Energy efficient model predictive building temperature control
Many systems used in buildings for heating, ventilating, and air-conditioning waste energy because of the way they are operated or controlled. This paper explores the application of model predictive control (MPC) to air-conditioning units and demonstrates that the closed-loop performance and energy...
Saved in:
Published in | Chemical engineering science Vol. 69; no. 1; pp. 45 - 58 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
13.02.2012
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Many systems used in buildings for heating, ventilating, and air-conditioning waste energy because of the way they are operated or controlled. This paper explores the application of model predictive control (MPC) to air-conditioning units and demonstrates that the closed-loop performance and energy efficiency can be improved over conventional approaches. This work focuses on the problem of controlling the vapor compression cycle (VCC) in an air-conditioning system, containing refrigerant which is used to provide cooling. The VCC considered in this work has two manipulated variables that affect operation: compressor speed and the position of an electronic expansion valve. The system is subject to constraints, such as the range of permissible superheat, and also needs to regulate temperature variables to set points. An MPC strategy is developed for this type of system based on linear models identified from data obtained from a first-principles model of the VCC. The MPC strategy incorporates economic measures in the objective function as well as control objectives. Tests are carried out on a simulated VCC system that is linked to a simulation of a realistic building that is developed in the U.S. Department of Energy Computer Simulation Program, EnergyPlus. The MPC demonstrated significantly better tracking control relative to conventional approaches (a reduction of 70% in terms of the integral of squared error for step changes in the temperature set-point), while reducing the VCC energy requirements by 16%. The paper describes the control approach in detail and presents results from the tests.
► A model predictive controller was designed for controlling a model of a vapor compression cycle connected to a building. ► A suitable input-disturbance-output model was identified from simulation data. ► Simulation results demonstrate the improved energy efficiency achievable through advanced control approaches. |
---|---|
AbstractList | Many systems used in buildings for heating, ventilating, and air-conditioning waste energy because of the way they are operated or controlled. This paper explores the application of model predictive control (MPC) to air-conditioning units and demonstrates that the closed-loop performance and energy efficiency can be improved over conventional approaches. This work focuses on the problem of controlling the vapor compression cycle (VCC) in an air-conditioning system, containing refrigerant which is used to provide cooling. The VCC considered in this work has two manipulated variables that affect operation: compressor speed and the position of an electronic expansion valve. The system is subject to constraints, such as the range of permissible superheat, and also needs to regulate temperature variables to set points. An MPC strategy is developed for this type of system based on linear models identified from data obtained from a first-principles model of the VCC. The MPC strategy incorporates economic measures in the objective function as well as control objectives. Tests are carried out on a simulated VCC system that is linked to a simulation of a realistic building that is developed in the U.S. Department of Energy Computer Simulation Program, EnergyPlus. The MPC demonstrated significantly better tracking control relative to conventional approaches (a reduction of 70% in terms of the integral of squared error for step changes in the temperature set-point), while reducing the VCC energy requirements by 16%. The paper describes the control approach in detail and presents results from the tests.
► A model predictive controller was designed for controlling a model of a vapor compression cycle connected to a building. ► A suitable input-disturbance-output model was identified from simulation data. ► Simulation results demonstrate the improved energy efficiency achievable through advanced control approaches. Many systems used in buildings for heating, ventilating, and air-conditioning waste energy because of the way they are operated or controlled. This paper explores the application of model predictive control (MPC) to air-conditioning units and demonstrates that the closed-loop performance and energy efficiency can be improved over conventional approaches. This work focuses on the problem of controlling the vapor compression cycle (VCC) in an air-conditioning system, containing refrigerant which is used to provide cooling. The VCC considered in this work has two manipulated variables that affect operation: compressor speed and the position of an electronic expansion valve. The system is subject to constraints, such as the range of permissible superheat, and also needs to regulate temperature variables to set points. An MPC strategy is developed for this type of system based on linear models identified from data obtained from a first-principles model of the VCC. The MPC strategy incorporates economic measures in the objective function as well as control objectives. Tests are carried out on a simulated VCC system that is linked to a simulation of a realistic building that is developed in the U.S. Department of Energy Computer Simulation Program, EnergyPlus. The MPC demonstrated significantly better tracking control relative to conventional approaches (a reduction of 70% in terms of the integral of squared error for step changes in the temperature set-point), while reducing the VCC energy requirements by 16%. The paper describes the control approach in detail and presents results from the tests. |
Author | Mhaskar, Prashant Salsbury, Tim Wallace, Matt Aumi, Siam House, John McBride, Ryan |
Author_xml | – sequence: 1 givenname: Matt surname: Wallace fullname: Wallace, Matt organization: Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L8 – sequence: 2 givenname: Ryan surname: McBride fullname: McBride, Ryan organization: Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L8 – sequence: 3 givenname: Siam surname: Aumi fullname: Aumi, Siam organization: Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L8 – sequence: 4 givenname: Prashant surname: Mhaskar fullname: Mhaskar, Prashant email: mhaskar@mcmaster.ca organization: Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L8 – sequence: 5 givenname: John surname: House fullname: House, John organization: Johnson Controls Inc., 507 E. Michigan Street, Milwaukee, WI 53202, United States – sequence: 6 givenname: Tim surname: Salsbury fullname: Salsbury, Tim organization: Johnson Controls Inc., 507 E. Michigan Street, Milwaukee, WI 53202, United States |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25416567$$DView record in Pascal Francis |
BookMark | eNp9kUtLJDEUhcOgYPv4Aa6mNoKbqrmpJJUqBEHEeYAwixnXId7catJUV9okLfjvTdHOZhauQuA7h-Q7p-xoDjMxdsmh4cC7b5sGKTUtcN6AbqAVX9iK91rUUoI6YisAGOpWwXDCTlPalKvWHFbs9mGmuH6raBw9eppztQ2OpmoXyXnM_pWq572fnJ_XVabtjqLN-0gVhjnHMJ2z49FOiS4-zjP29P3h7_3P-vH3j1_3d481il7m2gFSOzgSEqXrOAotcRRDKxVxhUrYAUSHCJYP1DshO-gFogXXWy0cJ3HGrg-9uxhe9pSy2fqENE12prBPhne6Bc170AW9-kBtQjuN0c7ok9lFv7XxzbRK8k51C6cPHMaQUqTRoM82--Vj1k-Gg1nMmo0pZs1i1oA2xWxJ8v-S_8o_y3w9ZEYbjF3H8qKnPwVQZYl2AK0KcXMgqHh89RRNWgbBskMkzMYF_0n_O80gm9k |
CODEN | CESCAC |
CitedBy_id | crossref_primary_10_3390_pr5030046 crossref_primary_10_3390_en11030631 crossref_primary_10_1016_j_ijrefrig_2014_10_008 crossref_primary_10_3182_20140824_6_ZA_1003_02629 crossref_primary_10_1051_matecconf_20167201118 crossref_primary_10_1016_j_buildenv_2021_107952 crossref_primary_10_1016_j_apenergy_2015_05_096 crossref_primary_10_1051_matecconf_20179101056 crossref_primary_10_3390_pr12081600 crossref_primary_10_1016_j_rser_2021_111153 crossref_primary_10_1051_matecconf_20179101057 crossref_primary_10_1051_matecconf_201711001086 crossref_primary_10_1016_j_egyr_2021_12_066 crossref_primary_10_1016_j_ijrefrig_2015_07_028 crossref_primary_10_1051_matecconf_20179201032 crossref_primary_10_1016_j_buildenv_2013_11_014 crossref_primary_10_1016_j_buildenv_2013_11_016 crossref_primary_10_1016_j_cor_2017_12_003 crossref_primary_10_1016_j_enbuild_2023_113674 crossref_primary_10_1051_matecconf_20167201080 crossref_primary_10_1016_j_conengprac_2019_06_017 crossref_primary_10_1051_epjconf_201611001084 crossref_primary_10_1016_j_enbuild_2015_12_017 crossref_primary_10_1016_j_compchemeng_2012_08_003 crossref_primary_10_1016_j_csite_2024_105057 crossref_primary_10_1016_j_jprocont_2014_06_011 crossref_primary_10_33736_jita_331_2016 crossref_primary_10_1016_j_jprocont_2013_09_022 crossref_primary_10_1587_essfr_17_4_240 crossref_primary_10_1016_j_csite_2022_102142 crossref_primary_10_1016_j_jprocont_2012_06_011 crossref_primary_10_1587_transfun_2022MAI0001 crossref_primary_10_1016_j_autcon_2022_104622 crossref_primary_10_1051_epjconf_20158201047 crossref_primary_10_1021_ie5017915 crossref_primary_10_1016_j_rser_2017_09_102 crossref_primary_10_1016_j_apenergy_2016_04_117 crossref_primary_10_1016_j_enbuild_2014_02_052 crossref_primary_10_1016_j_enbuild_2018_02_036 crossref_primary_10_3390_su14127514 crossref_primary_10_1016_j_enbuild_2020_109807 crossref_primary_10_1007_s11633_015_0942_6 |
Cites_doi | 10.1016/S0960-1481(96)00037-7 10.1021/ie060237p 10.1016/j.ijrefrig.2006.08.009 10.1016/j.ijrefrig.2009.04.004 10.1016/j.conengprac.2006.10.010 10.1002/aic.12720 10.1016/j.ijrefrig.2005.12.005 10.1016/S0378-7788(97)00053-4 10.1016/S0959-1524(00)00044-5 10.1016/j.sysconle.2005.09.014 10.1115/1.2899242 10.1016/j.enconman.2009.06.014 10.1109/TAC.2005.858692 10.1016/S0360-1323(02)00027-6 10.1109/TCST.2008.2010500 10.1016/j.ijrefrig.2008.10.005 10.1016/S0378-7788(02)00016-6 |
ContentType | Journal Article |
Copyright | 2011 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2011 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | FBQ AAYXX CITATION IQODW 7S9 L.6 |
DOI | 10.1016/j.ces.2011.07.023 |
DatabaseName | AGRIS CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Economics Applied Sciences |
EISSN | 1873-4405 |
EndPage | 58 |
ExternalDocumentID | 25416567 10_1016_j_ces_2011_07_023 US201500029075 S0009250911004854 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIDUJ AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA HLY HVGLF HZ~ IHE J1W KOM LX7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SC5 SCE SDF SDG SDP SES SEW SPC SPCBC SSG SSZ T5K T9H VH1 WUQ XFK XPP Y6R ZMT ZY4 ~02 ~G- AATTM AAXKI ABDPE ABWVN ACRPL ADNMO AEIPS AFJKZ AKRWK ANKPU BNPGV FBQ SSH AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS IQODW 7S9 L.6 |
ID | FETCH-LOGICAL-c384t-d0ce29de34c4d61c374cf39245e15c53a9036cc0a19e8d346083cca0d8a73d1e3 |
IEDL.DBID | .~1 |
ISSN | 0009-2509 |
IngestDate | Fri Jul 11 05:00:42 EDT 2025 Mon Jul 21 09:14:19 EDT 2025 Tue Jul 01 01:16:10 EDT 2025 Thu Apr 24 22:59:35 EDT 2025 Thu Apr 03 09:43:03 EDT 2025 Fri Feb 23 02:32:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | EnergyPlus Model predictive control Energy efficient control Vapor compression cycle Temperature control Building control Closed loop Compression Cooling Computer simulation Buildings Compressor Modeling Linear model Heating Energetic efficiency Numerical simulation Valve Conditioning Objective function Expansion Refrigerant fluid Predictive control |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c384t-d0ce29de34c4d61c374cf39245e15c53a9036cc0a19e8d346083cca0d8a73d1e3 |
Notes | http://dx.doi.org/10.1016/j.ces.2011.07.023 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1672071807 |
PQPubID | 24069 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1672071807 pascalfrancis_primary_25416567 crossref_citationtrail_10_1016_j_ces_2011_07_023 crossref_primary_10_1016_j_ces_2011_07_023 fao_agris_US201500029075 elsevier_sciencedirect_doi_10_1016_j_ces_2011_07_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-02-13 |
PublicationDateYYYYMMDD | 2012-02-13 |
PublicationDate_xml | – month: 02 year: 2012 text: 2012-02-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Chemical engineering science |
PublicationYear | 2012 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Albieri, Beghi, Bodo, Cecchinato (bib1) 2009; 32 Behidj, N., Brugger, M., Demers, D., Kowal, A., Liu, Y., Warbanski, M., Yamada, F., 2009. Energy Efficiency Trends in Canada, Technical Report, Natural Resources Canada (09 2009). URL Zhu, Henson, Megan (bib31) 2001; 11 Aumi, S., Mhaskar, P. Integrating data-based modeling and nonlinear control tools for batch process control. AIChE J., in press. Ye, Yang, Chen, Li (bib30) 2003; 38 American Society of Heating, Refrigeration and Air-Conditioning Engineers, Inc., ASHRAE Handbook-Heating, Ventillating and Air-Conditioning Systems and Equipment, ASHRAE. Aumi, S., Corbett, B., Mhaskar, P., Clarke-Pringle, T. Data-based modeling and control of nylon-6,6 batch polymerization. IEEE Trans. Control Syst. Technol., submitted for publication. Wetter, M., Haves, P., 2008. A modular building controls virtual test bed for the integration of heterogeneous systems. In: Third National Conference of IBPSA-USA, pp. 69–76. Leducq, Guilpart, Trystram (bib15) 2006; 29 Xi, Poo, Chou (bib29) 2007; 15 Brager, de Dear (bib7) 1998; 27 Keir, Alleyne (bib14) 2007 Hanna (bib10) 1997; 10 U.S. Department of Energy, EnergyPlus Building Software, Building Technologies Program. URL Jain, Li, Keir, Hencey, Alleyne (bib12) 2010; 18 Rasmussen, B., 2005. Dynamic Modeling and Advanced Control of Air Conditioning and Refrigeration System. Ph.D. Thesis, University of Illinois at Urbana-Champaign. Huang, Wang, Xu (bib11) 2009; 50 Mhaskar, El-Farra, Christofides (bib20) 2005; 50 Jones (bib13) 2002; 34 . Sarabia, Capraro, Larsen, Prada (bib25) 2007 Sandipan, Alleyne, Chandan (bib24) 2010 Dincer, Rosen (bib8) 2007 Morosan, Bourdais, Dumur, Buisson (bib22) 2010 Federspiel, Asada (bib9) 1994; 116 Mhaskar, El-Farra, Christofides (bib21) 2006; 55 Lin, Yeh (bib16) 2007; 30 Ma, Borrelli, Hencey, Coffey, Bengea, Haves (bib18) 2010 Schurt, Hermes, Neto (bib26) 2009; 32 Baus, Nikolovski, Maric (bib5) 2008; 59 Mhaskar (bib19) 2006; 45 Ma, J., Qin, J.S., Salsbury, T., 2010. Real-time model predictive control for energy and demand optimization of multi-zone buildings. In: Proceedings of the AIChE Annual Conference. Ye (10.1016/j.ces.2011.07.023_bib30) 2003; 38 Leducq (10.1016/j.ces.2011.07.023_bib15) 2006; 29 Huang (10.1016/j.ces.2011.07.023_bib11) 2009; 50 Mhaskar (10.1016/j.ces.2011.07.023_bib19) 2006; 45 Federspiel (10.1016/j.ces.2011.07.023_bib9) 1994; 116 Hanna (10.1016/j.ces.2011.07.023_bib10) 1997; 10 Xi (10.1016/j.ces.2011.07.023_bib29) 2007; 15 10.1016/j.ces.2011.07.023_bib3 10.1016/j.ces.2011.07.023_bib4 Sarabia (10.1016/j.ces.2011.07.023_bib25) 2007 10.1016/j.ces.2011.07.023_bib2 10.1016/j.ces.2011.07.023_bib17 Mhaskar (10.1016/j.ces.2011.07.023_bib21) 2006; 55 10.1016/j.ces.2011.07.023_bib6 Mhaskar (10.1016/j.ces.2011.07.023_bib20) 2005; 50 Keir (10.1016/j.ces.2011.07.023_bib14) 2007 Sandipan (10.1016/j.ces.2011.07.023_bib24) 2010 Zhu (10.1016/j.ces.2011.07.023_bib31) 2001; 11 Jones (10.1016/j.ces.2011.07.023_bib13) 2002; 34 Ma (10.1016/j.ces.2011.07.023_bib18) 2010 Lin (10.1016/j.ces.2011.07.023_bib16) 2007; 30 Baus (10.1016/j.ces.2011.07.023_bib5) 2008; 59 Brager (10.1016/j.ces.2011.07.023_bib7) 1998; 27 10.1016/j.ces.2011.07.023_bib27 10.1016/j.ces.2011.07.023_bib28 Albieri (10.1016/j.ces.2011.07.023_bib1) 2009; 32 Schurt (10.1016/j.ces.2011.07.023_bib26) 2009; 32 10.1016/j.ces.2011.07.023_bib23 Morosan (10.1016/j.ces.2011.07.023_bib22) 2010 Jain (10.1016/j.ces.2011.07.023_bib12) 2010; 18 Dincer (10.1016/j.ces.2011.07.023_bib8) 2007 |
References_xml | – volume: 10 start-page: 559 year: 1997 end-page: 568 ident: bib10 article-title: Relationship between thermal comfort and user satisfaction in hot dry climates publication-title: Renew Energy – volume: 32 start-page: 1672 year: 2009 end-page: 1682 ident: bib26 article-title: A model-driven multivariable controller for vapor compression refrigeration systems publication-title: Int. J. Refrig. – volume: 50 start-page: 1670 year: 2005 end-page: 1680 ident: bib20 article-title: Predictive control of switched nonlinear systems with scheduled mode transitions publication-title: IEEE Trans. Automat. Control – volume: 29 start-page: 761 year: 2006 end-page: 772 ident: bib15 article-title: Non-linear predictive control of a vapour compression cycle publication-title: Int. J. Refrig. – volume: 32 start-page: 1068 year: 2009 end-page: 1076 ident: bib1 article-title: Advanced control systems for single compressor chiller units publication-title: Int. J. Refrig. – reference: Aumi, S., Corbett, B., Mhaskar, P., Clarke-Pringle, T. Data-based modeling and control of nylon-6,6 batch polymerization. IEEE Trans. Control Syst. Technol., submitted for publication. – reference: Behidj, N., Brugger, M., Demers, D., Kowal, A., Liu, Y., Warbanski, M., Yamada, F., 2009. Energy Efficiency Trends in Canada, Technical Report, Natural Resources Canada (09 2009). URL – volume: 34 start-page: 653 year: 2002 end-page: 659 ident: bib13 article-title: Capabilities and limitations of thermal models for use in thermal comfort standards publication-title: Energy Build. – start-page: 5106 year: 2010 end-page: 5111 ident: bib18 article-title: Model predictive control for the operation of building cooling systems publication-title: Proceedings of the American Control Conference (ACC) – volume: 11 start-page: 129 year: 2001 end-page: 148 ident: bib31 article-title: Dynamic modeling and linear model predictive control of gas pipeline networks publication-title: J. Process Control – reference: U.S. Department of Energy, EnergyPlus Building Software, Building Technologies Program. URL – volume: 38 start-page: 33 year: 2003 end-page: 44 ident: bib30 article-title: A new approach for measuring predicted mean vote ccPMVcc and standard effective temperature publication-title: Build. Environ. – start-page: 4178 year: 2007 end-page: 4185 ident: bib25 article-title: Hybrid control of a supermarket refrigeration system publication-title: Proceedings of the American Control Conference (ACC) – reference: Ma, J., Qin, J.S., Salsbury, T., 2010. Real-time model predictive control for energy and demand optimization of multi-zone buildings. In: Proceedings of the AIChE Annual Conference. – reference: Aumi, S., Mhaskar, P. Integrating data-based modeling and nonlinear control tools for batch process control. AIChE J., in press. – reference: Rasmussen, B., 2005. Dynamic Modeling and Advanced Control of Air Conditioning and Refrigeration System. Ph.D. Thesis, University of Illinois at Urbana-Champaign. – start-page: 5052 year: 2007 end-page: 5058 ident: bib14 article-title: Feedback structures for vapor compression cycle systems publication-title: Proceedings of the American Control Conference (ACC) – volume: 55 start-page: 650 year: 2006 end-page: 659 ident: bib21 article-title: Stabilization of nonlinear systems with state and control constraints using Lyapunov-based predictive control publication-title: Syst. Contr. Lett. – volume: 45 start-page: 8565 year: 2006 end-page: 8574 ident: bib19 article-title: Robust model predictive control design for fault-tolerant control of process systems publication-title: Ind. Eng. Chem. Res. – volume: 59 start-page: 34 year: 2008 end-page: 39 ident: bib5 article-title: Process control for thermal comfort maintenance using fuzzy logic publication-title: J. Elec. Eng. – volume: 15 start-page: 897 year: 2007 end-page: 908 ident: bib29 article-title: Support vector regression model predictive control on a HVAC plant publication-title: Control Eng. Pract. – volume: 30 start-page: 209 year: 2007 end-page: 220 ident: bib16 article-title: Modeling, identification and control of air-conditioning systems publication-title: Int. J. Refrig. – reference: Wetter, M., Haves, P., 2008. A modular building controls virtual test bed for the integration of heterogeneous systems. In: Third National Conference of IBPSA-USA, pp. 69–76. – volume: 27 start-page: 83 year: 1998 end-page: 96 ident: bib7 article-title: Thermal adaptation in the built environment: a literature review publication-title: Energy Build. – volume: 18 start-page: 185 year: 2010 end-page: 193 ident: bib12 article-title: Decentralized feedback structures of a vapor compression cycle system publication-title: IEEE Trans. Control Syst. Technol. – start-page: 3174 year: 2010 end-page: 3179 ident: bib22 article-title: Distributed model predictive control for building temperature regulation publication-title: Proceedings of the American Control Conference (ACC) – reference: American Society of Heating, Refrigeration and Air-Conditioning Engineers, Inc., ASHRAE Handbook-Heating, Ventillating and Air-Conditioning Systems and Equipment, ASHRAE. – start-page: 5112 year: 2010 end-page: 5117 ident: bib24 article-title: Predictive control of complex hydronic systems publication-title: Proceedings of the American Control Conference (ACC) – reference: . – year: 2007 ident: bib8 article-title: Exergy: Energy, Environment and Sustainable Development – volume: 50 start-page: 2650 year: 2009 end-page: 2658 ident: bib11 article-title: A robust model predictive control strategy for improving the control performance of air-conditioning systems publication-title: Energy Convers. Manage. – volume: 116 start-page: 474 year: 1994 end-page: 486 ident: bib9 article-title: User-adaptable comfort control for HVAC systems publication-title: J. Dyn. Syst. Meas. Control Trans. ASME – ident: 10.1016/j.ces.2011.07.023_bib6 – ident: 10.1016/j.ces.2011.07.023_bib4 – volume: 10 start-page: 559 issue: 4 year: 1997 ident: 10.1016/j.ces.2011.07.023_bib10 article-title: Relationship between thermal comfort and user satisfaction in hot dry climates publication-title: Renew Energy doi: 10.1016/S0960-1481(96)00037-7 – volume: 45 start-page: 8565 year: 2006 ident: 10.1016/j.ces.2011.07.023_bib19 article-title: Robust model predictive control design for fault-tolerant control of process systems publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie060237p – ident: 10.1016/j.ces.2011.07.023_bib2 – volume: 59 start-page: 34 issue: 1 year: 2008 ident: 10.1016/j.ces.2011.07.023_bib5 article-title: Process control for thermal comfort maintenance using fuzzy logic publication-title: J. Elec. Eng. – ident: 10.1016/j.ces.2011.07.023_bib17 – volume: 30 start-page: 209 year: 2007 ident: 10.1016/j.ces.2011.07.023_bib16 article-title: Modeling, identification and control of air-conditioning systems publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2006.08.009 – volume: 32 start-page: 1672 year: 2009 ident: 10.1016/j.ces.2011.07.023_bib26 article-title: A model-driven multivariable controller for vapor compression refrigeration systems publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2009.04.004 – ident: 10.1016/j.ces.2011.07.023_bib28 – volume: 15 start-page: 897 year: 2007 ident: 10.1016/j.ces.2011.07.023_bib29 article-title: Support vector regression model predictive control on a HVAC plant publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2006.10.010 – ident: 10.1016/j.ces.2011.07.023_bib3 doi: 10.1002/aic.12720 – start-page: 5112 year: 2010 ident: 10.1016/j.ces.2011.07.023_bib24 article-title: Predictive control of complex hydronic systems – year: 2007 ident: 10.1016/j.ces.2011.07.023_bib8 – volume: 29 start-page: 761 year: 2006 ident: 10.1016/j.ces.2011.07.023_bib15 article-title: Non-linear predictive control of a vapour compression cycle publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2005.12.005 – volume: 27 start-page: 83 issue: 1 year: 1998 ident: 10.1016/j.ces.2011.07.023_bib7 article-title: Thermal adaptation in the built environment: a literature review publication-title: Energy Build. doi: 10.1016/S0378-7788(97)00053-4 – volume: 11 start-page: 129 year: 2001 ident: 10.1016/j.ces.2011.07.023_bib31 article-title: Dynamic modeling and linear model predictive control of gas pipeline networks publication-title: J. Process Control doi: 10.1016/S0959-1524(00)00044-5 – start-page: 5052 year: 2007 ident: 10.1016/j.ces.2011.07.023_bib14 article-title: Feedback structures for vapor compression cycle systems – volume: 55 start-page: 650 year: 2006 ident: 10.1016/j.ces.2011.07.023_bib21 article-title: Stabilization of nonlinear systems with state and control constraints using Lyapunov-based predictive control publication-title: Syst. Contr. Lett. doi: 10.1016/j.sysconle.2005.09.014 – volume: 116 start-page: 474 issue: 3 year: 1994 ident: 10.1016/j.ces.2011.07.023_bib9 article-title: User-adaptable comfort control for HVAC systems publication-title: J. Dyn. Syst. Meas. Control Trans. ASME doi: 10.1115/1.2899242 – volume: 50 start-page: 2650 year: 2009 ident: 10.1016/j.ces.2011.07.023_bib11 article-title: A robust model predictive control strategy for improving the control performance of air-conditioning systems publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2009.06.014 – volume: 50 start-page: 1670 year: 2005 ident: 10.1016/j.ces.2011.07.023_bib20 article-title: Predictive control of switched nonlinear systems with scheduled mode transitions publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2005.858692 – volume: 38 start-page: 33 issue: 1 year: 2003 ident: 10.1016/j.ces.2011.07.023_bib30 article-title: A new approach for measuring predicted mean vote ccPMVcc and standard effective temperature publication-title: Build. Environ. doi: 10.1016/S0360-1323(02)00027-6 – start-page: 4178 year: 2007 ident: 10.1016/j.ces.2011.07.023_bib25 article-title: Hybrid control of a supermarket refrigeration system – volume: 18 start-page: 185 year: 2010 ident: 10.1016/j.ces.2011.07.023_bib12 article-title: Decentralized feedback structures of a vapor compression cycle system publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2008.2010500 – start-page: 3174 year: 2010 ident: 10.1016/j.ces.2011.07.023_bib22 article-title: Distributed model predictive control for building temperature regulation – volume: 32 start-page: 1068 issue: 5 year: 2009 ident: 10.1016/j.ces.2011.07.023_bib1 article-title: Advanced control systems for single compressor chiller units publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2008.10.005 – volume: 34 start-page: 653 year: 2002 ident: 10.1016/j.ces.2011.07.023_bib13 article-title: Capabilities and limitations of thermal models for use in thermal comfort standards publication-title: Energy Build. doi: 10.1016/S0378-7788(02)00016-6 – start-page: 5106 year: 2010 ident: 10.1016/j.ces.2011.07.023_bib18 article-title: Model predictive control for the operation of building cooling systems – ident: 10.1016/j.ces.2011.07.023_bib23 – ident: 10.1016/j.ces.2011.07.023_bib27 |
SSID | ssj0007710 |
Score | 2.2846217 |
Snippet | Many systems used in buildings for heating, ventilating, and air-conditioning waste energy because of the way they are operated or controlled. This paper... |
SourceID | proquest pascalfrancis crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 45 |
SubjectTerms | air conditioning Applied sciences Building control buildings Chemical engineering computer simulation cooling economics energy efficiency Energy efficient control energy requirements EnergyPlus Exact sciences and technology heat linear models Model predictive control temperature Temperature control Vapor compression cycle vapors |
Title | Energy efficient model predictive building temperature control |
URI | https://dx.doi.org/10.1016/j.ces.2011.07.023 https://www.proquest.com/docview/1672071807 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0BvcChogXEFrpKpZ6QAnY8sZMLEkKghapcYCVulmM7FRXaXS3Ltb-9M1mHD6Fy6DFRLFkz9ptx5vkNwPdQaWd0bHPX1phjE0XeBKTDijd1FZ0uY3dQ_HmlR2O8vC1vV-C0vwvDtMqE_UtM79A6vTlK1jya3d3xHV9RFxzvWPSsKlkTFNHwKj_880zzMEaKvpsaf91XNjuOF23FpOJpDkWh_hWbVls3ZdKkeyC7tcuGF2-wuwtI55vwMWWS2clysp9gJU4-w8YLfcEtOD7rbvZlsdOJoPCSdY1vstmcyzMMdFmT2mJnrFGVBJazxF_fhvH52c3pKE8NE3KvKlzkQfhY1CEq9Bi09MqgbykBwjLK0pfK1RSvvBdO1rEKCjXlX-RBESpnVJBR7cDaZDqJu5BhESR6VzofBGLT1LUzrtVVWwYCCakHIHpTWZ_UxLmpxb3taWO_LVnXsnWtMJasO4CDpyGzpZTGex9jb3_7aj1Ygvr3hu2Sr6z7RQhpx9cF_8_hwiMlRgMYvnLg0xzoiMwSRGYA33qPWtpjXDhxkzh9fLBSm4JSsUqYL_83rT1Yp6eC2d5S7cPaYv4Yv1Iys2iG3WodwoeTix-jq79VJvEm |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3BcqA9IChULJRtKnFCCtjxV3KphBBo-dpLWYmb5dhORVXtrmD3_zOTdVZFVTn0msSS9cZ-M86M3wAch1I7o2OTu6aSuawjy-sg8bDiTVVGp1VsD4r3Iz0cy5tH9bgGF91dGCqrTNy_5PSWrdOTs4Tm2ezpie74sqogf0eiZ6WS67BB6lSqBxvn17fD0YqQjeGsa6hGA7rkZlvmhbsxCXmaU1aIf7mn9cZNqW7SvSB0zbLnxV_03fqkq23YSsFkdr6c7w6sxckn-PiHxOAufL9sL_dlsZWKQA-Ttb1vstkzZWiI67I6dcbOSKYqaSxnqYR9D8ZXlw8Xwzz1TMi9KOU8D8zHogpRSC-D5l4Y6RuMgaSKXHklXIUuy3vmeBXLIKTGEAyNyELpjAg8is_Qm0wncR8yWQQuvVPOByZlXVeVM67RZaMC8gTXfWAdVNYnQXHqa_HbdpVjvyyiawldy4xFdPtwshoyW6ppvPex7PC3b5aERbZ_b9g-2sq6n0iSdvyjoF86lHvE2KgPgzcGXM0BT8mkQmT68K2zqMVtRrkTN4nTxYvl2hQYjZXMHPzftL7C5vDh_s7eXY9uD-EDvimo-JuLL9CbPy_iEcY283qQ1u4rod3z1w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+efficient+model+predictive+building+temperature+control&rft.jtitle=Chemical+engineering+science&rft.au=Wallace%2C+Matt&rft.au=McBride%2C+Ryan&rft.au=Aumi%2C+Siam&rft.au=Mhaskar%2C+Prashant&rft.date=2012-02-13&rft.issn=0009-2509&rft.volume=69&rft.issue=1&rft.spage=45&rft.epage=58&rft_id=info:doi/10.1016%2Fj.ces.2011.07.023&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ces_2011_07_023 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2509&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2509&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2509&client=summon |