Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model
Nowadays, organic solar cells (OSCs) with Y6 and its derivatives as electron acceptors provide the highest efficiencies among the studied binary OSCs. To further improve the performances of OSCs, the fabrication of ternary OSCs (TOSCs) is a convenient strategy. Essentially, morphology control and th...
Saved in:
Published in | Energy & environmental science Vol. 13; no. 2; pp. 635 - 645 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
01.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nowadays, organic solar cells (OSCs) with Y6 and its derivatives as electron acceptors provide the highest efficiencies among the studied binary OSCs. To further improve the performances of OSCs, the fabrication of ternary OSCs (TOSCs) is a convenient strategy. Essentially, morphology control and the trade-off between voltage and photocurrent are the main critical issues in TOSCs. Herein, we address these problems by constructing TOSCs where an alloy-like composite is formed between Y6 and a newly designed derivative, BTP-M. Employing an electron-pushing methyl substituent as a replacement for the electron-withdrawing F atoms on Y6, BTP-M shows higher energy levels and lower crystallinity than Y6. As a result, the obtained Y6:BTP-M alloy can simultaneously optimize energy levels to reduce energy loss as well as the morphologies of the active layers to favor photocurrent generation, leading to an enhanced open-circuit voltage (
V
oc
) of 0.875 V together with a larger short-circuit current density (
J
sc
) of 26.56 mA cm
−2
for TOSCs based on the polymer donor PM6 and Y6:BTP-M acceptor alloy. Consequently, a best efficiency of 17.03% is achieved for the corresponding TOSCs, which is among the best values for single-junction OSCs. In addition, our TOSCs also exhibit good thickness tolerance, and can reach 14.23% efficiency even though the active layer is as thick as 300 nm.
An alloy-like model based on Y6 and its derivative BTP-M is constructed to fabricate ternary organic solar cells, leading to a best efficiency of 17.03%. |
---|---|
AbstractList | Nowadays, organic solar cells (OSCs) with Y6 and its derivatives as electron acceptors provide the highest efficiencies among the studied binary OSCs. To further improve the performances of OSCs, the fabrication of ternary OSCs (TOSCs) is a convenient strategy. Essentially, morphology control and the trade-off between voltage and photocurrent are the main critical issues in TOSCs. Herein, we address these problems by constructing TOSCs where an alloy-like composite is formed between Y6 and a newly designed derivative, BTP-M. Employing an electron-pushing methyl substituent as a replacement for the electron-withdrawing F atoms on Y6, BTP-M shows higher energy levels and lower crystallinity than Y6. As a result, the obtained Y6:BTP-M alloy can simultaneously optimize energy levels to reduce energy loss as well as the morphologies of the active layers to favor photocurrent generation, leading to an enhanced open-circuit voltage (Voc) of 0.875 V together with a larger short-circuit current density (Jsc) of 26.56 mA cm−2 for TOSCs based on the polymer donor PM6 and Y6:BTP-M acceptor alloy. Consequently, a best efficiency of 17.03% is achieved for the corresponding TOSCs, which is among the best values for single-junction OSCs. In addition, our TOSCs also exhibit good thickness tolerance, and can reach 14.23% efficiency even though the active layer is as thick as 300 nm. Nowadays, organic solar cells (OSCs) with Y6 and its derivatives as electron acceptors provide the highest efficiencies among the studied binary OSCs. To further improve the performances of OSCs, the fabrication of ternary OSCs (TOSCs) is a convenient strategy. Essentially, morphology control and the trade-off between voltage and photocurrent are the main critical issues in TOSCs. Herein, we address these problems by constructing TOSCs where an alloy-like composite is formed between Y6 and a newly designed derivative, BTP-M. Employing an electron-pushing methyl substituent as a replacement for the electron-withdrawing F atoms on Y6, BTP-M shows higher energy levels and lower crystallinity than Y6. As a result, the obtained Y6:BTP-M alloy can simultaneously optimize energy levels to reduce energy loss as well as the morphologies of the active layers to favor photocurrent generation, leading to an enhanced open-circuit voltage ( V oc ) of 0.875 V together with a larger short-circuit current density ( J sc ) of 26.56 mA cm −2 for TOSCs based on the polymer donor PM6 and Y6:BTP-M acceptor alloy. Consequently, a best efficiency of 17.03% is achieved for the corresponding TOSCs, which is among the best values for single-junction OSCs. In addition, our TOSCs also exhibit good thickness tolerance, and can reach 14.23% efficiency even though the active layer is as thick as 300 nm. An alloy-like model based on Y6 and its derivative BTP-M is constructed to fabricate ternary organic solar cells, leading to a best efficiency of 17.03%. Nowadays, organic solar cells (OSCs) with Y6 and its derivatives as electron acceptors provide the highest efficiencies among the studied binary OSCs. To further improve the performances of OSCs, the fabrication of ternary OSCs (TOSCs) is a convenient strategy. Essentially, morphology control and the trade-off between voltage and photocurrent are the main critical issues in TOSCs. Herein, we address these problems by constructing TOSCs where an alloy-like composite is formed between Y6 and a newly designed derivative, BTP-M. Employing an electron-pushing methyl substituent as a replacement for the electron-withdrawing F atoms on Y6, BTP-M shows higher energy levels and lower crystallinity than Y6. As a result, the obtained Y6:BTP-M alloy can simultaneously optimize energy levels to reduce energy loss as well as the morphologies of the active layers to favor photocurrent generation, leading to an enhanced open-circuit voltage ( V oc ) of 0.875 V together with a larger short-circuit current density ( J sc ) of 26.56 mA cm −2 for TOSCs based on the polymer donor PM6 and Y6:BTP-M acceptor alloy. Consequently, a best efficiency of 17.03% is achieved for the corresponding TOSCs, which is among the best values for single-junction OSCs. In addition, our TOSCs also exhibit good thickness tolerance, and can reach 14.23% efficiency even though the active layer is as thick as 300 nm. |
Author | Shi, Minmin Hou, Jianhui Li, Chang-Zhi Li, Hanying Cui, Yong Lu, Xinhui Lau, Tsz-Ki Chen, Hongzheng Zhan, Lingling Li, Shuixing |
AuthorAffiliation | Department of Polymer Science and Engineering Chinese Academy of Sciences Institute of Chemistry New Territories State Key Laboratory of Silicon Materials Chinese University of Hong Kong Zhejiang University MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Physics |
AuthorAffiliation_xml | – sequence: 0 name: Department of Physics – sequence: 0 name: Chinese University of Hong Kong – sequence: 0 name: Chinese Academy of Sciences – sequence: 0 name: Department of Polymer Science and Engineering – sequence: 0 name: MOE Key Laboratory of Macromolecular Synthesis and Functionalization – sequence: 0 name: New Territories – sequence: 0 name: Zhejiang University – sequence: 0 name: Institute of Chemistry – sequence: 0 name: State Key Laboratory of Silicon Materials |
Author_xml | – sequence: 1 givenname: Lingling surname: Zhan fullname: Zhan, Lingling – sequence: 2 givenname: Shuixing surname: Li fullname: Li, Shuixing – sequence: 3 givenname: Tsz-Ki surname: Lau fullname: Lau, Tsz-Ki – sequence: 4 givenname: Yong surname: Cui fullname: Cui, Yong – sequence: 5 givenname: Xinhui surname: Lu fullname: Lu, Xinhui – sequence: 6 givenname: Minmin surname: Shi fullname: Shi, Minmin – sequence: 7 givenname: Chang-Zhi surname: Li fullname: Li, Chang-Zhi – sequence: 8 givenname: Hanying surname: Li fullname: Li, Hanying – sequence: 9 givenname: Jianhui surname: Hou fullname: Hou, Jianhui – sequence: 10 givenname: Hongzheng surname: Chen fullname: Chen, Hongzheng |
BookMark | eNptkc1LAzEQxYMo2FYv3oWAeBFWk83uZnMspX5AoRc9L9nspKRNk5psLf3vjdYPEGFg5vB7b5g3Q3TsvAOELii5pYSJOyUACOOUyCM0oLwsspKT6vh7rkR-ioYxLgmpcsLFAG3nbxAw5dcYtDbKgFN73ENwMuyxDwvpjMLRWxmwAmsjBidbCx1uE7bzOO3P9NZaCOAAS6Vg0_sQ8c6HlXELbByWqaz1-8yaFeC178CeoRMtbYTzrz5CL_fT58ljNps_PE3Gs0yxuuiztit4TVumCe9aLnJelpIxokleSKGhUFxXLM8ZEEFoyWTNuw6ELDpeM9WWlI3Q1cF3E_zrFmLfLP023WZjk7OSF0XKTCTq5kCp4GMMoJtNMOsUQENJ8xFrMxHT6Wes4wSTP7AyveyNd32Qxv4vuTxIQlQ_1r-fYu-Z7IYP |
CitedBy_id | crossref_primary_10_1038_s41565_021_01011_1 crossref_primary_10_1002_aenm_202302029 crossref_primary_10_1002_ange_202116111 crossref_primary_10_1002_anie_202005662 crossref_primary_10_1007_s40042_023_00733_w crossref_primary_10_1016_j_dyepig_2021_109171 crossref_primary_10_1021_acs_energyfuels_1c02113 crossref_primary_10_1002_adfm_202101238 crossref_primary_10_1016_j_jmgm_2023_108464 crossref_primary_10_1039_D2TA09874A crossref_primary_10_1039_D1TA08495J crossref_primary_10_1002_solr_202200957 crossref_primary_10_1039_D1EE03989J crossref_primary_10_1039_D1TC02241E crossref_primary_10_1039_D1NR03728E crossref_primary_10_1002_adfm_201910466 crossref_primary_10_1002_solr_202000396 crossref_primary_10_1016_j_nanoen_2021_106538 crossref_primary_10_1002_elan_202100359 crossref_primary_10_1021_jacs_0c04084 crossref_primary_10_1016_j_colcom_2021_100563 crossref_primary_10_1016_j_optmat_2021_111912 crossref_primary_10_1021_acsomega_1c01394 crossref_primary_10_1039_D2TC00024E crossref_primary_10_1016_j_solener_2021_12_010 crossref_primary_10_1039_D1TC01285A crossref_primary_10_1002_solr_202000498 crossref_primary_10_1002_aenm_202200129 crossref_primary_10_1002_adma_202101833 crossref_primary_10_1039_D2TA00564F crossref_primary_10_1016_j_xcrp_2021_100408 crossref_primary_10_1039_D2EE03483B crossref_primary_10_1021_acsami_3c02071 crossref_primary_10_1002_solr_202000142 crossref_primary_10_1021_acsami_2c11265 crossref_primary_10_1016_j_jechem_2024_12_070 crossref_primary_10_1016_j_nanoen_2020_105272 crossref_primary_10_1021_acsami_2c10059 crossref_primary_10_1002_aenm_202003177 crossref_primary_10_1016_j_solener_2021_04_049 crossref_primary_10_1021_acsapm_0c00791 crossref_primary_10_1016_j_mtchem_2024_102124 crossref_primary_10_1039_D1TA01135A crossref_primary_10_1002_admt_202101556 crossref_primary_10_1039_D2EE00977C crossref_primary_10_1039_D1TA02345D crossref_primary_10_1016_j_jcis_2022_05_068 crossref_primary_10_1016_j_orgel_2020_105776 crossref_primary_10_1002_adfm_202205338 crossref_primary_10_1016_j_orgel_2020_105771 crossref_primary_10_1002_adma_202210146 crossref_primary_10_1016_j_cej_2020_127444 crossref_primary_10_1039_D0TA08725D crossref_primary_10_3390_en16186456 crossref_primary_10_1021_acsenergylett_0c00537 crossref_primary_10_1021_accountsmr_0c00033 crossref_primary_10_1021_acsenergylett_4c03168 crossref_primary_10_1002_adma_202101733 crossref_primary_10_1039_D0TC05691J crossref_primary_10_1007_s40843_024_3123_2 crossref_primary_10_1016_j_nexres_2024_100042 crossref_primary_10_1002_solr_202000165 crossref_primary_10_1002_solr_202000286 crossref_primary_10_1039_D0TC03066J crossref_primary_10_1016_j_ijleo_2021_167098 crossref_primary_10_26565_2312_4334_2024_2_57 crossref_primary_10_1016_j_nanoen_2020_105376 crossref_primary_10_1038_s41528_022_00222_3 crossref_primary_10_1002_pol_20220582 crossref_primary_10_1039_D0TA03924A crossref_primary_10_1021_acsnano_1c01345 crossref_primary_10_1039_D0TA06658C crossref_primary_10_1016_j_xcrp_2020_100292 crossref_primary_10_1021_acsapm_2c00519 crossref_primary_10_1021_acsenergylett_0c01554 crossref_primary_10_1016_j_mssp_2023_107541 crossref_primary_10_1016_j_solener_2020_08_002 crossref_primary_10_1002_adfm_202102764 crossref_primary_10_1007_s00894_022_05351_0 crossref_primary_10_1016_j_joule_2023_10_006 crossref_primary_10_1002_smsc_202100092 crossref_primary_10_1021_acsaem_0c03220 crossref_primary_10_1002_solr_202200994 crossref_primary_10_1021_acs_energyfuels_4c05783 crossref_primary_10_1039_D1MH00868D crossref_primary_10_1021_acs_jpclett_1c03943 crossref_primary_10_1039_D1TA04623C crossref_primary_10_1002_aenm_202303169 crossref_primary_10_1002_adma_202100830 crossref_primary_10_1021_acs_chemrev_1c00955 crossref_primary_10_1007_s10118_022_2803_4 crossref_primary_10_1002_adts_202000116 crossref_primary_10_1002_aenm_202405451 crossref_primary_10_1039_D0QM00016G crossref_primary_10_3390_nano10030427 crossref_primary_10_1002_anie_202116111 crossref_primary_10_1007_s12274_023_5693_z crossref_primary_10_1002_adma_202107330 crossref_primary_10_1039_D1QM00060H crossref_primary_10_1021_acsenergylett_0c01688 crossref_primary_10_1021_acs_jpclett_0c03177 crossref_primary_10_1002_adma_202200044 crossref_primary_10_1007_s11051_022_05568_3 crossref_primary_10_1039_D0TA09707A crossref_primary_10_1016_j_molstruc_2024_139498 crossref_primary_10_1002_adma_202205844 crossref_primary_10_1039_D2RA05239C crossref_primary_10_1002_solr_202000460 crossref_primary_10_1016_j_synthmet_2021_116783 crossref_primary_10_1002_adfm_202406066 crossref_primary_10_1039_D0TC03096A crossref_primary_10_1002_aenm_202001076 crossref_primary_10_1016_j_nanoen_2020_105111 crossref_primary_10_1016_j_commatsci_2024_113146 crossref_primary_10_3390_en14144200 crossref_primary_10_1002_anie_202200329 crossref_primary_10_1021_acsaem_2c00393 crossref_primary_10_1021_acsaem_0c02469 crossref_primary_10_1002_solr_202000246 crossref_primary_10_1002_cjoc_202300427 crossref_primary_10_1002_solr_202000250 crossref_primary_10_1038_s41467_020_19434_0 crossref_primary_10_1016_j_cej_2022_137621 crossref_primary_10_1016_j_dyepig_2020_109079 crossref_primary_10_1016_j_dyepig_2022_110787 crossref_primary_10_1016_j_nanoen_2020_105106 crossref_primary_10_1021_acs_chemmater_0c04297 crossref_primary_10_1002_solr_202000130 crossref_primary_10_1021_acsaem_2c01473 crossref_primary_10_3390_ma15124238 crossref_primary_10_1021_acs_jpcc_2c01298 crossref_primary_10_1007_s00339_021_05025_3 crossref_primary_10_1021_acsaem_3c03067 crossref_primary_10_1002_adma_202107476 crossref_primary_10_1039_D2TA03941A crossref_primary_10_1002_solr_202000357 crossref_primary_10_1039_D2TA04800K crossref_primary_10_1002_solr_202000476 crossref_primary_10_1055_s_0041_1727234 crossref_primary_10_1002_smll_202311648 crossref_primary_10_3390_polym16111496 crossref_primary_10_1002_solr_202000364 crossref_primary_10_1002_adma_202001160 crossref_primary_10_1002_aenm_202303756 crossref_primary_10_1021_acs_chemmater_1c04293 crossref_primary_10_1002_adfm_202423287 crossref_primary_10_1016_j_mtchem_2022_101094 crossref_primary_10_1038_s41467_020_19429_x crossref_primary_10_1016_j_joule_2022_01_006 crossref_primary_10_1016_j_orgel_2021_106085 crossref_primary_10_1002_qua_26861 crossref_primary_10_1002_eom2_12156 crossref_primary_10_1002_solr_202000787 crossref_primary_10_1002_nano_202000146 crossref_primary_10_1039_D3TA00052D crossref_primary_10_1021_acs_jpca_4c04640 crossref_primary_10_1002_aenm_202104028 crossref_primary_10_1021_acsami_0c13085 crossref_primary_10_1016_j_jpcs_2024_112158 crossref_primary_10_1002_adfm_202205711 crossref_primary_10_1002_adma_202100474 crossref_primary_10_1007_s43630_022_00322_z crossref_primary_10_1021_acsami_2c23190 crossref_primary_10_1038_s41467_020_16509_w crossref_primary_10_1021_acsaem_0c02719 crossref_primary_10_1002_aenm_202001149 crossref_primary_10_1021_acsenergylett_0c01364 crossref_primary_10_1007_s40843_022_2172_6 crossref_primary_10_1002_adfm_202100316 crossref_primary_10_1039_D0EE03378B crossref_primary_10_1002_ange_202200329 crossref_primary_10_1002_solr_202000537 crossref_primary_10_1002_aenm_202201614 crossref_primary_10_1002_nano_202000012 crossref_primary_10_1038_s41467_021_25148_8 crossref_primary_10_1021_acsaem_1c01737 crossref_primary_10_2139_ssrn_3932608 crossref_primary_10_1039_D0QM00633E crossref_primary_10_1002_ente_202200504 crossref_primary_10_1021_acs_jpclett_1c00407 crossref_primary_10_1021_acs_jpcc_1c06448 crossref_primary_10_3390_molecules27061800 crossref_primary_10_1016_j_orgel_2021_106063 crossref_primary_10_1021_acsaem_0c01858 crossref_primary_10_1002_bte2_20220040 crossref_primary_10_1002_smtd_202200828 crossref_primary_10_1002_adom_202000669 crossref_primary_10_1039_D0TC02778B crossref_primary_10_1002_adfm_202213324 crossref_primary_10_1039_D1TC02748D crossref_primary_10_1088_1402_4896_ac9091 crossref_primary_10_1039_D3CC04412B crossref_primary_10_1039_D3CP06166C crossref_primary_10_1088_1361_6463_abbd66 crossref_primary_10_1016_j_dyepig_2020_108988 crossref_primary_10_1021_acsaem_1c00734 crossref_primary_10_1002_adma_202007231 crossref_primary_10_1002_adfm_202202103 crossref_primary_10_1016_j_jallcom_2022_165509 crossref_primary_10_1021_acsenergylett_2c01438 crossref_primary_10_1016_j_jpap_2021_100060 crossref_primary_10_1039_D0QM00305K crossref_primary_10_1038_s41467_020_19853_z crossref_primary_10_1002_solr_202100007 crossref_primary_10_1002_adma_202402143 crossref_primary_10_1002_smll_202311561 crossref_primary_10_1002_solr_202100008 crossref_primary_10_1002_agt2_46 crossref_primary_10_1016_j_dyepig_2023_111737 crossref_primary_10_1039_D0TC04749J crossref_primary_10_1016_j_patter_2021_100333 crossref_primary_10_1002_adfm_202005011 crossref_primary_10_1039_D3RA00431G crossref_primary_10_1088_2515_7639_ac0c0a crossref_primary_10_3390_sym12081240 crossref_primary_10_1038_s41570_022_00409_2 crossref_primary_10_1103_PhysRevApplied_17_054016 crossref_primary_10_1021_acsaem_1c00626 crossref_primary_10_1039_D0EE00714E crossref_primary_10_1016_j_optmat_2021_111647 crossref_primary_10_1039_D0EE02034F crossref_primary_10_3390_en15051620 crossref_primary_10_1002_adma_202008429 crossref_primary_10_1002_aenm_202003777 crossref_primary_10_1016_j_cej_2023_145501 crossref_primary_10_1063_5_0057001 crossref_primary_10_1016_j_cej_2024_151467 crossref_primary_10_1039_D1SE01429C crossref_primary_10_3390_polym13010115 crossref_primary_10_1007_s11426_020_9799_4 crossref_primary_10_1039_D3SE00703K crossref_primary_10_1002_ente_202001100 crossref_primary_10_1021_acsami_3c06981 crossref_primary_10_1039_D2TA05157E crossref_primary_10_1055_s_0041_1726427 crossref_primary_10_1149_2162_8777_ac12b4 crossref_primary_10_1021_acsaem_1c00797 crossref_primary_10_1016_j_cej_2021_134337 crossref_primary_10_1002_cplu_202100392 crossref_primary_10_1093_ce_zkab031 crossref_primary_10_1002_cssc_202401138 crossref_primary_10_1021_acsami_0c03484 crossref_primary_10_1039_D2QM00088A crossref_primary_10_1016_j_orgel_2020_105996 crossref_primary_10_1002_adma_202005153 crossref_primary_10_1016_j_nanoen_2020_105087 crossref_primary_10_1021_acs_chemmater_0c04318 crossref_primary_10_1038_s41467_024_46797_5 crossref_primary_10_1039_D0EE02461A crossref_primary_10_1142_S2737416523500035 crossref_primary_10_1002_adfm_202100870 crossref_primary_10_1002_advs_202405303 crossref_primary_10_1002_cssc_202100787 crossref_primary_10_1039_D1TA01679B crossref_primary_10_1002_aenm_202001589 crossref_primary_10_1002_eom2_12061 crossref_primary_10_1002_aenm_202002678 crossref_primary_10_1002_aenm_202003408 crossref_primary_10_1021_acsenergylett_4c02218 crossref_primary_10_2139_ssrn_4089368 crossref_primary_10_1109_JEDS_2023_3294888 crossref_primary_10_1007_s11664_021_09041_0 crossref_primary_10_1002_cssc_202101407 crossref_primary_10_3390_app11020646 crossref_primary_10_1016_j_matt_2020_09_001 crossref_primary_10_1021_acsami_2c02272 crossref_primary_10_1002_solr_202300228 crossref_primary_10_1021_acsami_1c13035 crossref_primary_10_1016_j_nxmate_2024_100224 crossref_primary_10_1002_anie_202316039 crossref_primary_10_1002_solr_202000523 crossref_primary_10_1039_D0TC00341G crossref_primary_10_1021_acs_nanolett_0c05045 crossref_primary_10_1039_D1TA03196A crossref_primary_10_1002_ange_202209454 crossref_primary_10_1039_D4QM00231H crossref_primary_10_1039_D3YA00163F crossref_primary_10_1002_adfm_202301701 crossref_primary_10_1016_j_cej_2022_134878 crossref_primary_10_1039_D1TC03409J crossref_primary_10_1007_s10118_020_2440_8 crossref_primary_10_1039_D0QM00882F crossref_primary_10_1039_D2TC00730D crossref_primary_10_1360_SSC_2023_0173 crossref_primary_10_1002_aenm_202003506 crossref_primary_10_1002_eom2_12281 crossref_primary_10_1039_D0TA04941G crossref_primary_10_1039_D0SE00310G crossref_primary_10_1039_D1EE00496D crossref_primary_10_1002_cssc_202100689 crossref_primary_10_1002_adfm_202101627 crossref_primary_10_1039_D0NR07788G crossref_primary_10_1002_adma_202203379 crossref_primary_10_1088_1757_899X_1305_1_012036 crossref_primary_10_1039_D3EE00630A crossref_primary_10_1016_j_cclet_2021_03_067 crossref_primary_10_1016_j_dyepig_2023_111423 crossref_primary_10_3390_molecules28155823 crossref_primary_10_1016_j_cclet_2023_108802 crossref_primary_10_1002_sus2_10 crossref_primary_10_1016_j_cej_2022_135975 crossref_primary_10_1021_acsaem_1c01994 crossref_primary_10_1063_5_0036223 crossref_primary_10_1016_j_rinma_2022_100271 crossref_primary_10_1002_pssa_202000597 crossref_primary_10_1016_j_nanoen_2021_106681 crossref_primary_10_1016_j_nanoen_2021_106323 crossref_primary_10_1002_adfm_202112511 crossref_primary_10_1002_aenm_202001436 crossref_primary_10_1016_j_mtener_2021_100728 crossref_primary_10_1002_adma_202300400 crossref_primary_10_1002_solr_202201012 crossref_primary_10_1002_aenm_202002649 crossref_primary_10_1016_j_cclet_2020_10_042 crossref_primary_10_1002_EXP_70001 crossref_primary_10_1039_D4TC03309D crossref_primary_10_1021_jacs_4c01503 crossref_primary_10_1021_acs_macromol_0c02496 crossref_primary_10_1039_D1TA05268C crossref_primary_10_1016_j_nanoen_2023_108956 crossref_primary_10_1016_j_mtener_2024_101548 crossref_primary_10_1039_D3TC04206E crossref_primary_10_1016_j_dyepig_2023_111493 crossref_primary_10_1039_D2NJ01906J crossref_primary_10_1002_adfm_202110743 crossref_primary_10_1016_j_orgel_2025_107212 crossref_primary_10_1016_j_orgel_2021_106132 crossref_primary_10_1002_aenm_202001788 crossref_primary_10_1021_acsami_0c08442 crossref_primary_10_1002_solr_202100549 crossref_primary_10_1016_j_surfin_2022_101875 crossref_primary_10_1002_solr_202000812 crossref_primary_10_1021_acsaem_1c00369 crossref_primary_10_1002_aenm_202100079 crossref_primary_10_1021_acsaem_1c00126 crossref_primary_10_1016_j_nanoen_2020_104988 crossref_primary_10_1016_j_cclet_2020_09_032 crossref_primary_10_3390_polym12081673 crossref_primary_10_1016_j_dyepig_2020_109109 crossref_primary_10_1109_JPHOTOV_2021_3052767 crossref_primary_10_1016_j_dyepig_2021_109606 crossref_primary_10_1016_j_mtener_2021_100843 crossref_primary_10_1002_marc_202200049 crossref_primary_10_1016_j_orgel_2022_106541 crossref_primary_10_1021_acsami_1c12028 crossref_primary_10_1021_acsenergylett_0c02384 crossref_primary_10_1002_aenm_202002746 crossref_primary_10_1016_j_cej_2021_131674 crossref_primary_10_1002_aenm_202404632 crossref_primary_10_1002_adma_202208986 crossref_primary_10_1039_D1TA00796C crossref_primary_10_1039_D1TA00971K crossref_primary_10_1088_1361_6463_ac24c8 crossref_primary_10_1021_acsaem_1c00455 crossref_primary_10_1021_acsaem_1c02752 crossref_primary_10_1002_ange_202303066 crossref_primary_10_1039_D1TA02075G crossref_primary_10_1002_adma_202001763 crossref_primary_10_1002_solr_202100522 crossref_primary_10_1002_adma_202002973 crossref_primary_10_1039_D0TA10334A crossref_primary_10_1016_j_synthmet_2023_117455 crossref_primary_10_1002_aenm_202001404 crossref_primary_10_1016_j_dyepig_2022_110908 crossref_primary_10_1016_j_solener_2021_01_027 crossref_primary_10_1039_D2TC05441H crossref_primary_10_1021_acsami_2c22972 crossref_primary_10_1039_D2EE00595F crossref_primary_10_1021_acsaem_1c02524 crossref_primary_10_1039_D1NR00470K crossref_primary_10_1016_j_jechem_2021_01_027 crossref_primary_10_1021_acsami_0c06048 crossref_primary_10_1021_acsami_1c06830 crossref_primary_10_1039_D0TA08018G crossref_primary_10_1007_s10853_020_05390_z crossref_primary_10_1039_D4EE01705F crossref_primary_10_1039_D0EE02838J crossref_primary_10_1002_anie_202303066 crossref_primary_10_1021_acs_energyfuels_2c00462 crossref_primary_10_1007_s11664_020_08567_z crossref_primary_10_1364_PRJ_416229 crossref_primary_10_1002_smll_202400826 crossref_primary_10_1016_j_mtener_2021_100802 crossref_primary_10_1016_j_orgel_2022_106560 crossref_primary_10_3390_polym13152398 crossref_primary_10_1039_D5TC00204D crossref_primary_10_1021_acs_jpclett_1c01099 crossref_primary_10_1039_D0TC01177K crossref_primary_10_6023_A20120589 crossref_primary_10_1021_acsenergylett_2c02140 crossref_primary_10_1002_adma_202206269 crossref_primary_10_1021_acsami_3c15503 crossref_primary_10_1016_j_cclet_2023_108438 crossref_primary_10_1039_D2EE01340A crossref_primary_10_1016_j_rser_2021_110726 crossref_primary_10_1016_j_cej_2022_138018 crossref_primary_10_1016_j_cej_2022_139228 crossref_primary_10_1002_inf2_12370 crossref_primary_10_1002_solr_202100480 crossref_primary_10_1016_j_dyepig_2022_110083 crossref_primary_10_1021_acsami_4c08868 crossref_primary_10_1002_er_5658 crossref_primary_10_1016_j_joule_2022_02_001 crossref_primary_10_1021_acsami_4c06326 crossref_primary_10_1021_acsaelm_2c01076 crossref_primary_10_1002_solr_202100365 crossref_primary_10_1039_D1EE02124A crossref_primary_10_1109_TED_2024_3362919 crossref_primary_10_1002_adma_202001621 crossref_primary_10_1016_j_solener_2021_10_068 crossref_primary_10_1021_acsami_0c16389 crossref_primary_10_1002_pssa_202100639 crossref_primary_10_1021_acsaem_3c02876 crossref_primary_10_1039_D3EE04169G crossref_primary_10_1039_D0RA09262B crossref_primary_10_1007_s11426_023_1828_8 crossref_primary_10_1016_j_orgel_2020_105904 crossref_primary_10_1002_adfm_202007931 crossref_primary_10_1002_adfm_202005753 crossref_primary_10_1016_j_nanoen_2023_108805 crossref_primary_10_1002_adfm_202304824 crossref_primary_10_1016_j_orgel_2022_106438 crossref_primary_10_1002_solr_202100592 crossref_primary_10_1039_D0TA06146H crossref_primary_10_1002_smtd_202101475 crossref_primary_10_1002_solr_202000802 crossref_primary_10_1016_j_cej_2023_145201 crossref_primary_10_1016_j_cej_2023_146538 crossref_primary_10_1002_solr_202100339 crossref_primary_10_1016_j_matre_2021_100066 crossref_primary_10_1002_adfm_202300214 crossref_primary_10_1002_sus2_203 crossref_primary_10_1055_a_1472_7302 crossref_primary_10_1002_aenm_202101383 crossref_primary_10_1021_acsami_2c01900 crossref_primary_10_1021_acsmaterialslett_3c00523 crossref_primary_10_1002_solr_202201076 crossref_primary_10_1039_D0TC02499F crossref_primary_10_1002_agt2_280 crossref_primary_10_1021_acs_jpcb_1c04758 crossref_primary_10_1007_s11426_020_9805_7 crossref_primary_10_1039_D0TA06907H crossref_primary_10_1093_nsr_nwaa305 crossref_primary_10_1016_j_optmat_2021_111217 crossref_primary_10_1016_j_orgel_2022_106465 crossref_primary_10_1002_sstr_202100099 crossref_primary_10_1002_marc_202200070 crossref_primary_10_1016_j_jechem_2023_12_036 crossref_primary_10_1016_j_orgel_2021_106153 crossref_primary_10_1021_acsami_2c03196 crossref_primary_10_1021_acsenergylett_0c02077 crossref_primary_10_1016_j_cej_2021_130397 crossref_primary_10_1016_j_surfin_2020_100921 crossref_primary_10_1021_acsaem_1c00149 crossref_primary_10_1039_D2TA00174H crossref_primary_10_1016_j_joule_2022_12_007 crossref_primary_10_1002_solr_202100450 crossref_primary_10_1016_j_dyepig_2021_109949 crossref_primary_10_1021_acsami_0c21986 crossref_primary_10_1016_j_scib_2020_08_027 crossref_primary_10_1039_D0MA01017K crossref_primary_10_1039_D0QM00398K crossref_primary_10_1039_D0QM00277A crossref_primary_10_1142_S1793604723400155 crossref_primary_10_1002_adma_202002122 crossref_primary_10_1016_j_matchemphys_2022_125898 crossref_primary_10_1002_jcc_27065 crossref_primary_10_2139_ssrn_4087412 crossref_primary_10_1017_S1431927622004068 crossref_primary_10_1039_D1EE01832A crossref_primary_10_2139_ssrn_4050371 crossref_primary_10_3390_solar2030022 crossref_primary_10_1016_j_nanoen_2020_105565 crossref_primary_10_3390_polym13111770 crossref_primary_10_1021_acsami_2c21574 crossref_primary_10_1002_adfm_202215095 crossref_primary_10_3389_fchem_2021_732132 crossref_primary_10_1016_j_orgel_2020_106008 crossref_primary_10_1002_smll_202308863 crossref_primary_10_1002_adfm_202010172 crossref_primary_10_1016_j_cej_2020_127033 crossref_primary_10_1039_D0QM00581A crossref_primary_10_1002_advs_202001117 crossref_primary_10_1039_D1RA01348C crossref_primary_10_1021_acsaem_4c01690 crossref_primary_10_1002_adfm_202205150 crossref_primary_10_1016_j_cej_2023_142822 crossref_primary_10_1039_D4TA01944J crossref_primary_10_1016_j_dyepig_2021_109560 crossref_primary_10_1002_solr_202200445 crossref_primary_10_1002_aenm_202203241 crossref_primary_10_1016_j_nanoen_2020_105679 crossref_primary_10_1039_D0TA08666E crossref_primary_10_1002_adma_202107659 crossref_primary_10_1016_j_nanoen_2020_105310 crossref_primary_10_1039_D0TA10594E crossref_primary_10_1002_adma_202002344 crossref_primary_10_1039_D0QM00287A crossref_primary_10_1002_er_6803 crossref_primary_10_1039_D2TA05846D crossref_primary_10_1016_j_seta_2024_103632 crossref_primary_10_1002_solr_202100819 crossref_primary_10_1039_D0TC00822B crossref_primary_10_1016_j_solener_2022_07_011 crossref_primary_10_1002_aenm_202101338 crossref_primary_10_1007_s11426_020_9921_4 crossref_primary_10_1039_D2TC04311D crossref_primary_10_1016_j_solener_2021_11_077 crossref_primary_10_1021_acsaem_1c02353 crossref_primary_10_1002_cjoc_202400397 crossref_primary_10_1016_j_nanoen_2021_106915 crossref_primary_10_1039_D4TA04725G crossref_primary_10_1021_acs_chemmater_1c01433 crossref_primary_10_1039_D3EE01320K crossref_primary_10_1002_ange_202005662 crossref_primary_10_1002_smll_202303399 crossref_primary_10_1002_macp_202000030 crossref_primary_10_1039_D0EE00662A crossref_primary_10_1039_D0CC01038C crossref_primary_10_1002_pssa_202300550 crossref_primary_10_1016_j_ijleo_2021_166839 crossref_primary_10_1021_acsami_1c13404 crossref_primary_10_1002_adma_202002217 crossref_primary_10_1039_D0TA03016C crossref_primary_10_1002_aenm_202403132 crossref_primary_10_1007_s10853_020_04883_1 crossref_primary_10_1039_D1TA06861J crossref_primary_10_1039_D1TA04454K crossref_primary_10_1021_acsaem_1c03578 crossref_primary_10_1021_jacs_3c11062 crossref_primary_10_35848_1347_4065_acc66b crossref_primary_10_1039_D2TA06706D crossref_primary_10_1021_acsami_0c19198 crossref_primary_10_1039_D0EE01338B crossref_primary_10_1155_2021_6692858 crossref_primary_10_1016_j_dyepig_2021_109346 crossref_primary_10_1016_j_solmat_2021_111046 crossref_primary_10_1039_D0EE02426K crossref_primary_10_1002_adfm_202304449 crossref_primary_10_1021_acs_jpcc_1c00228 crossref_primary_10_1039_D0TA08559F crossref_primary_10_1002_cssc_202101067 crossref_primary_10_1007_s11426_022_1270_5 crossref_primary_10_1016_j_synthmet_2023_117292 crossref_primary_10_1002_ijch_202100091 crossref_primary_10_1016_j_cej_2021_129539 crossref_primary_10_1021_acsami_1c14901 crossref_primary_10_1016_j_nanoen_2023_108991 crossref_primary_10_1021_acsaem_2c02395 crossref_primary_10_1039_D1EE02977K crossref_primary_10_1002_aelm_202201310 crossref_primary_10_1002_smsc_202100001 crossref_primary_10_1007_s11426_022_1429_x crossref_primary_10_1021_acs_energyfuels_1c00253 crossref_primary_10_1002_pol_20210938 crossref_primary_10_1016_j_tsf_2022_139394 crossref_primary_10_1021_acs_energyfuels_1c01582 crossref_primary_10_1016_j_cej_2022_135384 crossref_primary_10_1002_ente_202000926 crossref_primary_10_1016_j_cej_2020_127192 crossref_primary_10_1002_adfm_202305765 crossref_primary_10_1039_D0TA01260B crossref_primary_10_1039_D4TA07223E crossref_primary_10_1021_acsaem_2c02025 crossref_primary_10_1039_D1TC04222J crossref_primary_10_1016_j_orgel_2021_106201 crossref_primary_10_1021_acsami_1c07254 crossref_primary_10_1002_adfm_202002529 crossref_primary_10_1002_adfm_202107827 crossref_primary_10_1002_adma_202005942 crossref_primary_10_1016_j_synthmet_2022_117054 crossref_primary_10_1038_s41467_021_24937_5 crossref_primary_10_1002_solr_202100503 crossref_primary_10_1016_j_optmat_2022_112772 crossref_primary_10_1063_5_0077882 crossref_primary_10_1021_acs_jpclett_1c02234 crossref_primary_10_1021_acsami_0c14922 crossref_primary_10_1002_adma_202002315 crossref_primary_10_1002_ange_202316039 crossref_primary_10_1002_advs_202203606 crossref_primary_10_1002_anie_202209454 crossref_primary_10_1002_sstr_202000052 crossref_primary_10_1016_j_nanoen_2020_105513 crossref_primary_10_1002_aenm_202103702 crossref_primary_10_1039_D4EE04879B crossref_primary_10_1016_j_dyepig_2021_109523 crossref_primary_10_1039_D4TC01424C crossref_primary_10_1002_aenm_202103940 crossref_primary_10_1021_acsaem_2c03465 crossref_primary_10_1039_D2TC00045H crossref_primary_10_1039_D1EE02858H crossref_primary_10_1016_j_nanoen_2022_107133 crossref_primary_10_1021_acsami_1c06299 crossref_primary_10_1039_D4NJ00137K crossref_primary_10_1002_adma_202302005 crossref_primary_10_1002_aenm_202300784 crossref_primary_10_1016_j_saa_2024_124034 crossref_primary_10_1021_acsami_5c00969 crossref_primary_10_1039_D4TC03192J crossref_primary_10_1002_adma_202209350 crossref_primary_10_1002_aenm_202405889 crossref_primary_10_1016_j_synthmet_2020_116508 crossref_primary_10_1166_jnn_2021_19493 crossref_primary_10_1038_s41586_022_04455_0 crossref_primary_10_1002_aenm_202201076 crossref_primary_10_1021_acsenergylett_0c00604 crossref_primary_10_1002_aenm_202103957 crossref_primary_10_1016_j_comptc_2023_114201 crossref_primary_10_1016_j_nanoen_2020_104896 crossref_primary_10_1038_s41598_024_80007_y crossref_primary_10_1039_D1QM01100F crossref_primary_10_1039_D1TA00287B crossref_primary_10_1002_smll_202107106 crossref_primary_10_1039_D0EE03506H crossref_primary_10_1021_acsaem_1c02277 crossref_primary_10_1016_j_cej_2024_158769 crossref_primary_10_1016_j_dyepig_2021_109434 crossref_primary_10_1016_j_orgel_2021_106308 crossref_primary_10_1039_D2CC04999F crossref_primary_10_1038_s41578_023_00545_1 crossref_primary_10_1007_s40843_020_1508_7 crossref_primary_10_1016_j_ssc_2023_115319 crossref_primary_10_1039_D0EE02516J crossref_primary_10_1021_acs_macromol_0c00459 crossref_primary_10_1016_j_orgel_2020_106026 crossref_primary_10_1039_D1TC05228D crossref_primary_10_1002_adma_202003500 crossref_primary_10_1002_adma_202101090 crossref_primary_10_1021_acsmaterialslett_2c00823 crossref_primary_10_1088_2399_7532_abf337 crossref_primary_10_1002_adfm_202209211 crossref_primary_10_1039_D0TA07960J crossref_primary_10_18311_jmmf_2024_47253 crossref_primary_10_1016_j_optmat_2021_111048 crossref_primary_10_1039_D3TC04516A crossref_primary_10_1063_5_0013912 crossref_primary_10_1039_D1TC05653K crossref_primary_10_1002_adfm_202007088 crossref_primary_10_1002_advs_202200366 crossref_primary_10_1039_D2TA04501J crossref_primary_10_1039_D2TA10091F crossref_primary_10_1021_acsenergylett_0c00857 crossref_primary_10_1021_acs_macromol_1c01301 crossref_primary_10_1021_acssuschemeng_4c09617 crossref_primary_10_1021_acsami_1c23513 crossref_primary_10_1002_ente_202201176 crossref_primary_10_1016_j_nanoen_2020_105612 crossref_primary_10_1016_j_dyepig_2021_109424 crossref_primary_10_1039_D1TC02351A crossref_primary_10_1007_s40820_024_01547_6 crossref_primary_10_1002_adfm_202010000 crossref_primary_10_1002_marc_202200345 crossref_primary_10_1016_j_joule_2021_02_010 crossref_primary_10_1039_D0MA00133C crossref_primary_10_1039_D0TA08830G |
Cites_doi | 10.1002/adma.201404317 10.1039/C5EE02641E 10.1021/acsami.8b16131 10.1039/C9EE01890E 10.1002/adma.201802888 10.1021/acsenergylett.9b00534 10.1039/C6CP07465K 10.1021/ma301900h 10.1021/jacs.7b02677 10.1039/C8EE01564C 10.1002/smtd.201900531 10.1002/solr.201900079 10.1002/aenm.201702741 10.1038/s41467-019-10351-5 10.1016/j.nanoen.2017.05.060 10.1016/j.joule.2018.08.002 10.1038/s41563-017-0005-1 10.1038/ncomms8327 10.1021/jacs.5b03449 10.1039/C9MH01351B 10.1039/C8TA03753A 10.1002/adma.201804762 10.1016/j.joule.2019.09.009 10.1021/nn401267s 10.1038/s41560-018-0234-9 10.1038/ncomms11585 10.1002/aenm.201702814 10.1021/jacs.8b12126 10.1002/adma.201807577 10.1002/solr.201900317 10.1039/C8EE01107A 10.1038/natrevmats.2018.3 10.1002/adma.201601197 10.1038/s41563-018-0128-z 10.1002/advs.201901613 10.1016/j.scib.2017.10.017 10.1038/nphoton.2015.128 10.1039/C8EE01700J 10.1007/s11426-019-9431-8 10.1002/adma.201602067 10.1038/s41467-019-08386-9 10.1039/C9TA06929A 10.1002/advs.201800755 10.1002/adma.201705208 10.1002/adma.201902210 10.1039/C9TA01497G 10.1039/C8EE00215K 10.1016/j.joule.2019.01.004 10.1002/adma.201502110 10.1002/aenm.201602540 10.1038/s41467-019-10098-z 10.1002/smll.201701120 10.1021/acsenergylett.9b00681 10.1002/adma.201902302 10.1002/adma.201705706 10.1002/adma.201602776 10.1016/j.isci.2019.06.033 10.1021/acs.chemmater.6b02264 10.1002/adma.201901872 10.1039/C9EE01030K 10.1002/adma.201603154 10.1016/S1369-7021(12)70019-6 10.3866/PKU.WHXB201805091 10.1038/nenergy.2016.89 10.1038/nmat5063 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
DOI | 10.1039/c9ee03710a |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1754-5706 |
EndPage | 645 |
ExternalDocumentID | 10_1039_C9EE03710A c9ee03710a |
GroupedDBID | -JG 0-7 0R~ 29G 4.4 5GY 705 70~ 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 EBS ECGLT EE0 EF- GGIMP GNO H13 HZ~ H~N J3I M4U N9A O-G O9- P2P RAOCF RCNCU RPMJG RRC RSCEA RVUXY SKA SLH TOV UCJ AAYXX AFRZK AKMSF CITATION 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
ID | FETCH-LOGICAL-c384t-bd4781b3f07db792755a330f024a9fe4c7f63223e090153a87dde9a4d783cb513 |
ISSN | 1754-5692 |
IngestDate | Mon Jun 30 12:02:25 EDT 2025 Tue Jul 01 01:45:45 EDT 2025 Thu Apr 24 23:06:29 EDT 2025 Tue Dec 17 20:58:55 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c384t-bd4781b3f07db792755a330f024a9fe4c7f63223e090153a87dde9a4d783cb513 |
Notes | 10.1039/c9ee03710a Electronic supplementary information (ESI) available: Materials and methods, synthesis details, UV-vis absorption, DSC, CV, PL, SCLC, and NMR spectra data See DOI etc. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5922-9550 0000-0003-1968-2032 0000-0002-2105-6922 0000-0002-1908-3294 0000-0001-7692-2624 0000-0002-5841-6805 |
PQID | 2357440399 |
PQPubID | 2047494 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1039_C9EE03710A proquest_journals_2357440399 crossref_primary_10_1039_C9EE03710A rsc_primary_c9ee03710a |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 20200101 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Energy & environmental science |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Mai (C9EE03710A-(cit63)/*[position()=1]) 2018; 30 Lee (C9EE03710A-(cit24)/*[position()=1]) 2019; 31 Liu (C9EE03710A-(cit46)/*[position()=1]) 2019; 12 Kyaw (C9EE03710A-(cit61)/*[position()=1]) 2013; 7 Xu (C9EE03710A-(cit19)/*[position()=1]) 2019; 31 Holliday (C9EE03710A-(cit9)/*[position()=1]) 2016; 7 Yan (C9EE03710A-(cit3)/*[position()=1]) 2018; 3 Cui (C9EE03710A-(cit18)/*[position()=1]) 2019; 10 Wang (C9EE03710A-(cit48)/*[position()=1]) 2019; 3 Sun (C9EE03710A-(cit20)/*[position()=1]) 2019; 12 Yuan (C9EE03710A-(cit15)/*[position()=1]) 2019; 31 Mai (C9EE03710A-(cit64)/*[position()=1]) 2016; 28 Zhan (C9EE03710A-(cit36)/*[position()=1]) 2018; 5 Zerio (C9EE03710A-(cit39)/*[position()=1]) 2018; 8 Yu (C9EE03710A-(cit32)/*[position()=1]) 2019; 31 Zhang (C9EE03710A-(cit31)/*[position()=1]) 2018; 11 Li (C9EE03710A-(cit52)/*[position()=1]) 2018; 6 Xiao (C9EE03710A-(cit58)/*[position()=1]) 2018; 2 Liu (C9EE03710A-(cit65)/*[position()=1]) 2018; 11 Yuan (C9EE03710A-(cit14)/*[position()=1]) 2019; 10 Lin (C9EE03710A-(cit6)/*[position()=1]) 2015; 27 Yu (C9EE03710A-(cit11)/*[position()=1]) 2019; 10 Qian (C9EE03710A-(cit49)/*[position()=1]) 2018; 17 Xiao (C9EE03710A-(cit8)/*[position()=1]) 2017; 62 Ye (C9EE03710A-(cit53)/*[position()=1]) 2018; 17 Li (C9EE03710A-(cit35)/*[position()=1]) 2017; 19 Li (C9EE03710A-(cit54)/*[position()=1]) 2016; 28 Yu (C9EE03710A-(cit22)/*[position()=1]) 2018; 8 Ma (C9EE03710A-(cit45)/*[position()=1]) 2019; 7 Li (C9EE03710A-(cit51)/*[position()=1]) 2019; 141 Pan (C9EE03710A-(cit34)/*[position()=1]) 2019; 7 Zhang (C9EE03710A-(cit12)/*[position()=1]) 2019; 35 Søndergaard (C9EE03710A-(cit56)/*[position()=1]) 2012; 15 Zhang (C9EE03710A-(cit40)/*[position()=1]) 2015; 137 Chen (C9EE03710A-(cit62)/*[position()=1]) 2019; 3 Zhang (C9EE03710A-(cit17)/*[position()=1]) 2015; 27 An (C9EE03710A-(cit26)/*[position()=1]) 2016; 9 Huang (C9EE03710A-(cit57)/*[position()=1]) 2020; 7 Li (C9EE03710A-(cit10)/*[position()=1]) 2018; 30 Zhan (C9EE03710A-(cit28)/*[position()=1]) 2019; 3 Zhao (C9EE03710A-(cit7)/*[position()=1]) 2017; 139 Lu (C9EE03710A-(cit21)/*[position()=1]) 2015; 9 Zhou (C9EE03710A-(cit42)/*[position()=1]) 2018; 3 Hou (C9EE03710A-(cit1)/*[position()=1]) 2018; 17 Kang (C9EE03710A-(cit5)/*[position()=1]) 2016; 28 Tang (C9EE03710A-(cit60)/*[position()=1]) 2019; 6 Nian (C9EE03710A-(cit30)/*[position()=1]) 2018; 11 Li (C9EE03710A-(cit2)/*[position()=1]) 2017; 13 Yuan (C9EE03710A-(cit13)/*[position()=1]) 2019; 3 Qian (C9EE03710A-(cit59)/*[position()=1]) 2012; 45 Li (C9EE03710A-(cit4)/*[position()=1]) 2019; 3 Zhan (C9EE03710A-(cit37)/*[position()=1]) 2018; 10 Su (C9EE03710A-(cit41)/*[position()=1]) 2017; 38 Zhao (C9EE03710A-(cit43)/*[position()=1]) 2019; 4 Yan (C9EE03710A-(cit33)/*[position()=1]) 2019; 31 Li (C9EE03710A-(cit25)/*[position()=1]) 2017; 7 Lai (C9EE03710A-(cit55)/*[position()=1]) 2019; 17 Cheng (C9EE03710A-(cit38)/*[position()=1]) 2016; 28 Chen (C9EE03710A-(cit16)/*[position()=1]) 2019; 62 Xie (C9EE03710A-(cit47)/*[position()=1]) 2019; 4 Chen (C9EE03710A-(cit44)/*[position()=1]) 2017; 29 Lu (C9EE03710A-(cit27)/*[position()=1]) 2015; 6 Ma (C9EE03710A-(cit29)/*[position()=1]) 2018; 11 Huang (C9EE03710A-(cit23)/*[position()=1]) 2018; 30 Liu (C9EE03710A-(cit50)/*[position()=1]) 2016; 1 |
References_xml | – volume: 27 start-page: 1170 year: 2015 ident: C9EE03710A-(cit6)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201404317 – volume: 9 start-page: 281 year: 2016 ident: C9EE03710A-(cit26)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02641E – volume: 10 start-page: 42444 year: 2018 ident: C9EE03710A-(cit37)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b16131 – volume: 12 start-page: 3328 year: 2019 ident: C9EE03710A-(cit20)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C9EE01890E – volume: 30 start-page: 1802888 year: 2018 ident: C9EE03710A-(cit63)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201802888 – volume: 4 start-page: 1106 year: 2019 ident: C9EE03710A-(cit43)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b00534 – volume: 19 start-page: 3440 year: 2017 ident: C9EE03710A-(cit35)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP07465K – volume: 45 start-page: 9611 year: 2012 ident: C9EE03710A-(cit59)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma301900h – volume: 139 start-page: 7148 year: 2017 ident: C9EE03710A-(cit7)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b02677 – volume: 11 start-page: 3392 year: 2018 ident: C9EE03710A-(cit30)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C8EE01564C – volume: 3 start-page: 1900531 year: 2019 ident: C9EE03710A-(cit4)/*[position()=1] publication-title: Small Methods doi: 10.1002/smtd.201900531 – volume: 3 start-page: 1900079 year: 2019 ident: C9EE03710A-(cit48)/*[position()=1] publication-title: Sol. RRL doi: 10.1002/solr.201900079 – volume: 8 start-page: 1702741 year: 2018 ident: C9EE03710A-(cit39)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702741 – volume: 10 start-page: 2515 year: 2019 ident: C9EE03710A-(cit18)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-10351-5 – volume: 38 start-page: 510 year: 2017 ident: C9EE03710A-(cit41)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.05.060 – volume: 2 start-page: 2154 year: 2018 ident: C9EE03710A-(cit58)/*[position()=1] publication-title: Joule doi: 10.1016/j.joule.2018.08.002 – volume: 17 start-page: 253 year: 2018 ident: C9EE03710A-(cit53)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/s41563-017-0005-1 – volume: 6 start-page: 7327 year: 2015 ident: C9EE03710A-(cit27)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms8327 – volume: 137 start-page: 8176 year: 2015 ident: C9EE03710A-(cit40)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b03449 – volume: 7 start-page: 244 year: 2020 ident: C9EE03710A-(cit57)/*[position()=1] publication-title: Mater. Horiz. doi: 10.1039/C9MH01351B – volume: 6 start-page: 12132 year: 2018 ident: C9EE03710A-(cit52)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA03753A – volume: 31 start-page: 1804762 year: 2019 ident: C9EE03710A-(cit24)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201804762 – volume: 3 start-page: 3034 year: 2019 ident: C9EE03710A-(cit62)/*[position()=1] publication-title: Joule doi: 10.1016/j.joule.2019.09.009 – volume: 7 start-page: 4569 year: 2013 ident: C9EE03710A-(cit61)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn401267s – volume: 3 start-page: 952 year: 2018 ident: C9EE03710A-(cit42)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/s41560-018-0234-9 – volume: 7 start-page: 11585 year: 2016 ident: C9EE03710A-(cit9)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms11585 – volume: 8 start-page: 1702814 year: 2018 ident: C9EE03710A-(cit22)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702814 – volume: 141 start-page: 3073 year: 2019 ident: C9EE03710A-(cit51)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b12126 – volume: 31 start-page: 1807577 year: 2019 ident: C9EE03710A-(cit15)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201807577 – volume: 3 start-page: 1900317 year: 2019 ident: C9EE03710A-(cit28)/*[position()=1] publication-title: Sol. RRL doi: 10.1002/solr.201900317 – volume: 11 start-page: 2134 year: 2018 ident: C9EE03710A-(cit29)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C8EE01107A – volume: 3 start-page: 18003 year: 2018 ident: C9EE03710A-(cit3)/*[position()=1] publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2018.3 – volume: 28 start-page: 7821 year: 2016 ident: C9EE03710A-(cit5)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201601197 – volume: 17 start-page: 703 year: 2018 ident: C9EE03710A-(cit49)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/s41563-018-0128-z – volume: 6 start-page: 1901613 year: 2019 ident: C9EE03710A-(cit60)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201901613 – volume: 62 start-page: 1494 year: 2017 ident: C9EE03710A-(cit8)/*[position()=1] publication-title: Sci. Bullet. doi: 10.1016/j.scib.2017.10.017 – volume: 9 start-page: 491 year: 2015 ident: C9EE03710A-(cit21)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2015.128 – volume: 11 start-page: 3275 year: 2018 ident: C9EE03710A-(cit65)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C8EE01700J – volume: 62 start-page: 403 year: 2019 ident: C9EE03710A-(cit16)/*[position()=1] publication-title: Sci. China: Chem. doi: 10.1007/s11426-019-9431-8 – volume: 28 start-page: 8021 year: 2016 ident: C9EE03710A-(cit38)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201602067 – volume: 10 start-page: 570 year: 2019 ident: C9EE03710A-(cit14)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-08386-9 – volume: 7 start-page: 20713 year: 2019 ident: C9EE03710A-(cit34)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA06929A – volume: 5 start-page: 1800755 year: 2018 ident: C9EE03710A-(cit36)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201800755 – volume: 30 start-page: 1705208 year: 2018 ident: C9EE03710A-(cit10)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201705208 – volume: 31 start-page: 1902210 year: 2019 ident: C9EE03710A-(cit33)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201902210 – volume: 7 start-page: 7843 year: 2019 ident: C9EE03710A-(cit45)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA01497G – volume: 11 start-page: 841 year: 2018 ident: C9EE03710A-(cit31)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00215K – volume: 3 start-page: 1140 year: 2019 ident: C9EE03710A-(cit13)/*[position()=1] publication-title: Joule doi: 10.1016/j.joule.2019.01.004 – volume: 27 start-page: 4655 year: 2015 ident: C9EE03710A-(cit17)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201502110 – volume: 7 start-page: 1602540 year: 2017 ident: C9EE03710A-(cit25)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602540 – volume: 10 start-page: 2152 year: 2019 ident: C9EE03710A-(cit11)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-10098-z – volume: 13 start-page: 1701120 year: 2017 ident: C9EE03710A-(cit2)/*[position()=1] publication-title: Small doi: 10.1002/smll.201701120 – volume: 4 start-page: 1196 year: 2019 ident: C9EE03710A-(cit47)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b00681 – volume: 31 start-page: 1902302 year: 2019 ident: C9EE03710A-(cit32)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201902302 – volume: 30 start-page: 1705706 year: 2018 ident: C9EE03710A-(cit23)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201705706 – volume: 28 start-page: 9423 year: 2016 ident: C9EE03710A-(cit54)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201602776 – volume: 17 start-page: 302 year: 2019 ident: C9EE03710A-(cit55)/*[position()=1] publication-title: iScience doi: 10.1016/j.isci.2019.06.033 – volume: 28 start-page: 6186 year: 2016 ident: C9EE03710A-(cit64)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b02264 – volume: 31 start-page: 1901872 year: 2019 ident: C9EE03710A-(cit19)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201901872 – volume: 12 start-page: 2529 year: 2019 ident: C9EE03710A-(cit46)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C9EE01030K – volume: 29 start-page: 1603154 year: 2017 ident: C9EE03710A-(cit44)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201603154 – volume: 15 start-page: 36 year: 2012 ident: C9EE03710A-(cit56)/*[position()=1] publication-title: Mater. Today doi: 10.1016/S1369-7021(12)70019-6 – volume: 35 start-page: 394 year: 2019 ident: C9EE03710A-(cit12)/*[position()=1] publication-title: Acta Phys. – Chim. Sin. doi: 10.3866/PKU.WHXB201805091 – volume: 1 start-page: 16089 year: 2016 ident: C9EE03710A-(cit50)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/nenergy.2016.89 – volume: 17 start-page: 119 year: 2018 ident: C9EE03710A-(cit1)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat5063 |
SSID | ssj0062079 |
Score | 2.7090673 |
Snippet | Nowadays, organic solar cells (OSCs) with Y6 and its derivatives as electron acceptors provide the highest efficiencies among the studied binary OSCs. To... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 635 |
SubjectTerms | Circuits Efficiency Electrons Energy Energy dissipation Energy levels Energy loss Fabrication Fullerenes Morphology NMR Nuclear magnetic resonance Open circuit voltage Organic chemistry Performance enhancement Photoelectric effect Photoelectric emission Photovoltaic cells Polymers Short circuit currents Short-circuit current Solar cells Voltage |
Title | Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model |
URI | https://www.proquest.com/docview/2357440399 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELbS9gIHxKsiUJAluKCVi7O293EMVUpFS3sgEeG0WnsdiIga1GQV6J_hrzLj9T4CFQKkaBVZsyvL89nz8DwIeSFAx8hFkTOulWUyMYJpsJqZNKkAa0DbuECH_rvz6GQi307VtNf70YlaKtf60FzfmFfyP1yFMeArZsn-A2ebj8IA_Af-whM4DM-_4vEFzDjAAkYK4zLmbpuCNokuPrw5d2mWJlih9Rqgh34VWJcqVSmdm2UAtj9DB7xrkRLkBmNcsPvOpnKhozME9j_ezX9ni_kXWzXO2fLmV7mDCKBOzlydadnCBh3T3gfwaVGLSwwEctEE7z-X82_d0bx0QFpds9N5c01SOtqPS0_nfRUh_8VXUXlE6nBUF27im9p1TuBYSaaiqkHeoe2MxTzaOrZFB55h5wyOqvonXpxHVbXK3yQFF1ho1aTWYtFC3pGHdQzA-UV2PDk7y8aj6XiH7IVgh8BBujc8ff3mQy3so5C7co7NrOsKuCJ91X57W-dpDZmdq7rLjNNmxnfJHW-G0GGFqXukZy_vk9ud4pQPSInoooAu2mKLemxRjy3qsEUdtqjHFtVAtlnSLWzRBlvUY4vOL2kOvwZb1GHrIZkcj8ZHJ8w36WBGJHLNdIHJylrMeFzoOA1jpXIh-Ax0vzydWWniWQRCQ1iOmqfIkxgEaprLIk6E0Wog9skuTMg-IlRqUQy4DgdaRTIHy8FwYZNYJBpWnheqT17Wy5gZX8EeG6ksMhdJIdLsKB2N3JIP--R5Q_u1qttyI9VBzY3M7-tVhgWgpATCtE_2gUPN-y1DH__5vSfkVov-A7K7virtU9Bd1_qZx89PE0ycnQ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Over+17%25+efficiency+ternary+organic+solar+cells+enabled+by+two+non-fullerene+acceptors+working+in+an+alloy-like+model&rft.jtitle=Energy+%26+environmental+science&rft.au=Zhan%2C+Lingling&rft.au=Li%2C+Shuixing&rft.au=Lau%2C+Tsz-Ki&rft.au=Cui%2C+Yong&rft.date=2020-01-01&rft.pub=Royal+Society+of+Chemistry&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=13&rft.issue=2&rft.spage=635&rft.epage=645&rft_id=info:doi/10.1039%2Fc9ee03710a&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon |