Accumulation of long-chain fatty acids in the tumor microenvironment drives dysfunction in intrapancreatic CD8+ T cells

CD8+ T cells are master effectors of antitumor immunity, and their presence at tumor sites correlates with favorable outcomes. However, metabolic constraints imposed by the tumor microenvironment (TME) can dampen their ability to control tumor progression. We describe lipid accumulation in the TME a...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of experimental medicine Vol. 217; no. 8
Main Authors Manzo, Teresa, Prentice, Boone M., Anderson, Kristin G., Raman, Ayush, Schalck, Aislyn, Codreanu, Gabriela S., Nava Lauson, Carina B., Tiberti, Silvia, Raimondi, Andrea, Jones, Marissa A., Reyzer, Michelle, Bates, Breanna M., Spraggins, Jeffrey M., Patterson, Nathan H., McLean, John A., Rai, Kunal, Tacchetti, Carlo, Tucci, Sara, Wargo, Jennifer A., Rodighiero, Simona, Clise-Dwyer, Karen, Sherrod, Stacy D., Kim, Michael, Navin, Nicholas E., Caprioli, Richard M., Greenberg, Philip D., Draetta, Giulio, Nezi, Luigi
Format Journal Article
LanguageEnglish
Published United States Rockefeller University Press 03.08.2020
Subjects
Online AccessGet full text
ISSN0022-1007
1540-9538
1540-9538
DOI10.1084/jem.20191920

Cover

Loading…
Abstract CD8+ T cells are master effectors of antitumor immunity, and their presence at tumor sites correlates with favorable outcomes. However, metabolic constraints imposed by the tumor microenvironment (TME) can dampen their ability to control tumor progression. We describe lipid accumulation in the TME areas of pancreatic ductal adenocarcinoma (PDA) populated by CD8+ T cells infiltrating both murine and human tumors. In this lipid-rich but otherwise nutrient-poor TME, access to using lipid metabolism becomes particularly valuable for sustaining cell functions. Here, we found that intrapancreatic CD8+ T cells progressively accumulate specific long-chain fatty acids (LCFAs), which, rather than provide a fuel source, impair their mitochondrial function and trigger major transcriptional reprogramming of pathways involved in lipid metabolism, with the subsequent reduction of fatty acid catabolism. In particular, intrapancreatic CD8+ T cells specifically exhibit down-regulation of the very-long-chain acyl-CoA dehydrogenase (VLCAD) enzyme, which exacerbates accumulation of LCFAs and very-long-chain fatty acids (VLCFAs) that mediate lipotoxicity. Metabolic reprogramming of tumor-specific T cells through enforced expression of ACADVL enabled enhanced intratumoral T cell survival and persistence in an engineered mouse model of PDA, overcoming one of the major hurdles to immunotherapy for PDA.
AbstractList CD8+ T cells are master effectors of antitumor immunity, and their presence at tumor sites correlates with favorable outcomes. However, metabolic constraints imposed by the tumor microenvironment (TME) can dampen their ability to control tumor progression. We describe lipid accumulation in the TME areas of pancreatic ductal adenocarcinoma (PDA) populated by CD8+ T cells infiltrating both murine and human tumors. In this lipid-rich but otherwise nutrient-poor TME, access to using lipid metabolism becomes particularly valuable for sustaining cell functions. Here, we found that intrapancreatic CD8+ T cells progressively accumulate specific long-chain fatty acids (LCFAs), which, rather than provide a fuel source, impair their mitochondrial function and trigger major transcriptional reprogramming of pathways involved in lipid metabolism, with the subsequent reduction of fatty acid catabolism. In particular, intrapancreatic CD8+ T cells specifically exhibit down-regulation of the very-long-chain acyl-CoA dehydrogenase (VLCAD) enzyme, which exacerbates accumulation of LCFAs and very-long-chain fatty acids (VLCFAs) that mediate lipotoxicity. Metabolic reprogramming of tumor-specific T cells through enforced expression of ACADVL enabled enhanced intratumoral T cell survival and persistence in an engineered mouse model of PDA, overcoming one of the major hurdles to immunotherapy for PDA.CD8+ T cells are master effectors of antitumor immunity, and their presence at tumor sites correlates with favorable outcomes. However, metabolic constraints imposed by the tumor microenvironment (TME) can dampen their ability to control tumor progression. We describe lipid accumulation in the TME areas of pancreatic ductal adenocarcinoma (PDA) populated by CD8+ T cells infiltrating both murine and human tumors. In this lipid-rich but otherwise nutrient-poor TME, access to using lipid metabolism becomes particularly valuable for sustaining cell functions. Here, we found that intrapancreatic CD8+ T cells progressively accumulate specific long-chain fatty acids (LCFAs), which, rather than provide a fuel source, impair their mitochondrial function and trigger major transcriptional reprogramming of pathways involved in lipid metabolism, with the subsequent reduction of fatty acid catabolism. In particular, intrapancreatic CD8+ T cells specifically exhibit down-regulation of the very-long-chain acyl-CoA dehydrogenase (VLCAD) enzyme, which exacerbates accumulation of LCFAs and very-long-chain fatty acids (VLCFAs) that mediate lipotoxicity. Metabolic reprogramming of tumor-specific T cells through enforced expression of ACADVL enabled enhanced intratumoral T cell survival and persistence in an engineered mouse model of PDA, overcoming one of the major hurdles to immunotherapy for PDA.
CD8+ T cells are master effectors of antitumor immunity, and their presence at tumor sites correlates with favorable outcomes. However, metabolic constraints imposed by the tumor microenvironment (TME) can dampen their ability to control tumor progression. We describe lipid accumulation in the TME areas of pancreatic ductal adenocarcinoma (PDA) populated by CD8+ T cells infiltrating both murine and human tumors. In this lipid-rich but otherwise nutrient-poor TME, access to using lipid metabolism becomes particularly valuable for sustaining cell functions. Here, we found that intrapancreatic CD8+ T cells progressively accumulate specific long-chain fatty acids (LCFAs), which, rather than provide a fuel source, impair their mitochondrial function and trigger major transcriptional reprogramming of pathways involved in lipid metabolism, with the subsequent reduction of fatty acid catabolism. In particular, intrapancreatic CD8+ T cells specifically exhibit down-regulation of the very-long-chain acyl-CoA dehydrogenase (VLCAD) enzyme, which exacerbates accumulation of LCFAs and very-long-chain fatty acids (VLCFAs) that mediate lipotoxicity. Metabolic reprogramming of tumor-specific T cells through enforced expression of ACADVL enabled enhanced intratumoral T cell survival and persistence in an engineered mouse model of PDA, overcoming one of the major hurdles to immunotherapy for PDA.
Metabolic constrains induce transcriptional deregulation of CD8 + T cells in pancreatic tumor microenvironment, driving progressive dysfunction. Here, metabolic reprogramming through enforced very-long-chain acyl-CoA dehydrogenase expression enhances intratumor T cells survival and persistence, overcoming a major hurdle to immunotherapy for PDA. CD8 + T cells are master effectors of antitumor immunity, and their presence at tumor sites correlates with favorable outcomes. However, metabolic constraints imposed by the tumor microenvironment (TME) can dampen their ability to control tumor progression. We describe lipid accumulation in the TME areas of pancreatic ductal adenocarcinoma (PDA) populated by CD8 + T cells infiltrating both murine and human tumors. In this lipid-rich but otherwise nutrient-poor TME, access to using lipid metabolism becomes particularly valuable for sustaining cell functions. Here, we found that intrapancreatic CD8 + T cells progressively accumulate specific long-chain fatty acids (LCFAs), which, rather than provide a fuel source, impair their mitochondrial function and trigger major transcriptional reprogramming of pathways involved in lipid metabolism, with the subsequent reduction of fatty acid catabolism. In particular, intrapancreatic CD8 + T cells specifically exhibit down-regulation of the very-long-chain acyl-CoA dehydrogenase (VLCAD) enzyme, which exacerbates accumulation of LCFAs and very-long-chain fatty acids (VLCFAs) that mediate lipotoxicity. Metabolic reprogramming of tumor-specific T cells through enforced expression of ACADVL enabled enhanced intratumoral T cell survival and persistence in an engineered mouse model of PDA, overcoming one of the major hurdles to immunotherapy for PDA.
Author Nava Lauson, Carina B.
Raimondi, Andrea
Tucci, Sara
Raman, Ayush
Codreanu, Gabriela S.
Prentice, Boone M.
Kim, Michael
Wargo, Jennifer A.
Jones, Marissa A.
Anderson, Kristin G.
Greenberg, Philip D.
Bates, Breanna M.
Tacchetti, Carlo
Clise-Dwyer, Karen
Navin, Nicholas E.
Tiberti, Silvia
Schalck, Aislyn
Patterson, Nathan H.
McLean, John A.
Caprioli, Richard M.
