Energy efficient model predictive building temperature control

Many systems used in buildings for heating, ventilating, and air-conditioning waste energy because of the way they are operated or controlled. This paper explores the application of model predictive control (MPC) to air-conditioning units and demonstrates that the closed-loop performance and energy...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering science Vol. 69; no. 1; pp. 45 - 58
Main Authors Wallace, Matt, McBride, Ryan, Aumi, Siam, Mhaskar, Prashant, House, John, Salsbury, Tim
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 13.02.2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Many systems used in buildings for heating, ventilating, and air-conditioning waste energy because of the way they are operated or controlled. This paper explores the application of model predictive control (MPC) to air-conditioning units and demonstrates that the closed-loop performance and energy efficiency can be improved over conventional approaches. This work focuses on the problem of controlling the vapor compression cycle (VCC) in an air-conditioning system, containing refrigerant which is used to provide cooling. The VCC considered in this work has two manipulated variables that affect operation: compressor speed and the position of an electronic expansion valve. The system is subject to constraints, such as the range of permissible superheat, and also needs to regulate temperature variables to set points. An MPC strategy is developed for this type of system based on linear models identified from data obtained from a first-principles model of the VCC. The MPC strategy incorporates economic measures in the objective function as well as control objectives. Tests are carried out on a simulated VCC system that is linked to a simulation of a realistic building that is developed in the U.S. Department of Energy Computer Simulation Program, EnergyPlus. The MPC demonstrated significantly better tracking control relative to conventional approaches (a reduction of 70% in terms of the integral of squared error for step changes in the temperature set-point), while reducing the VCC energy requirements by 16%. The paper describes the control approach in detail and presents results from the tests. ► A model predictive controller was designed for controlling a model of a vapor compression cycle connected to a building. ► A suitable input-disturbance-output model was identified from simulation data. ► Simulation results demonstrate the improved energy efficiency achievable through advanced control approaches.
AbstractList Many systems used in buildings for heating, ventilating, and air-conditioning waste energy because of the way they are operated or controlled. This paper explores the application of model predictive control (MPC) to air-conditioning units and demonstrates that the closed-loop performance and energy efficiency can be improved over conventional approaches. This work focuses on the problem of controlling the vapor compression cycle (VCC) in an air-conditioning system, containing refrigerant which is used to provide cooling. The VCC considered in this work has two manipulated variables that affect operation: compressor speed and the position of an electronic expansion valve. The system is subject to constraints, such as the range of permissible superheat, and also needs to regulate temperature variables to set points. An MPC strategy is developed for this type of system based on linear models identified from data obtained from a first-principles model of the VCC. The MPC strategy incorporates economic measures in the objective function as well as control objectives. Tests are carried out on a simulated VCC system that is linked to a simulation of a realistic building that is developed in the U.S. Department of Energy Computer Simulation Program, EnergyPlus. The MPC demonstrated significantly better tracking control relative to conventional approaches (a reduction of 70% in terms of the integral of squared error for step changes in the temperature set-point), while reducing the VCC energy requirements by 16%. The paper describes the control approach in detail and presents results from the tests. ► A model predictive controller was designed for controlling a model of a vapor compression cycle connected to a building. ► A suitable input-disturbance-output model was identified from simulation data. ► Simulation results demonstrate the improved energy efficiency achievable through advanced control approaches.
Many systems used in buildings for heating, ventilating, and air-conditioning waste energy because of the way they are operated or controlled. This paper explores the application of model predictive control (MPC) to air-conditioning units and demonstrates that the closed-loop performance and energy efficiency can be improved over conventional approaches. This work focuses on the problem of controlling the vapor compression cycle (VCC) in an air-conditioning system, containing refrigerant which is used to provide cooling. The VCC considered in this work has two manipulated variables that affect operation: compressor speed and the position of an electronic expansion valve. The system is subject to constraints, such as the range of permissible superheat, and also needs to regulate temperature variables to set points. An MPC strategy is developed for this type of system based on linear models identified from data obtained from a first-principles model of the VCC. The MPC strategy incorporates economic measures in the objective function as well as control objectives. Tests are carried out on a simulated VCC system that is linked to a simulation of a realistic building that is developed in the U.S. Department of Energy Computer Simulation Program, EnergyPlus. The MPC demonstrated significantly better tracking control relative to conventional approaches (a reduction of 70% in terms of the integral of squared error for step changes in the temperature set-point), while reducing the VCC energy requirements by 16%. The paper describes the control approach in detail and presents results from the tests.
Author Mhaskar, Prashant
Salsbury, Tim
Wallace, Matt
Aumi, Siam
House, John
McBride, Ryan
Author_xml – sequence: 1
  givenname: Matt
  surname: Wallace
  fullname: Wallace, Matt
  organization: Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L8
– sequence: 2
  givenname: Ryan
  surname: McBride
  fullname: McBride, Ryan
  organization: Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L8
– sequence: 3
  givenname: Siam
  surname: Aumi
  fullname: Aumi, Siam
  organization: Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L8
– sequence: 4
  givenname: Prashant
  surname: Mhaskar
  fullname: Mhaskar, Prashant
  email: mhaskar@mcmaster.ca
  organization: Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L8
– sequence: 5
  givenname: John
  surname: House
  fullname: House, John
  organization: Johnson Controls Inc., 507 E. Michigan Street, Milwaukee, WI 53202, United States
– sequence: 6
  givenname: Tim
  surname: Salsbury
  fullname: Salsbury, Tim
  organization: Johnson Controls Inc., 507 E. Michigan Street, Milwaukee, WI 53202, United States
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25416567$$DView record in Pascal Francis
BookMark eNp9kUtLJDEUhcOgYPv4Aa6mNoKbqrmpJJUqBEHEeYAwixnXId7catJUV9okLfjvTdHOZhauQuA7h-Q7p-xoDjMxdsmh4cC7b5sGKTUtcN6AbqAVX9iK91rUUoI6YisAGOpWwXDCTlPalKvWHFbs9mGmuH6raBw9eppztQ2OpmoXyXnM_pWq572fnJ_XVabtjqLN-0gVhjnHMJ2z49FOiS4-zjP29P3h7_3P-vH3j1_3d481il7m2gFSOzgSEqXrOAotcRRDKxVxhUrYAUSHCJYP1DshO-gFogXXWy0cJ3HGrg-9uxhe9pSy2fqENE12prBPhne6Bc170AW9-kBtQjuN0c7ok9lFv7XxzbRK8k51C6cPHMaQUqTRoM82--Vj1k-Gg1nMmo0pZs1i1oA2xWxJ8v-S_8o_y3w9ZEYbjF3H8qKnPwVQZYl2AK0KcXMgqHh89RRNWgbBskMkzMYF_0n_O80gm9k
CODEN CESCAC
CitedBy_id crossref_primary_10_3390_pr5030046
crossref_primary_10_3390_en11030631
crossref_primary_10_1016_j_ijrefrig_2014_10_008
crossref_primary_10_3182_20140824_6_ZA_1003_02629
crossref_primary_10_1051_matecconf_20167201118
crossref_primary_10_1016_j_buildenv_2021_107952
crossref_primary_10_1016_j_apenergy_2015_05_096
crossref_primary_10_1051_matecconf_20179101056
crossref_primary_10_3390_pr12081600
crossref_primary_10_1016_j_rser_2021_111153
crossref_primary_10_1051_matecconf_20179101057
crossref_primary_10_1051_matecconf_201711001086
crossref_primary_10_1016_j_egyr_2021_12_066
crossref_primary_10_1016_j_ijrefrig_2015_07_028
crossref_primary_10_1051_matecconf_20179201032
crossref_primary_10_1016_j_buildenv_2013_11_014
crossref_primary_10_1016_j_buildenv_2013_11_016
crossref_primary_10_1016_j_cor_2017_12_003
crossref_primary_10_1016_j_enbuild_2023_113674
crossref_primary_10_1051_matecconf_20167201080
crossref_primary_10_1016_j_conengprac_2019_06_017
crossref_primary_10_1051_epjconf_201611001084
crossref_primary_10_1016_j_enbuild_2015_12_017
crossref_primary_10_1016_j_compchemeng_2012_08_003
crossref_primary_10_1016_j_csite_2024_105057
crossref_primary_10_1016_j_jprocont_2014_06_011
crossref_primary_10_33736_jita_331_2016
crossref_primary_10_1016_j_jprocont_2013_09_022
crossref_primary_10_1587_essfr_17_4_240
crossref_primary_10_1016_j_csite_2022_102142
crossref_primary_10_1016_j_jprocont_2012_06_011
crossref_primary_10_1587_transfun_2022MAI0001
crossref_primary_10_1016_j_autcon_2022_104622
crossref_primary_10_1051_epjconf_20158201047
crossref_primary_10_1021_ie5017915
crossref_primary_10_1016_j_rser_2017_09_102
crossref_primary_10_1016_j_apenergy_2016_04_117
crossref_primary_10_1016_j_enbuild_2014_02_052
crossref_primary_10_1016_j_enbuild_2018_02_036
crossref_primary_10_3390_su14127514
crossref_primary_10_1016_j_enbuild_2020_109807
crossref_primary_10_1007_s11633_015_0942_6
Cites_doi 10.1016/S0960-1481(96)00037-7
10.1021/ie060237p
10.1016/j.ijrefrig.2006.08.009
10.1016/j.ijrefrig.2009.04.004
10.1016/j.conengprac.2006.10.010
10.1002/aic.12720
10.1016/j.ijrefrig.2005.12.005
10.1016/S0378-7788(97)00053-4
10.1016/S0959-1524(00)00044-5
10.1016/j.sysconle.2005.09.014
10.1115/1.2899242
10.1016/j.enconman.2009.06.014
10.1109/TAC.2005.858692
10.1016/S0360-1323(02)00027-6
10.1109/TCST.2008.2010500
10.1016/j.ijrefrig.2008.10.005
10.1016/S0378-7788(02)00016-6
ContentType Journal Article
Copyright 2011 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2011 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
7S9
L.6
DOI 10.1016/j.ces.2011.07.023
DatabaseName AGRIS
CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Economics
Applied Sciences
EISSN 1873-4405
EndPage 58
ExternalDocumentID 25416567
10_1016_j_ces_2011_07_023
US201500029075
S0009250911004854
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIDUJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
KOM
LX7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SC5
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSZ
T5K
T9H
VH1
WUQ
XFK
XPP
Y6R
ZMT
ZY4
~02
~G-
AATTM
AAXKI
ABDPE
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AKRWK
ANKPU
BNPGV
FBQ
SSH
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
IQODW
7S9
L.6
ID FETCH-LOGICAL-c384t-d0ce29de34c4d61c374cf39245e15c53a9036cc0a19e8d346083cca0d8a73d1e3
IEDL.DBID .~1
ISSN 0009-2509
IngestDate Fri Jul 11 05:00:42 EDT 2025
Mon Jul 21 09:14:19 EDT 2025
Tue Jul 01 01:16:10 EDT 2025
Thu Apr 24 22:59:35 EDT 2025
Thu Apr 03 09:43:03 EDT 2025
Fri Feb 23 02:32:52 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords EnergyPlus
Model predictive control
Energy efficient control
Vapor compression cycle
Temperature control
Building control
Closed loop
Compression
Cooling
Computer simulation
Buildings
Compressor
Modeling
Linear model
Heating
Energetic efficiency
Numerical simulation
Valve
Conditioning
Objective function
Expansion
Refrigerant fluid
Predictive control
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c384t-d0ce29de34c4d61c374cf39245e15c53a9036cc0a19e8d346083cca0d8a73d1e3
Notes http://dx.doi.org/10.1016/j.ces.2011.07.023
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1672071807
PQPubID 24069
PageCount 14
ParticipantIDs proquest_miscellaneous_1672071807
pascalfrancis_primary_25416567
crossref_citationtrail_10_1016_j_ces_2011_07_023
crossref_primary_10_1016_j_ces_2011_07_023
fao_agris_US201500029075
elsevier_sciencedirect_doi_10_1016_j_ces_2011_07_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-02-13
PublicationDateYYYYMMDD 2012-02-13
PublicationDate_xml – month: 02
  year: 2012
  text: 2012-02-13
  day: 13
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Chemical engineering science
PublicationYear 2012
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Albieri, Beghi, Bodo, Cecchinato (bib1) 2009; 32
Behidj, N., Brugger, M., Demers, D., Kowal, A., Liu, Y., Warbanski, M., Yamada, F., 2009. Energy Efficiency Trends in Canada, Technical Report, Natural Resources Canada (09 2009). URL
Zhu, Henson, Megan (bib31) 2001; 11
Aumi, S., Mhaskar, P. Integrating data-based modeling and nonlinear control tools for batch process control. AIChE J., in press.
