Efficient Semisupervised MEDLINE Document Clustering With MeSH-Semantic and Global-Content Constraints

For clustering biomedical documents, we can consider three different types of information: the local-content (LC) information from documents, the global-content (GC) information from the whole MEDLINE collections, and the medical subject heading (MeSH)-semantic (MS) information. Previous methods for...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 43; no. 4; pp. 1265 - 1276
Main Authors Jun Gu, Wei Feng, Jia Zeng, Mamitsuka, Hiroshi, Shanfeng Zhu
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2013
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For clustering biomedical documents, we can consider three different types of information: the local-content (LC) information from documents, the global-content (GC) information from the whole MEDLINE collections, and the medical subject heading (MeSH)-semantic (MS) information. Previous methods for clustering biomedical documents are not necessarily effective for integrating different types of information, by which only one or two types of information have been used. Recently, the performance of MEDLINE document clustering has been enhanced by linearly combining both the LC and MS information. However, the simple linear combination could be ineffective because of the limitation of the representation space for combining different types of information (similarities) with different reliability. To overcome the limitation, we propose a new semisupervised spectral clustering method, i.e., SSNCut, for clustering over the LC similarities, with two types of constraints: must-link (ML) constraints on document pairs with high MS (or GC) similarities and cannot-link (CL) constraints on those with low similarities. We empirically demonstrate the performance of SSNCut on MEDLINE document clustering, by using 100 data sets of MEDLINE records. Experimental results show that SSNCut outperformed a linear combination method and several well-known semisupervised clustering methods, being statistically significant. Furthermore, the performance of SSNCut with constraints from both MS and GC similarities outperformed that from only one type of similarities. Another interesting finding was that ML constraints more effectively worked than CL constraints, since CL constraints include around 10% incorrect ones, whereas this number was only 1% for ML constraints.
AbstractList For clustering biomedical documents, we can consider three different types of information: the local-content (LC) information from documents, the global-content (GC) information from the whole MEDLINE collections, and the medical subject heading (MeSH)-semantic (MS) information. Previous methods for clustering biomedical documents are not necessarily effective for integrating different types of information, by which only one or two types of information have been used. Recently, the performance of MEDLINE document clustering has been enhanced by linearly combining both the LC and MS information. However, the simple linear combination could be ineffective because of the limitation of the representation space for combining different types of information (similarities) with different reliability. To overcome the limitation, we propose a new semisupervised spectral clustering method, i.e., SSNCut, for clustering over the LC similarities, with two types of constraints: must-link (ML) constraints on document pairs with high MS (or GC) similarities and cannot-link (CL) constraints on those with low similarities. We empirically demonstrate the performance of SSNCut on MEDLINE document clustering, by using 100 data sets of MEDLINE records. Experimental results show that SSNCut outperformed a linear combination method and several well-known semisupervised clustering methods, being statistically significant. Furthermore, the performance of SSNCut with constraints from both MS and GC similarities outperformed that from only one type of similarities. Another interesting finding was that ML constraints more effectively worked than CL constraints, since CL constraints include around 10% incorrect ones, whereas this number was only 1% for ML constraints.
For clustering biomedical documents, we can consider three different types of information: the local-content (LC) information from documents, the global-content (GC) information from the whole MEDLINE collections, and the medical subject heading (MeSH)-semantic (MS) information. Previous methods for clustering biomedical documents are not necessarily effective for integrating different types of information, by which only one or two types of information have been used. Recently, the performance of MEDLINE document clustering has been enhanced by linearly combining both the LC and MS information. However, the simple linear combination could be ineffective because of the limitation of the representation space for combining different types of information (similarities) with different reliability. To overcome the limitation, we propose a new semisupervised spectral clustering method, i.e., SSNCut, for clustering over the LC similarities, with two types of constraints: must-link (ML) constraints on document pairs with high MS (or GC) similarities and cannot-link (CL) constraints on those with low similarities. We empirically demonstrate the performance of SSNCut on MEDLINE document clustering, by using 100 data sets of MEDLINE records. Experimental results show that SSNCut outperformed a linear combination method and several well-known semisupervised clustering methods, being statistically significant. Furthermore, the performance of SSNCut with constraints from both MS and GC similarities outperformed that from only one type of similarities. Another interesting finding was that ML constraints more effectively worked than CL constraints, since CL constraints include around 10% incorrect ones, whereas this number was only 1% for ML constraints.For clustering biomedical documents, we can consider three different types of information: the local-content (LC) information from documents, the global-content (GC) information from the whole MEDLINE collections, and the medical subject heading (MeSH)-semantic (MS) information. Previous methods for clustering biomedical documents are not necessarily effective for integrating different types of information, by which only one or two types of information have been used. Recently, the performance of MEDLINE document clustering has been enhanced by linearly combining both the LC and MS information. However, the simple linear combination could be ineffective because of the limitation of the representation space for combining different types of information (similarities) with different reliability. To overcome the limitation, we propose a new semisupervised spectral clustering method, i.e., SSNCut, for clustering over the LC similarities, with two types of constraints: must-link (ML) constraints on document pairs with high MS (or GC) similarities and cannot-link (CL) constraints on those with low similarities. We empirically demonstrate the performance of SSNCut on MEDLINE document clustering, by using 100 data sets of MEDLINE records. Experimental results show that SSNCut outperformed a linear combination method and several well-known semisupervised clustering methods, being statistically significant. Furthermore, the performance of SSNCut with constraints from both MS and GC similarities outperformed that from only one type of similarities. Another interesting finding was that ML constraints more effectively worked than CL constraints, since CL constraints include around 10% incorrect ones, whereas this number was only 1% for ML constraints.
Author Wei Feng
Mamitsuka, Hiroshi
Jun Gu
Jia Zeng
Shanfeng Zhu
Author_xml – sequence: 1
  surname: Jun Gu
  fullname: Jun Gu
  organization: Shanghai Key Lab. of Intell. Inf. Process. & the Sch. of Comput. Sci., Fudan Univ., Shanghai, China
– sequence: 2
  surname: Wei Feng
  fullname: Wei Feng
  organization: Sch. of Comput. Sci. & Technol., Tianjin Univ., Tianjin, China
– sequence: 3
  surname: Jia Zeng
  fullname: Jia Zeng
  organization: Sch. of Comput. Sci. & Technol., Soochow Univ., Suzhou, China
– sequence: 4
  givenname: Hiroshi
  surname: Mamitsuka
  fullname: Mamitsuka, Hiroshi
  organization: Bioinf. Center, Kyoto Univ., Uji, Japan
– sequence: 5
  surname: Shanfeng Zhu
  fullname: Shanfeng Zhu
  email: zhusf@fudan.edu.cn
  organization: Shanghai Key Lab. of Intell. Inf. Process. & the Sch. of Comput. Sci., Fudan Univ., Shanghai, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26502435$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v1DAQxS1UREvpFwAJReLCJUvsOIl9hHRpK-3CYYs4Wo49BldZe4kdJL49s91tDz2AL_73e6OZ916SkxADEPKaVgtKK_nhdrPuPy1YRdmCMdZJKZ6RM0ZbUeKtOXk8t90puUjprsIl8EmKF-SUtU3FeN2cEbd0zhsPIRcb2Po072D67RPYYr28XN18WRaX0czb_X8_zinD5MOP4rvPP4s1bK5LFOmQvSl0sMXVGAc9ln0M-V4QQ8qT9iGnV-S502OCi-N-Tr59Xt721-Xq69VN_3FVmlrwXNqBG9FZ7rBVSYUZKipay-yg8dk4xmjD-QCs09ZI19DaOk1BDDgPUMTqc_L-UHc3xV8zpKxwJgPjqAPEOSna7a2itWD_RzmTou2okIi-e4LexXkKOAhSFUdba9kg9fZIzcMWrNpNfqunP-rBbATEATBTTGkCp4zPOnu0C10aFa3UPlp1H63aR6uO0aKUPZE-VP-n6M1B5AHgUdDWHceW6r-3uq28
CODEN ITCEB8
CitedBy_id crossref_primary_10_1155_2021_7937573
crossref_primary_10_1093_bioinformatics_btaa837
crossref_primary_10_1093_bioinformatics_btv237
crossref_primary_10_1093_bioinformatics_btz756
crossref_primary_10_1142_S0219720015420020
crossref_primary_10_1093_bioinformatics_btz253
crossref_primary_10_1016_j_ins_2023_02_088
crossref_primary_10_1109_TCBB_2014_2315996
crossref_primary_10_1142_S0218488523500356
crossref_primary_10_37648_ijrmst_v11i02_012
crossref_primary_10_1016_j_neucom_2018_08_061
crossref_primary_10_1109_TCBB_2015_2430338
crossref_primary_10_1109_ACCESS_2020_3043221
crossref_primary_10_1109_TCYB_2017_2695218
crossref_primary_10_1093_bioinformatics_btw294
crossref_primary_10_1016_j_imu_2018_04_006
crossref_primary_10_1038_s41467_022_29843_y
crossref_primary_10_1186_s40535_018_0055_8
crossref_primary_10_1093_comjnl_bxab013
crossref_primary_10_1016_j_ymeth_2014_11_006
crossref_primary_10_1007_s11390_015_1565_7
crossref_primary_10_1016_j_imu_2019_100226
crossref_primary_10_1007_s10462_024_11103_8
crossref_primary_10_1186_s12859_018_2534_2
crossref_primary_10_1016_j_ins_2024_120798
crossref_primary_10_1142_S0219622022500213
Cites_doi 10.1145/502653.502657
10.1007/978-3-540-71703-4_12
10.1186/1471-2105-8-423
10.1093/nar/gkp967
10.1016/j.cell.2008.06.029
10.1186/gb-2008-9-s2-s8
10.1007/s10115-004-0194-1
10.1504/IJBRA.2007.015010
10.1093/bioinformatics/btp338
10.1093/bioinformatics/btp663
10.1007/s10115-008-0134-6
10.1093/bioinformatics/btm173
10.1109/34.868688
10.1093/bioinformatics/btl011
10.1145/1014052.1014062
10.1162/coli.2006.32.1.13
10.1093/bioinformatics/btl065
10.1145/1148170.1148241
10.7551/mitpress/9780262033589.001.0001
10.1093/bioinformatics/18.suppl_1.S145
10.1007/s10994-008-5084-4
10.1186/1471-2105-7-170
10.1093/bioinformatics/btn318
10.1145/1102351.1102409
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2013
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2013
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TSMCB.2012.2227998
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Aerospace Database
Aerospace Database
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 1276
ExternalDocumentID 3024379401
26502435
10_1109_TSMCB_2012_2227998
6374265
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c384t-db4c87d4f081918cb0186d2dbac87cf221544be27adc9f513dfa1e8b265e12db3
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Fri Jul 11 04:49:55 EDT 2025
Fri Jul 11 08:27:47 EDT 2025
Mon Jun 30 02:43:10 EDT 2025
Thu Jan 02 22:21:02 EST 2025
Thu Apr 24 23:07:16 EDT 2025
Tue Jul 01 04:35:03 EDT 2025
Tue Aug 26 16:43:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c384t-db4c87d4f081918cb0186d2dbac87cf221544be27adc9f513dfa1e8b265e12db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMID 26502435
PQID 1404816395
PQPubID 85422
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TSMCB_2012_2227998
proquest_miscellaneous_1429867189
proquest_journals_1404816395
pubmed_primary_26502435
proquest_miscellaneous_1727991382
ieee_primary_6374265
crossref_primary_10_1109_TSMCB_2012_2227998
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-Aug.
2013-08-00
2013-Aug
20130801
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-Aug.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2013
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
klein (ref19) 2002
ref15
ref36
ref14
ref31
jiang (ref30) 1997
ref11
ng (ref32) 2001
ref10
ref2
ref1
ref17
ref16
ghosh (ref35) 2003
wagstaff (ref18) 2001
ref24
ref26
ref25
ref22
salton (ref6) 1983
xing (ref20) 2003; 15
davidson (ref23) 2005
ref28
ref27
ref29
ref8
hersh (ref33) 2005
ref7
nelson (ref9) 2004
ref3
ref5
kamvar (ref21) 2003
baeza-yates (ref4) 1999
References_xml – ident: ref31
  doi: 10.1145/502653.502657
– ident: ref11
  doi: 10.1007/978-3-540-71703-4_12
– ident: ref7
  doi: 10.1186/1471-2105-8-423
– ident: ref1
  doi: 10.1093/nar/gkp967
– start-page: 577
  year: 2001
  ident: ref18
  article-title: Constrained <tex Notation="TeX">$k$</tex>-means clustering with background knowledge
  publication-title: Proc 18th Int Conf Mach Learn
– ident: ref3
  doi: 10.1016/j.cell.2008.06.029
– ident: ref2
  doi: 10.1186/gb-2008-9-s2-s8
– volume: 15
  start-page: 505
  year: 2003
  ident: ref20
  article-title: Distance metric learning, with application to clustering with side-information
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 14
  year: 2005
  ident: ref33
  article-title: TREC 2005 Genomics track overview
  publication-title: Proc 14th TREC
– start-page: 67
  year: 2004
  ident: ref9
  article-title: The MeSH translation maintenance system: Structure, interface design, and implementation
  publication-title: Proc Medinfo
– start-page: 561
  year: 2003
  ident: ref21
  article-title: Spectral learning
  publication-title: Proc 17th Int Joint Conf Artif Intell
– ident: ref34
  doi: 10.1007/s10115-004-0194-1
– ident: ref10
  doi: 10.1504/IJBRA.2007.015010
– ident: ref12
  doi: 10.1093/bioinformatics/btp338
– ident: ref36
  doi: 10.1093/bioinformatics/btp663
– year: 1999
  ident: ref4
  publication-title: Modern Information Retrieval
– start-page: 849
  year: 2001
  ident: ref32
  article-title: On spectral clustering: Analysis and an algorithm
  publication-title: Proc NIPS
– start-page: 19
  year: 1997
  ident: ref30
  article-title: Semantic similarity based on corpus statistics and lexical taxonomy
  publication-title: Proc ROCLING
– ident: ref26
  doi: 10.1007/s10115-008-0134-6
– ident: ref16
  doi: 10.1093/bioinformatics/btm173
– start-page: 59
  year: 2005
  ident: ref23
  article-title: Hierarchical clustering with constraints: Theory and practice
  publication-title: Proc 9th Eur PKDD
– start-page: 307
  year: 2002
  ident: ref19
  article-title: From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering
  publication-title: Proc 19th Int Conf Mach Learn
– ident: ref28
  doi: 10.1109/34.868688
– year: 1983
  ident: ref6
  publication-title: Introduction to Modern Information Retrieval
– ident: ref14
  doi: 10.1093/bioinformatics/btl011
– ident: ref22
  doi: 10.1145/1014052.1014062
– ident: ref29
  doi: 10.1162/coli.2006.32.1.13
– ident: ref15
  doi: 10.1093/bioinformatics/btl065
– ident: ref25
  doi: 10.1145/1148170.1148241
– ident: ref17
  doi: 10.7551/mitpress/9780262033589.001.0001
– ident: ref13
  doi: 10.1093/bioinformatics/18.suppl_1.S145
– year: 2003
