeng Shanfeng Zhu |
Author_xml | – sequence: 1 surname: Jun Gu fullname: Jun Gu organization: Shanghai Key Lab. of Intell. Inf. Process. & the Sch. of Comput. Sci., Fudan Univ., Shanghai, China – sequence: 2 surname: Wei Feng fullname: Wei Feng organization: Sch. of Comput. Sci. & Technol., Tianjin Univ., Tianjin, China – sequence: 3 surname: Jia Zeng fullname: Jia Zeng organization: Sch. of Comput. Sci. & Technol., Soochow Univ., Suzhou, China – sequence: 4 givenname: Hiroshi surname: Mamitsuka fullname: Mamitsuka, Hiroshi organization: Bioinf. Center, Kyoto Univ., Uji, Japan – sequence: 5 surname: Shanfeng Zhu fullname: Shanfeng Zhu email: zhusf@fudan.edu.cn organization: Shanghai Key Lab. of Intell. Inf. Process. & the Sch. of Comput. Sci., Fudan Univ., Shanghai, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26502435$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9v1DAQxS1UREvpFwAJReLCJUvsOIl9hHRpK-3CYYs4Wo49BldZe4kdJL49s91tDz2AL_73e6OZ916SkxADEPKaVgtKK_nhdrPuPy1YRdmCMdZJKZ6RM0ZbUeKtOXk8t90puUjprsIl8EmKF-SUtU3FeN2cEbd0zhsPIRcb2Po072D67RPYYr28XN18WRaX0czb_X8_zinD5MOP4rvPP4s1bK5LFOmQvSl0sMXVGAc9ln0M-V4QQ8qT9iGnV-S502OCi-N-Tr59Xt721-Xq69VN_3FVmlrwXNqBG9FZ7rBVSYUZKipay-yg8dk4xmjD-QCs09ZI19DaOk1BDDgPUMTqc_L-UHc3xV8zpKxwJgPjqAPEOSna7a2itWD_RzmTou2okIi-e4LexXkKOAhSFUdba9kg9fZIzcMWrNpNfqunP-rBbATEATBTTGkCp4zPOnu0C10aFa3UPlp1H63aR6uO0aKUPZE-VP-n6M1B5AHgUdDWHceW6r-3uq28 |
CODEN | ITCEB8 |
CitedBy_id | crossref_primary_10_1155_2021_7937573 crossref_primary_10_1093_bioinformatics_btaa837 crossref_primary_10_1093_bioinformatics_btv237 crossref_primary_10_1093_bioinformatics_btz756 crossref_primary_10_1142_S0219720015420020 crossref_primary_10_1093_bioinformatics_btz253 crossref_primary_10_1016_j_ins_2023_02_088 crossref_primary_10_1109_TCBB_2014_2315996 crossref_primary_10_1142_S0218488523500356 crossref_primary_10_37648_ijrmst_v11i02_012 crossref_primary_10_1016_j_neucom_2018_08_061 crossref_primary_10_1109_TCBB_2015_2430338 crossref_primary_10_1109_ACCESS_2020_3043221 crossref_primary_10_1109_TCYB_2017_2695218 crossref_primary_10_1093_bioinformatics_btw294 crossref_primary_10_1016_j_imu_2018_04_006 crossref_primary_10_1038_s41467_022_29843_y crossref_primary_10_1186_s40535_018_0055_8 crossref_primary_10_1093_comjnl_bxab013 crossref_primary_10_1016_j_ymeth_2014_11_006 crossref_primary_10_1007_s11390_015_1565_7 crossref_primary_10_1016_j_imu_2019_100226 crossref_primary_10_1007_s10462_024_11103_8 crossref_primary_10_1186_s12859_018_2534_2 crossref_primary_10_1016_j_ins_2024_120798 crossref_primary_10_1142_S0219622022500213 |
Cites_doi | 10.1145/502653.502657 10.1007/978-3-540-71703-4_12 10.1186/1471-2105-8-423 10.1093/nar/gkp967 10.1016/j.cell.2008.06.029 10.1186/gb-2008-9-s2-s8 10.1007/s10115-004-0194-1 10.1504/IJBRA.2007.015010 10.1093/bioinformatics/btp338 10.1093/bioinformatics/btp663 10.1007/s10115-008-0134-6 10.1093/bioinformatics/btm173 10.1109/34.868688 10.1093/bioinformatics/btl011 10.1145/1014052.1014062 10.1162/coli.2006.32.1.13 10.1093/bioinformatics/btl065 10.1145/1148170.1148241 10.7551/mitpress/9780262033589.001.0001 10.1093/bioinformatics/18.suppl_1.S145 10.1007/s10994-008-5084-4 10.1186/1471-2105-7-170 10.1093/bioinformatics/btn318 10.1145/1102351.1102409 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2013 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2013 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TSMCB.2012.2227998 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Aerospace Database Aerospace Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 1276 |
ExternalDocumentID | 3024379401 26502435 10_1109_TSMCB_2012_2227998 6374265 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c384t-db4c87d4f081918cb0186d2dbac87cf221544be27adc9f513dfa1e8b265e12db3 |
IEDL.DBID | RIE |
ISSN | 2168-2267 2168-2275 |
IngestDate | Fri Jul 11 04:49:55 EDT 2025 Fri Jul 11 08:27:47 EDT 2025 Mon Jun 30 02:43:10 EDT 2025 Thu Jan 02 22:21:02 EST 2025 Thu Apr 24 23:07:16 EDT 2025 Tue Jul 01 04:35:03 EDT 2025 Tue Aug 26 16:43:10 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c384t-db4c87d4f081918cb0186d2dbac87cf221544be27adc9f513dfa1e8b265e12db3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PMID | 26502435 |
PQID | 1404816395 |
PQPubID | 85422 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1109_TSMCB_2012_2227998 proquest_miscellaneous_1429867189 proquest_journals_1404816395 pubmed_primary_26502435 proquest_miscellaneous_1727991382 ieee_primary_6374265 crossref_primary_10_1109_TSMCB_2012_2227998 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-Aug. 2013-08-00 2013-Aug 20130801 |
PublicationDateYYYYMMDD | 2013-08-01 |
PublicationDate_xml | – month: 08 year: 2013 text: 2013-Aug. |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationTitleAlternate | IEEE Trans Cybern |
PublicationYear | 2013 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 ref12 klein (ref19) 2002 ref15 ref36 ref14 ref31 jiang (ref30) 1997 ref11 ng (ref32) 2001 ref10 ref2 ref1 ref17 ref16 ghosh (ref35) 2003 wagstaff (ref18) 2001 ref24 ref26 ref25 ref22 salton (ref6) 1983 xing (ref20) 2003; 15 davidson (ref23) 2005 ref28 ref27 ref29 ref8 hersh (ref33) 2005 ref7 nelson (ref9) 2004 ref3 ref5 kamvar (ref21) 2003 baeza-yates (ref4) 1999 |
References_xml | – ident: ref31 doi: 10.1145/502653.502657 – ident: ref11 doi: 10.1007/978-3-540-71703-4_12 – ident: ref7 doi: 10.1186/1471-2105-8-423 – ident: ref1 doi: 10.1093/nar/gkp967 – start-page: 577 year: 2001 ident: ref18 article-title: Constrained <tex Notation="TeX">$k$</tex>-means clustering with background knowledge publication-title: Proc 18th Int Conf Mach Learn – ident: ref3 doi: 10.1016/j.cell.2008.06.029 – ident: ref2 doi: 10.1186/gb-2008-9-s2-s8 – volume: 15 start-page: 505 year: 2003 ident: ref20 article-title: Distance metric learning, with application to clustering with side-information publication-title: Proc Adv Neural Inf Process Syst – start-page: 14 year: 2005 ident: ref33 article-title: TREC 2005 Genomics track overview publication-title: Proc 14th TREC – start-page: 67 year: 2004 ident: ref9 article-title: The MeSH translation maintenance system: Structure, interface design, and implementation publication-title: Proc Medinfo – start-page: 561 year: 2003 ident: ref21 article-title: Spectral learning publication-title: Proc 17th Int Joint Conf Artif Intell – ident: ref34 doi: 10.1007/s10115-004-0194-1 – ident: ref10 doi: 10.1504/IJBRA.2007.015010 – ident: ref12 doi: 10.1093/bioinformatics/btp338 – ident: ref36 doi: 10.1093/bioinformatics/btp663 – year: 1999 ident: ref4 publication-title: Modern Information Retrieval – start-page: 849 year: 2001 ident: ref32 article-title: On spectral clustering: Analysis and an algorithm publication-title: Proc NIPS – start-page: 19 year: 1997 ident: ref30 article-title: Semantic similarity based on corpus statistics and lexical taxonomy publication-title: Proc ROCLING – ident: ref26 doi: 10.1007/s10115-008-0134-6 – ident: ref16 doi: 10.1093/bioinformatics/btm173 – start-page: 59 year: 2005 ident: ref23 article-title: Hierarchical clustering with constraints: Theory and practice publication-title: Proc 9th Eur PKDD – start-page: 307 year: 2002 ident: ref19 article-title: From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering publication-title: Proc 19th Int Conf Mach Learn – ident: ref28 doi: 10.1109/34.868688 – year: 1983 ident: ref6 publication-title: Introduction to Modern Information Retrieval – ident: ref14 doi: 10.1093/bioinformatics/btl011 – ident: ref22 doi: 10.1145/1014052.1014062 – ident: ref29 doi: 10.1162/coli.2006.32.1.13 – ident: ref15 doi: 10.1093/bioinformatics/btl065 – ident: ref25 doi: 10.1145/1148170.1148241 – ident: ref17 doi: 10.7551/mitpress/9780262033589.001.0001 – ident: ref13 doi: 10.1093/bioinformatics/18.suppl_1.S145 – year: 2003 ident: ref35 publication-title: HANDBOOK OF DATA MINING – ident: ref27 doi: 10.1007/s10994-008-5084-4 – ident: ref5 doi: 10.1186/1471-2105-7-170 – ident: ref8 doi: 10.1093/bioinformatics/btn318 – ident: ref24 doi: 10.1145/1102351.1102409 |
SSID | ssj0000816898 |
Score | 2.1897755 |
Snippet | For clustering biomedical documents, we can consider three different types of information: the local-content (LC) information from documents, the... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1265 |
SubjectTerms | Analogies Bioinformatics Biomedical text mining Cluster Analysis Clustering Clustering algorithms Collection Cybernetics Data Mining - methods document clustering Educational institutions Empirical analysis Genomics Indexing Medical Subject Headings MEDLINE Representations Semantics semisupervised clustering Spectra spectral clustering Studies Supervised Machine Learning Thesauri Vectors |
Title | Efficient Semisupervised MEDLINE Document Clustering With MeSH-Semantic and Global-Content Constraints |
URI | https://ieeexplore.ieee.org/document/6374265 https://www.ncbi.nlm.nih.gov/pubmed/26502435 https://www.proquest.com/docview/1404816395 https://www.proquest.com/docview/1429867189 https://www.proquest.com/docview/1727991382 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanrgApTyWFmQkDiDwNn4kcY6w3WpBpJdtRW9RbE_Uiipbscmlvx6P4wQJQcUtisevjB3P2J7vI-StzSQHoS1LHHdMNblkdaoMc0rXTqdGNBxjh8uzbHWhvl6mlzvk4xQLAwDh8hnM8TGc5buN7XGr7DiT3pHL0l2y6x23IVZr2k8JBBKB-lb4B-atinyMkUmK4_N1ufiMF7nEHIM_vY-BKMDeOhEqEL39XpICx8q_zc2w7Jw-IuXY4OG2yY9535m5vfsDy_F_e_SYPIz2J_00DJh9sgPtE7IfZ_iWvosw1O8PSLMM6BI-P10jKVx_i7-VLThaLk--fTlb0pNYPl3c9Ii34FdB-v26u6IlrFfMZ_Jau7a0bh0dqAVYwMLCDGiVIjlFt31KLk6X54sVi6wMzEqtOuaMsjp3qkFjgmtrEq4zJ5yp_WvbCIH4PgZEXjtbNCmXrqk5aOO7CdyLyWdkr9208ILQJLXWQJ7nKWhlfYFamwQUWG5k3oCcET4qprIRshwbd1MF1yUpqqDXCvVaRb3OyIcpz-0A2HGv9AEqZZKM-piRo1H_VZzT2wqBiPwgk4VPfjMl---PRyx1C5seZUSBiIG6uEcmx6oR-3FGng9ja6p_HJIv_96uQ_JABDoOvIB4RPa6nz288kZRZ16H2fALlzYFnQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcoALUAploYCROIDA29hxEucI260WaHrZregtij8iKqrdik0u_HpmnA8kBBW3KB7HTp4dj5OZ9wBe2zQWXmrLIyccV3UW8ypRhjulK6cTI2tBucPFWbo4V58vkosdeD_mwnjvQ_CZn9Jh-JfvNralT2VHaYwbuTS5Bbdx3U9El601flEJEhJB_FbiAUe_IhuyZKL8aLUsZh8plEtOKf0TdxnEA4z-iVRB6u33ohRUVv7tcIaF5-Q-FEOXu3iT79O2MVP78w82x_-9pwdwr_dA2YduyOzBjl8_hL1-jm_Zm56I-u0-1PPAL4H12ZJk4dprerFsvWPF_Pj009mcHffXZ7OrlhgXcB1kXy-bb6zwywXHSojbpWXV2rFOXIAHNiyqQH4pyVM020dwfjJfzRa812XgNtaq4c4oqzOnanInhLYmEjp10pkKT9taSmL4MV5mlbN5nYjY1ZXw2uBteoFm8WPYXW_W_gmwKLHW-CzLEq-VxQtqbSKvvBUmzmofT0AMwJS2Jy2nzl2VYfMS5WXAtSRcyx7XCbwb61x3lB03Wu8TKKNlj8cEDgf8y35Wb0uiIsJBFudY_GosxudPP1mqtd-0ZCNz4gzU-Q02GTVN7I8TOOjG1tj-MCSf_r1fL-HOYlWclgjyl2dwVwZxDgpHPITd5kfrn6OL1JgXYWb8Al7cCOY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Semisupervised+MEDLINE+Document+Clustering+With+MeSH-Semantic+and+Global-Content+Constraints&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Gu%2C+Jun&rft.au=Feng%2C+Wei&rft.au=Zeng%2C+Jia&rft.au=Mamitsuka%2C+Hiroshi&rft.date=2013-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=43&rft.issue=4&rft.spage=1265&rft_id=info:doi/10.1109%2FTSMCB.2012.2227998&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3024379401 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |