Effects of raising muscle glycogen synthesis rate on skeletal muscle ATP turnover rate in type 2 diabetes

Mitochondrial dysfunction has been implicated in the pathogenesis of type 2 diabetes. We hypothesized that any impairment in insulin-stimulated muscle ATP production could merely reflect the lower rates of muscle glucose uptake and glycogen synthesis, rather than cause it. If this is correct, muscle...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of physiology: endocrinology and metabolism Vol. 301; no. 6; pp. E1155 - E1162
Main Authors Lim, Ee L., Hollingsworth, Kieren G., Smith, Fiona E., Thelwall, Peter E., Taylor, Roy
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.12.2011
Subjects
Online AccessGet full text
ISSN0193-1849
1522-1555
1522-1555
DOI10.1152/ajpendo.00278.2011

Cover

Loading…
Abstract Mitochondrial dysfunction has been implicated in the pathogenesis of type 2 diabetes. We hypothesized that any impairment in insulin-stimulated muscle ATP production could merely reflect the lower rates of muscle glucose uptake and glycogen synthesis, rather than cause it. If this is correct, muscle ATP turnover rates in type 2 diabetes could be increased if glycogen synthesis rates were normalized by the mass-action effect of hyperglycemia. Isoglycemic- and hyperglycemic-hyperinsulinemic clamps were performed on type 2 diabetic subjects and matched controls, with muscle ATP turnover and glycogen synthesis rates measured using 31 P- and 13 C-magnetic resonance spectroscopy, respectively. In diabetic subjects, hyperglycemia increased muscle glycogen synthesis rates to the level observed in controls at isoglycemia [from 19 ± 9 to 41 ± 12 μmol·l −1 ·min −1 ( P = 0.012) vs. 40 ± 7 μmol·l −1 ·min −1 in controls]. This was accompanied by a modest increase in muscle ATP turnover rates (7.1 ± 0.5 vs. 8.6 ± 0.7 μmol·l −1 ·min −1 , P = 0.04). In controls, hyperglycemia brought about a 2.5-fold increase in glycogen synthesis rates (100 ± 24 vs. 40 ± 7 μmol·l −1 ·min −1 , P = 0.028) and a 23% increase in ATP turnover rates (8.1 ± 0.9 vs. 10.0 ± 0.9 μmol·l −1 ·min −1 , P = 0.025) from basal state. Muscle ATP turnover rates correlated positively with glycogen synthesis rates ( r s = 0.46, P = 0.005). Changing the rate of muscle glucose metabolism in type 2 diabetic subjects alters demand for ATP synthesis at rest. In type 2 diabetes, skeletal muscle ATP turnover rates reflect the rate of glucose uptake and glycogen synthesis, rather than any primary mitochondrial defect.
AbstractList Mitochondrial dysfunction has been implicated in the pathogenesis of type 2 diabetes. We hypothesized that any impairment in insulin-stimulated muscle ATP production could merely reflect the lower rates of muscle glucose uptake and glycogen synthesis, rather than cause it. If this is correct, muscle ATP turnover rates in type 2 diabetes could be increased if glycogen synthesis rates were normalized by the mass-action effect of hyperglycemia. Isoglycemic- and hyperglycemic-hyperinsulinemic clamps were performed on type 2 diabetic subjects and matched controls, with muscle ATP turnover and glycogen synthesis rates measured using 31 P- and 13 C-magnetic resonance spectroscopy, respectively. In diabetic subjects, hyperglycemia increased muscle glycogen synthesis rates to the level observed in controls at isoglycemia [from 19 ± 9 to 41 ± 12 μmol·l −1 ·min −1 ( P = 0.012) vs. 40 ± 7 μmol·l −1 ·min −1 in controls]. This was accompanied by a modest increase in muscle ATP turnover rates (7.1 ± 0.5 vs. 8.6 ± 0.7 μmol·l −1 ·min −1 , P = 0.04). In controls, hyperglycemia brought about a 2.5-fold increase in glycogen synthesis rates (100 ± 24 vs. 40 ± 7 μmol·l −1 ·min −1 , P = 0.028) and a 23% increase in ATP turnover rates (8.1 ± 0.9 vs. 10.0 ± 0.9 μmol·l −1 ·min −1 , P = 0.025) from basal state. Muscle ATP turnover rates correlated positively with glycogen synthesis rates ( r s = 0.46, P = 0.005). Changing the rate of muscle glucose metabolism in type 2 diabetic subjects alters demand for ATP synthesis at rest. In type 2 diabetes, skeletal muscle ATP turnover rates reflect the rate of glucose uptake and glycogen synthesis, rather than any primary mitochondrial defect.
Mitochondrial dysfunction has been implicated in the pathogenesis of type 2 diabetes. We hypothesized that any impairment in insulin-stimulated muscle ATP production could merely reflect the lower rates of muscle glucose uptake and glycogen synthesis, rather than cause it. If this is correct, muscle ATP turnover rates in type 2 diabetes could be increased if glycogen synthesis rates were normalized by the mass-action effect of hyperglycemia. Isoglycemic- and hyperglycemic-hyperinsulinemic clamps were performed on type 2 diabetic subjects and matched controls, with muscle ATP turnover and glycogen synthesis rates measured using (31)P- and (13)C-magnetic resonance spectroscopy, respectively. In diabetic subjects, hyperglycemia increased muscle glycogen synthesis rates to the level observed in controls at isoglycemia [from 19 ± 9 to 41 ± 12 μmol·l(-1)·min(-1) (P = 0.012) vs. 40 ± 7 μmol·l(-1)·min(-1) in controls]. This was accompanied by a modest increase in muscle ATP turnover rates (7.1 ± 0.5 vs. 8.6 ± 0.7 μmol·l(-1)·min(-1), P = 0.04). In controls, hyperglycemia brought about a 2.5-fold increase in glycogen synthesis rates (100 ± 24 vs. 40 ± 7 μmol·l(-1)·min(-1), P = 0.028) and a 23% increase in ATP turnover rates (8.1 ± 0.9 vs. 10.0 ± 0.9 μmol·l(-1)·min(-1), P = 0.025) from basal state. Muscle ATP turnover rates correlated positively with glycogen synthesis rates (r(s) = 0.46, P = 0.005). Changing the rate of muscle glucose metabolism in type 2 diabetic subjects alters demand for ATP synthesis at rest. In type 2 diabetes, skeletal muscle ATP turnover rates reflect the rate of glucose uptake and glycogen synthesis, rather than any primary mitochondrial defect.Mitochondrial dysfunction has been implicated in the pathogenesis of type 2 diabetes. We hypothesized that any impairment in insulin-stimulated muscle ATP production could merely reflect the lower rates of muscle glucose uptake and glycogen synthesis, rather than cause it. If this is correct, muscle ATP turnover rates in type 2 diabetes could be increased if glycogen synthesis rates were normalized by the mass-action effect of hyperglycemia. Isoglycemic- and hyperglycemic-hyperinsulinemic clamps were performed on type 2 diabetic subjects and matched controls, with muscle ATP turnover and glycogen synthesis rates measured using (31)P- and (13)C-magnetic resonance spectroscopy, respectively. In diabetic subjects, hyperglycemia increased muscle glycogen synthesis rates to the level observed in controls at isoglycemia [from 19 ± 9 to 41 ± 12 μmol·l(-1)·min(-1) (P = 0.012) vs. 40 ± 7 μmol·l(-1)·min(-1) in controls]. This was accompanied by a modest increase in muscle ATP turnover rates (7.1 ± 0.5 vs. 8.6 ± 0.7 μmol·l(-1)·min(-1), P = 0.04). In controls, hyperglycemia brought about a 2.5-fold increase in glycogen synthesis rates (100 ± 24 vs. 40 ± 7 μmol·l(-1)·min(-1), P = 0.028) and a 23% increase in ATP turnover rates (8.1 ± 0.9 vs. 10.0 ± 0.9 μmol·l(-1)·min(-1), P = 0.025) from basal state. Muscle ATP turnover rates correlated positively with glycogen synthesis rates (r(s) = 0.46, P = 0.005). Changing the rate of muscle glucose metabolism in type 2 diabetic subjects alters demand for ATP synthesis at rest. In type 2 diabetes, skeletal muscle ATP turnover rates reflect the rate of glucose uptake and glycogen synthesis, rather than any primary mitochondrial defect.
Mitochondrial dysfunction has been implicated in the pathogenesis of type 2 diabetes. We hypothesized that any impairment in insulin-stimulated muscle ATP production could merely reflect the lower rates of muscle glucose uptake and glycogen synthesis, rather than cause it. If this is correct, muscle ATP turnover rates in type 2 diabetes could be increased if glycogen synthesis rates were normalized by the mass-action effect of hyperglycemia. Isoglycemic- and hyperglycemic-hyperinsulinemic clamps were performed on type 2 diabetic subjects and matched controls, with muscle ATP turnover and glycogen synthesis rates measured using (31)P- and (13)C-magnetic resonance spectroscopy, respectively. In diabetic subjects, hyperglycemia increased muscle glycogen synthesis rates to the level observed in controls at isoglycemia [from 19 ± 9 to 41 ± 12 μmol·l(-1)·min(-1) (P = 0.012) vs. 40 ± 7 μmol·l(-1)·min(-1) in controls]. This was accompanied by a modest increase in muscle ATP turnover rates (7.1 ± 0.5 vs. 8.6 ± 0.7 μmol·l(-1)·min(-1), P = 0.04). In controls, hyperglycemia brought about a 2.5-fold increase in glycogen synthesis rates (100 ± 24 vs. 40 ± 7 μmol·l(-1)·min(-1), P = 0.028) and a 23% increase in ATP turnover rates (8.1 ± 0.9 vs. 10.0 ± 0.9 μmol·l(-1)·min(-1), P = 0.025) from basal state. Muscle ATP turnover rates correlated positively with glycogen synthesis rates (r(s) = 0.46, P = 0.005). Changing the rate of muscle glucose metabolism in type 2 diabetic subjects alters demand for ATP synthesis at rest. In type 2 diabetes, skeletal muscle ATP turnover rates reflect the rate of glucose uptake and glycogen synthesis, rather than any primary mitochondrial defect.
Mitochondrial dysfunction has been implicated in the pathogenesis of type 2 diabetes. We hypothesized that any impairment in insulin-stimulated muscle ATP production could merely reflect the lower rates of muscle glucose uptake and glycogen synthesis, rather than cause it. If this is correct, muscle ATP turnover rates in type 2 diabetes could be increased if glycogen synthesis rates were normalized by the mass-action effect of hyperglycemia. Isoglycemic- and hyperglycemic-hyperinsulinemic clamps were performed on type 2 diabetic subjects and matched controls, with muscle ATP turnover and glycogen synthesis rates measured using 31 P- and 13 C-magnetic resonance spectroscopy, respectively. In diabetic subjects, hyperglycemia increased muscle glycogen synthesis rates to the level observed in controls at isoglycemia [from 19 ± 9 to 41 ± 12 μmol·l −1 ·min −1 ( P = 0.012) vs. 40 ± 7 μmol·l −1 ·min −1 in controls]. This was accompanied by a modest increase in muscle ATP turnover rates (7.1 ± 0.5 vs. 8.6 ± 0.7 μmol·l −1 ·min −1 , P = 0.04). In controls, hyperglycemia brought about a 2.5-fold increase in glycogen synthesis rates (100 ± 24 vs. 40 ± 7 μmol·l −1 ·min −1 , P = 0.028) and a 23% increase in ATP turnover rates (8.1 ± 0.9 vs. 10.0 ± 0.9 μmol·l −1 ·min −1 , P = 0.025) from basal state. Muscle ATP turnover rates correlated positively with glycogen synthesis rates ( r s = 0.46, P = 0.005). Changing the rate of muscle glucose metabolism in type 2 diabetic subjects alters demand for ATP synthesis at rest. In type 2 diabetes, skeletal muscle ATP turnover rates reflect the rate of glucose uptake and glycogen synthesis, rather than any primary mitochondrial defect.
Mitochondrial dysfunction has been implicated in the pathogenesis of type 2 diabetes. We hypothesized that any impairment in insulin-stimulated muscle ATP production could merely reflect the lower rates of muscle glucose uptake and glycogen synthesis, rather than cause it. If this is correct, muscle ATP turnover rates in type 2 diabetes could be increased if glycogen synthesis rates were normalized by the mass-action effect of hyperglycemia. Isoglycemic- and hyperglycemic-hyperinsulinemic clamps were performed on type 2 diabetic subjects and matched controls, with muscle ATP turnover and glycogen synthesis rates measured using ...P- and ...C-magnetic resonance spectroscopy, respectively. In diabetic subjects, hyperglycemia increased muscle glycogen synthesis rates to the level observed in controls at isoglycemia [from 19 ± 9 to 41 ± 12 μmol-l...-min... (P = 0.012) vs. 40 ± 7 μmol-l...-min... in controls]. This was accompanied by a modest increase in muscle ATP turnover rates (7.1 ± 0.5 vs. 8.6 ± 0.7 μmol-l...-min..., P = 0.04). In controls, hyperglycemia brought about a 2.5-fold increase in glycogen synthesis rates (100 ± 24 vs. 40 ± 7 μmol-l...-min..., P = 0.028) and a 23% increase in ATP turnover rates (8.1 ± 0.9 vs. 10.0 ± 0.9 μmol-l...-min..., P = 0.025) from basal state. Muscle ATP turnover rates correlated positively with glycogen synthesis rates (rs = 0.46, P = 0.005). Changing the rate of muscle glucose metabolism in type 2 diabetic subjects alters demand for ATP synthesis at rest. In type 2 diabetes, skeletal muscle ATP turnover rates reflect the rate of glucose uptake and glycogen synthesis, rather than any primary mitochondrial defect. (ProQuest: ... denotes formulae/symbols omitted.)
Author Taylor, Roy
Lim, Ee L.
Thelwall, Peter E.
Smith, Fiona E.
Hollingsworth, Kieren G.
Author_xml – sequence: 1
  givenname: Ee L.
  surname: Lim
  fullname: Lim, Ee L.
  organization: Institute of Cellular Medicine, Newcastle Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
– sequence: 2
  givenname: Kieren G.
  surname: Hollingsworth
  fullname: Hollingsworth, Kieren G.
  organization: Institute of Cellular Medicine, Newcastle Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
– sequence: 3
  givenname: Fiona E.
  surname: Smith
  fullname: Smith, Fiona E.
  organization: Institute of Cellular Medicine, Newcastle Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
– sequence: 4
  givenname: Peter E.
  surname: Thelwall
  fullname: Thelwall, Peter E.
  organization: Institute of Cellular Medicine, Newcastle Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
– sequence: 5
  givenname: Roy
  surname: Taylor
  fullname: Taylor, Roy
  organization: Institute of Cellular Medicine, Newcastle Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21917633$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFvEzEQhS1URNPCH-CALC6cNnjs3fXuBamqSotUCQ7lbHm949TBscPaWyn_HockCHrgZNnzvafneRfkLMSAhLwFtgRo-Ee93mIY45IxLrslZwAvyKIMeAVN05yRBYNeVNDV_Tm5SGnNGJNNzV-Rcw49yFaIBXE31qLJiUZLJ-2SCyu6mZPxSFd-Z-IKA027kB8xuVSIjDSWlx_oMWt_Qq8evtE8TyE-4XSAXKB5t0XK6ej0gBnTa_LSap_wzfG8JN8_3zxc31X3X2-_XF_dV0Z0da5MC1Bzg0KL2vZYj7LmI4DVfChXrW1nBhylaBvRcDEwFMPQadn2HbPQSyYuyaeD73YeNjgaDHnSXm0nt9HTTkXt1L-T4B7VKj4pwYWQUhaDD0eDKf6cMWW1ccmg9zpgnJPqmYS6Bs4L-f4ZuY5lC-V3e6gsuW2gQO_-zvMnyKmDAnQHwEwxpQmtMi7r7OI-nvMKmNrXrY51q991q33dRcqfSU_u_xH9ApkKsWk
CODEN AJPMD9
CitedBy_id crossref_primary_10_1530_JOE_17_0555
crossref_primary_10_2337_db12_0558
crossref_primary_10_1152_ajpendo_00376_2015
crossref_primary_10_2337_db12_1219
crossref_primary_10_2337_db11_1725
crossref_primary_10_1016_j_clnu_2015_04_001
crossref_primary_10_1152_ajpregu_00409_2012
crossref_primary_10_3233_JND_180333
crossref_primary_10_2337_dc13_1359
crossref_primary_10_1016_S2213_8587_24_00157_8
crossref_primary_10_1007_s10528_014_9659_4
crossref_primary_10_2337_db12_0073
Cites_doi 10.1007/s00125-008-1153-2
10.2337/db07-1781
10.3390/ijms10010306
10.1056/NEJMoa031314
10.2337/db10-0519
10.1210/jc.2010-0822
10.1172/JCI113011
10.1073/pnas.86.12.4489
10.2337/db07-1828
10.2337/diabetes.51.10.2944
10.1002/nbm.1519
10.1371/journal.pmed.0020233
10.2337/db09-1322
10.1172/JCI31785
10.1530/EJE-07-0756
10.1152/ajpendo.00322.2004
10.2337/db07-1429
10.1038/ng1180
10.1152/ajpendo.1981.240.6.E630
10.1007/BF00400856
10.2337/diabetes.54.1.8
10.2337/diabetes.50.4.817
10.1056/NEJM199001253220403
10.1530/acta.0.1270100
10.1210/er.2009-0003
10.2337/diabetes.55.01.06.db05-1286
10.1016/S0010-4825(01)00006-3
10.1063/1.1734121
10.1007/BF00400200
10.1007/s00125-006-0475-1
10.1152/japplphysiol.01231.2007
10.1210/jc.2008-0267
10.1210/jc.2010-2863
10.2337/db08-0391
10.2337/diacare.28.1.225-a
10.1371/journal.pmed.0040154
10.1152/ajpendo.00756.2009
10.1056/NEJM199907223410404
10.1172/JCI200111775
10.1016/j.physbeh.2008.01.020
10.1016/j.yjmcc.2009.02.015
10.1111/j.1463-1326.2010.01237.x
10.1073/pnas.1332551100
10.1152/ajpendo.00263.2007
10.1042/CS20100611
10.1073/pnas.1032913100
10.1210/jc.2010-1621
10.2337/dc10-1002
10.2337/db08-1240
10.1006/jmre.1999.1835
ContentType Journal Article
Copyright Copyright American Physiological Society Dec 2011
Copyright © 2011 the American Physiological Society 2011
Copyright_xml – notice: Copyright American Physiological Society Dec 2011
– notice: Copyright © 2011 the American Physiological Society 2011
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TS
7U7
C1K
7X8
5PM
DOI 10.1152/ajpendo.00278.2011
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Physical Education Index
Toxicology Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Toxicology Abstracts
Calcium & Calcified Tissue Abstracts
Physical Education Index
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
CrossRef
Toxicology Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1522-1555
EndPage E1162
ExternalDocumentID PMC3233777
2525055831
21917633
10_1152_ajpendo_00278_2011
Genre Research Support, Non-U.S. Gov't
Controlled Clinical Trial
Journal Article
Feature
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 073561
GroupedDBID ---
23M
2WC
39C
4.4
53G
5GY
5VS
6J9
8M5
AAYXX
ABJNI
ACPRK
ADBBV
AENEX
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BKOMP
BTFSW
C1A
CITATION
E3Z
EBS
EJD
EMOBN
F5P
GX1
H13
ITBOX
KQ8
OK1
P2P
P6G
PQQKQ
RAP
RHI
RPL
RPRKH
TR2
W8F
WH7
WOQ
XSW
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TS
7U7
C1K
7X8
5PM
ID FETCH-LOGICAL-c384t-c61142ce3a34f9e4d742d11fa2bf9eaaf8cbed73653523b0e3bb8a76980f19703
ISSN 0193-1849
1522-1555
IngestDate Thu Aug 21 14:14:17 EDT 2025
Fri Jul 11 05:25:48 EDT 2025
Mon Jun 30 08:14:07 EDT 2025
Mon Jul 21 05:47:17 EDT 2025
Tue Jul 01 03:18:15 EDT 2025
Thu Apr 24 22:48:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License This document may be redistributed and reused, subject to www.the-aps.org/publications/journals/funding_addendum_policy.htm.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c384t-c61142ce3a34f9e4d742d11fa2bf9eaaf8cbed73653523b0e3bb8a76980f19703
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC3233777
PMID 21917633
PQID 907219651
PQPubID 48583
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3233777
proquest_miscellaneous_907144122
proquest_journals_907219651
pubmed_primary_21917633
crossref_citationtrail_10_1152_ajpendo_00278_2011
crossref_primary_10_1152_ajpendo_00278_2011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-12-01
PublicationDateYYYYMMDD 2011-12-01
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda
– name: Bethesda, MD
PublicationTitle American journal of physiology: endocrinology and metabolism
PublicationTitleAlternate Am J Physiol Endocrinol Metab
PublicationYear 2011
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References B20
B21
B22
Wolfe RR (B49) 1984; 9
B23
B24
B25
B26
B27
B28
B29
B30
B31
B32
B33
B34
B35
B36
B37
B38
B39
B1
B2
B3
B4
B5
B6
B7
B8
B40
B41
B42
B43
B44
B45
B46
B47
B48
B50
B51
B52
B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
De Fronzo RA (B9) 1979; 237
7018254 - Am J Physiol. 1981 Jun;240(6):E630-9
19249309 - J Mol Cell Cardiol. 2009 Jun;46(6):919-26
20442322 - Am J Physiol Endocrinol Metab. 2010 Jul;299(1):E33-8
19581419 - Diabetes. 2009 Oct;58(10):2303-15
20649633 - Diabetes Obes Metab. 2010 Sep;12(9):806-14
18342897 - Physiol Behav. 2008 May 23;94(2):252-8
20623795 - NMR Biomed. 2010 Oct;23(8):952-7
15616258 - Diabetes Care. 2005 Jan;28(1):225-7
21106709 - J Clin Endocrinol Metab. 2011 Feb;96(2):494-503
21307136 - J Clin Endocrinol Metab. 2011 Apr;96(4):1160-8
18239076 - J Appl Physiol (1985). 2008 May;104(5):1304-12
14960743 - N Engl J Med. 2004 Feb 12;350(7):664-71
2734301 - Proc Natl Acad Sci U S A. 1989 Jun;86(12):4489-91
2257995 - Diabetologia. 1990 Oct;33(10):579-85
17093944 - Diabetologia. 2007 Jan;50(1):113-20
21388348 - Clin Sci (Lond). 2011 Aug;121(4):169-77
3294899 - J Clin Invest. 1987 Jun;79(6):1713-9
1541385 - Diabetologia. 1992 Jan;35(1):80-8
11334636 - Comput Biol Med. 2001 Jul;31(4):269-86
18460571 - J Clin Endocrinol Metab. 2008 Jul;93(7):2917-21
19861693 - Endocr Rev. 2010 Feb;31(1):25-51
12808136 - Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):7996-8001
1529656 - Acta Endocrinol (Copenh). 1992 Aug;127(2):100-6
15616005 - Diabetes. 2005 Jan;54(1):8-14
15585590 - Am J Physiol Endocrinol Metab. 2005 Apr;288(4):E818-25
10413736 - N Engl J Med. 1999 Jul 22;341(4):240-6
19265027 - Diabetes. 2009 Jun;58(6):1333-41
18252894 - Diabetes. 2008 Apr;57(4):987-94
19333447 - Int J Mol Sci. 2009 Jan;10(1):306-24
18535187 - Diabetes. 2008 Sep;57(9):2288-95
20978097 - Diabetes Care. 2011 Feb;34(2):430-6
6427541 - Lab Res Methods Biol Med. 1984;9:1-287
18678616 - Diabetes. 2008 Nov;57(11):2943-9
20028948 - Diabetes. 2010 Mar;59(3):572-9
20573749 - Diabetes. 2010 Sep;59(9):2117-25
11544279 - J Clin Invest. 2001 Sep;108(5):733-7
12832613 - Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8466-71
21508128 - J Clin Endocrinol Metab. 2011 Jul;96(7):E1137-41
16089501 - PLoS Med. 2005 Sep;2(9):e233
10479554 - J Magn Reson. 1999 Sep;140(1):120-30
18802678 - Diabetologia. 2008 Dec;51(12):2155-67
16380486 - Diabetes. 2006 Jan;55(1):136-40
382871 - Am J Physiol. 1979 Sep;237(3):E214-23
17932564 - J Clin Invest. 2007 Nov;117(11):3463-74
18426822 - Eur J Endocrinol. 2008 May;158(5):643-53
17711988 - Am J Physiol Endocrinol Metab. 2007 Nov;293(5):E1169-77
12808457 - Nat Genet. 2003 Jul;34(3):267-73
17472434 - PLoS Med. 2007 May;4(5):e154
2403659 - N Engl J Med. 1990 Jan 25;322(4):223-8
11289047 - Diabetes. 2001 Apr;50(4):817-23
12351431 - Diabetes. 2002 Oct;51(10):2944-50
References_xml – ident: B44
  doi: 10.1007/s00125-008-1153-2
– ident: B26
  doi: 10.2337/db07-1781
– ident: B5
  doi: 10.3390/ijms10010306
– ident: B31
  doi: 10.1056/NEJMoa031314
– ident: B14
  doi: 10.2337/db10-0519
– ident: B6
  doi: 10.1210/jc.2010-0822
– ident: B52
  doi: 10.1172/JCI113011
– ident: B16
  doi: 10.1073/pnas.86.12.4489
– ident: B37
  doi: 10.2337/db07-1828
– ident: B18
  doi: 10.2337/diabetes.51.10.2944
– ident: B22
  doi: 10.1002/nbm.1519
– ident: B32
  doi: 10.1371/journal.pmed.0020233
– ident: B23
  doi: 10.2337/db09-1322
– ident: B12
  doi: 10.1172/JCI31785
– ident: B8
  doi: 10.1530/EJE-07-0756
– ident: B24
  doi: 10.1152/ajpendo.00322.2004
– ident: B46
  doi: 10.2337/db07-1429
– ident: B27
  doi: 10.1038/ng1180
– ident: B39
  doi: 10.1152/ajpendo.1981.240.6.E630
– ident: B47
  doi: 10.1007/BF00400856
– ident: B38
  doi: 10.2337/diabetes.54.1.8
– ident: B13
  doi: 10.2337/diabetes.50.4.817
– ident: B42
  doi: 10.1056/NEJM199001253220403
– ident: B11
  doi: 10.1530/acta.0.1270100
– ident: B29
  doi: 10.1210/er.2009-0003
– ident: B3
  doi: 10.2337/diabetes.55.01.06.db05-1286
– ident: B28
  doi: 10.1016/S0010-4825(01)00006-3
– ident: B10
  doi: 10.1063/1.1734121
– ident: B51
  doi: 10.1007/BF00400200
– ident: B40
  doi: 10.1007/s00125-006-0475-1
– ident: B4
  doi: 10.1152/japplphysiol.01231.2007
– ident: B41
  doi: 10.1210/jc.2008-0267
– ident: B15
  doi: 10.1210/jc.2010-2863
– ident: B34
  doi: 10.2337/db08-0391
– ident: B25
  doi: 10.2337/diacare.28.1.225-a
– ident: B45
  doi: 10.1371/journal.pmed.0040154
– volume: 9
  start-page: 1
  year: 1984
  ident: B49
  publication-title: Lab Res Methods Biol Med
– ident: B2
  doi: 10.1152/ajpendo.00756.2009
– ident: B7
  doi: 10.1056/NEJM199907223410404
– ident: B20
  doi: 10.1172/JCI200111775
– ident: B33
  doi: 10.1016/j.physbeh.2008.01.020
– ident: B50
  doi: 10.1016/j.yjmcc.2009.02.015
– ident: B36
  doi: 10.1111/j.1463-1326.2010.01237.x
– ident: B43
  doi: 10.1073/pnas.1332551100
– volume: 237
  start-page: E214
  year: 1979
  ident: B9
  publication-title: Am J Physiol Endocrinol Metab Gastrointest Physiol
– ident: B19
  doi: 10.1152/ajpendo.00263.2007
– ident: B21
  doi: 10.1042/CS20100611
– ident: B30
  doi: 10.1073/pnas.1032913100
– ident: B1
  doi: 10.1210/jc.2010-1621
– ident: B35
  doi: 10.2337/dc10-1002
– ident: B17
  doi: 10.2337/db08-1240
– ident: B48
  doi: 10.1006/jmre.1999.1835
– reference: 10479554 - J Magn Reson. 1999 Sep;140(1):120-30
– reference: 20442322 - Am J Physiol Endocrinol Metab. 2010 Jul;299(1):E33-8
– reference: 11289047 - Diabetes. 2001 Apr;50(4):817-23
– reference: 21106709 - J Clin Endocrinol Metab. 2011 Feb;96(2):494-503
– reference: 12351431 - Diabetes. 2002 Oct;51(10):2944-50
– reference: 18426822 - Eur J Endocrinol. 2008 May;158(5):643-53
– reference: 15616005 - Diabetes. 2005 Jan;54(1):8-14
– reference: 11334636 - Comput Biol Med. 2001 Jul;31(4):269-86
– reference: 11544279 - J Clin Invest. 2001 Sep;108(5):733-7
– reference: 382871 - Am J Physiol. 1979 Sep;237(3):E214-23
– reference: 17093944 - Diabetologia. 2007 Jan;50(1):113-20
– reference: 21307136 - J Clin Endocrinol Metab. 2011 Apr;96(4):1160-8
– reference: 18252894 - Diabetes. 2008 Apr;57(4):987-94
– reference: 18678616 - Diabetes. 2008 Nov;57(11):2943-9
– reference: 21508128 - J Clin Endocrinol Metab. 2011 Jul;96(7):E1137-41
– reference: 12808136 - Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):7996-8001
– reference: 18239076 - J Appl Physiol (1985). 2008 May;104(5):1304-12
– reference: 3294899 - J Clin Invest. 1987 Jun;79(6):1713-9
– reference: 20028948 - Diabetes. 2010 Mar;59(3):572-9
– reference: 19861693 - Endocr Rev. 2010 Feb;31(1):25-51
– reference: 18342897 - Physiol Behav. 2008 May 23;94(2):252-8
– reference: 12832613 - Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8466-71
– reference: 10413736 - N Engl J Med. 1999 Jul 22;341(4):240-6
– reference: 19249309 - J Mol Cell Cardiol. 2009 Jun;46(6):919-26
– reference: 20623795 - NMR Biomed. 2010 Oct;23(8):952-7
– reference: 2257995 - Diabetologia. 1990 Oct;33(10):579-85
– reference: 15616258 - Diabetes Care. 2005 Jan;28(1):225-7
– reference: 16089501 - PLoS Med. 2005 Sep;2(9):e233
– reference: 6427541 - Lab Res Methods Biol Med. 1984;9:1-287
– reference: 17472434 - PLoS Med. 2007 May;4(5):e154
– reference: 14960743 - N Engl J Med. 2004 Feb 12;350(7):664-71
– reference: 20649633 - Diabetes Obes Metab. 2010 Sep;12(9):806-14
– reference: 1541385 - Diabetologia. 1992 Jan;35(1):80-8
– reference: 12808457 - Nat Genet. 2003 Jul;34(3):267-73
– reference: 21388348 - Clin Sci (Lond). 2011 Aug;121(4):169-77
– reference: 19265027 - Diabetes. 2009 Jun;58(6):1333-41
– reference: 18460571 - J Clin Endocrinol Metab. 2008 Jul;93(7):2917-21
– reference: 19581419 - Diabetes. 2009 Oct;58(10):2303-15
– reference: 2734301 - Proc Natl Acad Sci U S A. 1989 Jun;86(12):4489-91
– reference: 15585590 - Am J Physiol Endocrinol Metab. 2005 Apr;288(4):E818-25
– reference: 18535187 - Diabetes. 2008 Sep;57(9):2288-95
– reference: 7018254 - Am J Physiol. 1981 Jun;240(6):E630-9
– reference: 1529656 - Acta Endocrinol (Copenh). 1992 Aug;127(2):100-6
– reference: 2403659 - N Engl J Med. 1990 Jan 25;322(4):223-8
– reference: 20573749 - Diabetes. 2010 Sep;59(9):2117-25
– reference: 19333447 - Int J Mol Sci. 2009 Jan;10(1):306-24
– reference: 16380486 - Diabetes. 2006 Jan;55(1):136-40
– reference: 17711988 - Am J Physiol Endocrinol Metab. 2007 Nov;293(5):E1169-77
– reference: 18802678 - Diabetologia. 2008 Dec;51(12):2155-67
– reference: 17932564 - J Clin Invest. 2007 Nov;117(11):3463-74
– reference: 20978097 - Diabetes Care. 2011 Feb;34(2):430-6
SSID ssj0007542
Score 2.086939
Snippet Mitochondrial dysfunction has been implicated in the pathogenesis of type 2 diabetes. We hypothesized that any impairment in insulin-stimulated muscle ATP...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage E1155
SubjectTerms Adenosine triphosphatase
Adenosine Triphosphate - metabolism
Algorithms
ATP
Blood Glucose - metabolism
Breath Tests
Diabetes
Diabetes Mellitus, Type 2 - blood
Diabetes Mellitus, Type 2 - metabolism
Diabetes Mellitus, Type 2 - pathology
Energy Metabolism - physiology
Female
Glucose Clamp Technique
Glycogen - biosynthesis
Glycogen - physiology
Humans
Hyperglycemia - blood
Hyperglycemia - metabolism
Insulin
Insulin - blood
Male
Middle Aged
Muscle, Skeletal - metabolism
Musculoskeletal system
Pathogenesis
Up-Regulation - physiology
Title Effects of raising muscle glycogen synthesis rate on skeletal muscle ATP turnover rate in type 2 diabetes
URI https://www.ncbi.nlm.nih.gov/pubmed/21917633
https://www.proquest.com/docview/907219651
https://www.proquest.com/docview/907144122
https://pubmed.ncbi.nlm.nih.gov/PMC3233777
Volume 301
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIiEuCFoeoYD2gLhYDonXj_gYVSkVpShIqdSbtWuvqSGxqyYRCj-bX8DMvuIkCEEvVuwde2PP552d9cw3hLzF7ERWRKkfl4H0Q1nmflrI0k8E-B59UYBTpKJ8P8dnl-HHq-iq0_nVilpaLUUv__nHvJK7aBWOgV4xS_Y_NOsuCgfgN-gXtqBh2P6TjsebYIxbXimvf75agJD3dbbOGzgPGQlgioesI8gJgZ8GFt_B0mAKpBEdTSce2J0aYzm1EIY-bq_Mtqew7htPi3RCrY_ovBes9FMXDQxG9YbeaQ4dimZm6QoxAEhXcR5L71PPQUsThG_CFs8rTEb0PjgJtw50iiuY3tg1ANpnP7ipx4wRPratcCu0O8Eh9i4m9q8rtJog1vZSaMp88E_1gCvN8A2uNcyQovb4zszFq73RegzT4ahl-mFfm4Z9uxIhTy3_hnWJm576XKvoX9vC8IBv5gppATrBsSb42GHznlycsICxJEnukfsBuDZYdeP8y4bhHisS6xR_fXc20SsK3u93r6isdV_b86o9Z2k35rc1iZo-Jo-M90NHGspPSEfWh-RoVPNlM1_Td9QpY31IHlyYsI8jUhmg06akBuhUo5daoFMHdIoYpg0cMUC3ogB0aoGuhaqaItBpQC3Qn5LL0_H05Mw3NUL8nA3DpZ_HmAyeS8ZZWKYyLJIwKAaDkgcCdjkvh7mQRcJipDFioi-ZEEOexOmwXw5SMHfPyEHd1PIFoTJJSjBhg5DzCJyIXAguZV-ULB4GPOVJlwzsE85yQ6CPdVxmmXKkoyAzCsqUgjJUUJd47pwbTR_zV-ljq7jMvMOLLEUGwzSOoJW6VrAB-GGP17JZKRFcFwmCLnmutew6s_DokmRL_04A6eW3W-rqWtHMG5y-vPOZx-Th5v1-RQ6Wtyv5GqbwS_FGYf43lAL4bA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+raising+muscle+glycogen+synthesis+rate+on+skeletal+muscle+ATP+turnover+rate+in+type+2+diabetes&rft.jtitle=American+journal+of+physiology%3A+endocrinology+and+metabolism&rft.au=Lim%2C+Ee+L.&rft.au=Hollingsworth%2C+Kieren+G.&rft.au=Smith%2C+Fiona+E.&rft.au=Thelwall%2C+Peter+E.&rft.date=2011-12-01&rft.pub=American+Physiological+Society&rft.issn=0193-1849&rft.eissn=1522-1555&rft.volume=301&rft.issue=6&rft.spage=E1155&rft.epage=E1162&rft_id=info:doi/10.1152%2Fajpendo.00278.2011&rft_id=info%3Apmid%2F21917633&rft.externalDocID=PMC3233777
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0193-1849&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0193-1849&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0193-1849&client=summon