  ident: ref35
  publication-title: HANDBOOK OF DATA MINING
– ident: ref27
  doi: 10.1007/s10994-008-5084-4
– ident: ref5
  doi: 10.1186/1471-2105-7-170
– ident: ref8
  doi: 10.1093/bioinformatics/btn318
– ident: ref24
  doi: 10.1145/1102351.1102409
SSID ssj0000816898
Score 2.1897755
Snippet For clustering biomedical documents, we can consider three different types of information: the local-content (LC) information from documents, the...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1265
SubjectTerms Analogies
Bioinformatics
Biomedical text mining
Cluster Analysis
Clustering
Clustering algorithms
Collection
Cybernetics
Data Mining - methods
document clustering
Educational institutions
Empirical analysis
Genomics
Indexing
Medical Subject Headings
MEDLINE
Representations
Semantics
semisupervised clustering
Spectra
spectral clustering
Studies
Supervised Machine Learning
Thesauri
Vectors
Title Efficient Semisupervised MEDLINE Document Clustering With MeSH-Semantic and Global-Content Constraints
URI https://ieeexplore.ieee.org/document/6374265
https://www.ncbi.nlm.nih.gov/pubmed/26502435
https://www.proquest.com/docview/1404816395
https://www.proquest.com/docview/1429867189
https://www.proquest.com/docview/1727991382
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanrgApTyWFmQkDiDwNn4kcY6w3WpBpJdtRW9RbE_Uiipbscmlvx6P4wQJQcUtisevjB3P2J7vI-StzSQHoS1LHHdMNblkdaoMc0rXTqdGNBxjh8uzbHWhvl6mlzvk4xQLAwDh8hnM8TGc5buN7XGr7DiT3pHL0l2y6x23IVZr2k8JBBKB-lb4B-atinyMkUmK4_N1ufiMF7nEHIM_vY-BKMDeOhEqEL39XpICx8q_zc2w7Jw-IuXY4OG2yY9535m5vfsDy_F_e_SYPIz2J_00DJh9sgPtE7IfZ_iWvosw1O8PSLMM6BI-P10jKVx_i7-VLThaLk--fTlb0pNYPl3c9Ii34FdB-v26u6IlrFfMZ_Jau7a0bh0dqAVYwMLCDGiVIjlFt31KLk6X54sVi6wMzEqtOuaMsjp3qkFjgmtrEq4zJ5yp_WvbCIH4PgZEXjtbNCmXrqk5aOO7CdyLyWdkr9208ILQJLXWQJ7nKWhlfYFamwQUWG5k3oCcET4qprIRshwbd1MF1yUpqqDXCvVaRb3OyIcpz-0A2HGv9AEqZZKM-piRo1H_VZzT2wqBiPwgk4VPfjMl---PRyx1C5seZUSBiIG6uEcmx6oR-3FGng9ja6p_HJIv_96uQ_JABDoOvIB4RPa6nz288kZRZ16H2fALlzYFnQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcoALUAploYCROIDA29hxEucI260WaHrZregtij8iKqrdik0u_HpmnA8kBBW3KB7HTp4dj5OZ9wBe2zQWXmrLIyccV3UW8ypRhjulK6cTI2tBucPFWbo4V58vkosdeD_mwnjvQ_CZn9Jh-JfvNralT2VHaYwbuTS5Bbdx3U9El601flEJEhJB_FbiAUe_IhuyZKL8aLUsZh8plEtOKf0TdxnEA4z-iVRB6u33ohRUVv7tcIaF5-Q-FEOXu3iT79O2MVP78w82x_-9pwdwr_dA2YduyOzBjl8_hL1-jm_Zm56I-u0-1PPAL4H12ZJk4dprerFsvWPF_Pj009mcHffXZ7OrlhgXcB1kXy-bb6zwywXHSojbpWXV2rFOXIAHNiyqQH4pyVM020dwfjJfzRa812XgNtaq4c4oqzOnanInhLYmEjp10pkKT9taSmL4MV5mlbN5nYjY1ZXw2uBteoFm8WPYXW_W_gmwKLHW-CzLEq-VxQtqbSKvvBUmzmofT0AMwJS2Jy2nzl2VYfMS5WXAtSRcyx7XCbwb61x3lB03Wu8TKKNlj8cEDgf8y35Wb0uiIsJBFudY_GosxudPP1mqtd-0ZCNz4gzU-Q02GTVN7I8TOOjG1tj-MCSf_r1fL-HOYlWclgjyl2dwVwZxDgpHPITd5kfrn6OL1JgXYWb8Al7cCOY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Semisupervised+MEDLINE+Document+Clustering+With+MeSH-Semantic+and+Global-Content+Constraints&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Gu%2C+Jun&rft.au=Feng%2C+Wei&rft.au=Zeng%2C+Jia&rft.au=Mamitsuka%2C+Hiroshi&rft.date=2013-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=43&rft.issue=4&rft.spage=1265&rft_id=info:doi/10.1109%2FTSMCB.2012.2227998&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3024379401
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon