Effects of raising muscle glycogen synthesis rate on skeletal muscle ATP turnover rate in type 2 diabetes
Mitochondrial dysfunction has been implicated in the pathogenesis of type 2 diabetes. We hypothesized that any impairment in insulin-stimulated muscle ATP production could merely reflect the lower rates of muscle glucose uptake and glycogen synthesis, rather than cause it. If this is correct, muscle...
Saved in:
Published in | American journal of physiology: endocrinology and metabolism Vol. 301; no. 6; pp. E1155 - E1162 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Physiological Society
01.12.2011
|
Subjects | |
Online Access | Get full text |
ISSN | 0193-1849 1522-1555 1522-1555 |
DOI | 10.1152/ajpendo.00278.2011 |
Cover
Loading…
Abstract | Mitochondrial dysfunction has been implicated in the pathogenesis of type 2 diabetes. We hypothesized that any impairment in insulin-stimulated muscle ATP production could merely reflect the lower rates of muscle glucose uptake and glycogen synthesis, rather than cause it. If this is correct, muscle ATP turnover rates in type 2 diabetes could be increased if glycogen synthesis rates were normalized by the mass-action effect of hyperglycemia. Isoglycemic- and hyperglycemic-hyperinsulinemic clamps were performed on type 2 diabetic subjects and matched controls, with muscle ATP turnover and glycogen synthesis rates measured using
31
P- and
13
C-magnetic resonance spectroscopy, respectively. In diabetic subjects, hyperglycemia increased muscle glycogen synthesis rates to the level observed in controls at isoglycemia [from 19 ± 9 to 41 ± 12 μmol·l
−1
·min
−1
( P = 0.012) vs. 40 ± 7 μmol·l
−1
·min
−1
in controls]. This was accompanied by a modest increase in muscle ATP turnover rates (7.1 ± 0.5 vs. 8.6 ± 0.7 μmol·l
−1
·min
−1
, P = 0.04). In controls, hyperglycemia brought about a 2.5-fold increase in glycogen synthesis rates (100 ± 24 vs. 40 ± 7 μmol·l
−1
·min
−1
, P = 0.028) and a 23% increase in ATP turnover rates (8.1 ± 0.9 vs. 10.0 ± 0.9 μmol·l
−1
·min
−1
, P = 0.025) from basal state. Muscle ATP turnover rates correlated positively with glycogen synthesis rates ( r
s
= 0.46, P = 0.005). Changing the rate of muscle glucose metabolism in type 2 diabetic subjects alters demand for ATP synthesis at rest. In type 2 diabetes, skeletal muscle ATP turnover rates reflect the rate of glucose uptake and glycogen synthesis, rather than any primary mitochondrial defect. |
---|---|
AbstractList | Mitochondrial dysfunction has been implicated in the pathogenesis of type 2 diabetes. We hypothesized that any impairment in insulin-stimulated muscle ATP production could merely reflect the lower rates of muscle glucose uptake and glycogen synthesis, rather than cause it. If this is correct, muscle ATP turnover rates in type 2 diabetes could be increased if glycogen synthesis rates were normalized by the mass-action effect of hyperglycemia. Isoglycemic- and hyperglycemic-hyperinsulinemic clamps were performed on type 2 diabetic subjects and matched controls, with muscle ATP turnover and glycogen synthesis rates measured using
31
P- and
13
C-magnetic resonance spectroscopy, respectively. In diabetic subjects, hyperglycemia increased muscle glycogen synthesis rates to the level observed in controls at isoglycemia [from 19 ± 9 to 41 ± 12 μmol·l
−1
·min
−1
(
P
= 0.012) vs. 40 ± 7 μmol·l
−1
·min
−1
in controls]. This was accompanied by a modest increase in muscle ATP turnover rates (7.1 ± 0.5 vs. 8.6 ± 0.7 μmol·l
−1
·min
−1
,
P
= 0.04). In controls, hyperglycemia brought about a 2.5-fold increase in glycogen synthesis rates (100 ± 24 vs. 40 ± 7 μmol·l
−1
·min
−1
,
P
= 0.028) and a 23% increase in ATP turnover rates (8.1 ± 0.9 vs. 10.0 ± 0.9 μmol·l
−1
·min
−1
,
P
= 0.025) from basal state. Muscle ATP turnover rates correlated positively with glycogen synthesis rates (
r
s
= 0.46,
P
= 0.005). Changing the rate of muscle glucose metabolism in type 2 diabetic subjects alters demand for ATP synthesis at rest. In type 2 diabetes, skeletal muscle ATP turnover rates reflect the rate of glucose uptake and glycogen synthesis, rather than any primary mitochondrial defect. Mitochondrial dysfunction has been implicated in the pathogenesis of type 2 diabetes. We hypothesized that any impairment in insulin-stimulated muscle ATP production could merely reflect the lower rates of muscle glucose uptake and glycogen synthesis, rather than cause it. If this is correct, muscle ATP turnover rates in type 2 diabetes could be increased if glycogen synthesis rates were normalized by the mass-action effect of hyperglycemia. Isoglycemic- and hyperglycemic-hyperinsulinemic clamps were performed on type 2 diabetic subjects and matched controls, with muscle ATP turnover and glycogen synthesis rates measured using (31)P- and (13)C-magnetic resonance spectroscopy, respectively. In diabetic subjects, hyperglycemia increased muscle glycogen synthesis rates to the level observed in controls at isoglycemia [from 19 ± 9 to 41 ± 12 μmol·l(-1)·min(-1) (P = 0.012) vs. 40 ± 7 μmol·l(-1)·min(-1) in controls]. This was accompanied by a modest increase in muscle ATP turnover rates (7.1 ± 0.5 vs. 8.6 ± 0.7 μmol·l(-1)·min(-1), P = 0.04). In controls, hyperglycemia brought about a 2.5-fold increase in glycogen synthesis rates (100 ± 24 vs. 40 ± 7 μmol·l(-1)·min(-1), P = 0.028) and a 23% increase in ATP turnover rates (8.1 ± 0.9 vs. 10.0 ± 0.9 μmol·l(-1)·min(-1), P = 0.025) from basal state. Muscle ATP turnover rates correlated positively with glycogen synthesis rates (r(s) = 0.46, P = 0.005). Changing the rate of muscle glucose metabolism in type 2 diabetic subjects alters demand for ATP synthesis at rest. In type 2 diabetes, skeletal muscle ATP turnover rates reflect the rate of glucose uptake and glycogen synthesis, rather than any primary mitochondrial defect.Mitochondrial dysfunction has been implicated in the pathogenesis of type 2 diabetes. We hypothesized that any impairment in insulin-stimulated muscle ATP production could merely reflect the lower rates of muscle glucose uptake and glycogen synthesis, rather than cause it. If this is correct, muscle ATP turnover rates in type 2 diabetes could be increased if glycogen synthesis rates were normalized by the mass-action effect of hyperglycemia. Isoglycemic- and hyperglycemic-hyperinsulinemic clamps were performed on type 2 diabetic subjects and matched controls, with muscle ATP turnover and glycogen synthesis rates measured using (31)P- and (13)C-magnetic resonance spectroscopy, respectively. In diabetic subjects, hyperglycemia increased muscle glycogen synthesis rates to the level observed in controls at isoglycemia [from 19 ± 9 to 41 ± 12 μmol·l(-1)·min(-1) (P = 0.012) vs. 40 ± 7 μmol·l(-1)·min(-1) in controls]. This was accompanied by a modest increase in muscle ATP turnover rates (7.1 ± 0.5 vs. 8.6 ± 0.7 μmol·l(-1)·min(-1), P = 0.04). In controls, hyperglycemia brought about a 2.5-fold increase in glycogen synthesis rates (100 ± 24 vs. 40 ± 7 μmol·l(-1)·min(-1), P = 0.028) and a 23% increase in ATP turnover rates (8.1 ± 0.9 vs. 10.0 ± 0.9 μmol·l(-1)·min(-1), P = 0.025) from basal state. Muscle ATP turnover rates correlated positively with glycogen synthesis rates (r(s) = 0.46, P = 0.005). Changing the rate of muscle glucose metabolism in type 2 diabetic subjects alters demand for ATP synthesis at rest. In type 2 diabetes, skeletal muscle ATP turnover rates reflect the rate of glucose uptake and glycogen synthesis, rather than any primary mitochondrial defect. Mitochondrial dysfunction has been implicated in the pathogenesis of type 2 diabetes. We hypothesized that any impairment in insulin-stimulated muscle ATP production could merely reflect the lower rates of muscle glucose uptake and glycogen synthesis, rather than cause it. If this is correct, muscle ATP turnover rates in type 2 diabetes could be increased if glycogen synthesis rates were normalized by the mass-action effect of hyperglycemia. Isoglycemic- and hyperglycemic-hyperinsulinemic clamps were performed on type 2 diabetic subjects and matched controls, with muscle ATP turnover and glycogen synthesis rates measured using (31)P- and (13)C-magnetic resonance spectroscopy, respectively. In diabetic subjects, hyperglycemia increased muscle glycogen synthesis rates to the level observed in controls at isoglycemia [from 19 ± 9 to 41 ± 12 μmol·l(-1)·min(-1) (P = 0.012) vs. 40 ± 7 μmol·l(-1)·min(-1) in controls]. This was accompanied by a modest increase in muscle ATP turnover rates (7.1 ± 0.5 vs. 8.6 ± 0.7 μmol·l(-1)·min(-1), P = 0.04). In controls, hyperglycemia brought about a 2.5-fold increase in glycogen synthesis rates (100 ± 24 vs. 40 ± 7 μmol·l(-1)·min(-1), P = 0.028) and a 23% increase in ATP turnover rates (8.1 ± 0.9 vs. 10.0 ± 0.9 μmol·l(-1)·min(-1), P = 0.025) from basal state. Muscle ATP turnover rates correlated positively with glycogen synthesis rates (r(s) = 0.46, P = 0.005). Changing the rate of muscle glucose metabolism in type 2 diabetic subjects alters demand for ATP synthesis at rest. In type 2 diabetes, skeletal muscle ATP turnover rates reflect the rate of glucose uptake and glycogen synthesis, rather than any primary mitochondrial defect. Mitochondrial dysfunction has been implicated in the pathogenesis of type 2 diabetes. We hypothesized that any impairment in insulin-stimulated muscle ATP production could merely reflect the lower rates of muscle glucose uptake and glycogen synthesis, rather than cause it. If this is correct, muscle ATP turnover rates in type 2 diabetes could be increased if glycogen synthesis rates were normalized by the mass-action effect of hyperglycemia. Isoglycemic- and hyperglycemic-hyperinsulinemic clamps were performed on type 2 diabetic subjects and matched controls, with muscle ATP turnover and glycogen synthesis rates measured using 31 P- and 13 C-magnetic resonance spectroscopy, respectively. In diabetic subjects, hyperglycemia increased muscle glycogen synthesis rates to the level observed in controls at isoglycemia [from 19 ± 9 to 41 ± 12 μmol·l −1 ·min −1 ( P = 0.012) vs. 40 ± 7 μmol·l −1 ·min −1 in controls]. This was accompanied by a modest increase in muscle ATP turnover rates (7.1 ± 0.5 vs. 8.6 ± 0.7 μmol·l −1 ·min −1 , P = 0.04). In controls, hyperglycemia brought about a 2.5-fold increase in glycogen synthesis rates (100 ± 24 vs. 40 ± 7 μmol·l −1 ·min −1 , P = 0.028) and a 23% increase in ATP turnover rates (8.1 ± 0.9 vs. 10.0 ± 0.9 μmol·l −1 ·min −1 , P = 0.025) from basal state. Muscle ATP turnover rates correlated positively with glycogen synthesis rates ( r s = 0.46, P = 0.005). Changing the rate of muscle glucose metabolism in type 2 diabetic subjects alters demand for ATP synthesis at rest. In type 2 diabetes, skeletal muscle ATP turnover rates reflect the rate of glucose uptake and glycogen synthesis, rather than any primary mitochondrial defect. Mitochondrial dysfunction has been implicated in the pathogenesis of type 2 diabetes. We hypothesized that any impairment in insulin-stimulated muscle ATP production could merely reflect the lower rates of muscle glucose uptake and glycogen synthesis, rather than cause it. If this is correct, muscle ATP turnover rates in type 2 diabetes could be increased if glycogen synthesis rates were normalized by the mass-action effect of hyperglycemia. Isoglycemic- and hyperglycemic-hyperinsulinemic clamps were performed on type 2 diabetic subjects and matched controls, with muscle ATP turnover and glycogen synthesis rates measured using ...P- and ...C-magnetic resonance spectroscopy, respectively. In diabetic subjects, hyperglycemia increased muscle glycogen synthesis rates to the level observed in controls at isoglycemia [from 19 ± 9 to 41 ± 12 μmol-l...-min... (P = 0.012) vs. 40 ± 7 μmol-l...-min... in controls]. This was accompanied by a modest increase in muscle ATP turnover rates (7.1 ± 0.5 vs. 8.6 ± 0.7 μmol-l...-min..., P = 0.04). In controls, hyperglycemia brought about a 2.5-fold increase in glycogen synthesis rates (100 ± 24 vs. 40 ± 7 μmol-l...-min..., P = 0.028) and a 23% increase in ATP turnover rates (8.1 ± 0.9 vs. 10.0 ± 0.9 μmol-l...-min..., P = 0.025) from basal state. Muscle ATP turnover rates correlated positively with glycogen synthesis rates (rs = 0.46, P = 0.005). Changing the rate of muscle glucose metabolism in type 2 diabetic subjects alters demand for ATP synthesis at rest. In type 2 diabetes, skeletal muscle ATP turnover rates reflect the rate of glucose uptake and glycogen synthesis, rather than any primary mitochondrial defect. (ProQuest: ... denotes formulae/symbols omitted.) |
Author | Taylor, Roy Lim, Ee L. Thelwall, Peter E. Smith, Fiona E. Hollingsworth, Kieren G. |
Author_xml | – sequence: 1 givenname: Ee L. surname: Lim fullname: Lim, Ee L. organization: Institute of Cellular Medicine, Newcastle Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne, United Kingdom – sequence: 2 givenname: Kieren G. surname: Hollingsworth fullname: Hollingsworth, Kieren G. organization: Institute of Cellular Medicine, Newcastle Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne, United Kingdom – sequence: 3 givenname: Fiona E. surname: Smith fullname: Smith, Fiona E. organization: Institute of Cellular Medicine, Newcastle Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne, United Kingdom – sequence: 4 givenname: Peter E. surname: Thelwall fullname: Thelwall, Peter E. organization: Institute of Cellular Medicine, Newcastle Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne, United Kingdom – sequence: 5 givenname: Roy surname: Taylor fullname: Taylor, Roy organization: Institute of Cellular Medicine, Newcastle Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21917633$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUFvEzEQhS1URNPCH-CALC6cNnjs3fXuBamqSotUCQ7lbHm949TBscPaWyn_HockCHrgZNnzvafneRfkLMSAhLwFtgRo-Ee93mIY45IxLrslZwAvyKIMeAVN05yRBYNeVNDV_Tm5SGnNGJNNzV-Rcw49yFaIBXE31qLJiUZLJ-2SCyu6mZPxSFd-Z-IKA027kB8xuVSIjDSWlx_oMWt_Qq8evtE8TyE-4XSAXKB5t0XK6ej0gBnTa_LSap_wzfG8JN8_3zxc31X3X2-_XF_dV0Z0da5MC1Bzg0KL2vZYj7LmI4DVfChXrW1nBhylaBvRcDEwFMPQadn2HbPQSyYuyaeD73YeNjgaDHnSXm0nt9HTTkXt1L-T4B7VKj4pwYWQUhaDD0eDKf6cMWW1ccmg9zpgnJPqmYS6Bs4L-f4ZuY5lC-V3e6gsuW2gQO_-zvMnyKmDAnQHwEwxpQmtMi7r7OI-nvMKmNrXrY51q991q33dRcqfSU_u_xH9ApkKsWk |
CODEN | AJPMD9 |
CitedBy_id | crossref_primary_10_1530_JOE_17_0555 crossref_primary_10_2337_db12_0558 crossref_primary_10_1152_ajpendo_00376_2015 crossref_primary_10_2337_db12_1219 crossref_primary_10_2337_db11_1725 crossref_primary_10_1016_j_clnu_2015_04_001 crossref_primary_10_1152_ajpregu_00409_2012 crossref_primary_10_3233_JND_180333 crossref_primary_10_2337_dc13_1359 crossref_primary_10_1016_S2213_8587_24_00157_8 crossref_primary_10_1007_s10528_014_9659_4 crossref_primary_10_2337_db12_0073 |
Cites_doi | 10.1007/s00125-008-1153-2 10.2337/db07-1781 10.3390/ijms10010306 10.1056/NEJMoa031314 10.2337/db10-0519 10.1210/jc.2010-0822 10.1172/JCI113011 10.1073/pnas.86.12.4489 10.2337/db07-1828 10.2337/diabetes.51.10.2944 10.1002/nbm.1519 10.1371/journal.pmed.0020233 10.2337/db09-1322 10.1172/JCI31785 10.1530/EJE-07-0756 10.1152/ajpendo.00322.2004 10.2337/db07-1429 10.1038/ng1180 10.1152/ajpendo.1981.240.6.E630 10.1007/BF00400856 10.2337/diabetes.54.1.8 10.2337/diabetes.50.4.817 10.1056/NEJM199001253220403 10.1530/acta.0.1270100 10.1210/er.2009-0003 10.2337/diabetes.55.01.06.db05-1286 10.1016/S0010-4825(01)00006-3 10.1063/1.1734121 10.1007/BF00400200 10.1007/s00125-006-0475-1 10.1152/japplphysiol.01231.2007 10.1210/jc.2008-0267 10.1210/jc.2010-2863 10.2337/db08-0391 10.2337/diacare.28.1.225-a 10.1371/journal.pmed.0040154 10.1152/ajpendo.00756.2009 10.1056/NEJM199907223410404 10.1172/JCI200111775 10.1016/j.physbeh.2008.01.020 10.1016/j.yjmcc.2009.02.015 10.1111/j.1463-1326.2010.01237.x 10.1073/pnas.1332551100 10.1152/ajpendo.00263.2007 10.1042/CS20100611 10.1073/pnas.1032913100 10.1210/jc.2010-1621 10.2337/dc10-1002 10.2337/db08-1240 10.1006/jmre.1999.1835 |
ContentType | Journal Article |
Copyright | Copyright American Physiological Society Dec 2011 Copyright © 2011 the American Physiological Society 2011 |
Copyright_xml | – notice: Copyright American Physiological Society Dec 2011 – notice: Copyright © 2011 the American Physiological Society 2011 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7TS 7U7 C1K 7X8 5PM |
DOI | 10.1152/ajpendo.00278.2011 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Physical Education Index Toxicology Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Toxicology Abstracts Calcium & Calcified Tissue Abstracts Physical Education Index Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Toxicology Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1522-1555 |
EndPage | E1162 |
ExternalDocumentID | PMC3233777 2525055831 21917633 10_1152_ajpendo_00278_2011 |
Genre | Research Support, Non-U.S. Gov't Controlled Clinical Trial Journal Article Feature |
GrantInformation_xml | – fundername: Wellcome Trust grantid: 073561 |
GroupedDBID | --- 23M 2WC 39C 4.4 53G 5GY 5VS 6J9 8M5 AAYXX ABJNI ACPRK ADBBV AENEX AFFNX AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BKOMP BTFSW C1A CITATION E3Z EBS EJD EMOBN F5P GX1 H13 ITBOX KQ8 OK1 P2P P6G PQQKQ RAP RHI RPL RPRKH TR2 W8F WH7 WOQ XSW YSK CGR CUY CVF ECM EIF NPM 7QP 7TS 7U7 C1K 7X8 5PM |
ID | FETCH-LOGICAL-c384t-c61142ce3a34f9e4d742d11fa2bf9eaaf8cbed73653523b0e3bb8a76980f19703 |
ISSN | 0193-1849 1522-1555 |
IngestDate | Thu Aug 21 14:14:17 EDT 2025 Fri Jul 11 05:25:48 EDT 2025 Mon Jun 30 08:14:07 EDT 2025 Mon Jul 21 05:47:17 EDT 2025 Tue Jul 01 03:18:15 EDT 2025 Thu Apr 24 22:48:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | This document may be redistributed and reused, subject to www.the-aps.org/publications/journals/funding_addendum_policy.htm. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c384t-c61142ce3a34f9e4d742d11fa2bf9eaaf8cbed73653523b0e3bb8a76980f19703 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC3233777 |
PMID | 21917633 |
PQID | 907219651 |
PQPubID | 48583 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3233777 proquest_miscellaneous_907144122 proquest_journals_907219651 pubmed_primary_21917633 crossref_citationtrail_10_1152_ajpendo_00278_2011 crossref_primary_10_1152_ajpendo_00278_2011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-12-01 |
PublicationDateYYYYMMDD | 2011-12-01 |
PublicationDate_xml | – month: 12 year: 2011 text: 2011-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda – name: Bethesda, MD |
PublicationTitle | American journal of physiology: endocrinology and metabolism |
PublicationTitleAlternate | Am J Physiol Endocrinol Metab |
PublicationYear | 2011 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | B20 B21 B22 Wolfe RR (B49) 1984; 9 B23 B24 B25 B26 B27 B28 B29 B30 B31 B32 B33 B34 B35 B36 B37 B38 B39 B1 B2 B3 B4 B5 B6 B7 B8 B40 B41 B42 B43 B44 B45 B46 B47 B48 B50 B51 B52 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 De Fronzo RA (B9) 1979; 237 7018254 - Am J Physiol. 1981 Jun;240(6):E630-9 19249309 - J Mol Cell Cardiol. 2009 Jun;46(6):919-26 20442322 - Am J Physiol Endocrinol Metab. 2010 Jul;299(1):E33-8 19581419 - Diabetes. 2009 Oct;58(10):2303-15 20649633 - Diabetes Obes Metab. 2010 Sep;12(9):806-14 18342897 - Physiol Behav. 2008 May 23;94(2):252-8 20623795 - NMR Biomed. 2010 Oct;23(8):952-7 15616258 - Diabetes Care. 2005 Jan;28(1):225-7 21106709 - J Clin Endocrinol Metab. 2011 Feb;96(2):494-503 21307136 - J Clin Endocrinol Metab. 2011 Apr;96(4):1160-8 18239076 - J Appl Physiol (1985). 2008 May;104(5):1304-12 14960743 - N Engl J Med. 2004 Feb 12;350(7):664-71 2734301 - Proc Natl Acad Sci U S A. 1989 Jun;86(12):4489-91 2257995 - Diabetologia. 1990 Oct;33(10):579-85 17093944 - Diabetologia. 2007 Jan;50(1):113-20 21388348 - Clin Sci (Lond). 2011 Aug;121(4):169-77 3294899 - J Clin Invest. 1987 Jun;79(6):1713-9 1541385 - Diabetologia. 1992 Jan;35(1):80-8 11334636 - Comput Biol Med. 2001 Jul;31(4):269-86 18460571 - J Clin Endocrinol Metab. 2008 Jul;93(7):2917-21 19861693 - Endocr Rev. 2010 Feb;31(1):25-51 12808136 - Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):7996-8001 1529656 - Acta Endocrinol (Copenh). 1992 Aug;127(2):100-6 15616005 - Diabetes. 2005 Jan;54(1):8-14 15585590 - Am J Physiol Endocrinol Metab. 2005 Apr;288(4):E818-25 10413736 - N Engl J Med. 1999 Jul 22;341(4):240-6 19265027 - Diabetes. 2009 Jun;58(6):1333-41 18252894 - Diabetes. 2008 Apr;57(4):987-94 19333447 - Int J Mol Sci. 2009 Jan;10(1):306-24 18535187 - Diabetes. 2008 Sep;57(9):2288-95 20978097 - Diabetes Care. 2011 Feb;34(2):430-6 6427541 - Lab Res Methods Biol Med. 1984;9:1-287 18678616 - Diabetes. 2008 Nov;57(11):2943-9 20028948 - Diabetes. 2010 Mar;59(3):572-9 20573749 - Diabetes. 2010 Sep;59(9):2117-25 11544279 - J Clin Invest. 2001 Sep;108(5):733-7 12832613 - Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8466-71 21508128 - J Clin Endocrinol Metab. 2011 Jul;96(7):E1137-41 16089501 - PLoS Med. 2005 Sep;2(9):e233 10479554 - J Magn Reson. 1999 Sep;140(1):120-30 18802678 - Diabetologia. 2008 Dec;51(12):2155-67 16380486 - Diabetes. 2006 Jan;55(1):136-40 382871 - Am J Physiol. 1979 Sep;237(3):E214-23 17932564 - J Clin Invest. 2007 Nov;117(11):3463-74 18426822 - Eur J Endocrinol. 2008 May;158(5):643-53 17711988 - Am J Physiol Endocrinol Metab. 2007 Nov;293(5):E1169-77 12808457 - Nat Genet. 2003 Jul;34(3):267-73 17472434 - PLoS Med. 2007 May;4(5):e154 2403659 - N Engl J Med. 1990 Jan 25;322(4):223-8 11289047 - Diabetes. 2001 Apr;50(4):817-23 12351431 - Diabetes. 2002 Oct;51(10):2944-50 |
References_xml | – ident: B44 doi: 10.1007/s00125-008-1153-2 – ident: B26 doi: 10.2337/db07-1781 – ident: B5 doi: 10.3390/ijms10010306 – ident: B31 doi: 10.1056/NEJMoa031314 – ident: B14 doi: 10.2337/db10-0519 – ident: B6 doi: 10.1210/jc.2010-0822 – ident: B52 doi: 10.1172/JCI113011 – ident: B16 doi: 10.1073/pnas.86.12.4489 – ident: B37 doi: 10.2337/db07-1828 – ident: B18 doi: 10.2337/diabetes.51.10.2944 – ident: B22 doi: 10.1002/nbm.1519 – ident: B32 doi: 10.1371/journal.pmed.0020233 – ident: B23 doi: 10.2337/db09-1322 – ident: B12 doi: 10.1172/JCI31785 – ident: B8 doi: 10.1530/EJE-07-0756 – ident: B24 doi: 10.1152/ajpendo.00322.2004 – ident: B46 doi: 10.2337/db07-1429 – ident: B27 doi: 10.1038/ng1180 – ident: B39 doi: 10.1152/ajpendo.1981.240.6.E630 – ident: B47 doi: 10.1007/BF00400856 – ident: B38 doi: 10.2337/diabetes.54.1.8 – ident: B13 doi: 10.2337/diabetes.50.4.817 – ident: B42 doi: 10.1056/NEJM199001253220403 – ident: B11 doi: 10.1530/acta.0.1270100 – ident: B29 doi: 10.1210/er.2009-0003 – ident: B3 doi: 10.2337/diabetes.55.01.06.db05-1286 – ident: B28 doi: 10.1016/S0010-4825(01)00006-3 – ident: B10 doi: 10.1063/1.1734121 – ident: B51 doi: 10.1007/BF00400200 – ident: B40 doi: 10.1007/s00125-006-0475-1 – ident: B4 doi: 10.1152/japplphysiol.01231.2007 – ident: B41 doi: 10.1210/jc.2008-0267 – ident: B15 doi: 10.1210/jc.2010-2863 – ident: B34 doi: 10.2337/db08-0391 – ident: B25 doi: 10.2337/diacare.28.1.225-a – ident: B45 doi: 10.1371/journal.pmed.0040154 – volume: 9 start-page: 1 year: 1984 ident: B49 publication-title: Lab Res Methods Biol Med – ident: B2 doi: 10.1152/ajpendo.00756.2009 – ident: B7 doi: 10.1056/NEJM199907223410404 – ident: B20 doi: 10.1172/JCI200111775 – ident: B33 doi: 10.1016/j.physbeh.2008.01.020 – ident: B50 doi: 10.1016/j.yjmcc.2009.02.015 – ident: B36 doi: 10.1111/j.1463-1326.2010.01237.x – ident: B43 doi: 10.1073/pnas.1332551100 – volume: 237 start-page: E214 year: 1979 ident: B9 publication-title: Am J Physiol Endocrinol Metab Gastrointest Physiol – ident: B19 doi: 10.1152/ajpendo.00263.2007 – ident: B21 doi: 10.1042/CS20100611 – ident: B30 doi: 10.1073/pnas.1032913100 – ident: B1 doi: 10.1210/jc.2010-1621 – ident: B35 doi: 10.2337/dc10-1002 – ident: B17 doi: 10.2337/db08-1240 – ident: B48 doi: 10.1006/jmre.1999.1835 – reference: 10479554 - J Magn Reson. 1999 Sep;140(1):120-30 – reference: 20442322 - Am J Physiol Endocrinol Metab. 2010 Jul;299(1):E33-8 – reference: 11289047 - Diabetes. 2001 Apr;50(4):817-23 – reference: 21106709 - J Clin Endocrinol Metab. 2011 Feb;96(2):494-503 – reference: 12351431 - Diabetes. 2002 Oct;51(10):2944-50 – reference: 18426822 - Eur J Endocrinol. 2008 May;158(5):643-53 – reference: 15616005 - Diabetes. 2005 Jan;54(1):8-14 – reference: 11334636 - Comput Biol Med. 2001 Jul;31(4):269-86 – reference: 11544279 - J Clin Invest. 2001 Sep;108(5):733-7 – reference: 382871 - Am J Physiol. 1979 Sep;237(3):E214-23 – reference: 17093944 - Diabetologia. 2007 Jan;50(1):113-20 – reference: 21307136 - J Clin Endocrinol Metab. 2011 Apr;96(4):1160-8 – reference: 18252894 - Diabetes. 2008 Apr;57(4):987-94 – reference: 18678616 - Diabetes. 2008 Nov;57(11):2943-9 – reference: 21508128 - J Clin Endocrinol Metab. 2011 Jul;96(7):E1137-41 – reference: 12808136 - Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):7996-8001 – reference: 18239076 - J Appl Physiol (1985). 2008 May;104(5):1304-12 – reference: 3294899 - J Clin Invest. 1987 Jun;79(6):1713-9 – reference: 20028948 - Diabetes. 2010 Mar;59(3):572-9 – reference: 19861693 - Endocr Rev. 2010 Feb;31(1):25-51 – reference: 18342897 - Physiol Behav. 2008 May 23;94(2):252-8 – reference: 12832613 - Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8466-71 – reference: 10413736 - N Engl J Med. 1999 Jul 22;341(4):240-6 – reference: 19249309 - J Mol Cell Cardiol. 2009 Jun;46(6):919-26 – reference: 20623795 - NMR Biomed. 2010 Oct;23(8):952-7 – reference: 2257995 - Diabetologia. 1990 Oct;33(10):579-85 – reference: 15616258 - Diabetes Care. 2005 Jan;28(1):225-7 – reference: 16089501 - PLoS Med. 2005 Sep;2(9):e233 – reference: 6427541 - Lab Res Methods Biol Med. 1984;9:1-287 – reference: 17472434 - PLoS Med. 2007 May;4(5):e154 – reference: 14960743 - N Engl J Med. 2004 Feb 12;350(7):664-71 – reference: 20649633 - Diabetes Obes Metab. 2010 Sep;12(9):806-14 – reference: 1541385 - Diabetologia. 1992 Jan;35(1):80-8 – reference: 12808457 - Nat Genet. 2003 Jul;34(3):267-73 – reference: 21388348 - Clin Sci (Lond). 2011 Aug;121(4):169-77 – reference: 19265027 - Diabetes. 2009 Jun;58(6):1333-41 – reference: 18460571 - J Clin Endocrinol Metab. 2008 Jul;93(7):2917-21 – reference: 19581419 - Diabetes. 2009 Oct;58(10):2303-15 – reference: 2734301 - Proc Natl Acad Sci U S A. 1989 Jun;86(12):4489-91 – reference: 15585590 - Am J Physiol Endocrinol Metab. 2005 Apr;288(4):E818-25 – reference: 18535187 - Diabetes. 2008 Sep;57(9):2288-95 – reference: 7018254 - Am J Physiol. 1981 Jun;240(6):E630-9 – reference: 1529656 - Acta Endocrinol (Copenh). 1992 Aug;127(2):100-6 – reference: 2403659 - N Engl J Med. 1990 Jan 25;322(4):223-8 – reference: 20573749 - Diabetes. 2010 Sep;59(9):2117-25 – reference: 19333447 - Int J Mol Sci. 2009 Jan;10(1):306-24 – reference: 16380486 - Diabetes. 2006 Jan;55(1):136-40 – reference: 17711988 - Am J Physiol Endocrinol Metab. 2007 Nov;293(5):E1169-77 – reference: 18802678 - Diabetologia. 2008 Dec;51(12):2155-67 – reference: 17932564 - J Clin Invest. 2007 Nov;117(11):3463-74 – reference: 20978097 - Diabetes Care. 2011 Feb;34(2):430-6 |
SSID | ssj0007542 |
Score | 2.086939 |
Snippet | Mitochondrial dysfunction has been implicated in the pathogenesis of type 2 diabetes. We hypothesized that any impairment in insulin-stimulated muscle ATP... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | E1155 |
SubjectTerms | Adenosine triphosphatase Adenosine Triphosphate - metabolism Algorithms ATP Blood Glucose - metabolism Breath Tests Diabetes Diabetes Mellitus, Type 2 - blood Diabetes Mellitus, Type 2 - metabolism Diabetes Mellitus, Type 2 - pathology Energy Metabolism - physiology Female Glucose Clamp Technique Glycogen - biosynthesis Glycogen - physiology Humans Hyperglycemia - blood Hyperglycemia - metabolism Insulin Insulin - blood Male Middle Aged Muscle, Skeletal - metabolism Musculoskeletal system Pathogenesis Up-Regulation - physiology |
Title | Effects of raising muscle glycogen synthesis rate on skeletal muscle ATP turnover rate in type 2 diabetes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21917633 https://www.proquest.com/docview/907219651 https://www.proquest.com/docview/907144122 https://pubmed.ncbi.nlm.nih.gov/PMC3233777 |
Volume | 301 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIiEuCFoeoYD2gLhYDonXj_gYVSkVpShIqdSbtWuvqSGxqyYRCj-bX8DMvuIkCEEvVuwde2PP552d9cw3hLzF7ERWRKkfl4H0Q1nmflrI0k8E-B59UYBTpKJ8P8dnl-HHq-iq0_nVilpaLUUv__nHvJK7aBWOgV4xS_Y_NOsuCgfgN-gXtqBh2P6TjsebYIxbXimvf75agJD3dbbOGzgPGQlgioesI8gJgZ8GFt_B0mAKpBEdTSce2J0aYzm1EIY-bq_Mtqew7htPi3RCrY_ovBes9FMXDQxG9YbeaQ4dimZm6QoxAEhXcR5L71PPQUsThG_CFs8rTEb0PjgJtw50iiuY3tg1ANpnP7ipx4wRPratcCu0O8Eh9i4m9q8rtJog1vZSaMp88E_1gCvN8A2uNcyQovb4zszFq73RegzT4ahl-mFfm4Z9uxIhTy3_hnWJm576XKvoX9vC8IBv5gppATrBsSb42GHznlycsICxJEnukfsBuDZYdeP8y4bhHisS6xR_fXc20SsK3u93r6isdV_b86o9Z2k35rc1iZo-Jo-M90NHGspPSEfWh-RoVPNlM1_Td9QpY31IHlyYsI8jUhmg06akBuhUo5daoFMHdIoYpg0cMUC3ogB0aoGuhaqaItBpQC3Qn5LL0_H05Mw3NUL8nA3DpZ_HmAyeS8ZZWKYyLJIwKAaDkgcCdjkvh7mQRcJipDFioi-ZEEOexOmwXw5SMHfPyEHd1PIFoTJJSjBhg5DzCJyIXAguZV-ULB4GPOVJlwzsE85yQ6CPdVxmmXKkoyAzCsqUgjJUUJd47pwbTR_zV-ljq7jMvMOLLEUGwzSOoJW6VrAB-GGP17JZKRFcFwmCLnmutew6s_DokmRL_04A6eW3W-rqWtHMG5y-vPOZx-Th5v1-RQ6Wtyv5GqbwS_FGYf43lAL4bA |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+raising+muscle+glycogen+synthesis+rate+on+skeletal+muscle+ATP+turnover+rate+in+type+2+diabetes&rft.jtitle=American+journal+of+physiology%3A+endocrinology+and+metabolism&rft.au=Lim%2C+Ee+L.&rft.au=Hollingsworth%2C+Kieren+G.&rft.au=Smith%2C+Fiona+E.&rft.au=Thelwall%2C+Peter+E.&rft.date=2011-12-01&rft.pub=American+Physiological+Society&rft.issn=0193-1849&rft.eissn=1522-1555&rft.volume=301&rft.issue=6&rft.spage=E1155&rft.epage=E1162&rft_id=info:doi/10.1152%2Fajpendo.00278.2011&rft_id=info%3Apmid%2F21917633&rft.externalDocID=PMC3233777 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0193-1849&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0193-1849&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0193-1849&client=summon |