Efficient photocatalytic degradation of methyl violet using two new 3D MOFs directed by different carboxylate spacers
Two highly stable metal-organic frameworks (MOFs) assembled by a flexible 1,4-bis(2-methylimidazol-1-yl)butane (bib), and two different aromatic carboxylate coligands, namely, [Zn(BDC-OH 2 )(bib)] ( 1 ) and [Cd 3 (BTC) 2 (bib)(DMF) 3 ] ( 2 ) (H 2 BDC-OH 2 = 2,5-dihydroxyterephthalic acid, H 3 BTC =...
Saved in:
Published in | CrystEngComm Vol. 23; no. 3; pp. 741 - 747 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Two highly stable metal-organic frameworks (MOFs) assembled by a flexible 1,4-bis(2-methylimidazol-1-yl)butane (bib), and two different aromatic carboxylate coligands, namely, [Zn(BDC-OH
2
)(bib)] (
1
) and [Cd
3
(BTC)
2
(bib)(DMF)
3
] (
2
) (H
2
BDC-OH
2
= 2,5-dihydroxyterephthalic acid, H
3
BTC = 1,3,5-benzenetribenzoic acid), were designed and synthesized.
1
showed a 4-fold interpenetration of 4-connected dia-type topological net. In
2
, the 3D topological structure can be viewed as a (3,4,5)-connected network, and its Schläli point is {4·6
2
}
2
{4
2
·6·8
3
} {4
6
·8
9
}. Different auxiliary carboxylate ligands were examined with respect to the building of various structures.
1
and
2
have outstanding photocatalytic behaviors for the disintegration of methyl violet (MV) under UV irradiation.
Both the MOFs proved to be good candidates for the photocatalytic degradation of methyl violet. The mechanism of these photocatalytic degradations is discussed. |
---|---|
AbstractList | Two highly stable metal–organic frameworks (MOFs) assembled by a flexible 1,4-bis(2-methylimidazol-1-yl)butane (bib), and two different aromatic carboxylate coligands, namely, [Zn(BDC–OH
2
)(bib)] (
1
) and [Cd
3
(BTC)
2
(bib)(DMF)
3
] (
2
) (H
2
BDC–OH
2
= 2,5-dihydroxyterephthalic acid, H
3
BTC = 1,3,5-benzenetribenzoic acid), were designed and synthesized.
1
showed a 4-fold interpenetration of 4-connected dia-type topological net. In
2
, the 3D topological structure can be viewed as a (3,4,5)-connected network, and its Schläli point is {4·6
2
}
2
{4
2
·6·8
3
} {4
6
·8
9
}. Different auxiliary carboxylate ligands were examined with respect to the building of various structures.
1
and
2
have outstanding photocatalytic behaviors for the disintegration of methyl violet (MV) under UV irradiation. Two highly stable metal–organic frameworks (MOFs) assembled by a flexible 1,4-bis(2-methylimidazol-1-yl)butane (bib), and two different aromatic carboxylate coligands, namely, [Zn(BDC–OH2)(bib)] (1) and [Cd3(BTC)2(bib)(DMF)3] (2) (H2BDC–OH2 = 2,5-dihydroxyterephthalic acid, H3BTC = 1,3,5-benzenetribenzoic acid), were designed and synthesized. 1 showed a 4-fold interpenetration of 4-connected dia-type topological net. In 2, the 3D topological structure can be viewed as a (3,4,5)-connected network, and its Schläli point is {4·62}2 {42·6·83} {46·89}. Different auxiliary carboxylate ligands were examined with respect to the building of various structures. 1 and 2 have outstanding photocatalytic behaviors for the disintegration of methyl violet (MV) under UV irradiation. Two highly stable metal-organic frameworks (MOFs) assembled by a flexible 1,4-bis(2-methylimidazol-1-yl)butane (bib), and two different aromatic carboxylate coligands, namely, [Zn(BDC-OH 2 )(bib)] ( 1 ) and [Cd 3 (BTC) 2 (bib)(DMF) 3 ] ( 2 ) (H 2 BDC-OH 2 = 2,5-dihydroxyterephthalic acid, H 3 BTC = 1,3,5-benzenetribenzoic acid), were designed and synthesized. 1 showed a 4-fold interpenetration of 4-connected dia-type topological net. In 2 , the 3D topological structure can be viewed as a (3,4,5)-connected network, and its Schläli point is {4·6 2 } 2 {4 2 ·6·8 3 } {4 6 ·8 9 }. Different auxiliary carboxylate ligands were examined with respect to the building of various structures. 1 and 2 have outstanding photocatalytic behaviors for the disintegration of methyl violet (MV) under UV irradiation. Both the MOFs proved to be good candidates for the photocatalytic degradation of methyl violet. The mechanism of these photocatalytic degradations is discussed. |
Author | Rao, Congying Lu, Lu Liu, Jianqiang Wang, Jun Zhang, Shile Muddassir, Mohd |
AuthorAffiliation | Department of Chemistry School of Chemistry and Environmental Engineering College of Science Guangdong Medical University School of Pharmacy Sichuan University of Science & Engineering King Saud University Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University |
AuthorAffiliation_xml | – name: School of Chemistry and Environmental Engineering – name: Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University – name: Guangdong Medical University – name: Department of Chemistry – name: School of Pharmacy – name: King Saud University – name: College of Science – name: Sichuan University of Science & Engineering |
Author_xml | – sequence: 1 givenname: Jun surname: Wang fullname: Wang, Jun – sequence: 2 givenname: Congying surname: Rao fullname: Rao, Congying – sequence: 3 givenname: Lu surname: Lu fullname: Lu, Lu – sequence: 4 givenname: Shile surname: Zhang fullname: Zhang, Shile – sequence: 5 givenname: Mohd surname: Muddassir fullname: Muddassir, Mohd – sequence: 6 givenname: Jianqiang surname: Liu fullname: Liu, Jianqiang |
BookMark | eNptkUFPGzEQhS2UShDKhTuSpd4qpdg7u4732IZQkEBc4LzyjsfgaLNObQfYf09IEFSI07zD995o3ozZqA89MXYsxS8poD61AklIBUW7xw5kqdREC4DRf3qfjVNaCCFLKcUBW8-d8-ipz3z1EHJAk003ZI_c0n001mQfeh4cX1J-GDr-6ENHma-T7-95fgq8pycOZ_z65jxx6yNhJsvbYaOdo_iaiya24XnoTCaeVgYppu_smzNdoqO3ecjuzue3s4vJ1c3fy9nvqwmCLvPEKmhrWVS6cqAVgsSpwYp0q6aqqq1WAgrQ2tQVYFVLp4BKkNZODSG2GuCQ_djlrmL4t6aUm0VYx36zsilKLYp6Wm8psaMwhpQiuQZ93h6eo_FdI0XzWm5zJmbzbbl_Npafnyyr6JcmDl_DJzs4JnznPj4FL5Fcho4 |
CitedBy_id | crossref_primary_10_1016_j_jtice_2023_105139 crossref_primary_10_1016_j_jssc_2023_124220 crossref_primary_10_1016_j_inoche_2022_110031 crossref_primary_10_1016_j_jssc_2022_122967 crossref_primary_10_1039_D0CY02275F crossref_primary_10_1002_aoc_7517 crossref_primary_10_1016_j_ica_2022_121063 crossref_primary_10_1016_j_dyepig_2021_109695 crossref_primary_10_1016_j_rechem_2022_100504 crossref_primary_10_1016_j_poly_2021_115362 crossref_primary_10_1080_17425247_2022_2064450 crossref_primary_10_1016_j_jece_2022_108878 crossref_primary_10_1016_j_jinorgbio_2021_111599 crossref_primary_10_1016_j_molstruc_2021_130220 crossref_primary_10_1016_j_ica_2021_120774 crossref_primary_10_1016_j_molstruc_2021_131039 crossref_primary_10_3390_molecules27217551 crossref_primary_10_1016_j_molstruc_2021_131957 crossref_primary_10_1016_j_dyepig_2021_109285 crossref_primary_10_1016_j_seppur_2022_120814 crossref_primary_10_1166_jbn_2022_3325 crossref_primary_10_1016_j_molstruc_2022_133990 crossref_primary_10_1002_ejic_202100619 crossref_primary_10_3390_inorganics12070191 crossref_primary_10_1007_s10895_023_03265_5 crossref_primary_10_1016_j_surfin_2024_105205 crossref_primary_10_1016_j_apsusc_2022_156252 crossref_primary_10_1016_j_ccr_2021_214074 crossref_primary_10_1039_D3NJ03643J crossref_primary_10_3390_antibiotics13050408 crossref_primary_10_3390_polym16060788 crossref_primary_10_1016_j_poly_2022_115900 crossref_primary_10_1016_j_inoche_2021_108685 crossref_primary_10_3390_molecules27020576 crossref_primary_10_1007_s11224_022_02083_y crossref_primary_10_1016_j_molstruc_2023_135385 crossref_primary_10_1016_j_poly_2024_117321 crossref_primary_10_1016_j_molstruc_2023_136074 crossref_primary_10_1039_D2CY01815B crossref_primary_10_1016_j_jphotochem_2022_114506 crossref_primary_10_1021_acsomega_3c07560 crossref_primary_10_1039_D2CE00200K crossref_primary_10_1016_j_mssp_2022_107131 crossref_primary_10_1007_s10904_023_02887_3 crossref_primary_10_3390_molecules28072933 crossref_primary_10_1002_zaac_202200242 crossref_primary_10_1021_acs_energyfuels_4c00160 crossref_primary_10_1016_j_molliq_2024_126265 crossref_primary_10_1016_j_jtice_2021_05_042 crossref_primary_10_1016_j_saa_2022_122139 crossref_primary_10_1039_D4CE01006J crossref_primary_10_1016_j_molstruc_2023_136103 crossref_primary_10_1007_s10876_021_02042_3 crossref_primary_10_1016_j_molstruc_2022_133304 crossref_primary_10_1016_j_ica_2021_120566 crossref_primary_10_1016_j_inoche_2022_109639 crossref_primary_10_1016_j_poly_2022_115729 crossref_primary_10_2174_2666001602666220128112624 crossref_primary_10_1080_24701556_2022_2078366 crossref_primary_10_1039_D2CE00590E crossref_primary_10_1021_acs_cgd_4c00713 crossref_primary_10_1016_j_poly_2021_115441 crossref_primary_10_1039_D1TB00453K crossref_primary_10_1039_D3RA00004D crossref_primary_10_56038_ejrnd_v2i4_168 crossref_primary_10_1016_j_cej_2024_152566 crossref_primary_10_1039_D2CE01497A crossref_primary_10_1039_D5CE00124B crossref_primary_10_1039_D2NJ01994A crossref_primary_10_1039_D2TB00742H crossref_primary_10_1016_j_jphotochem_2023_115148 crossref_primary_10_1016_j_ijhydene_2025_02_031 crossref_primary_10_1016_j_molstruc_2022_133399 crossref_primary_10_1016_j_jssc_2021_122233 crossref_primary_10_1039_D1CE00640A crossref_primary_10_1016_j_colsurfa_2022_130475 crossref_primary_10_1016_j_molstruc_2021_130388 crossref_primary_10_1016_j_ica_2021_120457 crossref_primary_10_1016_j_molstruc_2021_131510 crossref_primary_10_1039_D1CE00498K crossref_primary_10_3390_w15162973 crossref_primary_10_1016_j_poly_2021_115454 crossref_primary_10_1016_j_inoche_2021_108673 crossref_primary_10_1016_j_jtice_2021_08_041 crossref_primary_10_1016_j_poly_2021_115571 crossref_primary_10_1039_D2CE01121B crossref_primary_10_1007_s40097_021_00405_w crossref_primary_10_1016_j_poly_2023_116388 crossref_primary_10_1002_cptc_202400354 crossref_primary_10_1016_j_saa_2024_123888 crossref_primary_10_1016_j_jphotochem_2023_115159 crossref_primary_10_1016_j_poly_2021_115216 crossref_primary_10_1039_D2CE01387H crossref_primary_10_1016_j_mtener_2024_101754 crossref_primary_10_1016_j_molstruc_2023_136958 crossref_primary_10_1016_j_ecoenv_2024_115927 crossref_primary_10_1021_acs_cgd_4c00699 crossref_primary_10_1016_j_ica_2024_122133 crossref_primary_10_1016_j_inoche_2021_108805 crossref_primary_10_3390_w15040812 crossref_primary_10_1016_j_chphi_2025_100864 crossref_primary_10_1016_j_diamond_2023_110711 crossref_primary_10_1016_j_heliyon_2024_e31353 crossref_primary_10_1016_j_materresbull_2022_112085 crossref_primary_10_3390_w16040585 crossref_primary_10_1016_j_jhazmat_2021_127975 crossref_primary_10_3390_catal13010141 crossref_primary_10_1016_j_poly_2022_116192 crossref_primary_10_1016_j_ccr_2023_215611 crossref_primary_10_1016_j_jtice_2022_104572 crossref_primary_10_1007_s10904_023_02635_7 crossref_primary_10_1021_acsomega_2c04669 crossref_primary_10_1039_D2CE00268J crossref_primary_10_3390_nano12101650 crossref_primary_10_1016_j_inoche_2023_110920 crossref_primary_10_1016_j_molstruc_2023_137070 crossref_primary_10_1016_j_jssc_2021_122608 crossref_primary_10_1016_j_molstruc_2024_138501 crossref_primary_10_1007_s11356_022_24260_6 crossref_primary_10_1016_j_molstruc_2023_136542 |
