Accumulation of long-chain fatty acids in the tumor microenvironment drives dysfunction in intrapancreatic CD8+ T cells
CD8+ T cells are master effectors of antitumor immunity, and their presence at tumor sites correlates with favorable outcomes. However, metabolic constraints imposed by the tumor microenvironment (TME) can dampen their ability to control tumor progression. We describe lipid accumulation in the TME a...
Saved in:
Published in | The Journal of experimental medicine Vol. 217; no. 8 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Rockefeller University Press
03.08.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-1007 1540-9538 1540-9538 |
DOI | 10.1084/jem.20191920 |
Cover
Loading…
Abstract | CD8+ T cells are master effectors of antitumor immunity, and their presence at tumor sites correlates with favorable outcomes. However, metabolic constraints imposed by the tumor microenvironment (TME) can dampen their ability to control tumor progression. We describe lipid accumulation in the TME areas of pancreatic ductal adenocarcinoma (PDA) populated by CD8+ T cells infiltrating both murine and human tumors. In this lipid-rich but otherwise nutrient-poor TME, access to using lipid metabolism becomes particularly valuable for sustaining cell functions. Here, we found that intrapancreatic CD8+ T cells progressively accumulate specific long-chain fatty acids (LCFAs), which, rather than provide a fuel source, impair their mitochondrial function and trigger major transcriptional reprogramming of pathways involved in lipid metabolism, with the subsequent reduction of fatty acid catabolism. In particular, intrapancreatic CD8+ T cells specifically exhibit down-regulation of the very-long-chain acyl-CoA dehydrogenase (VLCAD) enzyme, which exacerbates accumulation of LCFAs and very-long-chain fatty acids (VLCFAs) that mediate lipotoxicity. Metabolic reprogramming of tumor-specific T cells through enforced expression of ACADVL enabled enhanced intratumoral T cell survival and persistence in an engineered mouse model of PDA, overcoming one of the major hurdles to immunotherapy for PDA. |
---|---|
AbstractList | CD8+ T cells are master effectors of antitumor immunity, and their presence at tumor sites correlates with favorable outcomes. However, metabolic constraints imposed by the tumor microenvironment (TME) can dampen their ability to control tumor progression. We describe lipid accumulation in the TME areas of pancreatic ductal adenocarcinoma (PDA) populated by CD8+ T cells infiltrating both murine and human tumors. In this lipid-rich but otherwise nutrient-poor TME, access to using lipid metabolism becomes particularly valuable for sustaining cell functions. Here, we found that intrapancreatic CD8+ T cells progressively accumulate specific long-chain fatty acids (LCFAs), which, rather than provide a fuel source, impair their mitochondrial function and trigger major transcriptional reprogramming of pathways involved in lipid metabolism, with the subsequent reduction of fatty acid catabolism. In particular, intrapancreatic CD8+ T cells specifically exhibit down-regulation of the very-long-chain acyl-CoA dehydrogenase (VLCAD) enzyme, which exacerbates accumulation of LCFAs and very-long-chain fatty acids (VLCFAs) that mediate lipotoxicity. Metabolic reprogramming of tumor-specific T cells through enforced expression of ACADVL enabled enhanced intratumoral T cell survival and persistence in an engineered mouse model of PDA, overcoming one of the major hurdles to immunotherapy for PDA.CD8+ T cells are master effectors of antitumor immunity, and their presence at tumor sites correlates with favorable outcomes. However, metabolic constraints imposed by the tumor microenvironment (TME) can dampen their ability to control tumor progression. We describe lipid accumulation in the TME areas of pancreatic ductal adenocarcinoma (PDA) populated by CD8+ T cells infiltrating both murine and human tumors. In this lipid-rich but otherwise nutrient-poor TME, access to using lipid metabolism becomes particularly valuable for sustaining cell functions. Here, we found that intrapancreatic CD8+ T cells progressively accumulate specific long-chain fatty acids (LCFAs), which, rather than provide a fuel source, impair their mitochondrial function and trigger major transcriptional reprogramming of pathways involved in lipid metabolism, with the subsequent reduction of fatty acid catabolism. In particular, intrapancreatic CD8+ T cells specifically exhibit down-regulation of the very-long-chain acyl-CoA dehydrogenase (VLCAD) enzyme, which exacerbates accumulation of LCFAs and very-long-chain fatty acids (VLCFAs) that mediate lipotoxicity. Metabolic reprogramming of tumor-specific T cells through enforced expression of ACADVL enabled enhanced intratumoral T cell survival and persistence in an engineered mouse model of PDA, overcoming one of the major hurdles to immunotherapy for PDA. CD8+ T cells are master effectors of antitumor immunity, and their presence at tumor sites correlates with favorable outcomes. However, metabolic constraints imposed by the tumor microenvironment (TME) can dampen their ability to control tumor progression. We describe lipid accumulation in the TME areas of pancreatic ductal adenocarcinoma (PDA) populated by CD8+ T cells infiltrating both murine and human tumors. In this lipid-rich but otherwise nutrient-poor TME, access to using lipid metabolism becomes particularly valuable for sustaining cell functions. Here, we found that intrapancreatic CD8+ T cells progressively accumulate specific long-chain fatty acids (LCFAs), which, rather than provide a fuel source, impair their mitochondrial function and trigger major transcriptional reprogramming of pathways involved in lipid metabolism, with the subsequent reduction of fatty acid catabolism. In particular, intrapancreatic CD8+ T cells specifically exhibit down-regulation of the very-long-chain acyl-CoA dehydrogenase (VLCAD) enzyme, which exacerbates accumulation of LCFAs and very-long-chain fatty acids (VLCFAs) that mediate lipotoxicity. Metabolic reprogramming of tumor-specific T cells through enforced expression of ACADVL enabled enhanced intratumoral T cell survival and persistence in an engineered mouse model of PDA, overcoming one of the major hurdles to immunotherapy for PDA. Metabolic constrains induce transcriptional deregulation of CD8 + T cells in pancreatic tumor microenvironment, driving progressive dysfunction. Here, metabolic reprogramming through enforced very-long-chain acyl-CoA dehydrogenase expression enhances intratumor T cells survival and persistence, overcoming a major hurdle to immunotherapy for PDA. CD8 + T cells are master effectors of antitumor immunity, and their presence at tumor sites correlates with favorable outcomes. However, metabolic constraints imposed by the tumor microenvironment (TME) can dampen their ability to control tumor progression. We describe lipid accumulation in the TME areas of pancreatic ductal adenocarcinoma (PDA) populated by CD8 + T cells infiltrating both murine and human tumors. In this lipid-rich but otherwise nutrient-poor TME, access to using lipid metabolism becomes particularly valuable for sustaining cell functions. Here, we found that intrapancreatic CD8 + T cells progressively accumulate specific long-chain fatty acids (LCFAs), which, rather than provide a fuel source, impair their mitochondrial function and trigger major transcriptional reprogramming of pathways involved in lipid metabolism, with the subsequent reduction of fatty acid catabolism. In particular, intrapancreatic CD8 + T cells specifically exhibit down-regulation of the very-long-chain acyl-CoA dehydrogenase (VLCAD) enzyme, which exacerbates accumulation of LCFAs and very-long-chain fatty acids (VLCFAs) that mediate lipotoxicity. Metabolic reprogramming of tumor-specific T cells through enforced expression of ACADVL enabled enhanced intratumoral T cell survival and persistence in an engineered mouse model of PDA, overcoming one of the major hurdles to immunotherapy for PDA. |
Author | Nava Lauson, Carina B. Raimondi, Andrea Tucci, Sara Raman, Ayush Codreanu, Gabriela S. Prentice, Boone M. Kim, Michael Wargo, Jennifer A. Jones, Marissa A. Anderson, Kristin G. Greenberg, Philip D. Bates, Breanna M. Tacchetti, Carlo Clise-Dwyer, Karen Navin, Nicholas E. Tiberti, Silvia Schalck, Aislyn Patterson, Nathan H. McLean, John A. Caprioli, Richard M. Manzo, Teresa Rai, Kunal Reyzer, Michelle Rodighiero, Simona Spraggins, Jeffrey M. Nezi, Luigi Sherrod, Stacy D. Draetta, Giulio |
AuthorAffiliation | 5 Departments of Medicine/Oncology and Immunology, University of Washington School of Medicine, Seattle, WA 11 Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 10 Laboratory of Clinical Biochemistry and Metabolism Center for Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany 2 Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 4 Clinical Research Division and Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 8 Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milano, Italy 6 Department of Genetics and Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 7 Center for Innovative Technology, Vanderbilt University, Nashville, TN 9 Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, TX 1 De |
AuthorAffiliation_xml | – name: 2 Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX – name: 6 Department of Genetics and Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX – name: 5 Departments of Medicine/Oncology and Immunology, University of Washington School of Medicine, Seattle, WA – name: 3 Department of Biochemistry, Mass Spectrometry Research Center, Department of Chemistry, Department of Pharmacology and Medicine, Vanderbilt University, Nashville, TN – name: 4 Clinical Research Division and Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA – name: 7 Center for Innovative Technology, Vanderbilt University, Nashville, TN – name: 1 Department of Experimental Oncology, IRCCS European Institute of Oncology, Milano, Italy – name: 11 Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX – name: 10 Laboratory of Clinical Biochemistry and Metabolism Center for Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany – name: 8 Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milano, Italy – name: 9 Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, TX |
Author_xml | – sequence: 1 givenname: Teresa surname: Manzo fullname: Manzo, Teresa – sequence: 2 givenname: Boone M. orcidid: 0000-0002-1927-9457 surname: Prentice fullname: Prentice, Boone M. – sequence: 3 givenname: Kristin G. surname: Anderson fullname: Anderson, Kristin G. – sequence: 4 givenname: Ayush surname: Raman fullname: Raman, Ayush – sequence: 5 givenname: Aislyn surname: Schalck fullname: Schalck, Aislyn – sequence: 6 givenname: Gabriela S. surname: Codreanu fullname: Codreanu, Gabriela S. – sequence: 7 givenname: Carina B. surname: Nava Lauson fullname: Nava Lauson, Carina B. – sequence: 8 givenname: Silvia orcidid: 0000-0003-2141-2365 surname: Tiberti fullname: Tiberti, Silvia – sequence: 9 givenname: Andrea surname: Raimondi fullname: Raimondi, Andrea – sequence: 10 givenname: Marissa A. orcidid: 0000-0002-9346-727X surname: Jones fullname: Jones, Marissa A. – sequence: 11 givenname: Michelle surname: Reyzer fullname: Reyzer, Michelle – sequence: 12 givenname: Breanna M. surname: Bates fullname: Bates, Breanna M. – sequence: 13 givenname: Jeffrey M. orcidid: 0000-0001-9198-5498 surname: Spraggins fullname: Spraggins, Jeffrey M. – sequence: 14 givenname: Nathan H. orcidid: 0000-0002-0064-1583 surname: Patterson fullname: Patterson, Nathan H. – sequence: 15 givenname: John A. surname: McLean fullname: McLean, John A. – sequence: 16 givenname: Kunal surname: Rai fullname: Rai, Kunal – sequence: 17 givenname: Carlo surname: Tacchetti fullname: Tacchetti, Carlo – sequence: 18 givenname: Sara surname: Tucci fullname: Tucci, Sara – sequence: 19 givenname: Jennifer A. orcidid: 0000-0003-3438-7576 surname: Wargo fullname: Wargo, Jennifer A. – sequence: 20 givenname: Simona surname: Rodighiero fullname: Rodighiero, Simona – sequence: 21 givenname: Karen orcidid: 0000-0001-9954-1197 surname: Clise-Dwyer fullname: Clise-Dwyer, Karen – sequence: 22 givenname: Stacy D. orcidid: 0000-0002-2346-230X surname: Sherrod fullname: Sherrod, Stacy D. – sequence: 23 givenname: Michael surname: Kim fullname: Kim, Michael – sequence: 24 givenname: Nicholas E. surname: Navin fullname: Navin, Nicholas E. – sequence: 25 givenname: Richard M. surname: Caprioli fullname: Caprioli, Richard M. – sequence: 26 givenname: Philip D. orcidid: 0000-0003-3812-647X surname: Greenberg fullname: Greenberg, Philip D. – sequence: 27 givenname: Giulio surname: Draetta fullname: Draetta, Giulio – sequence: 28 givenname: Luigi orcidid: 0000-0002-4670-7656 surname: Nezi fullname: Nezi, Luigi |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32491160$$D View this record in MEDLINE/PubMed |
BookMark | eNptkdtrFDEYxYNU7Lb65rPkUbBTv1xmMvMilLVeoOBLfQ7ZXLopM8maZFb2vzfTdkVFCISQ8_1Ocs4ZOgkxWIReE7gk0PP393a6pEAGMlB4hlak5dAMLetP0AqA0oYAiFN0lvM9AOG87V6gU0b5QEgHK_TzSut5mkdVfAw4OjzGcNforfIBO1XKASvtTcb1WLYWl3mKCU9ep2jD3qcYJhsKNsnvbcbmkN0c9APKL6sktVNBJ1vxGq8_9u_wLdZ2HPNL9NypMdtXT_s5-v7p-nb9pbn59vnr-uqm0aznpdEUWCeMcrpXrdKt5i3ZmFZwIEa00LHOiY6wQfS23TiqgGq24QM1wjCrXMfO0YdH7m7eTNZou7xplLvkJ5UOMiov_74Jfivv4l4KNvREsAp4-wRI8cdsc5GTz8sXVLBxzpJyGJbwmajSN396_TY5pl0F9FFQ48s5WSe1Lw_JV2s_SgJyqVTWSuWx0jp08c_Qkftf-S-qoKTw |
CitedBy_id | crossref_primary_10_1182_bloodadvances_2023009890 crossref_primary_10_4251_wjgo_v14_i9_1886 crossref_primary_10_4251_wjgo_v14_i9_1887 crossref_primary_10_1016_j_omton_2025_200933 crossref_primary_10_1097_JP9_0000000000000157 crossref_primary_10_1038_s41467_023_38360_5 crossref_primary_10_1371_journal_pone_0269620 crossref_primary_10_1007_s12072_023_10595_w crossref_primary_10_31083_j_ceog4912273 crossref_primary_10_1002_cam4_6623 crossref_primary_10_3390_ijms241713209 crossref_primary_10_1186_s13045_021_01200_4 crossref_primary_10_1093_lifemeta_loac038 crossref_primary_10_70322_immune_2025_10005 crossref_primary_10_1016_j_cmet_2023_04_017 crossref_primary_10_1186_s12944_021_01572_z crossref_primary_10_1016_j_neo_2021_09_004 crossref_primary_10_1111_obr_13621 crossref_primary_10_1186_s40364_024_00646_1 crossref_primary_10_3390_cancers14153696 crossref_primary_10_1038_s41586_024_07352_w crossref_primary_10_1186_s12935_023_03027_0 crossref_primary_10_1002_mco2_100 crossref_primary_10_1016_j_ymben_2024_10_009 crossref_primary_10_3389_fimmu_2022_1020422 crossref_primary_10_1016_j_jpba_2024_116553 crossref_primary_10_3389_fimmu_2023_1322746 crossref_primary_10_3390_metabo13060709 crossref_primary_10_1097_ot9_0000000000000064 crossref_primary_10_1093_intimm_dxad035 crossref_primary_10_1016_j_crfs_2024_100864 crossref_primary_10_1007_s00262_024_03915_y crossref_primary_10_1002_adhm_202403019 crossref_primary_10_1002_cbin_11867 crossref_primary_10_1016_j_cmet_2023_02_013 crossref_primary_10_3390_ijms242417422 crossref_primary_10_3389_fcell_2023_1187989 crossref_primary_10_1016_j_numecd_2021_06_024 crossref_primary_10_1016_j_cmet_2023_06_003 crossref_primary_10_1016_j_immuni_2024_08_003 crossref_primary_10_1002_ijc_34389 crossref_primary_10_1038_s41568_024_00743_1 crossref_primary_10_1080_14728222_2021_2010044 crossref_primary_10_1016_j_bbcan_2023_188962 crossref_primary_10_1016_j_immuni_2022_12_008 crossref_primary_10_1038_s41401_024_01304_w crossref_primary_10_1016_j_trecan_2024_03_010 crossref_primary_10_1016_j_tem_2024_11_014 crossref_primary_10_1073_pnas_2319254121 crossref_primary_10_1016_j_bbadis_2024_167311 crossref_primary_10_1038_s41467_024_51500_9 crossref_primary_10_1038_s42255_025_01233_w crossref_primary_10_1084_jem_20210531 crossref_primary_10_1016_j_biopha_2022_113992 crossref_primary_10_1098_rsob_240239 crossref_primary_10_3390_ani14020225 crossref_primary_10_1097_CM9_0000000000002989 crossref_primary_10_1038_s41423_021_00781_x crossref_primary_10_1016_j_fmre_2022_03_009 crossref_primary_10_1186_s12943_021_01486_5 crossref_primary_10_3390_cancers14215442 crossref_primary_10_1016_j_canlet_2023_216396 crossref_primary_10_1016_j_ejphar_2024_176519 crossref_primary_10_3389_fimmu_2023_1106881 crossref_primary_10_1016_j_cellsig_2024_111381 crossref_primary_10_1016_j_molmed_2023_04_004 crossref_primary_10_7554_eLife_62420 crossref_primary_10_3390_biom13121806 crossref_primary_10_1016_j_celrep_2023_113211 crossref_primary_10_1186_s13073_023_01180_9 crossref_primary_10_3389_fimmu_2023_1186383 crossref_primary_10_1016_j_cmet_2024_01_012 crossref_primary_10_1016_j_it_2021_12_004 crossref_primary_10_1002_aps3_11539 crossref_primary_10_1097_JP9_0000000000000146 crossref_primary_10_20517_cdr_2023_60 crossref_primary_10_1016_j_ebiom_2022_103996 crossref_primary_10_3390_ijms252212223 crossref_primary_10_1016_j_cmet_2022_09_023 crossref_primary_10_2147_IJN_S466490 crossref_primary_10_1111_cts_13133 crossref_primary_10_1016_j_isci_2025_112183 crossref_primary_10_1002_cac2_12257 crossref_primary_10_3390_ijms22083906 crossref_primary_10_1016_j_copbio_2024_103068 crossref_primary_10_1186_s13046_023_02925_5 crossref_primary_10_3390_cancers15153898 crossref_primary_10_1016_j_smim_2021_101485 crossref_primary_10_1186_s13045_022_01340_1 crossref_primary_10_1016_j_ijbiomac_2024_136810 crossref_primary_10_3389_fimmu_2021_657293 crossref_primary_10_1016_j_compbiolchem_2024_108323 crossref_primary_10_1016_j_celrep_2022_111647 crossref_primary_10_1016_j_molmed_2022_11_004 crossref_primary_10_1186_s12944_024_02024_0 crossref_primary_10_1038_s41577_021_00537_8 crossref_primary_10_1111_febs_17312 crossref_primary_10_18632_aging_205892 crossref_primary_10_1007_s11033_023_08936_x crossref_primary_10_1016_j_jhepr_2023_100892 crossref_primary_10_3390_biom12091182 crossref_primary_10_3390_toxins15040255 crossref_primary_10_1080_08830185_2024_2401352 crossref_primary_10_1186_s40364_024_00588_8 crossref_primary_10_3389_fmolb_2023_906606 crossref_primary_10_1002_1878_0261_13691 crossref_primary_10_1186_s12943_024_01977_1 crossref_primary_10_1021_acs_analchem_0c05311 crossref_primary_10_1146_annurev_immunol_101220_031513 crossref_primary_10_1038_s41423_025_01260_3 crossref_primary_10_1111_imcb_12750 crossref_primary_10_3389_fimmu_2022_1084203 crossref_primary_10_3390_metabo13060734 crossref_primary_10_3389_fimmu_2021_632581 crossref_primary_10_1016_j_cytogfr_2023_06_006 crossref_primary_10_1186_s12964_023_01178_1 crossref_primary_10_1016_j_bbcan_2024_189183 crossref_primary_10_1016_j_jnha_2024_100240 crossref_primary_10_1186_s13046_022_02439_6 crossref_primary_10_1097_JP9_0000000000000109 crossref_primary_10_3390_biom13040597 crossref_primary_10_1084_jem_20221839 crossref_primary_10_1016_j_cell_2023_07_013 crossref_primary_10_1016_j_chembiol_2024_02_001 crossref_primary_10_12677_ACM_2021_119580 crossref_primary_10_1136_jitc_2022_006533 crossref_primary_10_3390_cells11162516 crossref_primary_10_1002_JLB_5MR0921_011R crossref_primary_10_1016_j_immuni_2021_05_003 crossref_primary_10_3390_ijms24108650 crossref_primary_10_3389_fimmu_2022_909580 crossref_primary_10_1038_s41419_024_06641_6 crossref_primary_10_3390_cancers14010250 crossref_primary_10_1016_j_trecan_2023_08_007 crossref_primary_10_3390_cancers15123242 crossref_primary_10_3389_fgene_2023_1049454 crossref_primary_10_6065_apem_2448160_080 crossref_primary_10_1186_s12885_023_10836_z crossref_primary_10_1016_j_cels_2024_11_010 crossref_primary_10_1016_j_it_2024_05_006 crossref_primary_10_3390_cancers14163913 crossref_primary_10_1016_j_celrep_2024_115064 crossref_primary_10_1136_jitc_2024_010824 crossref_primary_10_1177_17588359231152839 crossref_primary_10_3389_fimmu_2023_1172931 crossref_primary_10_1016_j_devcel_2021_04_013 crossref_primary_10_1038_s41388_024_03228_5 crossref_primary_10_1186_s13046_024_03195_5 crossref_primary_10_1515_oncologie_2024_0202 crossref_primary_10_1016_j_pharmthera_2022_108274 crossref_primary_10_1186_s13045_023_01498_2 crossref_primary_10_3389_fimmu_2022_940052 crossref_primary_10_1016_j_coisb_2021_100401 crossref_primary_10_1038_s41589_022_01017_3 crossref_primary_10_3389_fphar_2023_1163160 crossref_primary_10_1097_HEP_0000000000000553 crossref_primary_10_1016_j_apsb_2024_07_021 crossref_primary_10_1016_j_coi_2024_102511 crossref_primary_10_1073_pnas_2305245120 crossref_primary_10_3389_fimmu_2020_01915 crossref_primary_10_1016_j_immuni_2024_04_017 crossref_primary_10_1021_acs_analchem_3c03077 crossref_primary_10_2139_ssrn_4055642 crossref_primary_10_1111_imr_12920 crossref_primary_10_1002_path_6076 crossref_primary_10_1016_j_bbcan_2024_189162 crossref_primary_10_3389_fonc_2023_1122789 crossref_primary_10_1080_2162402X_2025_2460281 crossref_primary_10_1007_s00262_023_03411_9 crossref_primary_10_1186_s12885_022_10397_7 crossref_primary_10_1038_s41568_021_00375_9 crossref_primary_10_1016_j_celrep_2025_115357 crossref_primary_10_1111_febs_16034 crossref_primary_10_1038_s41423_024_01224_z crossref_primary_10_1002_cac2_12178 crossref_primary_10_3390_cancers13235912 crossref_primary_10_1016_j_ccell_2023_02_014 crossref_primary_10_1126_scitranslmed_abc8947 crossref_primary_10_1084_jem_20210042 crossref_primary_10_1080_01913123_2024_2392728 crossref_primary_10_1016_j_canlet_2023_216511 crossref_primary_10_1007_s10495_024_02045_1 crossref_primary_10_1016_j_bbadis_2024_167646 crossref_primary_10_3389_fimmu_2023_1222719 crossref_primary_10_1158_2159_8290_CD_22_0876 crossref_primary_10_1038_s43018_021_00181_0 crossref_primary_10_1158_0008_5472_CAN_22_2273 crossref_primary_10_1136_jitc_2023_007420 crossref_primary_10_1016_j_bbcan_2023_188984 crossref_primary_10_1038_s41573_024_01098_w crossref_primary_10_2174_1568009623666230712095021 |