Manzo, Teresa
Rai, Kunal
Reyzer, Michelle
Rodighiero, Simona
Spraggins, Jeffrey M.
Nezi, Luigi
Sherrod, Stacy D.
Draetta, Giulio
AuthorAffiliation 5 Departments of Medicine/Oncology and Immunology, University of Washington School of Medicine, Seattle, WA
11 Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
10 Laboratory of Clinical Biochemistry and Metabolism Center for Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
2 Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
4 Clinical Research Division and Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA
8 Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milano, Italy
6 Department of Genetics and Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
7 Center for Innovative Technology, Vanderbilt University, Nashville, TN
9 Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, TX
1 De
AuthorAffiliation_xml – name: 2 Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
– name: 6 Department of Genetics and Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
– name: 5 Departments of Medicine/Oncology and Immunology, University of Washington School of Medicine, Seattle, WA
– name: 3 Department of Biochemistry, Mass Spectrometry Research Center, Department of Chemistry, Department of Pharmacology and Medicine, Vanderbilt University, Nashville, TN
– name: 4 Clinical Research Division and Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA
– name: 7 Center for Innovative Technology, Vanderbilt University, Nashville, TN
– name: 1 Department of Experimental Oncology, IRCCS European Institute of Oncology, Milano, Italy
– name: 11 Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
– name: 10 Laboratory of Clinical Biochemistry and Metabolism Center for Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
– name: 8 Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milano, Italy
– name: 9 Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, TX
Author_xml – sequence: 1
  givenname: Teresa
  surname: Manzo
  fullname: Manzo, Teresa
– sequence: 2
  givenname: Boone M.
  orcidid: 0000-0002-1927-9457
  surname: Prentice
  fullname: Prentice, Boone M.
– sequence: 3
  givenname: Kristin G.
  surname: Anderson
  fullname: Anderson, Kristin G.
– sequence: 4
  givenname: Ayush
  surname: Raman
  fullname: Raman, Ayush
– sequence: 5
  givenname: Aislyn
  surname: Schalck
  fullname: Schalck, Aislyn
– sequence: 6
  givenname: Gabriela S.
  surname: Codreanu
  fullname: Codreanu, Gabriela S.
– sequence: 7
  givenname: Carina B.
  surname: Nava Lauson
  fullname: Nava Lauson, Carina B.
– sequence: 8
  givenname: Silvia
  orcidid: 0000-0003-2141-2365
  surname: Tiberti
  fullname: Tiberti, Silvia
– sequence: 9
  givenname: Andrea
  surname: Raimondi
  fullname: Raimondi, Andrea
– sequence: 10
  givenname: Marissa A.
  orcidid: 0000-0002-9346-727X
  surname: Jones
  fullname: Jones, Marissa A.
– sequence: 11
  givenname: Michelle
  surname: Reyzer
  fullname: Reyzer, Michelle
– sequence: 12
  givenname: Breanna M.
  surname: Bates
  fullname: Bates, Breanna M.
– sequence: 13
  givenname: Jeffrey M.
  orcidid: 0000-0001-9198-5498
  surname: Spraggins
  fullname: Spraggins, Jeffrey M.
– sequence: 14
  givenname: Nathan H.
  orcidid: 0000-0002-0064-1583
  surname: Patterson
  fullname: Patterson, Nathan H.
– sequence: 15
  givenname: John A.
  surname: McLean
  fullname: McLean, John A.
– sequence: 16
  givenname: Kunal
  surname: Rai
  fullname: Rai, Kunal
– sequence: 17
  givenname: Carlo
  surname: Tacchetti
  fullname: Tacchetti, Carlo
– sequence: 18
  givenname: Sara
  surname: Tucci
  fullname: Tucci, Sara
– sequence: 19
  givenname: Jennifer A.
  orcidid: 0000-0003-3438-7576
  surname: Wargo
  fullname: Wargo, Jennifer A.
– sequence: 20
  givenname: Simona
  surname: Rodighiero
  fullname: Rodighiero, Simona
– sequence: 21
  givenname: Karen
  orcidid: 0000-0001-9954-1197
  surname: Clise-Dwyer
  fullname: Clise-Dwyer, Karen
– sequence: 22
  givenname: Stacy D.
  orcidid: 0000-0002-2346-230X
  surname: Sherrod
  fullname: Sherrod, Stacy D.
– sequence: 23
  givenname: Michael
  surname: Kim
  fullname: Kim, Michael
– sequence: 24
  givenname: Nicholas E.
  surname: Navin
  fullname: Navin, Nicholas E.
– sequence: 25
  givenname: Richard M.
  surname: Caprioli
  fullname: Caprioli, Richard M.
– sequence: 26
  givenname: Philip D.
  orcidid: 0000-0003-3812-647X
  surname: Greenberg
  fullname: Greenberg, Philip D.
– sequence: 27
  givenname: Giulio
  surname: Draetta
  fullname: Draetta, Giulio
– sequence: 28
  givenname: Luigi
  orcidid: 0000-0002-4670-7656
  surname: Nezi
  fullname: Nezi, Luigi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32491160$$D View this record in MEDLINE/PubMed
BookMark eNptkdtrFDEYxYNU7Lb65rPkUbBTv1xmMvMilLVeoOBLfQ7ZXLopM8maZFb2vzfTdkVFCISQ8_1Ocs4ZOgkxWIReE7gk0PP393a6pEAGMlB4hlak5dAMLetP0AqA0oYAiFN0lvM9AOG87V6gU0b5QEgHK_TzSut5mkdVfAw4OjzGcNforfIBO1XKASvtTcb1WLYWl3mKCU9ep2jD3qcYJhsKNsnvbcbmkN0c9APKL6sktVNBJ1vxGq8_9u_wLdZ2HPNL9NypMdtXT_s5-v7p-nb9pbn59vnr-uqm0aznpdEUWCeMcrpXrdKt5i3ZmFZwIEa00LHOiY6wQfS23TiqgGq24QM1wjCrXMfO0YdH7m7eTNZou7xplLvkJ5UOMiov_74Jfivv4l4KNvREsAp4-wRI8cdsc5GTz8sXVLBxzpJyGJbwmajSN396_TY5pl0F9FFQ48s5WSe1Lw_JV2s_SgJyqVTWSuWx0jp08c_Qkftf-S-qoKTw
CitedBy_id crossref_primary_10_1182_bloodadvances_2023009890
crossref_primary_10_4251_wjgo_v14_i9_1886
crossref_primary_10_4251_wjgo_v14_i9_1887
crossref_primary_10_1016_j_omton_2025_200933
crossref_primary_10_1097_JP9_0000000000000157
crossref_primary_10_1038_s41467_023_38360_5
crossref_primary_10_1371_journal_pone_0269620
crossref_primary_10_1007_s12072_023_10595_w
crossref_primary_10_31083_j_ceog4912273
crossref_primary_10_1002_cam4_6623
crossref_primary_10_3390_ijms241713209
crossref_primary_10_1186_s13045_021_01200_4
crossref_primary_10_1093_lifemeta_loac038
crossref_primary_10_70322_immune_2025_10005
crossref_primary_10_1016_j_cmet_2023_04_017
crossref_primary_10_1186_s12944_021_01572_z
crossref_primary_10_1016_j_neo_2021_09_004
crossref_primary_10_1111_obr_13621
crossref_primary_10_1186_s40364_024_00646_1
crossref_primary_10_3390_cancers14153696
crossref_primary_10_1038_s41586_024_07352_w
crossref_primary_10_1186_s12935_023_03027_0
crossref_primary_10_1002_mco2_100
crossref_primary_10_1016_j_ymben_2024_10_009
crossref_primary_10_3389_fimmu_2022_1020422
crossref_primary_10_1016_j_jpba_2024_116553
crossref_primary_10_3389_fimmu_2023_1322746
crossref_primary_10_3390_metabo13060709
crossref_primary_10_1097_ot9_0000000000000064
crossref_primary_10_1093_intimm_dxad035
crossref_primary_10_1016_j_crfs_2024_100864
crossref_primary_10_1007_s00262_024_03915_y
crossref_primary_10_1002_adhm_202403019
crossref_primary_10_1002_cbin_11867
crossref_primary_10_1016_j_cmet_2023_02_013
crossref_primary_10_3390_ijms242417422
crossref_primary_10_3389_fcell_2023_1187989
crossref_primary_10_1016_j_numecd_2021_06_024
crossref_primary_10_1016_j_cmet_2023_06_003
crossref_primary_10_1016_j_immuni_2024_08_003
crossref_primary_10_1002_ijc_34389
crossref_primary_10_1038_s41568_024_00743_1
crossref_primary_10_1080_14728222_2021_2010044
crossref_primary_10_1016_j_bbcan_2023_188962
crossref_primary_10_1016_j_immuni_2022_12_008
crossref_primary_10_1038_s41401_024_01304_w
crossref_primary_10_1016_j_trecan_2024_03_010
crossref_primary_10_1016_j_tem_2024_11_014
crossref_primary_10_1073_pnas_2319254121
crossref_primary_10_1016_j_bbadis_2024_167311
crossref_primary_10_1038_s41467_024_51500_9
crossref_primary_10_1038_s42255_025_01233_w
crossref_primary_10_1084_jem_20210531
crossref_primary_10_1016_j_biopha_2022_113992
crossref_primary_10_1098_rsob_240239
crossref_primary_10_3390_ani14020225
crossref_primary_10_1097_CM9_0000000000002989
crossref_primary_10_1038_s41423_021_00781_x
crossref_primary_10_1016_j_fmre_2022_03_009
crossref_primary_10_1186_s12943_021_01486_5
crossref_primary_10_3390_cancers14215442
crossref_primary_10_1016_j_canlet_2023_216396
crossref_primary_10_1016_j_ejphar_2024_176519
crossref_primary_10_3389_fimmu_2023_1106881
crossref_primary_10_1016_j_cellsig_2024_111381
crossref_primary_10_1016_j_molmed_2023_04_004
crossref_primary_10_7554_eLife_62420
crossref_primary_10_3390_biom13121806
crossref_primary_10_1016_j_celrep_2023_113211
crossref_primary_10_1186_s13073_023_01180_9
crossref_primary_10_3389_fimmu_2023_1186383
crossref_primary_10_1016_j_cmet_2024_01_012
crossref_primary_10_1016_j_it_2021_12_004
crossref_primary_10_1002_aps3_11539
crossref_primary_10_1097_JP9_0000000000000146
crossref_primary_10_20517_cdr_2023_60
crossref_primary_10_1016_j_ebiom_2022_103996
crossref_primary_10_3390_ijms252212223
crossref_primary_10_1016_j_cmet_2022_09_023
crossref_primary_10_2147_IJN_S466490
crossref_primary_10_1111_cts_13133
crossref_primary_10_1016_j_isci_2025_112183
crossref_primary_10_1002_cac2_12257
crossref_primary_10_3390_ijms22083906
crossref_primary_10_1016_j_copbio_2024_103068
crossref_primary_10_1186_s13046_023_02925_5
crossref_primary_10_3390_cancers15153898
crossref_primary_10_1016_j_smim_2021_101485
crossref_primary_10_1186_s13045_022_01340_1
crossref_primary_10_1016_j_ijbiomac_2024_136810
crossref_primary_10_3389_fimmu_2021_657293
crossref_primary_10_1016_j_compbiolchem_2024_108323
crossref_primary_10_1016_j_celrep_2022_111647
crossref_primary_10_1016_j_molmed_2022_11_004
crossref_primary_10_1186_s12944_024_02024_0
crossref_primary_10_1038_s41577_021_00537_8
crossref_primary_10_1111_febs_17312
crossref_primary_10_18632_aging_205892
crossref_primary_10_1007_s11033_023_08936_x
crossref_primary_10_1016_j_jhepr_2023_100892
crossref_primary_10_3390_biom12091182
crossref_primary_10_3390_toxins15040255
crossref_primary_10_1080_08830185_2024_2401352
crossref_primary_10_1186_s40364_024_00588_8
crossref_primary_10_3389_fmolb_2023_906606
crossref_primary_10_1002_1878_0261_13691
crossref_primary_10_1186_s12943_024_01977_1
crossref_primary_10_1021_acs_analchem_0c05311
crossref_primary_10_1146_annurev_immunol_101220_031513
crossref_primary_10_1038_s41423_025_01260_3
crossref_primary_10_1111_imcb_12750
crossref_primary_10_3389_fimmu_2022_1084203
crossref_primary_10_3390_metabo13060734
crossref_primary_10_3389_fimmu_2021_632581
crossref_primary_10_1016_j_cytogfr_2023_06_006
crossref_primary_10_1186_s12964_023_01178_1
crossref_primary_10_1016_j_bbcan_2024_189183
crossref_primary_10_1016_j_jnha_2024_100240
crossref_primary_10_1186_s13046_022_02439_6
crossref_primary_10_1097_JP9_0000000000000109
crossref_primary_10_3390_biom13040597
crossref_primary_10_1084_jem_20221839
crossref_primary_10_1016_j_cell_2023_07_013
crossref_primary_10_1016_j_chembiol_2024_02_001
crossref_primary_10_12677_ACM_2021_119580
crossref_primary_10_1136_jitc_2022_006533
crossref_primary_10_3390_cells11162516
crossref_primary_10_1002_JLB_5MR0921_011R
crossref_primary_10_1016_j_immuni_2021_05_003
crossref_primary_10_3390_ijms24108650
crossref_primary_10_3389_fimmu_2022_909580
crossref_primary_10_1038_s41419_024_06641_6
crossref_primary_10_3390_cancers14010250
crossref_primary_10_1016_j_trecan_2023_08_007
crossref_primary_10_3390_cancers15123242
crossref_primary_10_3389_fgene_2023_1049454
crossref_primary_10_6065_apem_2448160_080
crossref_primary_10_1186_s12885_023_10836_z
crossref_primary_10_1016_j_cels_2024_11_010
crossref_primary_10_1016_j_it_2024_05_006
crossref_primary_10_3390_cancers14163913
crossref_primary_10_1016_j_celrep_2024_115064
crossref_primary_10_1136_jitc_2024_010824
crossref_primary_10_1177_17588359231152839
crossref_primary_10_3389_fimmu_2023_1172931
crossref_primary_10_1016_j_devcel_2021_04_013
crossref_primary_10_1038_s41388_024_03228_5
crossref_primary_10_1186_s13046_024_03195_5
crossref_primary_10_1515_oncologie_2024_0202
crossref_primary_10_1016_j_pharmthera_2022_108274
crossref_primary_10_1186_s13045_023_01498_2
crossref_primary_10_3389_fimmu_2022_940052
crossref_primary_10_1016_j_coisb_2021_100401
crossref_primary_10_1038_s41589_022_01017_3
crossref_primary_10_3389_fphar_2023_1163160
crossref_primary_10_1097_HEP_0000000000000553
crossref_primary_10_1016_j_apsb_2024_07_021
crossref_primary_10_1016_j_coi_2024_102511
crossref_primary_10_1073_pnas_2305245120
crossref_primary_10_3389_fimmu_2020_01915
crossref_primary_10_1016_j_immuni_2024_04_017
crossref_primary_10_1021_acs_analchem_3c03077
crossref_primary_10_2139_ssrn_4055642
crossref_primary_10_1111_imr_12920
crossref_primary_10_1002_path_6076
crossref_primary_10_1016_j_bbcan_2024_189162
crossref_primary_10_3389_fonc_2023_1122789
crossref_primary_10_1080_2162402X_2025_2460281
crossref_primary_10_1007_s00262_023_03411_9
crossref_primary_10_1186_s12885_022_10397_7
crossref_primary_10_1038_s41568_021_00375_9
crossref_primary_10_1016_j_celrep_2025_115357
crossref_primary_10_1111_febs_16034
crossref_primary_10_1038_s41423_024_01224_z
crossref_primary_10_1002_cac2_12178
crossref_primary_10_3390_cancers13235912
crossref_primary_10_1016_j_ccell_2023_02_014
crossref_primary_10_1126_scitranslmed_abc8947
crossref_primary_10_1084_jem_20210042
crossref_primary_10_1080_01913123_2024_2392728
crossref_primary_10_1016_j_canlet_2023_216511
crossref_primary_10_1007_s10495_024_02045_1
crossref_primary_10_1016_j_bbadis_2024_167646
crossref_primary_10_3389_fimmu_2023_1222719
crossref_primary_10_1158_2159_8290_CD_22_0876
crossref_primary_10_1038_s43018_021_00181_0
crossref_primary_10_1158_0008_5472_CAN_22_2273
crossref_primary_10_1136_jitc_2023_007420
crossref_primary_10_1016_j_bbcan_2023_188984
crossref_primary_10_1038_s41573_024_01098_w
crossref_primary_10_2174_1568009623666230712095021
Cites_doi 10.1038/nature16965
10.1371/journal.pone.0045429
10.1084/jem.20101876
10.1053/j.gastro.2013.07.025
10.1016/j.celrep.2017.06.062
10.1016/j.immuni.2014.06.005
10.1038/s41598-017-08479-9
10.1038/ctg.2014.5
10.4161/21624011.2014.970027
10.1038/nature09968
10.1016/j.ccr.2005.04.023
10.1016/j.cmet.2017.06.016
10.1242/jcs.192021
10.1038/s41588-017-0027-2
10.1023/A:1009694124241
10.1023/A:1022260711583
10.4049/jimmunol.174.8.4670
10.1038/nature17412
10.18632/oncotarget.10038
10.1080/15548627.2017.1359451
10.1016/j.cell.2015.08.064
10.1093/nar/gkm324
10.1046/j.1471-4159.2003.01571.x
10.1016/j.immuni.2011.12.007
10.1016/j.semcdb.2007.08.002
10.1007/s11892-014-0492-2
10.1016/j.devcel.2015.11.010
10.1158/2326-6066.CIR-14-0215
10.1158/2326-6066.CIR-14-0016-T
10.1073/pnas.0506580102
10.1016/j.immuni.2016.01.028
10.1002/eji.200838289
10.1016/S1535-6108(03)00309-X
10.3389/fphys.2013.00210
10.3389/fimmu.2017.00247
10.1038/nm.2492
10.3389/fimmu.2017.01714
10.1016/j.cmet.2014.01.002
10.2147/DMSO.S80364
10.1016/j.ccell.2015.09.022
10.1023/A:1005504223140
10.1126/science.281.5381.1309
10.5306/wjco.v8.i3.230
10.1002/rcm.3444
10.4049/jimmunol.169.5.2756
10.1016/j.cmet.2018.07.009
10.1016/S1535-6108(03)00216-2
10.1038/s41591-018-0052-4
10.4049/jimmunol.180.7.4476
10.1016/j.ccr.2014.03.014
10.1002/humu.10211
10.1038/bjc.2013.32
10.1371/journal.pone.0039424
10.1002/0471142735.im0316bs113
10.1016/j.cmet.2016.12.018
10.3389/fphys.2015.00094
10.1073/pnas.1400274111
10.1038/nm.3704
10.3390/cancers8120106
10.1042/BC20100144
10.1038/nri3862
10.1073/pnas.0630588100
10.1016/j.cell.2016.08.027
10.1006/smim.2000.0204
10.1016/j.cmet.2012.09.002
10.1186/s13059-014-0550-8
10.1056/NEJMoa1200694
10.1016/j.yexcr.2017.08.006
10.1016/j.jasms.2007.06.010
10.1097/00006676-200401000-00023
10.1021/ac970888i
10.1038/ncomms15095
10.1016/j.cell.2015.05.051
10.1002/path.1700370314
10.1126/science.aaa6204
10.1016/j.cell.2015.08.016
10.1016/j.immuni.2012.10.020
10.1038/nrgastro.2011.4
10.1016/j.cub.2015.04.004
10.1186/s12986-016-0076-z
10.1126/science.1160809
10.3892/ol.2016.5252
10.1039/C4MB00237G
10.1073/pnas.1720113115
10.1155/2012/763283
10.1172/jci.insight.89160
10.1016/j.cell.2015.08.012
10.1002/ar.1090320204
10.1016/j.it.2015.02.007
10.3389/fcell.2015.00049
10.1016/j.cels.2015.12.004
10.1093/nar/gky310
10.1111/cas.13766
10.1002/pmic.201300430
10.1007/s00125-019-4855-8
10.1007/s13361-016-1469-y
10.3389/fphys.2014.00282
10.1126/science.1174621
10.1038/nature10673
10.1158/0008-5472.CAN-07-0175
10.1016/j.ccell.2017.08.004
10.1016/j.immuni.2007.09.006
10.1053/j.gastro.2015.04.010
10.1016/j.immuni.2016.07.009
10.1097/MPA.0000000000000159
10.1021/ac800617s
ContentType Journal Article
Copyright 2020 Manzo et al.
2020 Manzo et al. 2020
Copyright_xml – notice: 2020 Manzo et al.
– notice: 2020 Manzo et al. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1084/jem.20191920
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate LC lipids drive metabolic T cell exhaustion
EISSN 1540-9538
ExternalDocumentID PMC7398173
32491160
10_1084_jem_20191920
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P30 CA016672
– fundername: NIDDK NIH HHS
  grantid: F32 DK105841
– fundername: NCI NIH HHS
  grantid: R01 CA033084
– fundername: NCI NIH HHS
  grantid: R37 CA033084
– fundername: NIGMS NIH HHS
  grantid: P41 GM103391
– fundername: ;
– fundername: ;
  grantid: F32 FDK105841A
– fundername: ;
  grantid: CA33084
– fundername: ;
  grantid: P41 GM103391-08
– fundername: ;
  grantid: P30CA016672
– fundername: ;
  grantid: RP160471
– fundername: ;
  grantid: W81XWH-11-1-0418
GroupedDBID ---
-~X
18M
29K
2WC
36B
4.4
53G
5GY
5RE
5VS
AAYXX
ABOCM
ABZEH
ACGFO
ACNCT
ACPRK
ADBBV
AENEX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C45
CITATION
CS3
D-I
DIK
DU5
E3Z
EBS
EMB
F5P
F9R
GX1
H13
HYE
IH2
KQ8
L7B
N9A
O5R
O5S
OK1
P2P
P6G
R.V
RHI
SJN
TR2
TRP
UHB
W8F
WOQ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c384t-c20367dafc8a5ac5c451bd57401d750636f7613978e5bf2a02c3b492d7d3eaf63
ISSN 0022-1007
1540-9538
IngestDate Thu Aug 21 17:25:47 EDT 2025
Thu Jul 10 18:11:00 EDT 2025
Thu Apr 03 06:53:40 EDT 2025
Tue Jul 01 00:41:14 EDT 2025
Thu Apr 24 23:09:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License 2020 Manzo et al.
This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c384t-c20367dafc8a5ac5c451bd57401d750636f7613978e5bf2a02c3b492d7d3eaf63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
A. Raman’s present address is Broad Institute of MIT and Harvard, Cambridge, MA.
B.M. Prentice’s present address is Department of Chemistry, University of Florida, Gainesville, FL.
Disclosures: Dr. Manzo, Dr. Anderson, Dr. Bates, Dr. Greenberg, and Dr. Nezi reported a patent to US Application No. 62/756,467 pending. Dr. McLean reported a patent to US application pending. Our laboratory is a Waters Center of Innovation (Waters Corporation) and an Agilent Thought Leader laboratory. These relationships did not influence the research described in the present manuscript. Dr. Wargo reported "other" from Genentech, GlaxoSmithKline, BMS, Merck, Illumina, and personal fees from AstraZeneca outside the submitted work; in addition, Dr. Wargo had a patent to PCT/US17/53.717 issued, "MD Anderson." Dr. Greenberg reported grants from Juno Therapeutics and personal fees from Juno Therapeutics during the conduct of the study; personal fees from Rapt Therapeutics, Elpiscience, Celsius, and Nextech outside the submitted work; and had a patent to Juno Therapeutics licensed. Dr. Draetta reported personal fees from Biovelocita, Nurix, Blueprint Medicines, Frontier Medicines, Orionis Biosciences, Tessa Therapeutics, Helsinn, Forma Therapeutics, Symphogen, Alligator, Taiho Pharmaceutical Co., and FIRC Institute of Molecular Oncology outside the submitted work. No other disclosures were reported.
ORCID 0000-0002-9346-727X
0000-0003-2141-2365
0000-0002-2346-230X
0000-0001-9198-5498
0000-0002-1927-9457
0000-0003-3812-647X
0000-0002-0064-1583
0000-0001-9954-1197
0000-0003-3438-7576
0000-0002-4670-7656
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7398173
PMID 32491160
PQID 2409191937
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7398173
proquest_miscellaneous_2409191937
pubmed_primary_32491160
crossref_citationtrail_10_1084_jem_20191920
crossref_primary_10_1084_jem_20191920
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-03
PublicationDateYYYYMMDD 2020-08-03
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-03
  day: 03
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of experimental medicine
PublicationTitleAlternate J Exp Med
PublicationYear 2020
Publisher Rockefeller University Press
Publisher_xml – name: Rockefeller University Press
References Scharping (2023072821441195800_bib75) 2016; 45
Zhang (2023072821441195800_bib105) 2017; 32
Hwang (2023072821441195800_bib40) 2016; 12
Berod (2023072821441195800_bib7) 2014; 20
Casadonte (2023072821441195800_bib11) 2014; 14
Messina (2023072821441195800_bib61) 2014; 10
Murai (2023072821441195800_bib64) 2012; 2012
Sharma (2023072821441195800_bib79) 2014; 14
Liberzon (2023072821441195800_bib51) 2015; 1
Mukherjee (2023072821441195800_bib63) 2001; 18
Wherry (2023072821441195800_bib102) 2007; 27
Liyanage (2023072821441195800_bib54) 2002; 169
Shen (2023072821441195800_bib80) 2017; 7
Shinjo (2023072821441195800_bib81) 2017; 359
Siska (2023072821441195800_bib82) 2015; 36
Molina (2023072821441195800_bib62) 2018; 24
Ecker (2023072821441195800_bib23) 2018; 28
van der Windt (2023072821441195800_bib94) 2016; 113
Chen (2023072821441195800_bib15) 2018; 50
Jury (2023072821441195800_bib46) 2007; 18
Lingwood (2023072821441195800_bib52) 2010; 327
Kim (2023072821441195800_bib47) 2016; 166
Lesmana (2023072821441195800_bib50) 2015; 8
Welte (2023072821441195800_bib100) 2015; 25
Yang (2023072821441195800_bib104) 2016; 531
Spiekerkoetter (2023072821441195800_bib84) 2003; 21
Jang (2023072821441195800_bib44) 2017; 20
Protti (2023072821441195800_bib73) 2013; 4
Zhang (2023072821441195800_bib106) 2014; 2
Hingorani (2023072821441195800_bib36) 2005; 7
Grüner (2023072821441195800_bib31) 2012; 7
Guo (2023072821441195800_bib32) 2017; 8
Nieman (2023072821441195800_bib66) 2011; 17
Ene-Obong (2023072821441195800_bib24) 2013; 145
Gruenbacher (2023072821441195800_bib30) 2017; 8
O’Sullivan (2023072821441195800_bib67) 2014; 41
Vander Heiden (2023072821441195800_bib96) 2009; 324
Nguyen (2023072821441195800_bib65) 2017; 13
Shao (2023072821441195800_bib78) 2012; 16
Köberlin (2023072821441195800_bib49) 2015; 162
Beatty (2023072821441195800_bib5) 2014; 3
Subramanian (2023072821441195800_bib87) 2005; 102
Lodhi (2023072821441195800_bib55) 2014; 19
Aon (2023072821441195800_bib2) 2015; 6
Brahmer (2023072821441195800_bib8) 2012; 366
Schaefer (2023072821441195800_bib74) 1926; 32
Tomita (2023072821441195800_bib91) 2014; 43
Wherry (2023072821441195800_bib101) 2015; 15
Tucci (2023072821441195800_bib92) 2012; 7
Smits (2023072821441195800_bib83) 2011; 8
Stromnes (2023072821441195800_bib86) 2015; 28
Aon (2023072821441195800_bib3) 2014; 5
Wei (2023072821441195800_bib99) 2017; 8
Love (2023072821441195800_bib56) 2014; 15
Ho (2023072821441195800_bib37) 2015; 162
Strohalm (2023072821441195800_bib85) 2008; 22
Joyce (2023072821441195800_bib45) 2015; 348
Hankin (2023072821441195800_bib33) 2007; 18
Martin (2023072821441195800_bib57) 2003; 4
Fu (2023072821441195800_bib26) 2011; 473
Green (2023072821441195800_bib29) 1998; 281
Angelin (2023072821441195800_bib1) 2017; 25
Beatty (2023072821441195800_bib6) 2015; 149
Thiam (2023072821441195800_bib90) 2017; 130
Clark (2023072821441195800_bib17) 2007; 67
Cornett (2023072821441195800_bib18) 2008; 80
Pacella (2023072821441195800_bib69) 2018; 115
Vevea (2023072821441195800_bib97) 2015; 35
Gao (2023072821441195800_bib28) 2015; 3
Mellman (2023072821441195800_bib59) 2011; 480
Procaccini (2023072821441195800_bib72) 2016; 44
Sena (2023072821441195800_bib77) 2013; 38
Diana (2023072821441195800_bib21) 2016; 7
Hori (2023072821441195800_bib38) 2014; 5
Jacobs (2023072821441195800_bib42) 2008; 180
Caprioli (2023072821441195800_bib9) 1997; 69
Takahashi (2023072821441195800_bib89) 2018; 109
Chang (2023072821441195800_bib14) 2015; 162
Kishton (2023072821441195800_bib48) 2017; 26
van der Windt (2023072821441195800_bib95) 2012; 36
Fukunaga (2023072821441195800_bib27) 2004; 28
Janes (2023072821441195800_bib43) 2000; 12
De Monte (2023072821441195800_bib19) 2011; 208
McAllister (2023072821441195800_bib58) 2014; 25
Sukumar (2023072821441195800_bib88) 2015; 162
Ulloth (2023072821441195800_bib93) 2003; 84
Bailey (2023072821441195800_bib4) 2016; 531
Hingorani (2023072821441195800_bib35) 2003; 4
Chong (2023072821441195800_bib16) 2018; 46
Winograd (2023072821441195800_bib103) 2015; 3
Carstens (2023072821441195800_bib10) 2017; 8
Fahy (2023072821441195800_bib25) 2007; 35
Listenberger (2023072821441195800_bib53) 2003; 100
Schrimpe-Rutledge (2023072821441195800_bib76) 2016; 27
de Pablo (2023072821441195800_bib20) 1999; 4
Hapala (2023072821441195800_bib34) 2011; 103
Ino (2023072821441195800_bib41) 2013; 108
Menon (2023072821441195800_bib60) 2016; 8
Eberlin (2023072821441195800_bib22) 2014; 111
Ogilvie (2023072821441195800_bib68) 1933; 37
Prentice (2023072821441195800_bib71) 2019; 62
Wanders (2023072821441195800_bib98) 1999; 22
Cham (2023072821441195800_bib12) 2005; 174
Howie (2023072821441195800_bib39) 2017; 2
Cham (2023072821441195800_bib13) 2008; 38
Plötz (2023072821441195800_bib70) 2016; 13
References_xml – volume: 531
  start-page: 47
  year: 2016
  ident: 2023072821441195800_bib4
  article-title: Genomic analyses identify molecular subtypes of pancreatic cancer
  publication-title: Nature
  doi: 10.1038/nature16965
– volume: 7
  year: 2012
  ident: 2023072821441195800_bib92