Cites_doi | 10.1016/j.dyepig.2018.08.046 10.1039/C9CE01175G 10.1039/b913407g 10.1039/D0CE01087A 10.1002/anie.200461214 10.1016/j.jssc.2015.09.027 10.1016/j.cej.2020.124446 10.1039/C9CE00759H 10.1016/j.jssc.2009.08.018 10.1039/C7CE01341H 10.1039/C4CE02465F 10.1039/C9QI01617A 10.1021/cg501252x 10.1039/C5CE02492G 10.1021/acs.cgd.5b01835 10.1016/j.ultsonch.2017.02.007 10.1016/j.inoche.2019.107576 10.1021/acs.cgd.6b01488 10.1039/D0CE00475H 10.1039/D0TA04199H 10.1007/s10904-018-0829-4 10.1039/C7CE01012E 10.1021/acsomega.9b01008 10.1016/j.cej.2011.07.043 10.1039/C7NJ04355D 10.1016/j.jssc.2019.02.041 10.1016/j.ccr.2019.213145 10.1021/acssuschemeng.7b00641 10.1002/zaac.202000057 10.1016/j.apsusc.2016.06.140 10.1016/j.cej.2009.11.017 10.1016/j.matchemphys.2018.01.046 10.1039/c2ce06511h 10.1039/b924937k 10.1039/C6RA28728J 10.1016/j.jhazmat.2020.123696 10.1016/j.cej.2013.03.081 10.1002/cplu.201600289 10.1021/acs.inorgchem.7b03053 10.1039/D0CE00140F 10.1021/cr9003924 10.1039/C9DT00249A 10.1039/C9RA05167H 10.1039/C9CE01325C 10.1016/j.jallcom.2016.08.142 10.1002/anie.201606185 10.1039/C7NJ00183E 10.1016/j.catcom.2017.02.010 10.1016/j.micromeso.2017.07.057 10.1016/j.saa.2019.02.059 10.1016/j.ccr.2019.02.021 10.1039/C9CY02003A 10.1016/j.cej.2010.05.058 10.1021/jacs.0c06682 10.1016/j.jphotochem.2017.11.018 10.2166/wst.2017.484 10.1039/b500665a 10.1039/C7RA03268D 10.1039/C4EE01299B 10.1016/j.apcatb.2016.05.042 10.1016/j.ijbiomac.2011.06.001 10.1021/acs.cgd.6b01690 10.1016/j.apsusc.2016.08.145 10.1021/acs.inorgchem.7b00851 10.1039/C8DT01685B 10.1021/jacs.6b03125 10.1039/D0DT01882A |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION 7U5 8FD L7M |
DOI | 10.1039/d0ce01632b |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1466-8033 |
EndPage | 747 |
ExternalDocumentID | 10_1039_D0CE01632B d0ce01632b |
GroupedDBID | 0-7 0R 1TJ 29F 5GY 70 705 70J 7~J AAEMU AAGNR AAIWI AANOJ AAPBV ABDVN ABGFH ABPTK ABRYZ ACGFS ACLDK ADACO ADMRA ADSRN AENEX AFVBQ AGKEF AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX CS3 E3Z EBS ECGLT EE0 EF- GNO HZ H~N IDZ J3I JG KC5 N9A O9- OK1 P2P R7B RCNCU RIG RNS RPMJG RRA RRC RSCEA SKA SLH VH6 0R~ 6J9 70~ AAJAE AAMEH AAWGC AAXHV AAXPP AAYXX ABASK ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRZK AGEGJ AGRSR AHGCF AKMSF ANUXI APEMP CITATION GGIMP H13 HZ~ R56 RAOCF 7U5 8FD L7M |
ID | FETCH-LOGICAL-c384t-d63b912585f386c31c7ac5e8b67659d86032388a953c591f63e431dd7aeccb833 |
ISSN | 1466-8033 |
IngestDate | Sun Jun 29 12:41:11 EDT 2025 Tue Jul 01 02:07:19 EDT 2025 Thu Apr 24 23:05:42 EDT 2025 Sat Jan 08 03:52:05 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c384t-d63b912585f386c31c7ac5e8b67659d86032388a953c591f63e431dd7aeccb833 |
Notes | Electronic supplementary information (ESI) available. CCDC 2021620 For ESI and crystallographic data in CIF or other electronic format see DOI and 10.1039/d0ce01632b 2021621 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0553-7937 0000-0002-2114-8966 0000-0001-7069-2557 |
PQID | 2480297983 |
PQPubID | 2047491 |
PageCount | 7 |
ParticipantIDs | rsc_primary_d0ce01632b proquest_journals_2480297983 crossref_primary_10_1039_D0CE01632B crossref_citationtrail_10_1039_D0CE01632B |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 20210101 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | CrystEngComm |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Hu (D0CE01632B-(cit11c)/*[position()=1]) 2019; 387 Bhattacharjee (D0CE01632B-(cit34)/*[position()=1]) 2018; 353 Liu (D0CE01632B-(cit12b)/*[position()=1]) 2017; 17 Wu (D0CE01632B-(cit6b)/*[position()=1]) 2017; 7 Hu (D0CE01632B-(cit13a)/*[position()=1]) 2018; 256 Yuan (D0CE01632B-(cit33e)/*[position()=1]) 2019; 109 Zhao (D0CE01632B-(cit6c)/*[position()=1]) 2017; 5 Han (D0CE01632B-(cit23)/*[position()=1]) 2012; 14 Wang (D0CE01632B-(cit29c)/*[position()=1]) 2013; 225 Qian (D0CE01632B-(cit30)/*[position()=1]) 2019; 214 Pan (D0CE01632B-(cit7b)/*[position()=1]) 2019; 21 Liu (D0CE01632B-(cit2b)/*[position()=1]) 2016; 