3-Hydroxyphthalic anhydride-modified human serum albumin as a microbicide candidate inhibits HIV infection by blocking viral entry
We recently demonstrated that both 3-hydroxyphthalic anhydride (HP)- and maleic anhydride-modified chicken ovalbumin (OVA) could effectively inhibit HIV-1 infection. But because OVA may cause allergy in some human subjects, here we replaced OVA with human serum albumin (HSA) in designing a new anti-...
Saved in:
Published in | Journal of antimicrobial chemotherapy Vol. 68; no. 3; pp. 573 - 576 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford Publishing Limited (England)
01.03.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We recently demonstrated that both 3-hydroxyphthalic anhydride (HP)- and maleic anhydride-modified chicken ovalbumin (OVA) could effectively inhibit HIV-1 infection. But because OVA may cause allergy in some human subjects, here we replaced OVA with human serum albumin (HSA) in designing a new anti-HIV-1 agent, HP-HSA, and then tested its anti-HIV-1 activity and cytotoxicity.
The in vitro anti-HIV-1 activities of HP-HSA were detected by measuring p24 production and luciferase activity. The cytotoxicities of HP-HSA on target cells and human vaginal and cervical epithelial cells and the effect of HP-HSA on human peripheral blood mononuclear cell (PBMC) proliferation were evaluated by XTT assay. The effect of HP-HSA on interferon-γ secretion by PBMCs was detected by enzyme-linked immunospot (ELISPOT) assay.
We found that HP-HSA exhibited broad and potent antiviral activity against infection by the HIV-1 strains tested, including drug-resistant strains. HP-HSA displayed no or low cytotoxicity on human vaginal and cervical epithelial cells and the cells used for testing HIV-1 infectivity. In addition, HP-HSA had no significant effect on proliferation or interferon-γ secretion by normal or phytohaemagglutinin-stimulated human PBMCs. A time-of-addition assay indicated that HP-HSA was an HIV-1 entry inhibitor.
Because of its broad and potent anti-HIV-1 activity, low cytotoxicity and low immunogenicity to humans, HP-HSA has great potential for further development as a microbicide to prevent the sexual transmission of HIV. |
---|---|
Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 |
ISSN: | 0305-7453 1460-2091 1460-2091 |
DOI: | 10.1093/jac/dks458 |