Cites_doi | 10.1038/nature16965 10.1371/journal.pone.0045429 10.1084/jem.20101876 10.1053/j.gastro.2013.07.025 10.1016/j.celrep.2017.06.062 10.1016/j.immuni.2014.06.005 10.1038/s41598-017-08479-9 10.1038/ctg.2014.5 10.4161/21624011.2014.970027 10.1038/nature09968 10.1016/j.ccr.2005.04.023 10.1016/j.cmet.2017.06.016 10.1242/jcs.192021 10.1038/s41588-017-0027-2 10.1023/A:1009694124241 10.1023/A:1022260711583 10.4049/jimmunol.174.8.4670 10.1038/nature17412 10.18632/oncotarget.10038 10.1080/15548627.2017.1359451 10.1016/j.cell.2015.08.064 10.1093/nar/gkm324 10.1046/j.1471-4159.2003.01571.x 10.1016/j.immuni.2011.12.007 10.1016/j.semcdb.2007.08.002 10.1007/s11892-014-0492-2 10.1016/j.devcel.2015.11.010 10.1158/2326-6066.CIR-14-0215 10.1158/2326-6066.CIR-14-0016-T 10.1073/pnas.0506580102 10.1016/j.immuni.2016.01.028 10.1002/eji.200838289 10.1016/S1535-6108(03)00309-X 10.3389/fphys.2013.00210 10.3389/fimmu.2017.00247 10.1038/nm.2492 10.3389/fimmu.2017.01714 10.1016/j.cmet.2014.01.002 10.2147/DMSO.S80364 10.1016/j.ccell.2015.09.022 10.1023/A:1005504223140 10.1126/science.281.5381.1309 10.5306/wjco.v8.i3.230 10.1002/rcm.3444 10.4049/jimmunol.169.5.2756 10.1016/j.cmet.2018.07.009 10.1016/S1535-6108(03)00216-2 10.1038/s41591-018-0052-4 10.4049/jimmunol.180.7.4476 10.1016/j.ccr.2014.03.014 10.1002/humu.10211 10.1038/bjc.2013.32 10.1371/journal.pone.0039424 10.1002/0471142735.im0316bs113 10.1016/j.cmet.2016.12.018 10.3389/fphys.2015.00094 10.1073/pnas.1400274111 10.1038/nm.3704 10.3390/cancers8120106 10.1042/BC20100144 10.1038/nri3862 10.1073/pnas.0630588100 10.1016/j.cell.2016.08.027 10.1006/smim.2000.0204 10.1016/j.cmet.2012.09.002 10.1186/s13059-014-0550-8 10.1056/NEJMoa1200694 10.1016/j.yexcr.2017.08.006 10.1016/j.jasms.2007.06.010 10.1097/00006676-200401000-00023 10.1021/ac970888i 10.1038/ncomms15095 10.1016/j.cell.2015.05.051 10.1002/path.1700370314 10.1126/science.aaa6204 10.1016/j.cell.2015.08.016 10.1016/j.immuni.2012.10.020 10.1038/nrgastro.2011.4 10.1016/j.cub.2015.04.004 10.1186/s12986-016-0076-z 10.1126/science.1160809 10.3892/ol.2016.5252 10.1039/C4MB00237G 10.1073/pnas.1720113115 10.1155/2012/763283 10.1172/jci.insight.89160 10.1016/j.cell.2015.08.012 10.1002/ar.1090320204 10.1016/j.it.2015.02.007 10.3389/fcell.2015.00049 10.1016/j.cels.2015.12.004 10.1093/nar/gky310 10.1111/cas.13766 10.1002/pmic.201300430 10.1007/s00125-019-4855-8 10.1007/s13361-016-1469-y 10.3389/fphys.2014.00282 10.1126/science.1174621 10.1038/nature10673 10.1158/0008-5472.CAN-07-0175 10.1016/j.ccell.2017.08.004 10.1016/j.immuni.2007.09.006 10.1053/j.gastro.2015.04.010 10.1016/j.immuni.2016.07.009 10.1097/MPA.0000000000000159 10.1021/ac800617s |
ContentType | Journal Article |
Copyright | 2020 Manzo et al. 2020 Manzo et al. 2020 |
Copyright_xml | – notice: 2020 Manzo et al. – notice: 2020 Manzo et al. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1084/jem.20191920 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | LC lipids drive metabolic T cell exhaustion |
EISSN | 1540-9538 |
ExternalDocumentID | PMC7398173 32491160 10_1084_jem_20191920 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: P30 CA016672 – fundername: NIDDK NIH HHS grantid: F32 DK105841 – fundername: NCI NIH HHS grantid: R01 CA033084 – fundername: NCI NIH HHS grantid: R37 CA033084 – fundername: NIGMS NIH HHS grantid: P41 GM103391 – fundername: ; – fundername: ; grantid: F32 FDK105841A – fundername: ; grantid: CA33084 – fundername: ; grantid: P41 GM103391-08 – fundername: ; grantid: P30CA016672 – fundername: ; grantid: RP160471 – fundername: ; grantid: W81XWH-11-1-0418 |
GroupedDBID | --- -~X 18M 29K 2WC 36B 4.4 53G 5GY 5RE 5VS AAYXX ABOCM ABZEH ACGFO ACNCT ACPRK ADBBV AENEX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C45 CITATION CS3 D-I DIK DU5 E3Z EBS EMB F5P F9R GX1 H13 HYE IH2 KQ8 L7B N9A O5R O5S OK1 P2P P6G R.V RHI SJN TR2 TRP UHB W8F WOQ CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c384t-c20367dafc8a5ac5c451bd57401d750636f7613978e5bf2a02c3b492d7d3eaf63 |
ISSN | 0022-1007 1540-9538 |
IngestDate | Thu Aug 21 17:25:47 EDT 2025 Thu Jul 10 18:11:00 EDT 2025 Thu Apr 03 06:53:40 EDT 2025 Tue Jul 01 00:41:14 EDT 2025 Thu Apr 24 23:09:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | 2020 Manzo et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c384t-c20367dafc8a5ac5c451bd57401d750636f7613978e5bf2a02c3b492d7d3eaf63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 A. Raman’s present address is Broad Institute of MIT and Harvard, Cambridge, MA. B.M. Prentice’s present address is Department of Chemistry, University of Florida, Gainesville, FL. Disclosures: Dr. Manzo, Dr. Anderson, Dr. Bates, Dr. Greenberg, and Dr. Nezi reported a patent to US Application No. 62/756,467 pending. Dr. McLean reported a patent to US application pending. Our laboratory is a Waters Center of Innovation (Waters Corporation) and an Agilent Thought Leader laboratory. These relationships did not influence the research described in the present manuscript. Dr. Wargo reported "other" from Genentech, GlaxoSmithKline, BMS, Merck, Illumina, and personal fees from AstraZeneca outside the submitted work; in addition, Dr. Wargo had a patent to PCT/US17/53.717 issued, "MD Anderson." Dr. Greenberg reported grants from Juno Therapeutics and personal fees from Juno Therapeutics during the conduct of the study; personal fees from Rapt Therapeutics, Elpiscience, Celsius, and Nextech outside the submitted work; and had a patent to Juno Therapeutics licensed. Dr. Draetta reported personal fees from Biovelocita, Nurix, Blueprint Medicines, Frontier Medicines, Orionis Biosciences, Tessa Therapeutics, Helsinn, Forma Therapeutics, Symphogen, Alligator, Taiho Pharmaceutical Co., and FIRC Institute of Molecular Oncology outside the submitted work. No other disclosures were reported. |
ORCID | 0000-0002-9346-727X 0000-0003-2141-2365 0000-0002-2346-230X 0000-0001-9198-5498 0000-0002-1927-9457 0000-0003-3812-647X 0000-0002-0064-1583 0000-0001-9954-1197 0000-0003-3438-7576 0000-0002-4670-7656 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7398173 |
PMID | 32491160 |
PQID | 2409191937 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7398173 proquest_miscellaneous_2409191937 pubmed_primary_32491160 crossref_citationtrail_10_1084_jem_20191920 crossref_primary_10_1084_jem_20191920 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-03 |
PublicationDateYYYYMMDD | 2020-08-03 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of experimental medicine |
PublicationTitleAlternate | J Exp Med |
PublicationYear | 2020 |
Publisher | Rockefeller University Press |
Publisher_xml | – name: Rockefeller University Press |
References | Scharping (2023072821441195800_bib75) 2016; 45 Zhang (2023072821441195800_bib105) 2017; 32 Hwang (2023072821441195800_bib40) 2016; 12 Berod (2023072821441195800_bib7) 2014; 20 Casadonte (2023072821441195800_bib11) 2014; 14 Messina (2023072821441195800_bib61) 2014; 10 Murai (2023072821441195800_bib64) 2012; 2012 Sharma (2023072821441195800_bib79) 2014; 14 Liberzon (2023072821441195800_bib51) 2015; 1 Mukherjee (2023072821441195800_bib63) 2001; 18 Wherry (2023072821441195800_bib102) 2007; 27 Liyanage (2023072821441195800_bib54) 2002; 169 Shen (2023072821441195800_bib80) 2017; 7 Shinjo (2023072821441195800_bib81) 2017; 359 Siska (2023072821441195800_bib82) 2015; 36 Molina (2023072821441195800_bib62) 2018; 24 Ecker (2023072821441195800_bib23) 2018; 28 van der Windt (2023072821441195800_bib94) 2016; 113 Chen (2023072821441195800_bib15) 2018; 50 Jury (2023072821441195800_bib46) 2007; 18 Lingwood (2023072821441195800_bib52) 2010; 327 Kim (2023072821441195800_bib47) 2016; 166 Lesmana (2023072821441195800_bib50) 2015; 8 Welte (2023072821441195800_bib100) 2015; 25 Yang (2023072821441195800_bib104) 2016; 531 Spiekerkoetter (2023072821441195800_bib84) 2003; 21 Jang (2023072821441195800_bib44) 2017; 20 Protti (2023072821441195800_bib73) 2013; 4 Zhang (2023072821441195800_bib106) 2014; 2 Hingorani (2023072821441195800_bib36) 2005; 7 Grüner (2023072821441195800_bib31) 2012; 7 Guo (2023072821441195800_bib32) 2017; 8 Nieman (2023072821441195800_bib66) 2011; 17 Ene-Obong (2023072821441195800_bib24) 2013; 145 Gruenbacher (2023072821441195800_bib30) 2017; 8 O’Sullivan (2023072821441195800_bib67) 2014; 41 Vander Heiden (2023072821441195800_bib96) 2009; 324 Nguyen (2023072821441195800_bib65) 2017; 13 Shao (2023072821441195800_bib78) 2012; 16 Köberlin (2023072821441195800_bib49) 2015; 162 Beatty (2023072821441195800_bib5) 2014; 3 Subramanian (2023072821441195800_bib87) 2005; 102 Lodhi (2023072821441195800_bib55) 2014; 19 Aon (2023072821441195800_bib2) 2015; 6 Brahmer (2023072821441195800_bib8) 2012; 366 Schaefer (2023072821441195800_bib74) 1926; 32 Tomita (2023072821441195800_bib91) 2014; 43 Wherry (2023072821441195800_bib101) 2015; 15 Tucci (2023072821441195800_bib92) 2012; 7 Smits (2023072821441195800_bib83) 2011; 8 Stromnes (2023072821441195800_bib86) 2015; 28 Aon (2023072821441195800_bib3) 2014; 5 Wei (2023072821441195800_bib99) 2017; 8 Love (2023072821441195800_bib56) 2014; 15 Ho (2023072821441195800_bib37) 2015; 162 Strohalm (2023072821441195800_bib85) 2008; 22 Joyce (2023072821441195800_bib45) 2015; 348 Hankin (2023072821441195800_bib33) 2007; 18 Martin (2023072821441195800_bib57) 2003; 4 Fu (2023072821441195800_bib26) 2011; 473 Green (2023072821441195800_bib29) 1998; 281 Angelin (2023072821441195800_bib1) 2017; 25 Beatty (2023072821441195800_bib6) 2015; 149 Thiam (2023072821441195800_bib90) 2017; 130 Clark (2023072821441195800_bib17) 2007; 67 Cornett (2023072821441195800_bib18) 2008; 80 Pacella (2023072821441195800_bib69) 2018; 115 Vevea (2023072821441195800_bib97) 2015; 35 Gao (2023072821441195800_bib28) 2015; 3 Mellman (2023072821441195800_bib59) 2011; 480 Procaccini (2023072821441195800_bib72) 2016; 44 Sena (2023072821441195800_bib77) 2013; 38 Diana (2023072821441195800_bib21) 2016; 7 Hori (2023072821441195800_bib38) 2014; 5 Jacobs (2023072821441195800_bib42) 2008; 180 Caprioli (2023072821441195800_bib9) 1997; 69 Takahashi (2023072821441195800_bib89) 2018; 109 Chang (2023072821441195800_bib14) 2015; 162 Kishton (2023072821441195800_bib48) 2017; 26 van der Windt (2023072821441195800_bib95) 2012; 36 Fukunaga (2023072821441195800_bib27) 2004; 28 Janes (2023072821441195800_bib43) 2000; 12 De Monte (2023072821441195800_bib19) 2011; 208 McAllister (2023072821441195800_bib58) 2014; 25 Sukumar (2023072821441195800_bib88) 2015; 162 Ulloth (2023072821441195800_bib93) 2003; 84 Bailey (2023072821441195800_bib4) 2016; 531 Hingorani (2023072821441195800_bib35) 2003; 4 Chong (2023072821441195800_bib16) 2018; 46 Winograd (2023072821441195800_bib103) 2015; 3 Carstens (2023072821441195800_bib10) 2017; 8 Fahy (2023072821441195800_bib25) 2007; 35 Listenberger (2023072821441195800_bib53) 2003; 100 Schrimpe-Rutledge (2023072821441195800_bib76) 2016; 27 de Pablo (2023072821441195800_bib20) 1999; 4 Hapala (2023072821441195800_bib34) 2011; 103 Ino (2023072821441195800_bib41) 2013; 108 Menon (2023072821441195800_bib60) 2016; 8 Eberlin (2023072821441195800_bib22) 2014; 111 Ogilvie (2023072821441195800_bib68) 1933; 37 Prentice (2023072821441195800_bib71) 2019; 62 Wanders (2023072821441195800_bib98) 1999; 22 Cham (2023072821441195800_bib12) 2005; 174 Howie (2023072821441195800_bib39) 2017; 2 Cham (2023072821441195800_bib13) 2008; 38 Plötz (2023072821441195800_bib70) 2016; 13 |
References_xml | – volume: 531 start-page: 47 year: 2016 ident: 2023072821441195800_bib4 article-title: Genomic analyses identify molecular subtypes of pancreatic cancer publication-title: Nature doi: 10.1038/nature16965 – volume: 7 year: 2012 ident: 2023072821441195800_bib92 article-title: Tissue-specific strategies of the very-long chain acyl-CoA dehydrogenase-deficient (VLCAD-/-) mouse to compensate a defective fatty acid β-oxidation publication-title: PLoS One doi: 10.1371/journal.pone.0045429 – volume: 208 start-page: 469 year: 2011 ident: 2023072821441195800_bib19 article-title: Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer publication-title: J. Exp. Med doi: 10.1084/jem.20101876 – volume: 145 start-page: 1121 year: 2013 ident: 2023072821441195800_bib24 article-title: Activated pancreatic stellate cells sequester CD8+ T cells to reduce their infiltration of the juxtatumoral compartment of pancreatic ductal adenocarcinoma publication-title: Gastroenterology doi: 10.1053/j.gastro.2013.07.025 – volume: 20 start-page: 558 year: 2017 ident: 2023072821441195800_bib44 article-title: Crosstalk between Regulatory T Cells and Tumor-Associated Dendritic Cells Negates Anti-tumor Immunity in Pancreatic Cancer publication-title: Cell Rep doi: 10.1016/j.celrep.2017.06.062 – volume: 41 start-page: 75 year: 2014 ident: 2023072821441195800_bib67 article-title: Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development publication-title: Immunity doi: 10.1016/j.immuni.2014.06.005 – volume: 7 start-page: 7848 year: 2017 ident: 2023072821441195800_bib80 article-title: Prognostic value of programmed cell death protein 1 expression on CD8+ T lymphocytes in pancreatic cancer publication-title: Sci. Rep doi: 10.1038/s41598-017-08479-9 – volume: 5 year: 2014 ident: 2023072821441195800_bib38 article-title: Association of pancreatic Fatty infiltration with pancreatic ductal adenocarcinoma publication-title: Clin. Transl. Gastroenterol doi: 10.1038/ctg.2014.5 – volume: 3 year: 2014 ident: 2023072821441195800_bib5 article-title: Chimeric antigen receptor T cells are vulnerable to immunosuppressive mechanisms present within the tumor microenvironment publication-title: OncoImmunology doi: 10.4161/21624011.2014.970027 – volume: 473 start-page: 528 year: 2011 ident: 2023072821441195800_bib26 article-title: Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity publication-title: Nature doi: 10.1038/nature09968 – volume: 7 start-page: 469 year: 2005 ident: 2023072821441195800_bib36 article-title: Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice publication-title: Cancer Cell doi: 10.1016/j.ccr.2005.04.023 – volume: 26 start-page: 94 year: 2017 ident: 2023072821441195800_bib48 article-title: Metabolic Regulation of T Cell Longevity and Function in Tumor Immunotherapy publication-title: Cell Metab doi: 10.1016/j.cmet.2017.06.016 – volume: 130 start-page: 315 year: 2017 ident: 2023072821441195800_bib90 article-title: The why, when and how of lipid droplet diversity publication-title: J. Cell Sci doi: 10.1242/jcs.192021 – volume: 50 start-page: 206 year: 2018 ident: 2023072821441195800_bib15 article-title: An aberrant SREBP-dependent lipogenic program promotes metastatic prostate cancer publication-title: Nat. Genet doi: 10.1038/s41588-017-0027-2 – volume: 4 start-page: 81 year: 1999 ident: 2023072821441195800_bib20 article-title: Palmitate induces apoptosis via a direct effect on mitochondria publication-title: Apoptosis doi: 10.1023/A:1009694124241 – volume: 18 start-page: 931 year: 2001 ident: 2023072821441195800_bib63 article-title: MUC1-specific CTLs are non-functional within a pancreatic tumor microenvironment publication-title: Glycoconj. J doi: 10.1023/A:1022260711583 – volume: 174 start-page: 4670 year: 2005 ident: 2023072821441195800_bib12 article-title: Glucose availability regulates IFN-gamma production and p70S6 kinase activation in CD8+ effector T cells publication-title: J. Immunol doi: 10.4049/jimmunol.174.8.4670 – volume: 531 start-page: 651 year: 2016 ident: 2023072821441195800_bib104 article-title: Potentiating the antitumour response of CD8(+) T cells by modulating cholesterol metabolism publication-title: Nature doi: 10.1038/nature17412 – volume: 7 start-page: 40992 year: 2016 ident: 2023072821441195800_bib21 article-title: Prognostic value, localization and correlation of PD-1/PD-L1, CD8 and FOXP3 with the desmoplastic stroma in pancreatic ductal adenocarcinoma publication-title: Oncotarget doi: 10.18632/oncotarget.10038 – volume: 13 start-page: 2002 year: 2017 ident: 2023072821441195800_bib65 article-title: Lipid droplets and lipotoxicity during autophagy publication-title: Autophagy doi: 10.1080/15548627.2017.1359451 – volume: 162 start-page: 1206 year: 2015 ident: 2023072821441195800_bib88 article-title: Nutrient Competition: A New Axis of Tumor Immunosuppression publication-title: Cell doi: 10.1016/j.cell.2015.08.064 – volume: 35 year: 2007 ident: 2023072821441195800_bib25 article-title: LIPID MAPS online tools for lipid research publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm324 – volume: 84 start-page: 655 year: 2003 ident: 2023072821441195800_bib93 article-title: Palmitic and stearic fatty acids induce caspase-dependent and -independent cell death in nerve growth factor differentiated PC12 cells publication-title: J. Neurochem doi: 10.1046/j.1471-4159.2003.01571.x – volume: 36 start-page: 68 year: 2012 ident: 2023072821441195800_bib95 article-title: Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development publication-title: Immunity doi: 10.1016/j.immuni.2011.12.007 – volume: 18 start-page: 608 year: 2007 ident: 2023072821441195800_bib46 article-title: Lipid rafts in T cell signalling and disease publication-title: Semin. Cell Dev. Biol doi: 10.1016/j.semcdb.2007.08.002 – volume: 14 start-page: 492 year: 2014 ident: 2023072821441195800_bib79 article-title: Lipotoxicity in the pancreatic beta cell: not just survival and function, but proliferation as well? publication-title: Curr. Diab. Rep doi: 10.1007/s11892-014-0492-2 – volume: 35 start-page: 584 year: 2015 ident: 2023072821441195800_bib97 article-title: Role for Lipid Droplet Biogenesis and Microlipophagy in Adaptation to Lipid Imbalance in Yeast publication-title: Dev. Cell doi: 10.1016/j.devcel.2015.11.010 – volume: 3 start-page: 399 year: 2015 ident: 2023072821441195800_bib103 article-title: Induction of T-cell Immunity Overcomes Complete Resistance to PD-1 and CTLA-4 Blockade and Improves Survival in Pancreatic Carcinoma publication-title: Cancer Immunol. Res doi: 10.1158/2326-6066.CIR-14-0215 – volume: 2 start-page: 423 year: 2014 ident: 2023072821441195800_bib106 article-title: CD4+ T lymphocyte ablation prevents pancreatic carcinogenesis in mice publication-title: Cancer Immunol. Res doi: 10.1158/2326-6066.CIR-14-0016-T – volume: 102 start-page: 15545 year: 2005 ident: 2023072821441195800_bib87 article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0506580102 – volume: 44 start-page: 406 year: 2016 ident: 2023072821441195800_bib72 article-title: The Proteomic Landscape of Human Ex Vivo Regulatory and Conventional T Cells Reveals Specific Metabolic Requirements publication-title: Immunity doi: 10.1016/j.immuni.2016.01.028 – volume: 38 start-page: 2438 year: 2008 ident: 2023072821441195800_bib13 article-title: Glucose deprivation inhibits multiple key gene expression events and effector functions in CD8+ T cells publication-title: Eur. J. Immunol doi: 10.1002/eji.200838289 – volume: 4 start-page: 437 year: 2003 ident: 2023072821441195800_bib35 article-title: Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse publication-title: Cancer Cell doi: 10.1016/S1535-6108(03)00309-X – volume: 4 start-page: 210 year: 2013 ident: 2023072821441195800_bib73 article-title: Immune infiltrates as predictive markers of survival in pancreatic cancer patients publication-title: Front. Physiol doi: 10.3389/fphys.2013.00210 – volume: 8 start-page: 247 year: 2017 ident: 2023072821441195800_bib99 article-title: Nutrient and Metabolic Sensing in T Cell Responses publication-title: Front. Immunol doi: 10.3389/fimmu.2017.00247 – volume: 17 start-page: 1498 year: 2011 ident: 2023072821441195800_bib66 article-title: Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth publication-title: Nat. Med doi: 10.1038/nm.2492 – volume: 8 start-page: 1714 year: 2017 ident: 2023072821441195800_bib30 article-title: Mevalonate Metabolism in Immuno-Oncology publication-title: Front. Immunol doi: 10.3389/fimmu.2017.01714 – volume: 19 start-page: 380 year: 2014 ident: 2023072821441195800_bib55 article-title: Peroxisomes: a nexus for lipid metabolism and cellular signaling publication-title: Cell Metab doi: 10.1016/j.cmet.2014.01.002 – volume: 8 start-page: 213 year: 2015 ident: 2023072821441195800_bib50 article-title: Development of non-alcoholic fatty liver disease scoring system among adult medical check-up patients: a large cross-sectional and prospective validation study publication-title: Diabetes Metab. Syndr. Obes doi: 10.2147/DMSO.S80364 – volume: 28 start-page: 638 year: 2015 ident: 2023072821441195800_bib86 article-title: T Cells Engineered against a Native Antigen Can Surmount Immunologic and Physical Barriers to Treat Pancreatic Ductal Adenocarcinoma publication-title: Cancer Cell doi: 10.1016/j.ccell.2015.09.022 – volume: 22 start-page: 442 year: 1999 ident: 2023072821441195800_bib98 article-title: Disorders of mitochondrial fatty acyl-CoA beta-oxidation publication-title: J. Inherit. Metab. Dis doi: 10.1023/A:1005504223140 – volume: 281 start-page: 1309 year: 1998 ident: 2023072821441195800_bib29 article-title: Mitochondria and apoptosis publication-title: Science doi: 10.1126/science.281.5381.1309 – volume: 8 start-page: 230 year: 2017 ident: 2023072821441195800_bib32 article-title: Immunotherapy in pancreatic cancer: Unleash its potential through novel combinations publication-title: World J. Clin. Oncol doi: 10.5306/wjco.v8.i3.230 – volume: 22 start-page: 905 year: 2008 ident: 2023072821441195800_bib85 article-title: mMass data miner: an open source alternative for mass spectrometric data analysis publication-title: Rapid Commun. Mass Spectrom doi: 10.1002/rcm.3444 – volume: 169 start-page: 2756 year: 2002 ident: 2023072821441195800_bib54 article-title: Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma publication-title: J. Immunol doi: 10.4049/jimmunol.169.5.2756 – volume: 28 start-page: 190 year: 2018 ident: 2023072821441195800_bib23 article-title: Translating In Vitro T Cell Metabolic Findings to In Vivo Tumor Models of Nutrient Competition publication-title: Cell Metab doi: 10.1016/j.cmet.2018.07.009 – volume: 4 start-page: 167 year: 2003 ident: 2023072821441195800_bib57 article-title: Cell signaling and cancer publication-title: Cancer Cell doi: 10.1016/S1535-6108(03)00216-2 – volume: 24 start-page: 1036 year: 2018 ident: 2023072821441195800_bib62 article-title: An inhibitor of oxidative phosphorylation exploits cancer vulnerability publication-title: Nat. Med doi: 10.1038/s41591-018-0052-4 – volume: 180 start-page: 4476 year: 2008 ident: 2023072821441195800_bib42 article-title: Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways publication-title: J. Immunol doi: 10.4049/jimmunol.180.7.4476 – volume: 25 start-page: 621 year: 2014 ident: 2023072821441195800_bib58 article-title: Oncogenic Kras activates a hematopoietic-to-epithelial IL-17 signaling axis in preinvasive pancreatic neoplasia publication-title: Cancer Cell doi: 10.1016/j.ccr.2014.03.014 – volume: 21 start-page: 598 year: 2003 ident: 2023072821441195800_bib84 article-title: Molecular and phenotypic heterogeneity in mitochondrial trifunctional protein deficiency due to beta-subunit mutations publication-title: Hum. Mutat doi: 10.1002/humu.10211 – volume: 108 start-page: 914 year: 2013 ident: 2023072821441195800_bib41 article-title: Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer publication-title: Br. J. Cancer doi: 10.1038/bjc.2013.32 – volume: 7 year: 2012 ident: 2023072821441195800_bib31 article-title: MALDI imaging mass spectrometry for in situ proteomic analysis of preneoplastic lesions in pancreatic cancer publication-title: PLoS One doi: 10.1371/journal.pone.0039424 – volume: 113 start-page: 1 year: 2016 ident: 2023072821441195800_bib94 article-title: Measuring Bioenergetics in T Cells Using a Seahorse Extracellular Flux Analyzer publication-title: Curr. Protoc. Immunol doi: 10.1002/0471142735.im0316bs113 – volume: 25 start-page: 1282 year: 2017 ident: 2023072821441195800_bib1 article-title: Foxp3 Reprograms T Cell Metabolism to Function in Low-Glucose, High-Lactate Environments publication-title: Cell Metab doi: 10.1016/j.cmet.2016.12.018 – volume: 6 start-page: 94 year: 2015 ident: 2023072821441195800_bib2 article-title: Mitochondria: hubs of cellular signaling, energetics and redox balance. A rich, vibrant, and diverse landscape of mitochondrial research publication-title: Front. Physiol doi: 10.3389/fphys.2015.00094 – volume: 111 start-page: 2436 year: 2014 ident: 2023072821441195800_bib22 article-title: Molecular assessment of surgical-resection margins of gastric cancer by mass-spectrometric imaging publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1400274111 – volume: 20 start-page: 1327 year: 2014 ident: 2023072821441195800_bib7 article-title: De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells publication-title: Nat. Med doi: 10.1038/nm.3704 – volume: 8 start-page: 106 year: 2016 ident: 2023072821441195800_bib60 article-title: Advances in Cancer Immunotherapy in Solid Tumors publication-title: Cancers (Basel) doi: 10.3390/cancers8120106 – volume: 103 start-page: 271 year: 2011 ident: 2023072821441195800_bib34 article-title: Is fat so bad? Modulation of endoplasmic reticulum stress by lipid droplet formation publication-title: Biol. Cell doi: 10.1042/BC20100144 – volume: 15 start-page: 486 year: 2015 ident: 2023072821441195800_bib101 article-title: Molecular and cellular insights into T cell exhaustion publication-title: Nat. Rev. Immunol doi: 10.1038/nri3862 – volume: 100 start-page: 3077 year: 2003 ident: 2023072821441195800_bib53 article-title: Triglyceride accumulation protects against fatty acid-induced lipotoxicity publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0630588100 – volume: 166 start-page: 1539 year: 2016 ident: 2023072821441195800_bib47 article-title: Lipid Biosynthesis Coordinates a Mitochondrial-to-Cytosolic Stress Response publication-title: Cell doi: 10.1016/j.cell.2016.08.027 – volume: 12 start-page: 23 year: 2000 ident: 2023072821441195800_bib43 article-title: The role of lipid rafts in T cell antigen receptor (TCR) signalling publication-title: Semin. Immunol doi: 10.1006/smim.2000.0204 – volume: 16 start-page: 414 year: 2012 ident: 2023072821441195800_bib78 article-title: Expanding roles for SREBP in metabolism publication-title: Cell Metab doi: 10.1016/j.cmet.2012.09.002 – volume: 15 start-page: 550 year: 2014 ident: 2023072821441195800_bib56 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol doi: 10.1186/s13059-014-0550-8 – volume: 366 start-page: 2455 year: 2012 ident: 2023072821441195800_bib8 article-title: Safety and activity of anti-PD-L1 antibody in patients with advanced cancer publication-title: N. Engl. J. Med doi: 10.1056/NEJMoa1200694 – volume: 359 start-page: 86 year: 2017 ident: 2023072821441195800_bib81 article-title: Disruption of the mitochondria-associated ER membrane (MAM) plays a central role in palmitic acid-induced insulin resistance publication-title: Exp. Cell Res doi: 10.1016/j.yexcr.2017.08.006 – volume: 18 start-page: 1646 year: 2007 ident: 2023072821441195800_bib33 article-title: Sublimation as a method of matrix application for mass spectrometric imaging publication-title: J. Am. Soc. Mass Spectrom doi: 10.1016/j.jasms.2007.06.010 – volume: 28 start-page: e26 year: 2004 ident: 2023072821441195800_bib27 article-title: CD8+ tumor-infiltrating lymphocytes together with CD4+ tumor-infiltrating lymphocytes and dendritic cells improve the prognosis of patients with pancreatic adenocarcinoma publication-title: Pancreas doi: 10.1097/00006676-200401000-00023 – volume: 69 start-page: 4751 year: 1997 ident: 2023072821441195800_bib9 article-title: Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS publication-title: Anal. Chem doi: 10.1021/ac970888i – volume: 8 start-page: 15095 year: 2017 ident: 2023072821441195800_bib10 article-title: Spatial computation of intratumoral T cells correlates with survival of patients with pancreatic cancer publication-title: Nat. Commun doi: 10.1038/ncomms15095 – volume: 162 start-page: 170 year: 2015 ident: 2023072821441195800_bib49 article-title: A Conserved Circular Network of Coregulated Lipids Modulates Innate Immune Responses publication-title: Cell doi: 10.1016/j.cell.2015.05.051 – volume: 37 start-page: 473 year: 1933 ident: 2023072821441195800_bib68 article-title: The islands of Langerhans in 19 cases of obesity publication-title: J. Pathol doi: 10.1002/path.1700370314 – volume: 348 start-page: 74 year: 2015 ident: 2023072821441195800_bib45 article-title: T cell exclusion, immune privilege, and the tumor microenvironment publication-title: Science doi: 10.1126/science.aaa6204 – volume: 162 start-page: 1229 year: 2015 ident: 2023072821441195800_bib14 article-title: Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression publication-title: Cell doi: 10.1016/j.cell.2015.08.016 – volume: 38 start-page: 225 year: 2013 ident: 2023072821441195800_bib77 article-title: Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling publication-title: Immunity doi: 10.1016/j.immuni.2012.10.020 – volume: 8 start-page: 169 year: 2011 ident: 2023072821441195800_bib83 article-title: The clinical significance of pancreatic steatosis publication-title: Nat. Rev. Gastroenterol. Hepatol doi: 10.1038/nrgastro.2011.4 – volume: 25 start-page: R470 year: 2015 ident: 2023072821441195800_bib100 article-title: Expanding roles for lipid droplets publication-title: Curr. Biol doi: 10.1016/j.cub.2015.04.004 – volume: 13 start-page: 16 year: 2016 ident: 2023072821441195800_bib70 article-title: The role of lipid droplet formation in the protection of unsaturated fatty acids against palmitic acid induced lipotoxicity to rat insulin-producing cells publication-title: Nutr. Metab. (Lond.) doi: 10.1186/s12986-016-0076-z – volume: 324 start-page: 1029 year: 2009 ident: 2023072821441195800_bib96 article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation publication-title: Science doi: 10.1126/science.1160809 – volume: 12 start-page: 4477 year: 2016 ident: 2023072821441195800_bib40 article-title: Prognostic impact of the tumor-infiltrating regulatory T-cell (Foxp3+)/activated cytotoxic T lymphocyte (granzyme B+) ratio on resected left-sided pancreatic cancer publication-title: Oncol. Lett doi: 10.3892/ol.2016.5252 – volume: 10 start-page: 2134 year: 2014 ident: 2023072821441195800_bib61 article-title: Live cell interactome of the human voltage dependent anion channel 3 (VDAC3) revealed in HeLa cells by affinity purification tag technique publication-title: Mol. Biosyst doi: 10.1039/C4MB00237G – volume: 115 start-page: E6546 year: 2018 ident: 2023072821441195800_bib69 article-title: Fatty acid metabolism complements glycolysis in the selective regulatory T cell expansion during tumor growth publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1720113115 – volume: 2012 year: 2012 ident: 2023072821441195800_bib64 article-title: The role of lipid rafts in cancer cell adhesion and migration publication-title: Int. J. Cell Biol doi: 10.1155/2012/763283 – volume: 2 year: 2017 ident: 2023072821441195800_bib39 article-title: Foxp3 drives oxidative phosphorylation and protection from lipotoxicity publication-title: JCI Insight doi: 10.1172/jci.insight.89160 – volume: 162 start-page: 1217 year: 2015 ident: 2023072821441195800_bib37 article-title: Phosphoenolpyruvate Is a Metabolic Checkpoint of Anti-tumor T Cell Responses publication-title: Cell doi: 10.1016/j.cell.2015.08.012 – volume: 32 start-page: 119 year: 1926 ident: 2023072821441195800_bib74 article-title: The normal weight of the pancreas in the adult human being: A biometric study publication-title: Anat. Rec doi: 10.1002/ar.1090320204 – volume: 36 start-page: 257 year: 2015 ident: 2023072821441195800_bib82 article-title: T cell metabolic fitness in antitumor immunity publication-title: Trends Immunol doi: 10.1016/j.it.2015.02.007 – volume: 3 start-page: 49 year: 2015 ident: 2023072821441195800_bib28 article-title: The lipid droplet-a well-connected organelle publication-title: Front. Cell Dev. Biol doi: 10.3389/fcell.2015.00049 – volume: 1 start-page: 417 year: 2015 ident: 2023072821441195800_bib51 article-title: The Molecular Signatures Database (MSigDB) hallmark gene set collection publication-title: Cell Syst doi: 10.1016/j.cels.2015.12.004 – volume: 46 start-page: W486 year: 2018 ident: 2023072821441195800_bib16 article-title: MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis publication-title: Nucleic Acids Res doi: 10.1093/nar/gky310 – volume: 109 start-page: 3013 year: 2018 ident: 2023072821441195800_bib89 article-title: Fatty pancreas: A possible risk factor for pancreatic cancer in animals and humans publication-title: Cancer Sci doi: 10.1111/cas.13766 – volume: 14 start-page: 956 year: 2014 ident: 2023072821441195800_bib11 article-title: Imaging mass spectrometry to discriminate breast from pancreatic cancer metastasis in formalin-fixed paraffin-embedded tissues publication-title: Proteomics doi: 10.1002/pmic.201300430 – volume: 62 start-page: 1036 year: 2019 ident: 2023072821441195800_bib71 article-title: Imaging mass spectrometry enables molecular profiling of mouse and human pancreatic tissue publication-title: Diabetologia doi: 10.1007/s00125-019-4855-8 – volume: 27 start-page: 1897 year: 2016 ident: 2023072821441195800_bib76 article-title: Untargeted Metabolomics Strategies-Challenges and Emerging Directions publication-title: J. Am. Soc. Mass Spectrom doi: 10.1007/s13361-016-1469-y – volume: 5 start-page: 282 year: 2014 ident: 2023072821441195800_bib3 article-title: Mitochondrial and cellular mechanisms for managing lipid excess publication-title: Front. Physiol doi: 10.3389/fphys.2014.00282 – volume: 327 start-page: 46 year: 2010 ident: 2023072821441195800_bib52 article-title: Lipid rafts as a membrane-organizing principle publication-title: Science doi: 10.1126/science.1174621 – volume: 480 start-page: 480 year: 2011 ident: 2023072821441195800_bib59 article-title: Cancer immunotherapy comes of age publication-title: Nature doi: 10.1038/nature10673 – volume: 67 start-page: 9518 year: 2007 ident: 2023072821441195800_bib17 article-title: Dynamics of the immune reaction to pancreatic cancer from inception to invasion publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-07-0175 – volume: 32 start-page: 377 year: 2017 ident: 2023072821441195800_bib105 article-title: Enhancing CD8+ T Cell Fatty Acid Catabolism within a Metabolically Challenging Tumor Microenvironment Increases the Efficacy of Melanoma Immunotherapy publication-title: Cancer Cell doi: 10.1016/j.ccell.2017.08.004 – volume: 27 start-page: 670 year: 2007 ident: 2023072821441195800_bib102 article-title: Molecular signature of CD8+ T cell exhaustion during chronic viral infection publication-title: Immunity doi: 10.1016/j.immuni.2007.09.006 – volume: 149 start-page: 201 year: 2015 ident: 2023072821441195800_bib6 article-title: Exclusion of T Cells From Pancreatic Carcinomas in Mice Is Regulated by Ly6C(low) F4/80(+) Extratumoral Macrophages publication-title: Gastroenterology doi: 10.1053/j.gastro.2015.04.010 – volume: 45 start-page: 374 year: 2016 ident: 2023072821441195800_bib75 article-title: The Tumor Microenvironment Represses T Cell Mitochondrial Biogenesis to Drive Intratumoral T Cell Metabolic Insufficiency and Dysfunction publication-title: Immunity doi: 10.1016/j.immuni.2016.07.009 – volume: 43 start-page: 1032 year: 2014 ident: 2023072821441195800_bib91 article-title: Pancreatic fatty degeneration and fibrosis as predisposing factors for the development of pancreatic ductal adenocarcinoma publication-title: Pancreas doi: 10.1097/MPA.0000000000000159 – volume: 80 start-page: 5648 year: 2008 ident: 2023072821441195800_bib18 article-title: MALDI-FTICR imaging mass spectrometry of drugs and metabolites in tissue publication-title: Anal. Chem doi: 10.1021/ac800617s |
SSID | ssj0014456 |
Score | 2.6738243 |
Snippet | CD8+ T cells are master effectors of antitumor immunity, and their presence at tumor sites correlates with favorable outcomes. However, metabolic constraints... Metabolic constrains induce transcriptional deregulation of CD8 + T cells in pancreatic tumor microenvironment, driving progressive dysfunction. Here,... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Acyl-CoA Dehydrogenase, Long-Chain - biosynthesis Acyl-CoA Dehydrogenase, Long-Chain - genetics Animals Carcinoma, Pancreatic Ductal - genetics Carcinoma, Pancreatic Ductal - metabolism Carcinoma, Pancreatic Ductal - pathology CD8-Positive T-Lymphocytes - metabolism CD8-Positive T-Lymphocytes - pathology Down-Regulation Fatty Acids - genetics Fatty Acids - metabolism Gene Expression Regulation, Enzymologic Gene Expression Regulation, Neoplastic Lymphocytes, Tumor-Infiltrating - metabolism Lymphocytes, Tumor-Infiltrating - pathology Metabolism Mice Mice, Mutant Strains Neoplasm Proteins - biosynthesis Neoplasm Proteins - genetics Pancreas - metabolism Pancreas - pathology Pancreatic Neoplasms - genetics Pancreatic Neoplasms - metabolism Pancreatic Neoplasms - pathology Tumor Immunology Tumor Microenvironment |
Title | Accumulation of long-chain fatty acids in the tumor microenvironment drives dysfunction in intrapancreatic CD8+ T cells |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32491160 https://www.proquest.com/docview/2409191937 https://pubmed.ncbi.nlm.nih.gov/PMC7398173 |
Volume | 217 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwGLXKICEuiJ2yyUjMKQoksZM4x86mAaYDQqnUW-TYDq00TVCbCIZfz2c7TdNSpIFL1LqOu7xX-332tyD0liexSKTnubGXJy4NiXJZEUpXJUzFSSFjlutA4fFldD6hH6fhdDD42fNaaur8nfi1N67kf1CFNsBVR8n-A7LdoNAAjwFfuALCcL0RxiMhmkVbf0urvquq_OaKGRj7TsFrkNdczK3Dq5aXdbOols5Ce-D1wtscuTSZZ-X1Sq9xa9_Hud70hZnCikrhHJ-ww-DISR2907_qS9pNcJmRtVslA3ZP7segRM3ebKrAzO9WhC86RVRbfv6oqkD3dvtBIxN8Y10D7IRUbsqBfeXt_u3oulnN-hsYgXWfI_05l3r6FNlOw2pPWztRBzbKs2Uk27sAeIzqBUDpJANgiiaBt1no1of7l5-zs8nFRZaeTtNb6HYABoYu-nHy4VN3_kSpqfvbfYw2ZAJGf98fe1vM_GGh7Dra9pRLeh_da7HBI8ufB2igyofozriF5hH60acRrgq8oRE2NMKGRhieAo2woRHepRG2NMI9GukbdmiEgUYOTrEh0WM0OTtNj8_dth6HKwijtSv0oXUseSEYD7kIBQ39XIa6pqME4RmRqIgjbVEwFeZFwL1AkJwmgYwlUbyIyBN0UAKHniFc5ISKRMvRPKc-93nEVJSDaU2lz0Mph8hZ_7CZaJPV65opV5lxmmA0AxiyNQxDdNj1_m6TtPyl35s1RhnMovq78lJVzSoDXZvoPiQeoqcWs24kMDlAEURwd7yFZtdBZ2jffqWcz0ym9pgkzI_J8xu87wt0d_PneIkO6mWjXoHerfPXhpq_Ab7hsyQ |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accumulation+of+long-chain+fatty+acids+in+the+tumor+microenvironment+drives+dysfunction+in+intrapancreatic+CD8%2B+T+cells&rft.jtitle=The+Journal+of+experimental+medicine&rft.au=Manzo%2C+Teresa&rft.au=Prentice%2C+Boone+M&rft.au=Anderson%2C+Kristin+G&rft.au=Raman%2C+Ayush&rft.date=2020-08-03&rft.issn=1540-9538&rft.eissn=1540-9538&rft.volume=217&rft.issue=8&rft_id=info:doi/10.1084%2Fjem.20191920&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1007&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1007&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1007&client=summon |