Efficient photocatalytic degradation of methyl violet using two new 3D MOFs directed by different carboxylate spacers

Two highly stable metal-organic frameworks (MOFs) assembled by a flexible 1,4-bis(2-methylimidazol-1-yl)butane (bib), and two different aromatic carboxylate coligands, namely, [Zn(BDC-OH 2 )(bib)] ( 1 ) and [Cd 3 (BTC) 2 (bib)(DMF) 3 ] ( 2 ) (H 2 BDC-OH 2 = 2,5-dihydroxyterephthalic acid, H 3 BTC =...

Full description

Saved in:
Bibliographic Details
Published inCrystEngComm Vol. 23; no. 3; pp. 741 - 747
Main Authors Wang, Jun, Rao, Congying, Lu, Lu, Zhang, Shile, Muddassir, Mohd, Liu, Jianqiang
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Two highly stable metal-organic frameworks (MOFs) assembled by a flexible 1,4-bis(2-methylimidazol-1-yl)butane (bib), and two different aromatic carboxylate coligands, namely, [Zn(BDC-OH 2 )(bib)] ( 1 ) and [Cd 3 (BTC) 2 (bib)(DMF) 3 ] ( 2 ) (H 2 BDC-OH 2 = 2,5-dihydroxyterephthalic acid, H 3 BTC = 1,3,5-benzenetribenzoic acid), were designed and synthesized. 1 showed a 4-fold interpenetration of 4-connected dia-type topological net. In 2 , the 3D topological structure can be viewed as a (3,4,5)-connected network, and its Schläli point is {4·6 2 } 2 {4 2 ·6·8 3 } {4 6 ·8 9 }. Different auxiliary carboxylate ligands were examined with respect to the building of various structures. 1 and 2 have outstanding photocatalytic behaviors for the disintegration of methyl violet (MV) under UV irradiation. Both the MOFs proved to be good candidates for the photocatalytic degradation of methyl violet. The mechanism of these photocatalytic degradations is discussed.
AbstractList Two highly stable metal–organic frameworks (MOFs) assembled by a flexible 1,4-bis(2-methylimidazol-1-yl)butane (bib), and two different aromatic carboxylate coligands, namely, [Zn(BDC–OH 2 )(bib)] ( 1 ) and [Cd 3 (BTC) 2 (bib)(DMF) 3 ] ( 2 ) (H 2 BDC–OH 2 = 2,5-dihydroxyterephthalic acid, H 3 BTC = 1,3,5-benzenetribenzoic acid), were designed and synthesized. 1 showed a 4-fold interpenetration of 4-connected dia-type topological net. In 2 , the 3D topological structure can be viewed as a (3,4,5)-connected network, and its Schläli point is {4·6 2 } 2 {4 2 ·6·8 3 } {4 6 ·8 9 }. Different auxiliary carboxylate ligands were examined with respect to the building of various structures. 1 and 2 have outstanding photocatalytic behaviors for the disintegration of methyl violet (MV) under UV irradiation.
Two highly stable metal–organic frameworks (MOFs) assembled by a flexible 1,4-bis(2-methylimidazol-1-yl)butane (bib), and two different aromatic carboxylate coligands, namely, [Zn(BDC–OH2)(bib)] (1) and [Cd3(BTC)2(bib)(DMF)3] (2) (H2BDC–OH2 = 2,5-dihydroxyterephthalic acid, H3BTC = 1,3,5-benzenetribenzoic acid), were designed and synthesized. 1 showed a 4-fold interpenetration of 4-connected dia-type topological net. In 2, the 3D topological structure can be viewed as a (3,4,5)-connected network, and its Schläli point is {4·62}2 {42·6·83} {46·89}. Different auxiliary carboxylate ligands were examined with respect to the building of various structures. 1 and 2 have outstanding photocatalytic behaviors for the disintegration of methyl violet (MV) under UV irradiation.
Two highly stable metal-organic frameworks (MOFs) assembled by a flexible 1,4-bis(2-methylimidazol-1-yl)butane (bib), and two different aromatic carboxylate coligands, namely, [Zn(BDC-OH 2 )(bib)] ( 1 ) and [Cd 3 (BTC) 2 (bib)(DMF) 3 ] ( 2 ) (H 2 BDC-OH 2 = 2,5-dihydroxyterephthalic acid, H 3 BTC = 1,3,5-benzenetribenzoic acid), were designed and synthesized. 1 showed a 4-fold interpenetration of 4-connected dia-type topological net. In 2 , the 3D topological structure can be viewed as a (3,4,5)-connected network, and its Schläli point is {4·6 2 } 2 {4 2 ·6·8 3 } {4 6 ·8 9 }. Different auxiliary carboxylate ligands were examined with respect to the building of various structures. 1 and 2 have outstanding photocatalytic behaviors for the disintegration of methyl violet (MV) under UV irradiation. Both the MOFs proved to be good candidates for the photocatalytic degradation of methyl violet. The mechanism of these photocatalytic degradations is discussed.
Author Rao, Congying
Lu, Lu
Liu, Jianqiang
Wang, Jun
Zhang, Shile
Muddassir, Mohd
AuthorAffiliation Department of Chemistry
School of Chemistry and Environmental Engineering
College of Science
Guangdong Medical University
School of Pharmacy
Sichuan University of Science & Engineering
King Saud University
Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University
AuthorAffiliation_xml – name: School of Chemistry and Environmental Engineering
– name: Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University
– name: Guangdong Medical University
– name: Department of Chemistry
– name: School of Pharmacy
– name: King Saud University
– name: College of Science
– name: Sichuan University of Science & Engineering
Author_xml – sequence: 1
  givenname: Jun
  surname: Wang
  fullname: Wang, Jun
– sequence: 2
  givenname: Congying
  surname: Rao
  fullname: Rao, Congying
– sequence: 3
  givenname: Lu
  surname: Lu
  fullname: Lu, Lu
– sequence: 4
  givenname: Shile
  surname: Zhang
  fullname: Zhang, Shile
– sequence: 5
  givenname: Mohd
  surname: Muddassir
  fullname: Muddassir, Mohd
– sequence: 6
  givenname: Jianqiang
  surname: Liu
  fullname: Liu, Jianqiang
BookMark eNptkUFPGzEQhS2UShDKhTuSpd4qpdg7u4732IZQkEBc4LzyjsfgaLNObQfYf09IEFSI07zD995o3ozZqA89MXYsxS8poD61AklIBUW7xw5kqdREC4DRf3qfjVNaCCFLKcUBW8-d8-ipz3z1EHJAk003ZI_c0n001mQfeh4cX1J-GDr-6ENHma-T7-95fgq8pycOZ_z65jxx6yNhJsvbYaOdo_iaiya24XnoTCaeVgYppu_smzNdoqO3ecjuzue3s4vJ1c3fy9nvqwmCLvPEKmhrWVS6cqAVgsSpwYp0q6aqqq1WAgrQ2tQVYFVLp4BKkNZODSG2GuCQ_djlrmL4t6aUm0VYx36zsilKLYp6Wm8psaMwhpQiuQZ93h6eo_FdI0XzWm5zJmbzbbl_Npafnyyr6JcmDl_DJzs4JnznPj4FL5Fcho4
CitedBy_id crossref_primary_10_1016_j_jtice_2023_105139
crossref_primary_10_1016_j_jssc_2023_124220
crossref_primary_10_1016_j_inoche_2022_110031
crossref_primary_10_1016_j_jssc_2022_122967
crossref_primary_10_1039_D0CY02275F
crossref_primary_10_1002_aoc_7517
crossref_primary_10_1016_j_ica_2022_121063
crossref_primary_10_1016_j_dyepig_2021_109695
crossref_primary_10_1016_j_rechem_2022_100504
crossref_primary_10_1016_j_poly_2021_115362
crossref_primary_10_1080_17425247_2022_2064450
crossref_primary_10_1016_j_jece_2022_108878
crossref_primary_10_1016_j_jinorgbio_2021_111599
crossref_primary_10_1016_j_molstruc_2021_130220
crossref_primary_10_1016_j_ica_2021_120774
crossref_primary_10_1016_j_molstruc_2021_131039
crossref_primary_10_3390_molecules27217551
crossref_primary_10_1016_j_molstruc_2021_131957
crossref_primary_10_1016_j_dyepig_2021_109285
crossref_primary_10_1016_j_seppur_2022_120814
crossref_primary_10_1166_jbn_2022_3325
crossref_primary_10_1016_j_molstruc_2022_133990
crossref_primary_10_1002_ejic_202100619
crossref_primary_10_3390_inorganics12070191
crossref_primary_10_1007_s10895_023_03265_5
crossref_primary_10_1016_j_surfin_2024_105205
crossref_primary_10_1016_j_apsusc_2022_156252
crossref_primary_10_1016_j_ccr_2021_214074
crossref_primary_10_1039_D3NJ03643J
crossref_primary_10_3390_antibiotics13050408
crossref_primary_10_3390_polym16060788
crossref_primary_10_1016_j_poly_2022_115900
crossref_primary_10_1016_j_inoche_2021_108685
crossref_primary_10_3390_molecules27020576
crossref_primary_10_1007_s11224_022_02083_y
crossref_primary_10_1016_j_molstruc_2023_135385
crossref_primary_10_1016_j_poly_2024_117321
crossref_primary_10_1016_j_molstruc_2023_136074
crossref_primary_10_1039_D2CY01815B
crossref_primary_10_1016_j_jphotochem_2022_114506
crossref_primary_10_1021_acsomega_3c07560
crossref_primary_10_1039_D2CE00200K
crossref_primary_10_1016_j_mssp_2022_107131
crossref_primary_10_1007_s10904_023_02887_3
crossref_primary_10_3390_molecules28072933
crossref_primary_10_1002_zaac_202200242
crossref_primary_10_1021_acs_energyfuels_4c00160
crossref_primary_10_1016_j_molliq_2024_126265
crossref_primary_10_1016_j_jtice_2021_05_042
crossref_primary_10_1016_j_saa_2022_122139
crossref_primary_10_1039_D4CE01006J
crossref_primary_10_1016_j_molstruc_2023_136103
crossref_primary_10_1007_s10876_021_02042_3
crossref_primary_10_1016_j_molstruc_2022_133304
crossref_primary_10_1016_j_ica_2021_120566
crossref_primary_10_1016_j_inoche_2022_109639
crossref_primary_10_1016_j_poly_2022_115729
crossref_primary_10_2174_2666001602666220128112624
crossref_primary_10_1080_24701556_2022_2078366
crossref_primary_10_1039_D2CE00590E
crossref_primary_10_1021_acs_cgd_4c00713
crossref_primary_10_1016_j_poly_2021_115441
crossref_primary_10_1039_D1TB00453K
crossref_primary_10_1039_D3RA00004D
crossref_primary_10_56038_ejrnd_v2i4_168
crossref_primary_10_1016_j_cej_2024_152566
crossref_primary_10_1039_D2CE01497A
crossref_primary_10_1039_D5CE00124B
crossref_primary_10_1039_D2NJ01994A
crossref_primary_10_1039_D2TB00742H
crossref_primary_10_1016_j_jphotochem_2023_115148
crossref_primary_10_1016_j_ijhydene_2025_02_031
crossref_primary_10_1016_j_molstruc_2022_133399
crossref_primary_10_1016_j_jssc_2021_122233
crossref_primary_10_1039_D1CE00640A
crossref_primary_10_1016_j_colsurfa_2022_130475
crossref_primary_10_1016_j_molstruc_2021_130388
crossref_primary_10_1016_j_ica_2021_120457
crossref_primary_10_1016_j_molstruc_2021_131510
crossref_primary_10_1039_D1CE00498K
crossref_primary_10_3390_w15162973
crossref_primary_10_1016_j_poly_2021_115454
crossref_primary_10_1016_j_inoche_2021_108673
crossref_primary_10_1016_j_jtice_2021_08_041
crossref_primary_10_1016_j_poly_2021_115571
crossref_primary_10_1039_D2CE01121B
crossref_primary_10_1007_s40097_021_00405_w
crossref_primary_10_1016_j_poly_2023_116388
crossref_primary_10_1002_cptc_202400354
crossref_primary_10_1016_j_saa_2024_123888
crossref_primary_10_1016_j_jphotochem_2023_115159
crossref_primary_10_1016_j_poly_2021_115216
crossref_primary_10_1039_D2CE01387H
crossref_primary_10_1016_j_mtener_2024_101754
crossref_primary_10_1016_j_molstruc_2023_136958
crossref_primary_10_1016_j_ecoenv_2024_115927
crossref_primary_10_1021_acs_cgd_4c00699
crossref_primary_10_1016_j_ica_2024_122133
crossref_primary_10_1016_j_inoche_2021_108805
crossref_primary_10_3390_w15040812
crossref_primary_10_1016_j_chphi_2025_100864
crossref_primary_10_1016_j_diamond_2023_110711
crossref_primary_10_1016_j_heliyon_2024_e31353
crossref_primary_10_1016_j_materresbull_2022_112085
crossref_primary_10_3390_w16040585
crossref_primary_10_1016_j_jhazmat_2021_127975
crossref_primary_10_3390_catal13010141
crossref_primary_10_1016_j_poly_2022_116192
crossref_primary_10_1016_j_ccr_2023_215611
crossref_primary_10_1016_j_jtice_2022_104572
crossref_primary_10_1007_s10904_023_02635_7
crossref_primary_10_1021_acsomega_2c04669
crossref_primary_10_1039_D2CE00268J
crossref_primary_10_3390_nano12101650
crossref_primary_10_1016_j_inoche_2023_110920
crossref_primary_10_1016_j_molstruc_2023_137070
crossref_primary_10_1016_j_jssc_2021_122608
crossref_primary_10_1016_j_molstruc_2024_138501
crossref_primary_10_1007_s11356_022_24260_6
crossref_primary_10_1016_j_molstruc_2023_136542
Cites_doi 10.1016/j.dyepig.2018.08.046
10.1039/C9CE01175G
10.1039/b913407g
10.1039/D0CE01087A
10.1002/anie.200461214
10.1016/j.jssc.2015.09.027
10.1016/j.cej.2020.124446
10.1039/C9CE00759H
10.1016/j.jssc.2009.08.018
10.1039/C7CE01341H
10.1039/C4CE02465F
10.1039/C9QI01617A
10.1021/cg501252x
10.1039/C5CE02492G
10.1021/acs.cgd.5b01835
10.1016/j.ultsonch.2017.02.007
10.1016/j.inoche.2019.107576
10.1021/acs.cgd.6b01488
10.1039/D0CE00475H
10.1039/D0TA04199H
10.1007/s10904-018-0829-4
10.1039/C7CE01012E
10.1021/acsomega.9b01008
10.1016/j.cej.2011.07.043
10.1039/C7NJ04355D
10.1016/j.jssc.2019.02.041
10.1016/j.ccr.2019.213145
10.1021/acssuschemeng.7b00641
10.1002/zaac.202000057
10.1016/j.apsusc.2016.06.140
10.1016/j.cej.2009.11.017
10.1016/j.matchemphys.2018.01.046
10.1039/c2ce06511h
10.1039/b924937k
10.1039/C6RA28728J
10.1016/j.jhazmat.2020.123696
10.1016/j.cej.2013.03.081
10.1002/cplu.201600289
10.1021/acs.inorgchem.7b03053
10.1039/D0CE00140F
10.1021/cr9003924
10.1039/C9DT00249A
10.1039/C9RA05167H
10.1039/C9CE01325C
10.1016/j.jallcom.2016.08.142
10.1002/anie.201606185
10.1039/C7NJ00183E
10.1016/j.catcom.2017.02.010
10.1016/j.micromeso.2017.07.057
10.1016/j.saa.2019.02.059
10.1016/j.ccr.2019.02.021
10.1039/C9CY02003A
10.1016/j.cej.2010.05.058
10.1021/jacs.0c06682
10.1016/j.jphotochem.2017.11.018
10.2166/wst.2017.484
10.1039/b500665a
10.1039/C7RA03268D
10.1039/C4EE01299B
10.1016/j.apcatb.2016.05.042
10.1016/j.ijbiomac.2011.06.001
10.1021/acs.cgd.6b01690
10.1016/j.apsusc.2016.08.145
10.1021/acs.inorgchem.7b00851
10.1039/C8DT01685B
10.1021/jacs.6b03125
10.1039/D0DT01882A
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
DBID AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1039/d0ce01632b
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1466-8033
EndPage 747
ExternalDocumentID 10_1039_D0CE01632B
d0ce01632b
GroupedDBID 0-7
0R
1TJ
29F
5GY
70
705
70J
7~J
AAEMU
AAGNR
AAIWI
AANOJ
AAPBV
ABDVN
ABGFH
ABPTK
ABRYZ
ACGFS
ACLDK
ADACO
ADMRA
ADSRN
AENEX
AFVBQ
AGKEF
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
CS3
E3Z
EBS
ECGLT
EE0
EF-
GNO
HZ
H~N
IDZ
J3I
JG
KC5
N9A
O9-
OK1
P2P
R7B
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SLH
VH6
0R~
6J9
70~
AAJAE
AAMEH
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
R56
RAOCF
7U5
8FD
L7M
ID FETCH-LOGICAL-c384t-d63b912585f386c31c7ac5e8b67659d86032388a953c591f63e431dd7aeccb833
ISSN 1466-8033
IngestDate Sun Jun 29 12:41:11 EDT 2025
Tue Jul 01 02:07:19 EDT 2025
Thu Apr 24 23:05:42 EDT 2025
Sat Jan 08 03:52:05 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c384t-d63b912585f386c31c7ac5e8b67659d86032388a953c591f63e431dd7aeccb833
Notes Electronic supplementary information (ESI) available. CCDC
2021620
For ESI and crystallographic data in CIF or other electronic format see DOI
and
10.1039/d0ce01632b
2021621
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0553-7937
0000-0002-2114-8966
0000-0001-7069-2557
PQID 2480297983
PQPubID 2047491
PageCount 7
ParticipantIDs rsc_primary_d0ce01632b
proquest_journals_2480297983
crossref_primary_10_1039_D0CE01632B
crossref_citationtrail_10_1039_D0CE01632B
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 20210101
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle CrystEngComm
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Hu (D0CE01632B-(cit11c)/*[position()=1]) 2019; 387
Bhattacharjee (D0CE01632B-(cit34)/*[position()=1]) 2018; 353
Liu (D0CE01632B-(cit12b)/*[position()=1]) 2017; 17
Wu (D0CE01632B-(cit6b)/*[position()=1]) 2017; 7
Hu (D0CE01632B-(cit13a)/*[position()=1]) 2018; 256
Yuan (D0CE01632B-(cit33e)/*[position()=1]) 2019; 109
Zhao (D0CE01632B-(cit6c)/*[position()=1]) 2017; 5
Han (D0CE01632B-(cit23)/*[position()=1]) 2012; 14
Wang (D0CE01632B-(cit29c)/*[position()=1]) 2013; 225
Qian (D0CE01632B-(cit30)/*[position()=1]) 2019; 214
Pan (D0CE01632B-(cit7b)/*[position()=1]) 2019; 21
Liu (D0CE01632B-(cit2b)/*[position()=1]) 2016; 81
Wang (D0CE01632B-(cit26a)/*[position()=1]) 2014; 7
Liao (D0CE01632B-(cit7a)/*[position()=1]) 2016; 387
Chen (D0CE01632B-(cit32)/*[position()=1]) 2018; 208
Zhong (D0CE01632B-(cit15c)/*[position()=1]) 2020; 49
Hu (D0CE01632B-(cit15a)/*[position()=1]) 2020; 7
Cheng (D0CE01632B-(cit25a)/*[position()=1]) 2015; 232
Nourian (D0CE01632B-(cit28)/*[position()=1]) 2017; 94
Abou El-Reash (D0CE01632B-(cit29b)/*[position()=1]) 2011; 49
Peng (D0CE01632B-(cit5a)/*[position()=1]) 2015; 17
Jin (D0CE01632B-(cit8b)/*[position()=1]) 2019; 19
Yi (D0CE01632B-(cit21)/*[position()=1]) 2018; 57
Zheng (D0CE01632B-(cit29a)/*[position()=1]) 2018; 47
Russo (D0CE01632B-(cit4)/*[position()=1]) 2010; 162
Tan (D0CE01632B-(cit15b)/*[position()=1]) 2020; 390
Jin (D0CE01632B-(cit33b)/*[position()=1]) 2017; 19
Xiao (D0CE01632B-(cit6a)/*[position()=1]) 2016; 198
Cai (D0CE01632B-(cit31)/*[position()=1]) 2017; 76
Qin (D0CE01632B-(cit2a)/*[position()=1]) 2017; 17
Lu (D0CE01632B-(cit11a)/*[position()=1]) 2016; 138
Liu (D0CE01632B-(cit5b)/*[position()=1]) 2016; 18
Liu (D0CE01632B-(cit12a)/*[position()=1]) 2020; 8
Demirci (D0CE01632B-(cit8a)/*[position()=1]) 2016; 390
Kesanli (D0CE01632B-(cit17)/*[position()=1]) 2005; 44
Rauf (D0CE01632B-(cit9)/*[position()=1]) 2010; 157
Zhang (D0CE01632B-(cit16b)/*[position()=1]) 2019; 273
Liu (D0CE01632B-(cit25b)/*[position()=1]) 2020; 10
Lin (D0CE01632B-(cit24)/*[position()=1]) 2020; 646
Corma (D0CE01632B-(cit26c)/*[position()=1]) 2010; 110
Liu (D0CE01632B-(cit19a)/*[position()=1]) 2019; 21
Dutta (D0CE01632B-(cit14)/*[position()=1]) 2020; 22
Jin (D0CE01632B-(cit33d)/*[position()=1]) 2017; 19
Lu (D0CE01632B-(cit13c)/*[position()=1]) 2017; 41
Lin (D0CE01632B-(cit19b)/*[position()=1]) 2018; 28
Asha (D0CE01632B-(cit10)/*[position()=1]) 2016; 55
Li (D0CE01632B-(cit33f)/*[position()=1]) 2019; 9
Shi (D0CE01632B-(cit20)/*[position()=1]) 2020; 22
Paul (D0CE01632B-(cit33h)/*[position()=1]) 2009; 11
Silva (D0CE01632B-(cit26b)/*[position()=1]) 2010
Yuan (D0CE01632B-(cit33i)/*[position()=1]) 2019; 21
Huang (D0CE01632B-(cit3a)/*[position()=1]) 2017; 690
Liu (D0CE01632B-(cit11d)/*[position()=1]) 2017; 56
Cheng (D0CE01632B-(cit13b)/*[position()=1]) 2017; 37
Deganoa (D0CE01632B-(cit35)/*[position()=1]) 2019; 160
Esrafili (D0CE01632B-(cit3b)/*[position()=1]) 2021; 403
Lu (D0CE01632B-(cit16a)/*[position()=1]) 2009; 182
Sun (D0CE01632B-(cit22)/*[position()=1]) 2019; 48
Liu (D0CE01632B-(cit12d)/*[position()=1]) 2020; 142
Shi (D0CE01632B-(cit5c)/*[position()=1]) 2017; 7
Li (D0CE01632B-(cit27)/*[position()=1]) 2015; 15
Wu (D0CE01632B-(cit33g)/*[position()=1]) 2017; 7
Liu (D0CE01632B-(cit11b)/*[position()=1]) 2020; 406
Pan (D0CE01632B-(cit33c)/*[position()=1]) 2019; 21
Jiang (D0CE01632B-(cit12c)/*[position()=1]) 2020; 22
Jin (D0CE01632B-(cit33a)/*[position()=1]) 2018; 42
Aitipamula (D0CE01632B-(cit18)/*[position()=1]) 2005
Vieira (D0CE01632B-(cit1)/*[position()=1]) 2011; 173
Ding (D0CE01632B-(cit5d)/*[position()=1]) 2019; 4
Roy (D0CE01632B-(cit19c)/*[position()=1]) 2016; 16
References_xml – volume: 160
  start-page: 587
  year: 2019
  ident: D0CE01632B-(cit35)/*[position()=1]
  publication-title: Dyes Pigm.
  doi: 10.1016/j.dyepig.2018.08.046
– volume: 21
  start-page: 6613
  year: 2019
  ident: D0CE01632B-(cit19a)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/C9CE01175G
– volume: 11
  start-page: 11285
  year: 2009
  ident: D0CE01632B-(cit33h)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b913407g
– volume: 22
  start-page: 7736
  year: 2020
  ident: D0CE01632B-(cit14)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/D0CE01087A
– volume: 44
  start-page: 72
  year: 2005
  ident: D0CE01632B-(cit17)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200461214
– volume: 232
  start-page: 200
  year: 2015
  ident: D0CE01632B-(cit25a)/*[position()=1]
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2015.09.027
– volume: 390
  start-page: 124446
  year: 2020
  ident: D0CE01632B-(cit15b)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124446
– volume: 21
  start-page: 4578
  year: 2019
  ident: D0CE01632B-(cit7b)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/C9CE00759H
– volume: 182
  start-page: 3105
  year: 2009
  ident: D0CE01632B-(cit16a)/*[position()=1]
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2009.08.018
– volume: 19
  start-page: 6464
  year: 2017
  ident: D0CE01632B-(cit33d)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/C7CE01341H
– volume: 17
  start-page: 2544
  year: 2015
  ident: D0CE01632B-(cit5a)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/C4CE02465F
– volume: 7
  start-page: 1598
  year: 2020
  ident: D0CE01632B-(cit15a)/*[position()=1]
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C9QI01617A
– volume: 15
  start-page: 10
  year: 2015
  ident: D0CE01632B-(cit27)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg501252x
– volume: 18
  start-page: 2490
  year: 2016
  ident: D0CE01632B-(cit5b)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/C5CE02492G
– volume: 16
  start-page: 3170
  year: 2016
  ident: D0CE01632B-(cit19c)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.5b01835
– volume: 37
  start-page: 614
  year: 2017
  ident: D0CE01632B-(cit13b)/*[position()=1]
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2017.02.007
– volume: 109
  start-page: 107576
  year: 2019
  ident: D0CE01632B-(cit33e)/*[position()=1]
  publication-title: Inorg. Chem. Commun.
  doi: 10.1016/j.inoche.2019.107576
– volume: 17
  start-page: 1096
  year: 2017
  ident: D0CE01632B-(cit12b)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.6b01488
– volume: 22
  start-page: 3424
  year: 2020
  ident: D0CE01632B-(cit12c)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/D0CE00475H
– volume: 8
  start-page: 12975
  year: 2020
  ident: D0CE01632B-(cit12a)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA04199H
– volume: 28
  start-page: 1810
  year: 2018
  ident: D0CE01632B-(cit19b)/*[position()=1]
  publication-title: J. Inorg. Organomet. Polym. Mater.
  doi: 10.1007/s10904-018-0829-4
– volume: 21
  start-page: 4578
  year: 2019
  ident: D0CE01632B-(cit33c)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/C9CE00759H
– volume: 19
  start-page: 4368
  year: 2019
  ident: D0CE01632B-(cit8b)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/C7CE01012E
– volume: 4
  start-page: 10775
  year: 2019
  ident: D0CE01632B-(cit5d)/*[position()=1]
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b01008
– volume: 173
  start-page: 334
  year: 2011
  ident: D0CE01632B-(cit1)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2011.07.043
– volume: 42
  start-page: 2767
  year: 2018
  ident: D0CE01632B-(cit33a)/*[position()=1]
  publication-title: New J. Chem.
  doi: 10.1039/C7NJ04355D
– volume: 273
  start-page: 141
  year: 2019
  ident: D0CE01632B-(cit16b)/*[position()=1]
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2019.02.041
– volume: 406
  start-page: 213245
  year: 2020
  ident: D0CE01632B-(cit11b)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2019.213145
– volume: 19
  start-page: 4368
  year: 2017
  ident: D0CE01632B-(cit33b)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/C7CE01012E
– volume: 5
  start-page: 4449
  year: 2017
  ident: D0CE01632B-(cit6c)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.7b00641
– volume: 646
  start-page: 514
  year: 2020
  ident: D0CE01632B-(cit24)/*[position()=1]
  publication-title: Z. Anorg. Allg. Chem.
  doi: 10.1002/zaac.202000057
– volume: 387
  start-page: 1247
  year: 2016
  ident: D0CE01632B-(cit7a)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.06.140
– volume: 157
  start-page: 373
  year: 2010
  ident: D0CE01632B-(cit9)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2009.11.017
– volume: 208
  start-page: 258
  year: 2018
  ident: D0CE01632B-(cit32)/*[position()=1]
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2018.01.046
– volume: 14
  start-page: 2691
  year: 2012
  ident: D0CE01632B-(cit23)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/c2ce06511h
– start-page: 3141
  year: 2010
  ident: D0CE01632B-(cit26b)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/b924937k
– volume: 7
  start-page: 10415
  year: 2017
  ident: D0CE01632B-(cit6b)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA28728J
– volume: 403
  start-page: 123696
  year: 2021
  ident: D0CE01632B-(cit3b)/*[position()=1]
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.123696
– volume: 225
  start-page: 153
  year: 2013
  ident: D0CE01632B-(cit29c)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.03.081
– volume: 81
  start-page: 1299
  year: 2016
  ident: D0CE01632B-(cit2b)/*[position()=1]
  publication-title: ChemPlusChem
  doi: 10.1002/cplu.201600289
– volume: 57
  start-page: 2654
  year: 2018
  ident: D0CE01632B-(cit21)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.7b03053
– volume: 22
  start-page: 4079
  year: 2020
  ident: D0CE01632B-(cit20)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/D0CE00140F
– volume: 110
  start-page: 4606
  year: 2010
  ident: D0CE01632B-(cit26c)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr9003924
– volume: 48
  start-page: 5450
  year: 2019
  ident: D0CE01632B-(cit22)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C9DT00249A
– volume: 9
  start-page: 29864
  year: 2019
  ident: D0CE01632B-(cit33f)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C9RA05167H
– volume: 21
  start-page: 6558
  year: 2019
  ident: D0CE01632B-(cit33i)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/C9CE01325C
– volume: 690
  start-page: 356
  year: 2017
  ident: D0CE01632B-(cit3a)/*[position()=1]
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.08.142
– volume: 55
  start-page: 11528
  year: 2016
  ident: D0CE01632B-(cit10)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201606185
– volume: 41
  start-page: 3537
  year: 2017
  ident: D0CE01632B-(cit13c)/*[position()=1]
  publication-title: New J. Chem.
  doi: 10.1039/C7NJ00183E
– volume: 94
  start-page: 42
  year: 2017
  ident: D0CE01632B-(cit28)/*[position()=1]
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2017.02.010
– volume: 256
  start-page: 111
  year: 2018
  ident: D0CE01632B-(cit13a)/*[position()=1]
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2017.07.057
– volume: 214
  start-page: 372
  year: 2019
  ident: D0CE01632B-(cit30)/*[position()=1]
  publication-title: Spectrochim. Acta, Part A
  doi: 10.1016/j.saa.2019.02.059
– volume: 387
  start-page: 415
  year: 2019
  ident: D0CE01632B-(cit11c)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2019.02.021
– volume: 10
  start-page: 757
  year: 2020
  ident: D0CE01632B-(cit25b)/*[position()=1]
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C9CY02003A
– volume: 162
  start-page: 537
  year: 2010
  ident: D0CE01632B-(cit4)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2010.05.058
– volume: 142
  start-page: 16905
  issue: 40
  year: 2020
  ident: D0CE01632B-(cit12d)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c06682
– volume: 353
  start-page: 215
  year: 2018
  ident: D0CE01632B-(cit34)/*[position()=1]
  publication-title: J. Photochem. Photobiol., A
  doi: 10.1016/j.jphotochem.2017.11.018
– volume: 76
  start-page: 3220
  year: 2017
  ident: D0CE01632B-(cit31)/*[position()=1]
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2017.484
– volume: 7
  start-page: 10415
  year: 2017
  ident: D0CE01632B-(cit33g)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA28728J
– start-page: 3159
  year: 2005
  ident: D0CE01632B-(cit18)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/b500665a
– volume: 7
  start-page: 23432
  year: 2017
  ident: D0CE01632B-(cit5c)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C7RA03268D
– volume: 7
  start-page: 2831
  year: 2014
  ident: D0CE01632B-(cit26a)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE01299B
– volume: 198
  start-page: 124
  year: 2016
  ident: D0CE01632B-(cit6a)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2016.05.042
– volume: 49
  start-page: 513
  year: 2011
  ident: D0CE01632B-(cit29b)/*[position()=1]
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2011.06.001
– volume: 17
  start-page: 1293
  year: 2017
  ident: D0CE01632B-(cit2a)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.6b01690
– volume: 390
  start-page: 591
  year: 2016
  ident: D0CE01632B-(cit8a)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.08.145
– volume: 56
  start-page: 10215
  year: 2017
  ident: D0CE01632B-(cit11d)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.7b00851
– volume: 47
  start-page: 9103
  year: 2018
  ident: D0CE01632B-(cit29a)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C8DT01685B
– volume: 138
  start-page: 8336
  year: 2016
  ident: D0CE01632B-(cit11a)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b03125
– volume: 49
  start-page: 11045
  year: 2020
  ident: D0CE01632B-(cit15c)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/D0DT01882A
SSID ssj0014110
Score 2.6134524
Snippet Two highly stable metal-organic frameworks (MOFs) assembled by a flexible 1,4-bis(2-methylimidazol-1-yl)butane (bib), and two different aromatic carboxylate...
Two highly stable metal–organic frameworks (MOFs) assembled by a flexible 1,4-bis(2-methylimidazol-1-yl)butane (bib), and two different aromatic carboxylate...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 741
SubjectTerms Crystallography
Disintegration
Metal-organic frameworks
Photocatalysis
Photodegradation
Topology
Ultraviolet radiation
Title Efficient photocatalytic degradation of methyl violet using two new 3D MOFs directed by different carboxylate spacers
URI https://www.proquest.com/docview/2480297983
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb5tAEF05yaU9VP2K6iatVmovleUWM7AsxzTGSis3udiSb4hdlqSSBZYNauiv7yy7gNNEVdsLshAgmXnMvJmdfUPIex3lVJZMxqEvXJ2gqHGiBS8ZOK4UKeZEWdPle8kult7Xlb8aDDZ7XUtVKT7Knw_uK_kfq-I5tKveJfsPlu0eiifwN9oXj2hhPP6VjaNG_0Gv5m9uirJoSjG1VmBNtQRE2rFBPSa6XptF-HJUNeWB8kehx4mPYDr6djXbjUxsM3y0nZpSauFqUdzWa2SkI_Q90vbLd9oG23pXRvm13mbSl-Ztk2_VbzJLTEG2yK_rNlTqJqCqqQpU94vXN9_tH7X1CHfyWz3CVD3altOmpcQOrjMRx7hZj2kZZCOB0fphs-_Y4g32nGpgpLFsfA6MQuc91--AVk5NHamQxYIr-gDXLupfXsWz5XweL6LV4oAcuZhYoGc8OosWX-bdypOHfKiVsYXwU_-8u8Slz0YOtu2omIaSLJ6SJzaXoGcGGM_IQOXPyeM9hckXpOogQu9ChO5BhBYZNRChBiK0gQhFiFCECIUp1RChLUSoqGkHEboHEWoh8pIsZ9Hi_GJsJ22MJXCvHKcMRIhUl_sZcCZhIoNE-ooLFjA_TDlzAKkdT0IfpB9OMgYKiWeaBgl6AMEBjslhXuTqFaE6JRUJEzxUzJvwRCgHJM88yLKQp5AMyYf2NcbSytDraSjruGmHgDCeOudR88o_D8m77tqNEV958KrT1hqx_Th3setxPZYt5DAkx2ih7v7eoK__fN8JedTD-5QclttKvUECWoq3FjO_APzTjUo
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+photocatalytic+degradation+of+methyl+violet+using+two+new+3D+MOFs+directed+by+different+carboxylate+spacers&rft.jtitle=CrystEngComm&rft.au=Wang%2C+Jun&rft.au=Rao%2C+Congying&rft.au=Lu%2C+Lu&rft.au=Zhang%2C+Shile&rft.date=2021-01-01&rft.pub=Royal+Society+of+Chemistry&rft.eissn=1466-8033&rft.volume=23&rft.issue=3&rft.spage=741&rft.epage=747&rft_id=info:doi/10.1039%2Fd0ce01632b&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-8033&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-8033&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-8033&client=summon