  article-title: Tissue-specific strategies of the very-long chain acyl-CoA dehydrogenase-deficient (VLCAD-/-) mouse to compensate a defective fatty acid β-oxidation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0045429
– volume: 208
  start-page: 469
  year: 2011
  ident: 2023072821441195800_bib19
  article-title: Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer
  publication-title: J. Exp. Med
  doi: 10.1084/jem.20101876
– volume: 145
  start-page: 1121
  year: 2013
  ident: 2023072821441195800_bib24
  article-title: Activated pancreatic stellate cells sequester CD8+ T cells to reduce their infiltration of the juxtatumoral compartment of pancreatic ductal adenocarcinoma
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2013.07.025
– volume: 20
  start-page: 558
  year: 2017
  ident: 2023072821441195800_bib44
  article-title: Crosstalk between Regulatory T Cells and Tumor-Associated Dendritic Cells Negates Anti-tumor Immunity in Pancreatic Cancer
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2017.06.062
– volume: 41
  start-page: 75
  year: 2014
  ident: 2023072821441195800_bib67
  article-title: Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development
  publication-title: Immunity
  doi: 10.1016/j.immuni.2014.06.005
– volume: 7
  start-page: 7848
  year: 2017
  ident: 2023072821441195800_bib80
  article-title: Prognostic value of programmed cell death protein 1 expression on CD8+ T lymphocytes in pancreatic cancer
  publication-title: Sci. Rep
  doi: 10.1038/s41598-017-08479-9
– volume: 5
  year: 2014
  ident: 2023072821441195800_bib38
  article-title: Association of pancreatic Fatty infiltration with pancreatic ductal adenocarcinoma
  publication-title: Clin. Transl. Gastroenterol
  doi: 10.1038/ctg.2014.5
– volume: 3
  year: 2014
  ident: 2023072821441195800_bib5
  article-title: Chimeric antigen receptor T cells are vulnerable to immunosuppressive mechanisms present within the tumor microenvironment
  publication-title: OncoImmunology
  doi: 10.4161/21624011.2014.970027
– volume: 473
  start-page: 528
  year: 2011
  ident: 2023072821441195800_bib26
  article-title: Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity
  publication-title: Nature
  doi: 10.1038/nature09968
– volume: 7
  start-page: 469
  year: 2005
  ident: 2023072821441195800_bib36
  article-title: Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2005.04.023
– volume: 26
  start-page: 94
  year: 2017
  ident: 2023072821441195800_bib48
  article-title: Metabolic Regulation of T Cell Longevity and Function in Tumor Immunotherapy
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2017.06.016
– volume: 130
  start-page: 315
  year: 2017
  ident: 2023072821441195800_bib90
  article-title: The why, when and how of lipid droplet diversity
  publication-title: J. Cell Sci
  doi: 10.1242/jcs.192021
– volume: 50
  start-page: 206
  year: 2018
  ident: 2023072821441195800_bib15
  article-title: An aberrant SREBP-dependent lipogenic program promotes metastatic prostate cancer
  publication-title: Nat. Genet
  doi: 10.1038/s41588-017-0027-2
– volume: 4
  start-page: 81
  year: 1999
  ident: 2023072821441195800_bib20
  article-title: Palmitate induces apoptosis via a direct effect on mitochondria
  publication-title: Apoptosis
  doi: 10.1023/A:1009694124241
– volume: 18
  start-page: 931
  year: 2001
  ident: 2023072821441195800_bib63
  article-title: MUC1-specific CTLs are non-functional within a pancreatic tumor microenvironment
  publication-title: Glycoconj. J
  doi: 10.1023/A:1022260711583
– volume: 174
  start-page: 4670
  year: 2005
  ident: 2023072821441195800_bib12
  article-title: Glucose availability regulates IFN-gamma production and p70S6 kinase activation in CD8+ effector T cells
  publication-title: J. Immunol
  doi: 10.4049/jimmunol.174.8.4670
– volume: 531
  start-page: 651
  year: 2016
  ident: 2023072821441195800_bib104
  article-title: Potentiating the antitumour response of CD8(+) T cells by modulating cholesterol metabolism
  publication-title: Nature
  doi: 10.1038/nature17412
– volume: 7
  start-page: 40992
  year: 2016
  ident: 2023072821441195800_bib21
  article-title: Prognostic value, localization and correlation of PD-1/PD-L1, CD8 and FOXP3 with the desmoplastic stroma in pancreatic ductal adenocarcinoma
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.10038
– volume: 13
  start-page: 2002
  year: 2017
  ident: 2023072821441195800_bib65
  article-title: Lipid droplets and lipotoxicity during autophagy
  publication-title: Autophagy
  doi: 10.1080/15548627.2017.1359451
– volume: 162
  start-page: 1206
  year: 2015
  ident: 2023072821441195800_bib88
  article-title: Nutrient Competition: A New Axis of Tumor Immunosuppression
  publication-title: Cell
  doi: 10.1016/j.cell.2015.08.064
– volume: 35
  year: 2007
  ident: 2023072821441195800_bib25
  article-title: LIPID MAPS online tools for lipid research
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm324
– volume: 84
  start-page: 655
  year: 2003
  ident: 2023072821441195800_bib93
  article-title: Palmitic and stearic fatty acids induce caspase-dependent and -independent cell death in nerve growth factor differentiated PC12 cells
  publication-title: J. Neurochem
  doi: 10.1046/j.1471-4159.2003.01571.x
– volume: 36
  start-page: 68
  year: 2012
  ident: 2023072821441195800_bib95
  article-title: Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development
  publication-title: Immunity
  doi: 10.1016/j.immuni.2011.12.007
– volume: 18
  start-page: 608
  year: 2007
  ident: 2023072821441195800_bib46
  article-title: Lipid rafts in T cell signalling and disease
  publication-title: Semin. Cell Dev. Biol
  doi: 10.1016/j.semcdb.2007.08.002
– volume: 14
  start-page: 492
  year: 2014
  ident: 2023072821441195800_bib79
  article-title: Lipotoxicity in the pancreatic beta cell: not just survival and function, but proliferation as well?
  publication-title: Curr. Diab. Rep
  doi: 10.1007/s11892-014-0492-2
– volume: 35
  start-page: 584
  year: 2015
  ident: 2023072821441195800_bib97
  article-title: Role for Lipid Droplet Biogenesis and Microlipophagy in Adaptation to Lipid Imbalance in Yeast
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2015.11.010
– volume: 3
  start-page: 399
  year: 2015
  ident: 2023072821441195800_bib103
  article-title: Induction of T-cell Immunity Overcomes Complete Resistance to PD-1 and CTLA-4 Blockade and Improves Survival in Pancreatic Carcinoma
  publication-title: Cancer Immunol. Res
  doi: 10.1158/2326-6066.CIR-14-0215
– volume: 2
  start-page: 423
  year: 2014
  ident: 2023072821441195800_bib106
  article-title: CD4+ T lymphocyte ablation prevents pancreatic carcinogenesis in mice
  publication-title: Cancer Immunol. Res
  doi: 10.1158/2326-6066.CIR-14-0016-T
– volume: 102
  start-page: 15545
  year: 2005
  ident: 2023072821441195800_bib87
  article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0506580102
– volume: 44
  start-page: 406
  year: 2016
  ident: 2023072821441195800_bib72
  article-title: The Proteomic Landscape of Human Ex Vivo Regulatory and Conventional T Cells Reveals Specific Metabolic Requirements
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.01.028
– volume: 38
  start-page: 2438
  year: 2008
  ident: 2023072821441195800_bib13
  article-title: Glucose deprivation inhibits multiple key gene expression events and effector functions in CD8+ T cells
  publication-title: Eur. J. Immunol
  doi: 10.1002/eji.200838289
– volume: 4
  start-page: 437
  year: 2003
  ident: 2023072821441195800_bib35
  article-title: Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse
  publication-title: Cancer Cell
  doi: 10.1016/S1535-6108(03)00309-X
– volume: 4
  start-page: 210
  year: 2013
  ident: 2023072821441195800_bib73
  article-title: Immune infiltrates as predictive markers of survival in pancreatic cancer patients
  publication-title: Front. Physiol
  doi: 10.3389/fphys.2013.00210
– volume: 8
  start-page: 247
  year: 2017
  ident: 2023072821441195800_bib99
  article-title: Nutrient and Metabolic Sensing in T Cell Responses
  publication-title: Front. Immunol
  doi: 10.3389/fimmu.2017.00247
– volume: 17
  start-page: 1498
  year: 2011
  ident: 2023072821441195800_bib66
  article-title: Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth
  publication-title: Nat. Med
  doi: 10.1038/nm.2492
– volume: 8
  start-page: 1714
  year: 2017
  ident: 2023072821441195800_bib30
  article-title: Mevalonate Metabolism in Immuno-Oncology
  publication-title: Front. Immunol
  doi: 10.3389/fimmu.2017.01714
– volume: 19
  start-page: 380
  year: 2014
  ident: 2023072821441195800_bib55
  article-title: Peroxisomes: a nexus for lipid metabolism and cellular signaling
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2014.01.002
– volume: 8
  start-page: 213
  year: 2015
  ident: 2023072821441195800_bib50
  article-title: Development of non-alcoholic fatty liver disease scoring system among adult medical check-up patients: a large cross-sectional and prospective validation study
  publication-title: Diabetes Metab. Syndr. Obes
  doi: 10.2147/DMSO.S80364
– volume: 28
  start-page: 638
  year: 2015
  ident: 2023072821441195800_bib86
  article-title: T Cells Engineered against a Native Antigen Can Surmount Immunologic and Physical Barriers to Treat Pancreatic Ductal Adenocarcinoma
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2015.09.022
– volume: 22
  start-page: 442
  year: 1999
  ident: 2023072821441195800_bib98
  article-title: Disorders of mitochondrial fatty acyl-CoA beta-oxidation
  publication-title: J. Inherit. Metab. Dis
  doi: 10.1023/A:1005504223140
– volume: 281
  start-page: 1309
  year: 1998
  ident: 2023072821441195800_bib29
  article-title: Mitochondria and apoptosis
  publication-title: Science
  doi: 10.1126/science.281.5381.1309
– volume: 8
  start-page: 230
  year: 2017
  ident: 2023072821441195800_bib32
  article-title: Immunotherapy in pancreatic cancer: Unleash its potential through novel combinations
  publication-title: World J. Clin. Oncol
  doi: 10.5306/wjco.v8.i3.230
– volume: 22
  start-page: 905
  year: 2008
  ident: 2023072821441195800_bib85
  article-title: mMass data miner: an open source alternative for mass spectrometric data analysis
  publication-title: Rapid Commun. Mass Spectrom
  doi: 10.1002/rcm.3444
– volume: 169
  start-page: 2756
  year: 2002
  ident: 2023072821441195800_bib54
  article-title: Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma
  publication-title: J. Immunol
  doi: 10.4049/jimmunol.169.5.2756
– volume: 28
  start-page: 190
  year: 2018
  ident: 2023072821441195800_bib23
  article-title: Translating In Vitro T Cell Metabolic Findings to In Vivo Tumor Models of Nutrient Competition
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2018.07.009
– volume: 4
  start-page: 167
  year: 2003
  ident: 2023072821441195800_bib57
  article-title: Cell signaling and cancer
  publication-title: Cancer Cell
  doi: 10.1016/S1535-6108(03)00216-2
– volume: 24
  start-page: 1036
  year: 2018
  ident: 2023072821441195800_bib62
  article-title: An inhibitor of oxidative phosphorylation exploits cancer vulnerability
  publication-title: Nat. Med
  doi: 10.1038/s41591-018-0052-4
– volume: 180
  start-page: 4476
  year: 2008
  ident: 2023072821441195800_bib42
  article-title: Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways
  publication-title: J. Immunol
  doi: 10.4049/jimmunol.180.7.4476
– volume: 25
  start-page: 621
  year: 2014
  ident: 2023072821441195800_bib58
  article-title: Oncogenic Kras activates a hematopoietic-to-epithelial IL-17 signaling axis in preinvasive pancreatic neoplasia
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2014.03.014
– volume: 21
  start-page: 598
  year: 2003
  ident: 2023072821441195800_bib84
  article-title: Molecular and phenotypic heterogeneity in mitochondrial trifunctional protein deficiency due to beta-subunit mutations
  publication-title: Hum. Mutat
  doi: 10.1002/humu.10211
– volume: 108
  start-page: 914
  year: 2013
  ident: 2023072821441195800_bib41
  article-title: Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.2013.32
– volume: 7
  year: 2012
  ident: 2023072821441195800_bib31
  article-title: MALDI imaging mass spectrometry for in situ proteomic analysis of preneoplastic lesions in pancreatic cancer
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0039424
– volume: 113
  start-page: 1
  year: 2016
  ident: 2023072821441195800_bib94
  article-title: Measuring Bioenergetics in T Cells Using a Seahorse Extracellular Flux Analyzer
  publication-title: Curr. Protoc. Immunol
  doi: 10.1002/0471142735.im0316bs113
– volume: 25
  start-page: 1282
  year: 2017
  ident: 2023072821441195800_bib1
  article-title: Foxp3 Reprograms T Cell Metabolism to Function in Low-Glucose, High-Lactate Environments
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2016.12.018
– volume: 6
  start-page: 94
  year: 2015
  ident: 2023072821441195800_bib2
  article-title: Mitochondria: hubs of cellular signaling, energetics and redox balance. A rich, vibrant, and diverse landscape of mitochondrial research
  publication-title: Front. Physiol
  doi: 10.3389/fphys.2015.00094
– volume: 111
  start-page: 2436
  year: 2014
  ident: 2023072821441195800_bib22
  article-title: Molecular assessment of surgical-resection margins of gastric cancer by mass-spectrometric imaging
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1400274111
– volume: 20
  start-page: 1327
  year: 2014
  ident: 2023072821441195800_bib7
  article-title: De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells
  publication-title: Nat. Med
  doi: 10.1038/nm.3704
– volume: 8
  start-page: 106
  year: 2016
  ident: 2023072821441195800_bib60
  article-title: Advances in Cancer Immunotherapy in Solid Tumors
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers8120106
– volume: 103
  start-page: 271
  year: 2011
  ident: 2023072821441195800_bib34
  article-title: Is fat so bad? Modulation of endoplasmic reticulum stress by lipid droplet formation
  publication-title: Biol. Cell
  doi: 10.1042/BC20100144
– volume: 15
  start-page: 486
  year: 2015
  ident: 2023072821441195800_bib101
  article-title: Molecular and cellular insights into T cell exhaustion
  publication-title: Nat. Rev. Immunol
  doi: 10.1038/nri3862
– volume: 100
  start-page: 3077
  year: 2003
  ident: 2023072821441195800_bib53
  article-title: Triglyceride accumulation protects against fatty acid-induced lipotoxicity
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0630588100
– volume: 166
  start-page: 1539
  year: 2016
  ident: 2023072821441195800_bib47
  article-title: Lipid Biosynthesis Coordinates a Mitochondrial-to-Cytosolic Stress Response
  publication-title: Cell
  doi: 10.1016/j.cell.2016.08.027
– volume: 12
  start-page: 23
  year: 2000
  ident: 2023072821441195800_bib43
  article-title: The role of lipid rafts in T cell antigen receptor (TCR) signalling
  publication-title: Semin. Immunol
  doi: 10.1006/smim.2000.0204
– volume: 16
  start-page: 414
  year: 2012
  ident: 2023072821441195800_bib78
  article-title: Expanding roles for SREBP in metabolism
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2012.09.002
– volume: 15
  start-page: 550
  year: 2014
  ident: 2023072821441195800_bib56
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0550-8
– volume: 366
  start-page: 2455
  year: 2012
  ident: 2023072821441195800_bib8
  article-title: Safety and activity of anti-PD-L1 antibody in patients with advanced cancer
  publication-title: N. Engl. J. Med
  doi: 10.1056/NEJMoa1200694
– volume: 359
  start-page: 86
  year: 2017
  ident: 2023072821441195800_bib81
  article-title: Disruption of the mitochondria-associated ER membrane (MAM) plays a central role in palmitic acid-induced insulin resistance
  publication-title: Exp. Cell Res
  doi: 10.1016/j.yexcr.2017.08.006
– volume: 18
  start-page: 1646
  year: 2007
  ident: 2023072821441195800_bib33
  article-title: Sublimation as a method of matrix application for mass spectrometric imaging
  publication-title: J. Am. Soc. Mass Spectrom
  doi: 10.1016/j.jasms.2007.06.010
– volume: 28
  start-page: e26
  year: 2004
  ident: 2023072821441195800_bib27
  article-title: CD8+ tumor-infiltrating lymphocytes together with CD4+ tumor-infiltrating lymphocytes and dendritic cells improve the prognosis of patients with pancreatic adenocarcinoma
  publication-title: Pancreas
  doi: 10.1097/00006676-200401000-00023
– volume: 69
  start-page: 4751
  year: 1997
  ident: 2023072821441195800_bib9
  article-title: Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS
  publication-title: Anal. Chem
  doi: 10.1021/ac970888i
– volume: 8
  start-page: 15095
  year: 2017
  ident: 2023072821441195800_bib10
  article-title: Spatial computation of intratumoral T cells correlates with survival of patients with pancreatic cancer
  publication-title: Nat. Commun
  doi: 10.1038/ncomms15095
– volume: 162
  start-page: 170
  year: 2015
  ident: 2023072821441195800_bib49
  article-title: A Conserved Circular Network of Coregulated Lipids Modulates Innate Immune Responses
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.051
– volume: 37
  start-page: 473
  year: 1933
  ident: 2023072821441195800_bib68
  article-title: The islands of Langerhans in 19 cases of obesity
  publication-title: J. Pathol
  doi: 10.1002/path.1700370314
– volume: 348
  start-page: 74
  year: 2015
  ident: 2023072821441195800_bib45
  article-title: T cell exclusion, immune privilege, and the tumor microenvironment
  publication-title: Science
  doi: 10.1126/science.aaa6204
– volume: 162
  start-page: 1229
  year: 2015
  ident: 2023072821441195800_bib14
  article-title: Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression
  publication-title: Cell
  doi: 10.1016/j.cell.2015.08.016
– volume: 38
  start-page: 225
  year: 2013
  ident: 2023072821441195800_bib77
  article-title: Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.10.020
– volume: 8
  start-page: 169
  year: 2011
  ident: 2023072821441195800_bib83
  article-title: The clinical significance of pancreatic steatosis
  publication-title: Nat. Rev. Gastroenterol. Hepatol
  doi: 10.1038/nrgastro.2011.4
– volume: 25
  start-page: R470
  year: 2015
  ident: 2023072821441195800_bib100
  article-title: Expanding roles for lipid droplets
  publication-title: Curr. Biol
  doi: 10.1016/j.cub.2015.04.004
– volume: 13
  start-page: 16
  year: 2016
  ident: 2023072821441195800_bib70
  article-title: The role of lipid droplet formation in the protection of unsaturated fatty acids against palmitic acid induced lipotoxicity to rat insulin-producing cells
  publication-title: Nutr. Metab. (Lond.)
  doi: 10.1186/s12986-016-0076-z
– volume: 324
  start-page: 1029
  year: 2009
  ident: 2023072821441195800_bib96
  article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation
  publication-title: Science
  doi: 10.1126/science.1160809
– volume: 12
  start-page: 4477
  year: 2016
  ident: 2023072821441195800_bib40
  article-title: Prognostic impact of the tumor-infiltrating regulatory T-cell (Foxp3+)/activated cytotoxic T lymphocyte (granzyme B+) ratio on resected left-sided pancreatic cancer
  publication-title: Oncol. Lett
  doi: 10.3892/ol.2016.5252
– volume: 10
  start-page: 2134
  year: 2014
  ident: 2023072821441195800_bib61
  article-title: Live cell interactome of the human voltage dependent anion channel 3 (VDAC3) revealed in HeLa cells by affinity purification tag technique
  publication-title: Mol. Biosyst
  doi: 10.1039/C4MB00237G
– volume: 115
  start-page: E6546
  year: 2018
  ident: 2023072821441195800_bib69
  article-title: Fatty acid metabolism complements glycolysis in the selective regulatory T cell expansion during tumor growth
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1720113115
– volume: 2012
  year: 2012
  ident: 2023072821441195800_bib64
  article-title: The role of lipid rafts in cancer cell adhesion and migration
  publication-title: Int. J. Cell Biol
  doi: 10.1155/2012/763283
– volume: 2
  year: 2017
  ident: 2023072821441195800_bib39
  article-title: Foxp3 drives oxidative phosphorylation and protection from lipotoxicity
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.89160
– volume: 162
  start-page: 1217
  year: 2015
  ident: 2023072821441195800_bib37
  article-title: Phosphoenolpyruvate Is a Metabolic Checkpoint of Anti-tumor T Cell Responses
  publication-title: Cell
  doi: 10.1016/j.cell.2015.08.012
– volume: 32
  start-page: 119
  year: 1926
  ident: 2023072821441195800_bib74
  article-title: The normal weight of the pancreas in the adult human being: A biometric study
  publication-title: Anat. Rec
  doi: 10.1002/ar.1090320204
– volume: 36
  start-page: 257
  year: 2015
  ident: 2023072821441195800_bib82
  article-title: T cell metabolic fitness in antitumor immunity
  publication-title: Trends Immunol
  doi: 10.1016/j.it.2015.02.007
– volume: 3
  start-page: 49
  year: 2015
  ident: 2023072821441195800_bib28
  article-title: The lipid droplet-a well-connected organelle
  publication-title: Front. Cell Dev. Biol
  doi: 10.3389/fcell.2015.00049
– volume: 1
  start-page: 417
  year: 2015
  ident: 2023072821441195800_bib51
  article-title: The Molecular Signatures Database (MSigDB) hallmark gene set collection
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2015.12.004
– volume: 46
  start-page: W486
  year: 2018
  ident: 2023072821441195800_bib16
  article-title: MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky310
– volume: 109
  start-page: 3013
  year: 2018
  ident: 2023072821441195800_bib89
  article-title: Fatty pancreas: A possible risk factor for pancreatic cancer in animals and humans
  publication-title: Cancer Sci
  doi: 10.1111/cas.13766
– volume: 14
  start-page: 956
  year: 2014
  ident: 2023072821441195800_bib11
  article-title: Imaging mass spectrometry to discriminate breast from pancreatic cancer metastasis in formalin-fixed paraffin-embedded tissues
  publication-title: Proteomics
  doi: 10.1002/pmic.201300430
– volume: 62
  start-page: 1036
  year: 2019
  ident: 2023072821441195800_bib71
  article-title: Imaging mass spectrometry enables molecular profiling of mouse and human pancreatic tissue
  publication-title: Diabetologia
  doi: 10.1007/s00125-019-4855-8
– volume: 27
  start-page: 1897
  year: 2016
  ident: 2023072821441195800_bib76
  article-title: Untargeted Metabolomics Strategies-Challenges and Emerging Directions
  publication-title: J. Am. Soc. Mass Spectrom
  doi: 10.1007/s13361-016-1469-y
– volume: 5
  start-page: 282
  year: 2014
  ident: 2023072821441195800_bib3
  article-title: Mitochondrial and cellular mechanisms for managing lipid excess
  publication-title: Front. Physiol
  doi: 10.3389/fphys.2014.00282
– volume: 327
  start-page: 46
  year: 2010
  ident: 2023072821441195800_bib52
  article-title: Lipid rafts as a membrane-organizing principle
  publication-title: Science
  doi: 10.1126/science.1174621
– volume: 480
  start-page: 480
  year: 2011
  ident: 2023072821441195800_bib59
  article-title: Cancer immunotherapy comes of age
  publication-title: Nature
  doi: 10.1038/nature10673
– volume: 67
  start-page: 9518
  year: 2007
  ident: 2023072821441195800_bib17
  article-title: Dynamics of the immune reaction to pancreatic cancer from inception to invasion
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-07-0175
– volume: 32
  start-page: 377
  year: 2017
  ident: 2023072821441195800_bib105
  article-title: Enhancing CD8+ T Cell Fatty Acid Catabolism within a Metabolically Challenging Tumor Microenvironment Increases the Efficacy of Melanoma Immunotherapy
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2017.08.004
– volume: 27
  start-page: 670
  year: 2007
  ident: 2023072821441195800_bib102
  article-title: Molecular signature of CD8+ T cell exhaustion during chronic viral infection
  publication-title: Immunity
  doi: 10.1016/j.immuni.2007.09.006
– volume: 149
  start-page: 201
  year: 2015
  ident: 2023072821441195800_bib6
  article-title: Exclusion of T Cells From Pancreatic Carcinomas in Mice Is Regulated by Ly6C(low) F4/80(+) Extratumoral Macrophages
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2015.04.010
– volume: 45
  start-page: 374
  year: 2016
  ident: 2023072821441195800_bib75
  article-title: The Tumor Microenvironment Represses T Cell Mitochondrial Biogenesis to Drive Intratumoral T Cell Metabolic Insufficiency and Dysfunction
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.07.009
– volume: 43
  start-page: 1032
  year: 2014
  ident: 2023072821441195800_bib91
  article-title: Pancreatic fatty degeneration and fibrosis as predisposing factors for the development of pancreatic ductal adenocarcinoma
  publication-title: Pancreas
  doi: 10.1097/MPA.0000000000000159
– volume: 80
  start-page: 5648
  year: 2008
  ident: 2023072821441195800_bib18
  article-title: MALDI-FTICR imaging mass spectrometry of drugs and metabolites in tissue
  publication-title: Anal. Chem
  doi: 10.1021/ac800617s
SSID ssj0014456
Score 2.6738243
Snippet CD8+ T cells are master effectors of antitumor immunity, and their presence at tumor sites correlates with favorable outcomes. However, metabolic constraints...
Metabolic constrains induce transcriptional deregulation of CD8 + T cells in pancreatic tumor microenvironment, driving progressive dysfunction. Here,...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Acyl-CoA Dehydrogenase, Long-Chain - biosynthesis
Acyl-CoA Dehydrogenase, Long-Chain - genetics
Animals
Carcinoma, Pancreatic Ductal - genetics
Carcinoma, Pancreatic Ductal - metabolism
Carcinoma, Pancreatic Ductal - pathology
CD8-Positive T-Lymphocytes - metabolism
CD8-Positive T-Lymphocytes - pathology
Down-Regulation
Fatty Acids - genetics
Fatty Acids - metabolism
Gene Expression Regulation, Enzymologic
Gene Expression Regulation, Neoplastic
Lymphocytes, Tumor-Infiltrating - metabolism
Lymphocytes, Tumor-Infiltrating - pathology
Metabolism
Mice
Mice, Mutant Strains
Neoplasm Proteins - biosynthesis
Neoplasm Proteins - genetics
Pancreas - metabolism
Pancreas - pathology
Pancreatic Neoplasms - genetics
Pancreatic Neoplasms - metabolism
Pancreatic Neoplasms - pathology
Tumor Immunology
Tumor Microenvironment
Title Accumulation of long-chain fatty acids in the tumor microenvironment drives dysfunction in intrapancreatic CD8+ T cells
URI https://www.ncbi.nlm.nih.gov/pubmed/32491160
https://www.proquest.com/docview/2409191937
https://pubmed.ncbi.nlm.nih.gov/PMC7398173
Volume 217
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwGLXKICEuiJ2yyUjMKQoksZM4x86mAaYDQqnUW-TYDq00TVCbCIZfz2c7TdNSpIFL1LqOu7xX-332tyD0liexSKTnubGXJy4NiXJZEUpXJUzFSSFjlutA4fFldD6hH6fhdDD42fNaaur8nfi1N67kf1CFNsBVR8n-A7LdoNAAjwFfuALCcL0RxiMhmkVbf0urvquq_OaKGRj7TsFrkNdczK3Dq5aXdbOols5Ce-D1wtscuTSZZ-X1Sq9xa9_Hud70hZnCikrhHJ-ww-DISR2907_qS9pNcJmRtVslA3ZP7segRM3ebKrAzO9WhC86RVRbfv6oqkD3dvtBIxN8Y10D7IRUbsqBfeXt_u3oulnN-hsYgXWfI_05l3r6FNlOw2pPWztRBzbKs2Uk27sAeIzqBUDpJANgiiaBt1no1of7l5-zs8nFRZaeTtNb6HYABoYu-nHy4VN3_kSpqfvbfYw2ZAJGf98fe1vM_GGh7Dra9pRLeh_da7HBI8ufB2igyofozriF5hH60acRrgq8oRE2NMKGRhieAo2woRHepRG2NMI9GukbdmiEgUYOTrEh0WM0OTtNj8_dth6HKwijtSv0oXUseSEYD7kIBQ39XIa6pqME4RmRqIgjbVEwFeZFwL1AkJwmgYwlUbyIyBN0UAKHniFc5ISKRMvRPKc-93nEVJSDaU2lz0Mph8hZ_7CZaJPV65opV5lxmmA0AxiyNQxDdNj1_m6TtPyl35s1RhnMovq78lJVzSoDXZvoPiQeoqcWs24kMDlAEURwd7yFZtdBZ2jffqWcz0ym9pgkzI_J8xu87wt0d_PneIkO6mWjXoHerfPXhpq_Ab7hsyQ
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accumulation+of+long-chain+fatty+acids+in+the+tumor+microenvironment+drives+dysfunction+in+intrapancreatic+CD8%2B+T+cells&rft.jtitle=The+Journal+of+experimental+medicine&rft.au=Manzo%2C+Teresa&rft.au=Prentice%2C+Boone+M&rft.au=Anderson%2C+Kristin+G&rft.au=Raman%2C+Ayush&rft.date=2020-08-03&rft.issn=1540-9538&rft.eissn=1540-9538&rft.volume=217&rft.issue=8&rft_id=info:doi/10.1084%2Fjem.20191920&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1007&client=summon