Ye, Yang, Chen, Li (bib30) 2003; 38
American Society of Heating, Refrigeration and Air-Conditioning Engineers, Inc., ASHRAE Handbook-Heating, Ventillating and Air-Conditioning Systems and Equipment, ASHRAE.
Aumi, S., Corbett, B., Mhaskar, P., Clarke-Pringle, T. Data-based modeling and control of nylon-6,6 batch polymerization. IEEE Trans. Control Syst. Technol., submitted for publication.
Wetter, M., Haves, P., 2008. A modular building controls virtual test bed for the integration of heterogeneous systems. In: Third National Conference of IBPSA-USA, pp. 69–76.
Leducq, Guilpart, Trystram (bib15) 2006; 29
Xi, Poo, Chou (bib29) 2007; 15
Brager, de Dear (bib7) 1998; 27
Keir, Alleyne (bib14) 2007
Hanna (bib10) 1997; 10
U.S. Department of Energy, EnergyPlus Building Software, Building Technologies Program. URL
Jain, Li, Keir, Hencey, Alleyne (bib12) 2010; 18
Rasmussen, B., 2005. Dynamic Modeling and Advanced Control of Air Conditioning and Refrigeration System. Ph.D. Thesis, University of Illinois at Urbana-Champaign.
Huang, Wang, Xu (bib11) 2009; 50
Mhaskar, El-Farra, Christofides (bib20) 2005; 50
Jones (bib13) 2002; 34
.
Sarabia, Capraro, Larsen, Prada (bib25) 2007
Sandipan, Alleyne, Chandan (bib24) 2010
Dincer, Rosen (bib8) 2007
Morosan, Bourdais, Dumur, Buisson (bib22) 2010
Federspiel, Asada (bib9) 1994; 116
Mhaskar, El-Farra, Christofides (bib21) 2006; 55
Lin, Yeh (bib16) 2007; 30
Ma, Borrelli, Hencey, Coffey, Bengea, Haves (bib18) 2010
Schurt, Hermes, Neto (bib26) 2009; 32
Baus, Nikolovski, Maric (bib5) 2008; 59
Mhaskar (bib19) 2006; 45
Ma, J., Qin, J.S., Salsbury, T., 2010. Real-time model predictive control for energy and demand optimization of multi-zone buildings. In: Proceedings of the AIChE Annual Conference.
Ye (10.1016/j.ces.2011.07.023_bib30) 2003; 38
Leducq (10.1016/j.ces.2011.07.023_bib15) 2006; 29
Huang (10.1016/j.ces.2011.07.023_bib11) 2009; 50
Mhaskar (10.1016/j.ces.2011.07.023_bib19) 2006; 45
Federspiel (10.1016/j.ces.2011.07.023_bib9) 1994; 116
Hanna (10.1016/j.ces.2011.07.023_bib10) 1997; 10
Xi (10.1016/j.ces.2011.07.023_bib29) 2007; 15
10.1016/j.ces.2011.07.023_bib3
10.1016/j.ces.2011.07.023_bib4
Sarabia (10.1016/j.ces.2011.07.023_bib25) 2007
10.1016/j.ces.2011.07.023_bib2
10.1016/j.ces.2011.07.023_bib17
Mhaskar (10.1016/j.ces.2011.07.023_bib21) 2006; 55
10.1016/j.ces.2011.07.023_bib6
Mhaskar (10.1016/j.ces.2011.07.023_bib20) 2005; 50
Keir (10.1016/j.ces.2011.07.023_bib14) 2007
Sandipan (10.1016/j.ces.2011.07.023_bib24) 2010
Zhu (10.1016/j.ces.2011.07.023_bib31) 2001; 11
Jones (10.1016/j.ces.2011.07.023_bib13) 2002; 34
Ma (10.1016/j.ces.2011.07.023_bib18) 2010
Lin (10.1016/j.ces.2011.07.023_bib16) 2007; 30
Baus (10.1016/j.ces.2011.07.023_bib5) 2008; 59
Brager (10.1016/j.ces.2011.07.023_bib7) 1998; 27
10.1016/j.ces.2011.07.023_bib27
10.1016/j.ces.2011.07.023_bib28
Albieri (10.1016/j.ces.2011.07.023_bib1) 2009; 32
Schurt (10.1016/j.ces.2011.07.023_bib26) 2009; 32
10.1016/j.ces.2011.07.023_bib23
Morosan (10.1016/j.ces.2011.07.023_bib22) 2010
Jain (10.1016/j.ces.2011.07.023_bib12) 2010; 18
Dincer (10.1016/j.ces.2011.07.023_bib8) 2007
References_xml – volume: 10
  start-page: 559
  year: 1997
  end-page: 568
  ident: bib10
  article-title: Relationship between thermal comfort and user satisfaction in hot dry climates
  publication-title: Renew Energy
– volume: 32
  start-page: 1672
  year: 2009
  end-page: 1682
  ident: bib26
  article-title: A model-driven multivariable controller for vapor compression refrigeration systems
  publication-title: Int. J. Refrig.
– volume: 50
  start-page: 1670
  year: 2005
  end-page: 1680
  ident: bib20
  article-title: Predictive control of switched nonlinear systems with scheduled mode transitions
  publication-title: IEEE Trans. Automat. Control
– volume: 29
  start-page: 761
  year: 2006
  end-page: 772
  ident: bib15
  article-title: Non-linear predictive control of a vapour compression cycle
  publication-title: Int. J. Refrig.
– volume: 32
  start-page: 1068
  year: 2009
  end-page: 1076
  ident: bib1
  article-title: Advanced control systems for single compressor chiller units
  publication-title: Int. J. Refrig.
– reference: Aumi, S., Corbett, B., Mhaskar, P., Clarke-Pringle, T. Data-based modeling and control of nylon-6,6 batch polymerization. IEEE Trans. Control Syst. Technol., submitted for publication.
– reference: Behidj, N., Brugger, M., Demers, D., Kowal, A., Liu, Y., Warbanski, M., Yamada, F., 2009. Energy Efficiency Trends in Canada, Technical Report, Natural Resources Canada (09 2009). URL
– volume: 34
  start-page: 653
  year: 2002
  end-page: 659
  ident: bib13
  article-title: Capabilities and limitations of thermal models for use in thermal comfort standards
  publication-title: Energy Build.
– start-page: 5106
  year: 2010
  end-page: 5111
  ident: bib18
  article-title: Model predictive control for the operation of building cooling systems
  publication-title: Proceedings of the American Control Conference (ACC)
– volume: 11
  start-page: 129
  year: 2001
  end-page: 148
  ident: bib31
  article-title: Dynamic modeling and linear model predictive control of gas pipeline networks
  publication-title: J. Process Control
– reference: U.S. Department of Energy, EnergyPlus Building Software, Building Technologies Program. URL
– volume: 38
  start-page: 33
  year: 2003
  end-page: 44
  ident: bib30
  article-title: A new approach for measuring predicted mean vote ccPMVcc and standard effective temperature
  publication-title: Build. Environ.
– start-page: 4178
  year: 2007
  end-page: 4185
  ident: bib25
  article-title: Hybrid control of a supermarket refrigeration system
  publication-title: Proceedings of the American Control Conference (ACC)
– reference: Ma, J., Qin, J.S., Salsbury, T., 2010. Real-time model predictive control for energy and demand optimization of multi-zone buildings. In: Proceedings of the AIChE Annual Conference.
– reference: Aumi, S., Mhaskar, P. Integrating data-based modeling and nonlinear control tools for batch process control. AIChE J., in press.
– reference: Rasmussen, B., 2005. Dynamic Modeling and Advanced Control of Air Conditioning and Refrigeration System. Ph.D. Thesis, University of Illinois at Urbana-Champaign.
– start-page: 5052
  year: 2007
  end-page: 5058
  ident: bib14
  article-title: Feedback structures for vapor compression cycle systems
  publication-title: Proceedings of the American Control Conference (ACC)
– volume: 55
  start-page: 650
  year: 2006
  end-page: 659
  ident: bib21
  article-title: Stabilization of nonlinear systems with state and control constraints using Lyapunov-based predictive control
  publication-title: Syst. Contr. Lett.
– volume: 45
  start-page: 8565
  year: 2006
  end-page: 8574
  ident: bib19
  article-title: Robust model predictive control design for fault-tolerant control of process systems
  publication-title: Ind. Eng. Chem. Res.
– volume: 59
  start-page: 34
  year: 2008
  end-page: 39
  ident: bib5
  article-title: Process control for thermal comfort maintenance using fuzzy logic
  publication-title: J. Elec. Eng.
– volume: 15
  start-page: 897
  year: 2007
  end-page: 908
  ident: bib29
  article-title: Support vector regression model predictive control on a HVAC plant
  publication-title: Control Eng. Pract.
– volume: 30
  start-page: 209
  year: 2007
  end-page: 220
  ident: bib16
  article-title: Modeling, identification and control of air-conditioning systems
  publication-title: Int. J. Refrig.
– reference: Wetter, M., Haves, P., 2008. A modular building controls virtual test bed for the integration of heterogeneous systems. In: Third National Conference of IBPSA-USA, pp. 69–76.
– volume: 27
  start-page: 83
  year: 1998
  end-page: 96
  ident: bib7
  article-title: Thermal adaptation in the built environment: a literature review
  publication-title: Energy Build.
– volume: 18
  start-page: 185
  year: 2010
  end-page: 193
  ident: bib12
  article-title: Decentralized feedback structures of a vapor compression cycle system
  publication-title: IEEE Trans. Control Syst. Technol.
– start-page: 3174
  year: 2010
  end-page: 3179
  ident: bib22
  article-title: Distributed model predictive control for building temperature regulation
  publication-title: Proceedings of the American Control Conference (ACC)
– reference: American Society of Heating, Refrigeration and Air-Conditioning Engineers, Inc., ASHRAE Handbook-Heating, Ventillating and Air-Conditioning Systems and Equipment, ASHRAE.
– start-page: 5112
  year: 2010
  end-page: 5117
  ident: bib24
  article-title: Predictive control of complex hydronic systems
  publication-title: Proceedings of the American Control Conference (ACC)
– reference: .
– year: 2007
  ident: bib8
  article-title: Exergy: Energy, Environment and Sustainable Development
– volume: 50
  start-page: 2650
  year: 2009
  end-page: 2658
  ident: bib11
  article-title: A robust model predictive control strategy for improving the control performance of air-conditioning systems
  publication-title: Energy Convers. Manage.
– volume: 116
  start-page: 474
  year: 1994
  end-page: 486
  ident: bib9
  article-title: User-adaptable comfort control for HVAC systems
  publication-title: J. Dyn. Syst. Meas. Control Trans. ASME
– ident: 10.1016/j.ces.2011.07.023_bib6
– ident: 10.1016/j.ces.2011.07.023_bib4
– volume: 10
  start-page: 559
  issue: 4
  year: 1997
  ident: 10.1016/j.ces.2011.07.023_bib10
  article-title: Relationship between thermal comfort and user satisfaction in hot dry climates
  publication-title: Renew Energy
  doi: 10.1016/S0960-1481(96)00037-7
– volume: 45
  start-page: 8565
  year: 2006
  ident: 10.1016/j.ces.2011.07.023_bib19
  article-title: Robust model predictive control design for fault-tolerant control of process systems
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie060237p
– ident: 10.1016/j.ces.2011.07.023_bib2
– volume: 59
  start-page: 34
  issue: 1
  year: 2008
  ident: 10.1016/j.ces.2011.07.023_bib5
  article-title: Process control for thermal comfort maintenance using fuzzy logic
  publication-title: J. Elec. Eng.
– ident: 10.1016/j.ces.2011.07.023_bib17
– volume: 30
  start-page: 209
  year: 2007
  ident: 10.1016/j.ces.2011.07.023_bib16
  article-title: Modeling, identification and control of air-conditioning systems
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2006.08.009
– volume: 32
  start-page: 1672
  year: 2009
  ident: 10.1016/j.ces.2011.07.023_bib26
  article-title: A model-driven multivariable controller for vapor compression refrigeration systems
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2009.04.004
– ident: 10.1016/j.ces.2011.07.023_bib28
– volume: 15
  start-page: 897
  year: 2007
  ident: 10.1016/j.ces.2011.07.023_bib29
  article-title: Support vector regression model predictive control on a HVAC plant
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2006.10.010
– ident: 10.1016/j.ces.2011.07.023_bib3
  doi: 10.1002/aic.12720
– start-page: 5112
  year: 2010
  ident: 10.1016/j.ces.2011.07.023_bib24
  article-title: Predictive control of complex hydronic systems
– year: 2007
  ident: 10.1016/j.ces.2011.07.023_bib8
– volume: 29
  start-page: 761
  year: 2006
  ident: 10.1016/j.ces.2011.07.023_bib15
  article-title: Non-linear predictive control of a vapour compression cycle
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2005.12.005
– volume: 27
  start-page: 83
  issue: 1
  year: 1998
  ident: 10.1016/j.ces.2011.07.023_bib7
  article-title: Thermal adaptation in the built environment: a literature review
  publication-title: Energy Build.
  doi: 10.1016/S0378-7788(97)00053-4
– volume: 11
  start-page: 129
  year: 2001
  ident: 10.1016/j.ces.2011.07.023_bib31
  article-title: Dynamic modeling and linear model predictive control of gas pipeline networks
  publication-title: J. Process Control
  doi: 10.1016/S0959-1524(00)00044-5
– start-page: 5052
  year: 2007
  ident: 10.1016/j.ces.2011.07.023_bib14
  article-title: Feedback structures for vapor compression cycle systems
– volume: 55
  start-page: 650
  year: 2006
  ident: 10.1016/j.ces.2011.07.023_bib21
  article-title: Stabilization of nonlinear systems with state and control constraints using Lyapunov-based predictive control
  publication-title: Syst. Contr. Lett.
  doi: 10.1016/j.sysconle.2005.09.014
– volume: 116
  start-page: 474
  issue: 3
  year: 1994
  ident: 10.1016/j.ces.2011.07.023_bib9
  article-title: User-adaptable comfort control for HVAC systems
  publication-title: J. Dyn. Syst. Meas. Control Trans. ASME
  doi: 10.1115/1.2899242
– volume: 50
  start-page: 2650
  year: 2009
  ident: 10.1016/j.ces.2011.07.023_bib11
  article-title: A robust model predictive control strategy for improving the control performance of air-conditioning systems
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2009.06.014
– volume: 50
  start-page: 1670
  year: 2005
  ident: 10.1016/j.ces.2011.07.023_bib20
  article-title: Predictive control of switched nonlinear systems with scheduled mode transitions
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2005.858692
– volume: 38
  start-page: 33
  issue: 1
  year: 2003
  ident: 10.1016/j.ces.2011.07.023_bib30
  article-title: A new approach for measuring predicted mean vote ccPMVcc and standard effective temperature
  publication-title: Build. Environ.
  doi: 10.1016/S0360-1323(02)00027-6
– start-page: 4178
  year: 2007
  ident: 10.1016/j.ces.2011.07.023_bib25
  article-title: Hybrid control of a supermarket refrigeration system
– volume: 18
  start-page: 185
  year: 2010
  ident: 10.1016/j.ces.2011.07.023_bib12
  article-title: Decentralized feedback structures of a vapor compression cycle system
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2008.2010500
– start-page: 3174
  year: 2010
  ident: 10.1016/j.ces.2011.07.023_bib22
  article-title: Distributed model predictive control for building temperature regulation
– volume: 32
  start-page: 1068
  issue: 5
  year: 2009
  ident: 10.1016/j.ces.2011.07.023_bib1
  article-title: Advanced control systems for single compressor chiller units
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2008.10.005
– volume: 34
  start-page: 653
  year: 2002
  ident: 10.1016/j.ces.2011.07.023_bib13
  article-title: Capabilities and limitations of thermal models for use in thermal comfort standards
  publication-title: Energy Build.
  doi: 10.1016/S0378-7788(02)00016-6
– start-page: 5106
  year: 2010
  ident: 10.1016/j.ces.2011.07.023_bib18
  article-title: Model predictive control for the operation of building cooling systems
– ident: 10.1016/j.ces.2011.07.023_bib23
– ident: 10.1016/j.ces.2011.07.023_bib27
SSID ssj0007710
Score 2.2846217
Snippet Many systems used in buildings for heating, ventilating, and air-conditioning waste energy because of the way they are operated or controlled. This paper...
SourceID proquest
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 45
SubjectTerms air conditioning
Applied sciences
Building control
buildings
Chemical engineering
computer simulation
cooling
economics
energy efficiency
Energy efficient control
energy requirements
EnergyPlus
Exact sciences and technology
heat
linear models
Model predictive control
temperature
Temperature control
Vapor compression cycle
vapors
Title Energy efficient model predictive building temperature control
URI https://dx.doi.org/10.1016/j.ces.2011.07.023
https://www.proquest.com/docview/1672071807
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0BvcChogXEFrpKpZ6QAnY8sZMLEkKghapcYCVulmM7FRXaXS3Ltb-9M1mHD6Fy6DFRLFkz9ptx5vkNwPdQaWd0bHPX1phjE0XeBKTDijd1FZ0uY3dQ_HmlR2O8vC1vV-C0vwvDtMqE_UtM79A6vTlK1jya3d3xHV9RFxzvWPSsKlkTFNHwKj_880zzMEaKvpsaf91XNjuOF23FpOJpDkWh_hWbVls3ZdKkeyC7tcuGF2-wuwtI55vwMWWS2clysp9gJU4-w8YLfcEtOD7rbvZlsdOJoPCSdY1vstmcyzMMdFmT2mJnrFGVBJazxF_fhvH52c3pKE8NE3KvKlzkQfhY1CEq9Bi09MqgbykBwjLK0pfK1RSvvBdO1rEKCjXlX-RBESpnVJBR7cDaZDqJu5BhESR6VzofBGLT1LUzrtVVWwYCCakHIHpTWZ_UxLmpxb3taWO_LVnXsnWtMJasO4CDpyGzpZTGex9jb3_7aj1Ygvr3hu2Sr6z7RQhpx9cF_8_hwiMlRgMYvnLg0xzoiMwSRGYA33qPWtpjXDhxkzh9fLBSm4JSsUqYL_83rT1Yp6eC2d5S7cPaYv4Yv1Iys2iG3WodwoeTix-jq79VJvEm
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3BcqA9IChULJRtKnFCCtjxV3KphBBo-dpLWYmb5dhORVXtrmD3_zOTdVZFVTn0msSS9cZ-M86M3wAch1I7o2OTu6aSuawjy-sg8bDiTVVGp1VsD4r3Iz0cy5tH9bgGF91dGCqrTNy_5PSWrdOTs4Tm2ezpie74sqogf0eiZ6WS67BB6lSqBxvn17fD0YqQjeGsa6hGA7rkZlvmhbsxCXmaU1aIf7mn9cZNqW7SvSB0zbLnxV_03fqkq23YSsFkdr6c7w6sxckn-PiHxOAufL9sL_dlsZWKQA-Ttb1vstkzZWiI67I6dcbOSKYqaSxnqYR9D8ZXlw8Xwzz1TMi9KOU8D8zHogpRSC-D5l4Y6RuMgaSKXHklXIUuy3vmeBXLIKTGEAyNyELpjAg8is_Qm0wncR8yWQQuvVPOByZlXVeVM67RZaMC8gTXfWAdVNYnQXHqa_HbdpVjvyyiawldy4xFdPtwshoyW6ppvPex7PC3b5aERbZ_b9g-2sq6n0iSdvyjoF86lHvE2KgPgzcGXM0BT8mkQmT68K2zqMVtRrkTN4nTxYvl2hQYjZXMHPzftL7C5vDh_s7eXY9uD-EDvimo-JuLL9CbPy_iEcY283qQ1u4rod3z1w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+efficient+model+predictive+building+temperature+control&rft.jtitle=Chemical+engineering+science&rft.au=Wallace%2C+Matt&rft.au=McBride%2C+Ryan&rft.au=Aumi%2C+Siam&rft.au=Mhaskar%2C+Prashant&rft.date=2012-02-13&rft.issn=0009-2509&rft.volume=69&rft.issue=1&rft.spage=45&rft.epage=58&rft_id=info:doi/10.1016%2Fj.ces.2011.07.023&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ces_2011_07_023
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2509&client=summon