81 Wang (D0CE01632B-(cit26a)/*[position()=1]) 2014; 7 Liao (D0CE01632B-(cit7a)/*[position()=1]) 2016; 387 Chen (D0CE01632B-(cit32)/*[position()=1]) 2018; 208 Zhong (D0CE01632B-(cit15c)/*[position()=1]) 2020; 49 Hu (D0CE01632B-(cit15a)/*[position()=1]) 2020; 7 Cheng (D0CE01632B-(cit25a)/*[position()=1]) 2015; 232 Nourian (D0CE01632B-(cit28)/*[position()=1]) 2017; 94 Abou El-Reash (D0CE01632B-(cit29b)/*[position()=1]) 2011; 49 Peng (D0CE01632B-(cit5a)/*[position()=1]) 2015; 17 Jin (D0CE01632B-(cit8b)/*[position()=1]) 2019; 19 Yi (D0CE01632B-(cit21)/*[position()=1]) 2018; 57 Zheng (D0CE01632B-(cit29a)/*[position()=1]) 2018; 47 Russo (D0CE01632B-(cit4)/*[position()=1]) 2010; 162 Tan (D0CE01632B-(cit15b)/*[position()=1]) 2020; 390 Jin (D0CE01632B-(cit33b)/*[position()=1]) 2017; 19 Xiao (D0CE01632B-(cit6a)/*[position()=1]) 2016; 198 Cai (D0CE01632B-(cit31)/*[position()=1]) 2017; 76 Qin (D0CE01632B-(cit2a)/*[position()=1]) 2017; 17 Lu (D0CE01632B-(cit11a)/*[position()=1]) 2016; 138 Liu (D0CE01632B-(cit5b)/*[position()=1]) 2016; 18 Liu (D0CE01632B-(cit12a)/*[position()=1]) 2020; 8 Demirci (D0CE01632B-(cit8a)/*[position()=1]) 2016; 390 Kesanli (D0CE01632B-(cit17)/*[position()=1]) 2005; 44 Rauf (D0CE01632B-(cit9)/*[position()=1]) 2010; 157 Zhang (D0CE01632B-(cit16b)/*[position()=1]) 2019; 273 Liu (D0CE01632B-(cit25b)/*[position()=1]) 2020; 10 Lin (D0CE01632B-(cit24)/*[position()=1]) 2020; 646 Corma (D0CE01632B-(cit26c)/*[position()=1]) 2010; 110 Liu (D0CE01632B-(cit19a)/*[position()=1]) 2019; 21 Dutta (D0CE01632B-(cit14)/*[position()=1]) 2020; 22 Jin (D0CE01632B-(cit33d)/*[position()=1]) 2017; 19 Lu (D0CE01632B-(cit13c)/*[position()=1]) 2017; 41 Lin (D0CE01632B-(cit19b)/*[position()=1]) 2018; 28 Asha (D0CE01632B-(cit10)/*[position()=1]) 2016; 55 Li (D0CE01632B-(cit33f)/*[position()=1]) 2019; 9 Shi (D0CE01632B-(cit20)/*[position()=1]) 2020; 22 Paul (D0CE01632B-(cit33h)/*[position()=1]) 2009; 11 Silva (D0CE01632B-(cit26b)/*[position()=1]) 2010 Yuan (D0CE01632B-(cit33i)/*[position()=1]) 2019; 21 Huang (D0CE01632B-(cit3a)/*[position()=1]) 2017; 690 Liu (D0CE01632B-(cit11d)/*[position()=1]) 2017; 56 Cheng (D0CE01632B-(cit13b)/*[position()=1]) 2017; 37 Deganoa (D0CE01632B-(cit35)/*[position()=1]) 2019; 160 Esrafili (D0CE01632B-(cit3b)/*[position()=1]) 2021; 403 Lu (D0CE01632B-(cit16a)/*[position()=1]) 2009; 182 Sun (D0CE01632B-(cit22)/*[position()=1]) 2019; 48 Liu (D0CE01632B-(cit12d)/*[position()=1]) 2020; 142 Shi (D0CE01632B-(cit5c)/*[position()=1]) 2017; 7 Li (D0CE01632B-(cit27)/*[position()=1]) 2015; 15 Wu (D0CE01632B-(cit33g)/*[position()=1]) 2017; 7 Liu (D0CE01632B-(cit11b)/*[position()=1]) 2020; 406 Pan (D0CE01632B-(cit33c)/*[position()=1]) 2019; 21 Jiang (D0CE01632B-(cit12c)/*[position()=1]) 2020; 22 Jin (D0CE01632B-(cit33a)/*[position()=1]) 2018; 42 Aitipamula (D0CE01632B-(cit18)/*[position()=1]) 2005 Vieira (D0CE01632B-(cit1)/*[position()=1]) 2011; 173 Ding (D0CE01632B-(cit5d)/*[position()=1]) 2019; 4 Roy (D0CE01632B-(cit19c)/*[position()=1]) 2016; 16 |
References_xml | – volume: 160 start-page: 587 year: 2019 ident: D0CE01632B-(cit35)/*[position()=1] publication-title: Dyes Pigm. doi: 10.1016/j.dyepig.2018.08.046 – volume: 21 start-page: 6613 year: 2019 ident: D0CE01632B-(cit19a)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/C9CE01175G – volume: 11 start-page: 11285 year: 2009 ident: D0CE01632B-(cit33h)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b913407g – volume: 22 start-page: 7736 year: 2020 ident: D0CE01632B-(cit14)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/D0CE01087A – volume: 44 start-page: 72 year: 2005 ident: D0CE01632B-(cit17)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200461214 – volume: 232 start-page: 200 year: 2015 ident: D0CE01632B-(cit25a)/*[position()=1] publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2015.09.027 – volume: 390 start-page: 124446 year: 2020 ident: D0CE01632B-(cit15b)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124446 – volume: 21 start-page: 4578 year: 2019 ident: D0CE01632B-(cit7b)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/C9CE00759H – volume: 182 start-page: 3105 year: 2009 ident: D0CE01632B-(cit16a)/*[position()=1] publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2009.08.018 – volume: 19 start-page: 6464 year: 2017 ident: D0CE01632B-(cit33d)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/C7CE01341H – volume: 17 start-page: 2544 year: 2015 ident: D0CE01632B-(cit5a)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/C4CE02465F – volume: 7 start-page: 1598 year: 2020 ident: D0CE01632B-(cit15a)/*[position()=1] publication-title: Inorg. Chem. Front. doi: 10.1039/C9QI01617A – volume: 15 start-page: 10 year: 2015 ident: D0CE01632B-(cit27)/*[position()=1] publication-title: Cryst. Growth Des. doi: 10.1021/cg501252x – volume: 18 start-page: 2490 year: 2016 ident: D0CE01632B-(cit5b)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/C5CE02492G – volume: 16 start-page: 3170 year: 2016 ident: D0CE01632B-(cit19c)/*[position()=1] publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.5b01835 – volume: 37 start-page: 614 year: 2017 ident: D0CE01632B-(cit13b)/*[position()=1] publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2017.02.007 – volume: 109 start-page: 107576 year: 2019 ident: D0CE01632B-(cit33e)/*[position()=1] publication-title: Inorg. Chem. Commun. doi: 10.1016/j.inoche.2019.107576 – volume: 17 start-page: 1096 year: 2017 ident: D0CE01632B-(cit12b)/*[position()=1] publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.6b01488 – volume: 22 start-page: 3424 year: 2020 ident: D0CE01632B-(cit12c)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/D0CE00475H – volume: 8 start-page: 12975 year: 2020 ident: D0CE01632B-(cit12a)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/D0TA04199H – volume: 28 start-page: 1810 year: 2018 ident: D0CE01632B-(cit19b)/*[position()=1] publication-title: J. Inorg. Organomet. Polym. Mater. doi: 10.1007/s10904-018-0829-4 – volume: 21 start-page: 4578 year: 2019 ident: D0CE01632B-(cit33c)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/C9CE00759H – volume: 19 start-page: 4368 year: 2019 ident: D0CE01632B-(cit8b)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/C7CE01012E – volume: 4 start-page: 10775 year: 2019 ident: D0CE01632B-(cit5d)/*[position()=1] publication-title: ACS Omega doi: 10.1021/acsomega.9b01008 – volume: 173 start-page: 334 year: 2011 ident: D0CE01632B-(cit1)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.07.043 – volume: 42 start-page: 2767 year: 2018 ident: D0CE01632B-(cit33a)/*[position()=1] publication-title: New J. Chem. doi: 10.1039/C7NJ04355D – volume: 273 start-page: 141 year: 2019 ident: D0CE01632B-(cit16b)/*[position()=1] publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2019.02.041 – volume: 406 start-page: 213245 year: 2020 ident: D0CE01632B-(cit11b)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2019.213145 – volume: 19 start-page: 4368 year: 2017 ident: D0CE01632B-(cit33b)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/C7CE01012E – volume: 5 start-page: 4449 year: 2017 ident: D0CE01632B-(cit6c)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.7b00641 – volume: 646 start-page: 514 year: 2020 ident: D0CE01632B-(cit24)/*[position()=1] publication-title: Z. Anorg. Allg. Chem. doi: 10.1002/zaac.202000057 – volume: 387 start-page: 1247 year: 2016 ident: D0CE01632B-(cit7a)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.06.140 – volume: 157 start-page: 373 year: 2010 ident: D0CE01632B-(cit9)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2009.11.017 – volume: 208 start-page: 258 year: 2018 ident: D0CE01632B-(cit32)/*[position()=1] publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2018.01.046 – volume: 14 start-page: 2691 year: 2012 ident: D0CE01632B-(cit23)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/c2ce06511h – start-page: 3141 year: 2010 ident: D0CE01632B-(cit26b)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/b924937k – volume: 7 start-page: 10415 year: 2017 ident: D0CE01632B-(cit6b)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA28728J – volume: 403 start-page: 123696 year: 2021 ident: D0CE01632B-(cit3b)/*[position()=1] publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.123696 – volume: 225 start-page: 153 year: 2013 ident: D0CE01632B-(cit29c)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.03.081 – volume: 81 start-page: 1299 year: 2016 ident: D0CE01632B-(cit2b)/*[position()=1] publication-title: ChemPlusChem doi: 10.1002/cplu.201600289 – volume: 57 start-page: 2654 year: 2018 ident: D0CE01632B-(cit21)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.7b03053 – volume: 22 start-page: 4079 year: 2020 ident: D0CE01632B-(cit20)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/D0CE00140F – volume: 110 start-page: 4606 year: 2010 ident: D0CE01632B-(cit26c)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr9003924 – volume: 48 start-page: 5450 year: 2019 ident: D0CE01632B-(cit22)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C9DT00249A – volume: 9 start-page: 29864 year: 2019 ident: D0CE01632B-(cit33f)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C9RA05167H – volume: 21 start-page: 6558 year: 2019 ident: D0CE01632B-(cit33i)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/C9CE01325C – volume: 690 start-page: 356 year: 2017 ident: D0CE01632B-(cit3a)/*[position()=1] publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.08.142 – volume: 55 start-page: 11528 year: 2016 ident: D0CE01632B-(cit10)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201606185 – volume: 41 start-page: 3537 year: 2017 ident: D0CE01632B-(cit13c)/*[position()=1] publication-title: New J. Chem. doi: 10.1039/C7NJ00183E – volume: 94 start-page: 42 year: 2017 ident: D0CE01632B-(cit28)/*[position()=1] publication-title: Catal. Commun. doi: 10.1016/j.catcom.2017.02.010 – volume: 256 start-page: 111 year: 2018 ident: D0CE01632B-(cit13a)/*[position()=1] publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2017.07.057 – volume: 214 start-page: 372 year: 2019 ident: D0CE01632B-(cit30)/*[position()=1] publication-title: Spectrochim. Acta, Part A doi: 10.1016/j.saa.2019.02.059 – volume: 387 start-page: 415 year: 2019 ident: D0CE01632B-(cit11c)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2019.02.021 – volume: 10 start-page: 757 year: 2020 ident: D0CE01632B-(cit25b)/*[position()=1] publication-title: Catal. Sci. Technol. doi: 10.1039/C9CY02003A – volume: 162 start-page: 537 year: 2010 ident: D0CE01632B-(cit4)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2010.05.058 – volume: 142 start-page: 16905 issue: 40 year: 2020 ident: D0CE01632B-(cit12d)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c06682 – volume: 353 start-page: 215 year: 2018 ident: D0CE01632B-(cit34)/*[position()=1] publication-title: J. Photochem. Photobiol., A doi: 10.1016/j.jphotochem.2017.11.018 – volume: 76 start-page: 3220 year: 2017 ident: D0CE01632B-(cit31)/*[position()=1] publication-title: Water Sci. Technol. doi: 10.2166/wst.2017.484 – volume: 7 start-page: 10415 year: 2017 ident: D0CE01632B-(cit33g)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA28728J – start-page: 3159 year: 2005 ident: D0CE01632B-(cit18)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/b500665a – volume: 7 start-page: 23432 year: 2017 ident: D0CE01632B-(cit5c)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C7RA03268D – volume: 7 start-page: 2831 year: 2014 ident: D0CE01632B-(cit26a)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C4EE01299B – volume: 198 start-page: 124 year: 2016 ident: D0CE01632B-(cit6a)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2016.05.042 – volume: 49 start-page: 513 year: 2011 ident: D0CE01632B-(cit29b)/*[position()=1] publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2011.06.001 – volume: 17 start-page: 1293 year: 2017 ident: D0CE01632B-(cit2a)/*[position()=1] publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.6b01690 – volume: 390 start-page: 591 year: 2016 ident: D0CE01632B-(cit8a)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.08.145 – volume: 56 start-page: 10215 year: 2017 ident: D0CE01632B-(cit11d)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.7b00851 – volume: 47 start-page: 9103 year: 2018 ident: D0CE01632B-(cit29a)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C8DT01685B – volume: 138 start-page: 8336 year: 2016 ident: D0CE01632B-(cit11a)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b03125 – volume: 49 start-page: 11045 year: 2020 ident: D0CE01632B-(cit15c)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/D0DT01882A |
SSID | ssj0014110 |
Score | 2.6134524 |
Snippet | Two highly stable metal-organic frameworks (MOFs) assembled by a flexible 1,4-bis(2-methylimidazol-1-yl)butane (bib), and two different aromatic carboxylate... Two highly stable metal–organic frameworks (MOFs) assembled by a flexible 1,4-bis(2-methylimidazol-1-yl)butane (bib), and two different aromatic carboxylate... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 741 |
SubjectTerms | Crystallography Disintegration Metal-organic frameworks Photocatalysis Photodegradation Topology Ultraviolet radiation |
Title | Efficient photocatalytic degradation of methyl violet using two new 3D MOFs directed by different carboxylate spacers |
URI | https://www.proquest.com/docview/2480297983 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb5tAEF05yaU9VP2K6iatVmovleUWM7AsxzTGSis3udiSb4hdlqSSBZYNauiv7yy7gNNEVdsLshAgmXnMvJmdfUPIex3lVJZMxqEvXJ2gqHGiBS8ZOK4UKeZEWdPle8kult7Xlb8aDDZ7XUtVKT7Knw_uK_kfq-I5tKveJfsPlu0eiifwN9oXj2hhPP6VjaNG_0Gv5m9uirJoSjG1VmBNtQRE2rFBPSa6XptF-HJUNeWB8kehx4mPYDr6djXbjUxsM3y0nZpSauFqUdzWa2SkI_Q90vbLd9oG23pXRvm13mbSl-Ztk2_VbzJLTEG2yK_rNlTqJqCqqQpU94vXN9_tH7X1CHfyWz3CVD3altOmpcQOrjMRx7hZj2kZZCOB0fphs-_Y4g32nGpgpLFsfA6MQuc91--AVk5NHamQxYIr-gDXLupfXsWz5XweL6LV4oAcuZhYoGc8OosWX-bdypOHfKiVsYXwU_-8u8Slz0YOtu2omIaSLJ6SJzaXoGcGGM_IQOXPyeM9hckXpOogQu9ChO5BhBYZNRChBiK0gQhFiFCECIUp1RChLUSoqGkHEboHEWoh8pIsZ9Hi_GJsJ22MJXCvHKcMRIhUl_sZcCZhIoNE-ooLFjA_TDlzAKkdT0IfpB9OMgYKiWeaBgl6AMEBjslhXuTqFaE6JRUJEzxUzJvwRCgHJM88yLKQp5AMyYf2NcbSytDraSjruGmHgDCeOudR88o_D8m77tqNEV958KrT1hqx_Th3setxPZYt5DAkx2ih7v7eoK__fN8JedTD-5QclttKvUECWoq3FjO_APzTjUo |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+photocatalytic+degradation+of+methyl+violet+using+two+new+3D+MOFs+directed+by+different+carboxylate+spacers&rft.jtitle=CrystEngComm&rft.au=Wang%2C+Jun&rft.au=Rao%2C+Congying&rft.au=Lu%2C+Lu&rft.au=Zhang%2C+Shile&rft.date=2021-01-01&rft.pub=Royal+Society+of+Chemistry&rft.eissn=1466-8033&rft.volume=23&rft.issue=3&rft.spage=741&rft.epage=747&rft_id=info:doi/10.1039%2Fd0ce01632b&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-8033&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-8033&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-8033&client=summon |