Dynamic adjustment of emission from both singlets and triplets: the role of excited state conformation relaxation and charge transfer in phenothiazine derivates
Luminescence behaviors in organic emitters are influenced greatly by the molecular conformation. However, the current research on room-temperature phosphorescence (RTP) mainly focuses on fixed molecular conformation, such as that in single crystals and rigid hosts. Herein, by linking the phenothiazi...
Saved in:
Published in | Journal of materials chemistry. C, Materials for optical and electronic devices Vol. 9; no. 4; pp. 1378 - 1386 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Luminescence behaviors in organic emitters are influenced greatly by the molecular conformation. However, the current research on room-temperature phosphorescence (RTP) mainly focuses on fixed molecular conformation, such as that in single crystals and rigid hosts. Herein, by linking the phenothiazine moiety with nitrogen heterocycles, we constructed four phenothiazine derivates having planar structure in the ground state. In the excited state, a large conformation relaxation occurs to give a dynamically tunable fluorescence and phosphorescence by the extent of the intramolecular charge transfer (ICT). In systems with a reduced ICT character, multiple emissions consisting of fluorescence and phosphorescence were observed and a white light emission was obtained in the amorphous film state. When increasing the ICT, strong spin mixing between the singlet and triplet occurs in the twisted intramolecular charge transfer (TICT) state, which is favorable for a short triplet lifetime. The emission of the thermally activated delayed fluorescence (TADF) or short RTP depends on the allowance or forbidden of fluorescence in the twisted excited state conformation. This work demonstrates the adjustment of the singlet and triplet emission behaviors through controlling the extent of TICT and provides an insight into the relationship between the molecular conformation and triplet exciton dynamics for future applications.
Dynamic adjustment of emission behaviours by controlling the extent of twisted intramolecular charge transfer character in excited state. |
---|---|
AbstractList | Luminescence behaviors in organic emitters are influenced greatly by the molecular conformation. However, the current research on room-temperature phosphorescence (RTP) mainly focuses on fixed molecular conformation, such as that in single crystals and rigid hosts. Herein, by linking the phenothiazine moiety with nitrogen heterocycles, we constructed four phenothiazine derivates having planar structure in the ground state. In the excited state, a large conformation relaxation occurs to give a dynamically tunable fluorescence and phosphorescence by the extent of the intramolecular charge transfer (ICT). In systems with a reduced ICT character, multiple emissions consisting of fluorescence and phosphorescence were observed and a white light emission was obtained in the amorphous film state. When increasing the ICT, strong spin mixing between the singlet and triplet occurs in the twisted intramolecular charge transfer (TICT) state, which is favorable for a short triplet lifetime. The emission of the thermally activated delayed fluorescence (TADF) or short RTP depends on the allowance or forbidden of fluorescence in the twisted excited state conformation. This work demonstrates the adjustment of the singlet and triplet emission behaviors through controlling the extent of TICT and provides an insight into the relationship between the molecular conformation and triplet exciton dynamics for future applications. Luminescence behaviors in organic emitters are influenced greatly by the molecular conformation. However, the current research on room-temperature phosphorescence (RTP) mainly focuses on fixed molecular conformation, such as that in single crystals and rigid hosts. Herein, by linking the phenothiazine moiety with nitrogen heterocycles, we constructed four phenothiazine derivates having planar structure in the ground state. In the excited state, a large conformation relaxation occurs to give a dynamically tunable fluorescence and phosphorescence by the extent of the intramolecular charge transfer (ICT). In systems with a reduced ICT character, multiple emissions consisting of fluorescence and phosphorescence were observed and a white light emission was obtained in the amorphous film state. When increasing the ICT, strong spin mixing between the singlet and triplet occurs in the twisted intramolecular charge transfer (TICT) state, which is favorable for a short triplet lifetime. The emission of the thermally activated delayed fluorescence (TADF) or short RTP depends on the allowance or forbidden of fluorescence in the twisted excited state conformation. This work demonstrates the adjustment of the singlet and triplet emission behaviors through controlling the extent of TICT and provides an insight into the relationship between the molecular conformation and triplet exciton dynamics for future applications. Dynamic adjustment of emission behaviours by controlling the extent of twisted intramolecular charge transfer character in excited state. |
Author | Wang, Liangying He, Yanmei Liu, Ming Qiu, Weidong Su, Shi-Jian Cai, Xinyi Xie, Wentao Chen, Zijian Li, Mengke |
AuthorAffiliation | South China Institute of Collaborative Innovation State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices South China University of Technology |
AuthorAffiliation_xml | – name: South China University of Technology – name: South China Institute of Collaborative Innovation – name: State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices |
Author_xml | – sequence: 1 givenname: Weidong surname: Qiu fullname: Qiu, Weidong – sequence: 2 givenname: Xinyi surname: Cai fullname: Cai, Xinyi – sequence: 3 givenname: Mengke surname: Li fullname: Li, Mengke – sequence: 4 givenname: Liangying surname: Wang fullname: Wang, Liangying – sequence: 5 givenname: Yanmei surname: He fullname: He, Yanmei – sequence: 6 givenname: Wentao surname: Xie fullname: Xie, Wentao – sequence: 7 givenname: Zijian surname: Chen fullname: Chen, Zijian – sequence: 8 givenname: Ming surname: Liu fullname: Liu, Ming – sequence: 9 givenname: Shi-Jian surname: Su fullname: Su, Shi-Jian |
BookMark | eNptkUtLAzEUhYNUsD427oWAO2H0ZtKZybiT1hcKbnQ9pJk7bepMUpNUrL_Gn2raSgUxm9wL3zmXw9knPWMNEnLM4JwBLy9qCAoyPuCvO6SfQgZJEbfedk7zPXLk_QziEywXedknX6OlkZ1WVNazhQ8dmkBtQ7HT3mtraONsR8c2TKnXZtJi8FSamgan56vlkoYpUmdbXKs-lA5YUx9kQKqsaazrZFj5OGzlx2Zc6dVUuglGG2l8g45qQ-dTNPGOlp_aIK3R6ffo4g_JbiNbj0c__wF5ubl-Ht4lj0-398Orx0RxMQiJSqVgXLAMeVqWTBRQywIHslBClSwv64YBsjpLUyyaEjHNxBgg52JcZKoA4AfkdOM7d_ZtgT5UM7twJp6s0oHIIc8hKyIFG0o5673DpoqJ17FiFN1WDKpVFdUInofrKh6i5OyPZO50J93yf_hkAzuvttxvr_wbEQ-Ybw |
CitedBy_id | crossref_primary_10_1039_D1CC06950K crossref_primary_10_1002_advs_202207003 crossref_primary_10_1002_chem_202303782 crossref_primary_10_2139_ssrn_4062372 crossref_primary_10_1039_D2SC01086K crossref_primary_10_1021_jacs_3c04725 crossref_primary_10_1021_acs_jpclett_1c01095 crossref_primary_10_1021_acs_jpcb_4c06300 crossref_primary_10_1021_acsmacrolett_3c00196 crossref_primary_10_1039_D4TC01203H crossref_primary_10_1016_j_cej_2022_136813 crossref_primary_10_1364_OL_545637 crossref_primary_10_1016_j_mtchem_2021_100645 crossref_primary_10_1039_D2CP05119B crossref_primary_10_1016_j_snb_2023_133295 crossref_primary_10_1002_agt2_726 crossref_primary_10_1039_D2TC04326B crossref_primary_10_1002_adhm_202301091 crossref_primary_10_1002_chem_202301114 crossref_primary_10_1039_D4TC00289J crossref_primary_10_1021_acs_orglett_1c00918 crossref_primary_10_1021_acs_jpclett_2c01205 crossref_primary_10_1016_j_cej_2024_149692 crossref_primary_10_1021_acs_cgd_3c01242 crossref_primary_10_1039_D3CP02802J |
Cites_doi | 10.1038/s41467-017-00362-5 10.1039/D0TC03747H 10.1002/adom.201700116 10.1088/2050-6120/aa537e 10.1021/ar50001a002 10.1002/anie.201901882 10.1002/adma.201903269 10.1021/jacs.5b03491 10.1002/adma.201807268 10.1002/anie.201906083 10.1021/jacs.8b11224 10.1021/acs.jpcc.8b06533 10.1002/anie.201915556 10.1038/s41467-020-14669-3 10.1021/cr940745l 10.1016/j.chempr.2016.08.010 10.1002/adma.202001348 10.1002/adma.201504321 10.1039/C9CC02648G 10.1039/C8TC02987C 10.1038/s41467-019-11749-x 10.1021/acs.chemmater.0c00078 10.1021/acsami.8b08083 10.1002/anie.201809945 10.1002/adma.201701244 10.1021/acsami.9b16952 10.1021/jacs.7b12800 10.1039/C7TC04099G 10.1038/s41566-019-0408-4 10.1002/adfm.201203706 10.1038/s41467-020-15976-5 10.1038/s41467-018-03236-6 10.1002/adom.201801667 10.1021/jp501017f 10.1002/anie.201906371 10.1002/adma.201602604 10.1016/j.mser.2020.100581 10.1038/ncomms14987 10.1103/PhysRevLett.52.997 10.1039/C9TC03203G 10.1039/d0mh01316a 10.1007/s11426-017-9219-x 10.1021/jacs.7b03848 10.1002/anie.201509224 10.1002/advs.201900410 10.1002/adfm.201704927 10.1021/acs.jpclett.0c01580 10.1351/pac196511030371 10.1016/j.jlumin.2018.09.047 10.1002/adfm.201802407 10.1038/s41563-020-0797-2 10.1039/C9MH00220K 10.1038/nmat4259 10.1002/anie.202009789 10.1038/nmat4154 10.1002/adma.201807887 10.1016/0009-2614(73)80367-7 10.1021/acsami.9b20181 10.1039/C9SC04632A 10.1039/C9SC04492B 10.1002/adma.201808300 10.1021/jacs.6b11984 10.1007/s00214-007-0310-x 10.1039/C9TC00909D 10.1002/anie.201811703 10.1002/anie.198609711 10.1002/adma.201701476 10.1021/acsami.9b16073 10.1002/adfm.201602501 10.1021/acs.chemrev.7b00617 10.1002/anie.201916357 10.1039/C6SC04863C |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1039/d0tc05343k |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | CrossRef Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 2050-7534 |
EndPage | 1386 |
ExternalDocumentID | 10_1039_D0TC05343K d0tc05343k |
GroupedDBID | 0-7 0R 4.4 705 AAEMU AAGNR AAIWI AANOJ ABDVN ABGFH ABRYZ ACGFS ACLDK ADMRA ADSRN AENEX AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV BLAPV BSQNT C6K CKLOX EBS ECGLT EE0 EF- GNO HZ H~N J3I JG O-G O9- R7C RCNCU RIG RNS RPMJG RRC RSCEA SKA SKF SLH UCJ 0R~ AAJAE AAWGC AAXHV AAYXX ABASK ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ RAOCF 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c384t-c2a813815e32991870da7e4a7c8c9169df10e1d522e7f9ee258b00638b75c7003 |
ISSN | 2050-7526 |
IngestDate | Sun Jun 29 15:26:32 EDT 2025 Tue Jul 01 04:26:23 EDT 2025 Thu Apr 24 23:03:39 EDT 2025 Sat Jan 08 03:51:57 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c384t-c2a813815e32991870da7e4a7c8c9169df10e1d522e7f9ee258b00638b75c7003 |
Notes | Electronic supplementary information (ESI) available. CCDC For ESI and crystallographic data in CIF or other electronic format see DOI 2040989 10.1039/d0tc05343k and , 2040988 2040987 2040985 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6545-9002 |
PQID | 2486066057 |
PQPubID | 2047521 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1039_D0TC05343K rsc_primary_d0tc05343k crossref_primary_10_1039_D0TC05343K proquest_journals_2486066057 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 20210101 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. C, Materials for optical and electronic devices |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Cai (D0TC05343K-(cit1)/*[position()=1]) 2019; 58 Gierschner (D0TC05343K-(cit3)/*[position()=1]) 2020 Yuan (D0TC05343K-(cit24)/*[position()=1]) 2019; 6 Shoji (D0TC05343K-(cit29)/*[position()=1]) 2017; 139 Li (D0TC05343K-(cit28)/*[position()=1]) 2019; 55 Zhang (D0TC05343K-(cit33)/*[position()=1]) 2019; 58 Duan (D0TC05343K-(cit72)/*[position()=1]) 2018; 122 Runge (D0TC05343K-(cit55)/*[position()=1]) 1984; 52 An (D0TC05343K-(cit23)/*[position()=1]) 2015; 14 Chen (D0TC05343K-(cit39)/*[position()=1]) 2020; 32 Huang (D0TC05343K-(cit59)/*[position()=1]) 2018; 6 Chen (D0TC05343K-(cit9)/*[position()=1]) 2018; 57 Yang (D0TC05343K-(cit26)/*[position()=1]) 2018; 9 Wang (D0TC05343K-(cit57)/*[position()=1]) 2017; 29 Turro (D0TC05343K-(cit22)/*[position()=1]) 2010 Grabowski (D0TC05343K-(cit43)/*[position()=1]) 2003; 103 Chen (D0TC05343K-(cit53)/*[position()=1]) 2019; 58 Gu (D0TC05343K-(cit27)/*[position()=1]) 2019; 13 Bhattacharjee (D0TC05343K-(cit70)/*[position()=1]) 2020; 32 Li (D0TC05343K-(cit8)/*[position()=1]) 2019; 7 Zhang (D0TC05343K-(cit54)/*[position()=1]) 2015; 137 Xu (D0TC05343K-(cit16)/*[position()=1]) 2019; 205 Rettig (D0TC05343K-(cit45)/*[position()=1]) 1986; 25 Matsuo (D0TC05343K-(cit2)/*[position()=1]) 2019; 10 He (D0TC05343K-(cit38)/*[position()=1]) 2017; 8 Ma (D0TC05343K-(cit18)/*[position()=1]) 2018; 141 Wang (D0TC05343K-(cit7)/*[position()=1]) 2018; 10 Li (D0TC05343K-(cit58)/*[position()=1]) 2019; 58 Chen (D0TC05343K-(cit64)/*[position()=1]) 2020 El-Sayed (D0TC05343K-(cit19)/*[position()=1]) 1968; 1 Wang (D0TC05343K-(cit44)/*[position()=1]) 2020; 59 Cai (D0TC05343K-(cit67)/*[position()=1]) 2018; 28 Tanaka (D0TC05343K-(cit5)/*[position()=1]) 2014; 118 Hirata (D0TC05343K-(cit60)/*[position()=1]) 2015; 14 Rotkiewicz (D0TC05343K-(cit42)/*[position()=1]) 1973; 19 Jin (D0TC05343K-(cit62)/*[position()=1]) 2020; 11 Data (D0TC05343K-(cit12)/*[position()=1]) 2019; 7 Turro (D0TC05343K-(cit21)/*[position()=1]) 2010 Wang (D0TC05343K-(cit63)/*[position()=1]) 2020; 11 Penfold (D0TC05343K-(cit71)/*[position()=1]) 2018; 118 Rajamalli (D0TC05343K-(cit48)/*[position()=1]) 2017; 139 Hirata (D0TC05343K-(cit15)/*[position()=1]) 2017; 5 Chen (D0TC05343K-(cit52)/*[position()=1]) 2020; 8 Zhao (D0TC05343K-(cit56)/*[position()=1]) 2008; 120 Lee (D0TC05343K-(cit74)/*[position()=1]) 2019; 7 Okazaki (D0TC05343K-(cit10)/*[position()=1]) 2017; 8 He (D0TC05343K-(cit13)/*[position()=1]) 2018; 61 Narushima (D0TC05343K-(cit35)/*[position()=1]) 2019; 31 Hirata (D0TC05343K-(cit34)/*[position()=1]) 2013; 23 Louis (D0TC05343K-(cit40)/*[position()=1]) 2019; 31 Wang (D0TC05343K-(cit49)/*[position()=1]) 2019; 11 Song (D0TC05343K-(cit69)/*[position()=1]) 2020; 12 Dias (D0TC05343K-(cit61)/*[position()=1]) 2017; 5 Kasha (D0TC05343K-(cit46)/*[position()=1]) 1965; 11 Northey (D0TC05343K-(cit68)/*[position()=1]) 2017; 5 Cai (D0TC05343K-(cit30)/*[position()=1]) 2019; 10 Li (D0TC05343K-(cit32)/*[position()=1]) 2018; 140 Wu (D0TC05343K-(cit73)/*[position()=1]) 2020; 11 Zhou (D0TC05343K-(cit37)/*[position()=1]) 2018; 28 Pan (D0TC05343K-(cit50)/*[position()=1]) 2016; 26 Etherington (D0TC05343K-(cit6)/*[position()=1]) 2017; 8 Kukhta (D0TC05343K-(cit4)/*[position()=1]) 2021 Xu (D0TC05343K-(cit17)/*[position()=1]) 2016; 28 Kabe (D0TC05343K-(cit41)/*[position()=1]) 2016; 28 Kim (D0TC05343K-(cit65)/*[position()=1]) 2020; 11 Lee (D0TC05343K-(cit66)/*[position()=1]) 2020; 32 Yang (D0TC05343K-(cit31)/*[position()=1]) 2016; 55 Watanabe (D0TC05343K-(cit47)/*[position()=1]) 2019; 31 Dos Santos (D0TC05343K-(cit51)/*[position()=1]) 2019; 11 Li (D0TC05343K-(cit11)/*[position()=1]) 2020; 59 Chen (D0TC05343K-(cit14)/*[position()=1]) 2020; 142 Zhao (D0TC05343K-(cit20)/*[position()=1]) 2016; 1 Hirata (D0TC05343K-(cit36)/*[position()=1]) 2019; 6 Cai (D0TC05343K-(cit25)/*[position()=1]) 2017; 29 |
References_xml | – issn: 2010 publication-title: Modern molecular photochemistry of organic molecules doi: Turro Scaiano Ramamurthy – volume: 8 start-page: 416 year: 2017 ident: D0TC05343K-(cit38)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-017-00362-5 – volume: 8 start-page: 13263 year: 2020 ident: D0TC05343K-(cit52)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/D0TC03747H – volume: 5 start-page: 1700116 year: 2017 ident: D0TC05343K-(cit15)/*[position()=1] publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201700116 – volume: 5 start-page: 012001 year: 2017 ident: D0TC05343K-(cit61)/*[position()=1] publication-title: Methods Appl. Fluoresc. doi: 10.1088/2050-6120/aa537e – volume: 1 start-page: 8 year: 1968 ident: D0TC05343K-(cit19)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar50001a002 – volume: 58 start-page: 6028 year: 2019 ident: D0TC05343K-(cit33)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201901882 – volume: 32 start-page: 1903269 year: 2020 ident: D0TC05343K-(cit39)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201903269 – volume: 137 start-page: 8509 year: 2015 ident: D0TC05343K-(cit54)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b03491 – volume: 31 start-page: 1807268 year: 2019 ident: D0TC05343K-(cit35)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201807268 – volume: 58 start-page: 13297 year: 2019 ident: D0TC05343K-(cit53)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201906083 – volume: 141 start-page: 1010 year: 2018 ident: D0TC05343K-(cit18)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b11224 – volume: 122 start-page: 23091 year: 2018 ident: D0TC05343K-(cit72)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b06533 – volume: 59 start-page: 3739 year: 2020 ident: D0TC05343K-(cit11)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201915556 – volume: 11 start-page: 842 year: 2020 ident: D0TC05343K-(cit62)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-020-14669-3 – volume: 103 start-page: 3899 year: 2003 ident: D0TC05343K-(cit43)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr940745l – volume: 1 start-page: 592 year: 2016 ident: D0TC05343K-(cit20)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2016.08.010 – volume: 32 start-page: 2001348 year: 2020 ident: D0TC05343K-(cit70)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.202001348 – volume: 28 start-page: 655 year: 2016 ident: D0TC05343K-(cit41)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201504321 – volume: 55 start-page: 7215 year: 2019 ident: D0TC05343K-(cit28)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C9CC02648G – volume: 6 start-page: 9238 year: 2018 ident: D0TC05343K-(cit59)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C8TC02987C – volume: 10 start-page: 4247 year: 2019 ident: D0TC05343K-(cit30)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-11749-x – volume-title: Modern molecular photochemistry of organic molecules year: 2010 ident: D0TC05343K-(cit21)/*[position()=1] – volume: 32 start-page: 2583 year: 2020 ident: D0TC05343K-(cit66)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c00078 – volume: 10 start-page: 31515 year: 2018 ident: D0TC05343K-(cit7)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b08083 – volume: 57 start-page: 16407 year: 2018 ident: D0TC05343K-(cit9)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201809945 – volume: 29 start-page: 1701244 year: 2017 ident: D0TC05343K-(cit25)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201701244 – volume: 11 start-page: 45171 year: 2019 ident: D0TC05343K-(cit51)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b16952 – volume: 140 start-page: 1916 year: 2018 ident: D0TC05343K-(cit32)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b12800 – volume: 5 start-page: 11001 year: 2017 ident: D0TC05343K-(cit68)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C7TC04099G – volume: 13 start-page: 406 year: 2019 ident: D0TC05343K-(cit27)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/s41566-019-0408-4 – volume: 23 start-page: 3386 year: 2013 ident: D0TC05343K-(cit34)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201203706 – volume: 11 start-page: 2145 year: 2020 ident: D0TC05343K-(cit73)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-020-15976-5 – volume: 9 start-page: 840 year: 2018 ident: D0TC05343K-(cit26)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-03236-6 – volume: 7 start-page: 1801667 year: 2019 ident: D0TC05343K-(cit8)/*[position()=1] publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201801667 – volume: 118 start-page: 15985 year: 2014 ident: D0TC05343K-(cit5)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp501017f – volume: 58 start-page: 13522 year: 2019 ident: D0TC05343K-(cit1)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201906371 – volume: 28 start-page: 9920 year: 2016 ident: D0TC05343K-(cit17)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201602604 – volume: 142 start-page: 100581 year: 2020 ident: D0TC05343K-(cit14)/*[position()=1] publication-title: Mater. Sci. Eng., R doi: 10.1016/j.mser.2020.100581 – volume: 8 start-page: 14987 year: 2017 ident: D0TC05343K-(cit6)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms14987 – volume: 52 start-page: 997 year: 1984 ident: D0TC05343K-(cit55)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.52.997 – volume: 7 start-page: 11500 year: 2019 ident: D0TC05343K-(cit74)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C9TC03203G – year: 2021 ident: D0TC05343K-(cit4)/*[position()=1] publication-title: Mater. Horiz. doi: 10.1039/d0mh01316a – volume: 61 start-page: 677 year: 2018 ident: D0TC05343K-(cit13)/*[position()=1] publication-title: Sci. China: Chem. doi: 10.1007/s11426-017-9219-x – volume: 139 start-page: 10948 year: 2017 ident: D0TC05343K-(cit48)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b03848 – volume: 55 start-page: 2181 year: 2016 ident: D0TC05343K-(cit31)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201509224 – volume: 6 start-page: 1900410 year: 2019 ident: D0TC05343K-(cit36)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201900410 – volume: 28 start-page: 1704927 year: 2018 ident: D0TC05343K-(cit67)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201704927 – volume: 11 start-page: 5591 year: 2020 ident: D0TC05343K-(cit65)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c01580 – volume: 11 start-page: 371 year: 1965 ident: D0TC05343K-(cit46)/*[position()=1] publication-title: Pure Appl. Chem. doi: 10.1351/pac196511030371 – volume: 205 start-page: 581 year: 2019 ident: D0TC05343K-(cit16)/*[position()=1] publication-title: J. Lumin. doi: 10.1016/j.jlumin.2018.09.047 – volume: 28 start-page: 1802407 year: 2018 ident: D0TC05343K-(cit37)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201802407 – year: 2020 ident: D0TC05343K-(cit64)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/s41563-020-0797-2 – volume: 6 start-page: 1259 year: 2019 ident: D0TC05343K-(cit24)/*[position()=1] publication-title: Mater. Horiz. doi: 10.1039/C9MH00220K – volume: 14 start-page: 685 year: 2015 ident: D0TC05343K-(cit23)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat4259 – volume-title: Modern molecular photochemistry of organic molecules year: 2010 ident: D0TC05343K-(cit22)/*[position()=1] – year: 2020 ident: D0TC05343K-(cit3)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202009789 – volume: 14 start-page: 330 year: 2015 ident: D0TC05343K-(cit60)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat4154 – volume: 31 start-page: 1807887 year: 2019 ident: D0TC05343K-(cit40)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201807887 – volume: 19 start-page: 315 year: 1973 ident: D0TC05343K-(cit42)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(73)80367-7 – volume: 12 start-page: 6137 year: 2020 ident: D0TC05343K-(cit69)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b20181 – volume: 11 start-page: 833 year: 2020 ident: D0TC05343K-(cit63)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C9SC04632A – volume: 10 start-page: 10687 year: 2019 ident: D0TC05343K-(cit2)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C9SC04492B – volume: 31 start-page: 1808300 year: 2019 ident: D0TC05343K-(cit47)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201808300 – volume: 139 start-page: 2728 year: 2017 ident: D0TC05343K-(cit29)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11984 – volume: 120 start-page: 215 year: 2008 ident: D0TC05343K-(cit56)/*[position()=1] publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-007-0310-x – volume: 7 start-page: 6616 year: 2019 ident: D0TC05343K-(cit12)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C9TC00909D – volume: 58 start-page: 582 year: 2019 ident: D0TC05343K-(cit58)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201811703 – volume: 25 start-page: 971 year: 1986 ident: D0TC05343K-(cit45)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.198609711 – volume: 29 start-page: 1701476 year: 2017 ident: D0TC05343K-(cit57)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201701476 – volume: 11 start-page: 45999 year: 2019 ident: D0TC05343K-(cit49)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b16073 – volume: 26 start-page: 7560 year: 2016 ident: D0TC05343K-(cit50)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201602501 – volume: 118 start-page: 6975 year: 2018 ident: D0TC05343K-(cit71)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00617 – volume: 59 start-page: 10160 year: 2020 ident: D0TC05343K-(cit44)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201916357 – volume: 8 start-page: 2677 year: 2017 ident: D0TC05343K-(cit10)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C6SC04863C |
SSID | ssj0000816869 |
Score | 2.3996713 |
Snippet | Luminescence behaviors in organic emitters are influenced greatly by the molecular conformation. However, the current research on room-temperature... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1378 |
SubjectTerms | Charge transfer Crystallography Emissions control Emitters Excitation Excitons Fluorescence Light emission Molecular conformation Phosphorescence Planar structures Room temperature Single crystals White light |
Title | Dynamic adjustment of emission from both singlets and triplets: the role of excited state conformation relaxation and charge transfer in phenothiazine derivates |
URI | https://www.proquest.com/docview/2486066057 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELa6TkjsAcFgomMgS_CCqow4v8Pb1HUaUMZLKvUtShxnhKF0alO08dfwjyJxPttJBgMBL1Hkxk6T--I7n7-7I-RFHOROwFlsZZHHLQ8MXCuKWGllQVAwN3dsjtn5358Fp3Pv7cJfDAbfe6ylTZMf8q-3xpX8j1ShDeQqo2T_QbLtoNAA5yBfOIKE4fhXMj5W5eTHWfFps27Mtr6s4LZGBqEMHcmXkoMOCgoEpPIxNyvpXG_WhtJhCIbiiqP9iTFGko7eBjZixMuVOsU4OJleScjyEmD0ihUy0T-KGu5UYbbqcQFP_0Vasb-xfWFY9X5gKF1w7nA8UbFD5hfJf1xeNm02g17BnkLg_NY6basNUgVFVSy1IsZdFSQqLKr6umppR9gkmbwX3Z6U9pjP4EM5vzaaXDtCHPaTI0S5WwzXFbks-gG6KdWxfdsKfUcn3-63aZeq1glxD_peb35nrio4pG0F5qo83r_oIduVaVwLu-EwyXnuRadtDcPg7EN6Mp_N0mS6SLbItgOrHGdIto-myZtZ6yTEqihYlrH95ybFrhu_6oa_aVR1K6WtlSljg-ZScp_c07KmRwq0D8hA1Ltkp5f9cpfcQfYxXz8k3zSQaQdkuiypATKVQKYSyNQAmQIiqAHyawowphLG2EvBmCKMaR_GtIMx9lcwpgbGtKrpDRjTFsaPyPxkmkxOLV06xOJu5DUWd7IIhMN84YK9xUApFVkovCzkEYcFUVyUzBasgMWHCMtYCMePcrTe89DnIWi6PTKsl7V4TKgbF37pR4XHndyLYpHFLhOiFIzl0t4VI_LSvPuU67z6srzL5xT5HW6cHtvJBOX0bkSet9deqmwyt151YESY6tlmnTqyWlwQwPJqRPZArG3_DgX7f-73hNztPpsDMmxWG_EULOomf6Zx9wMJGdfc |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+adjustment+of+emission+from+both+singlets+and+triplets%3A+the+role+of+excited+state+conformation+relaxation+and+charge+transfer+in+phenothiazine+derivates&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Qiu%2C+Weidong&rft.au=Cai%2C+Xinyi&rft.au=Li%2C+Mengke&rft.au=Wang%2C+Liangying&rft.date=2021-01-01&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=9&rft.issue=4&rft.spage=1378&rft.epage=1386&rft_id=info:doi/10.1039%2Fd0tc05343k&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon |