Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model

Nowadays, organic solar cells (OSCs) with Y6 and its derivatives as electron acceptors provide the highest efficiencies among the studied binary OSCs. To further improve the performances of OSCs, the fabrication of ternary OSCs (TOSCs) is a convenient strategy. Essentially, morphology control and th...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental science Vol. 13; no. 2; pp. 635 - 645
Main Authors Zhan, Lingling, Li, Shuixing, Lau, Tsz-Ki, Cui, Yong, Lu, Xinhui, Shi, Minmin, Li, Chang-Zhi, Li, Hanying, Hou, Jianhui, Chen, Hongzheng
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 01.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nowadays, organic solar cells (OSCs) with Y6 and its derivatives as electron acceptors provide the highest efficiencies among the studied binary OSCs. To further improve the performances of OSCs, the fabrication of ternary OSCs (TOSCs) is a convenient strategy. Essentially, morphology control and the trade-off between voltage and photocurrent are the main critical issues in TOSCs. Herein, we address these problems by constructing TOSCs where an alloy-like composite is formed between Y6 and a newly designed derivative, BTP-M. Employing an electron-pushing methyl substituent as a replacement for the electron-withdrawing F atoms on Y6, BTP-M shows higher energy levels and lower crystallinity than Y6. As a result, the obtained Y6:BTP-M alloy can simultaneously optimize energy levels to reduce energy loss as well as the morphologies of the active layers to favor photocurrent generation, leading to an enhanced open-circuit voltage ( V oc ) of 0.875 V together with a larger short-circuit current density ( J sc ) of 26.56 mA cm −2 for TOSCs based on the polymer donor PM6 and Y6:BTP-M acceptor alloy. Consequently, a best efficiency of 17.03% is achieved for the corresponding TOSCs, which is among the best values for single-junction OSCs. In addition, our TOSCs also exhibit good thickness tolerance, and can reach 14.23% efficiency even though the active layer is as thick as 300 nm. An alloy-like model based on Y6 and its derivative BTP-M is constructed to fabricate ternary organic solar cells, leading to a best efficiency of 17.03%.
AbstractList Nowadays, organic solar cells (OSCs) with Y6 and its derivatives as electron acceptors provide the highest efficiencies among the studied binary OSCs. To further improve the performances of OSCs, the fabrication of ternary OSCs (TOSCs) is a convenient strategy. Essentially, morphology control and the trade-off between voltage and photocurrent are the main critical issues in TOSCs. Herein, we address these problems by constructing TOSCs where an alloy-like composite is formed between Y6 and a newly designed derivative, BTP-M. Employing an electron-pushing methyl substituent as a replacement for the electron-withdrawing F atoms on Y6, BTP-M shows higher energy levels and lower crystallinity than Y6. As a result, the obtained Y6:BTP-M alloy can simultaneously optimize energy levels to reduce energy loss as well as the morphologies of the active layers to favor photocurrent generation, leading to an enhanced open-circuit voltage (Voc) of 0.875 V together with a larger short-circuit current density (Jsc) of 26.56 mA cm−2 for TOSCs based on the polymer donor PM6 and Y6:BTP-M acceptor alloy. Consequently, a best efficiency of 17.03% is achieved for the corresponding TOSCs, which is among the best values for single-junction OSCs. In addition, our TOSCs also exhibit good thickness tolerance, and can reach 14.23% efficiency even though the active layer is as thick as 300 nm.
Nowadays, organic solar cells (OSCs) with Y6 and its derivatives as electron acceptors provide the highest efficiencies among the studied binary OSCs. To further improve the performances of OSCs, the fabrication of ternary OSCs (TOSCs) is a convenient strategy. Essentially, morphology control and the trade-off between voltage and photocurrent are the main critical issues in TOSCs. Herein, we address these problems by constructing TOSCs where an alloy-like composite is formed between Y6 and a newly designed derivative, BTP-M. Employing an electron-pushing methyl substituent as a replacement for the electron-withdrawing F atoms on Y6, BTP-M shows higher energy levels and lower crystallinity than Y6. As a result, the obtained Y6:BTP-M alloy can simultaneously optimize energy levels to reduce energy loss as well as the morphologies of the active layers to favor photocurrent generation, leading to an enhanced open-circuit voltage ( V oc ) of 0.875 V together with a larger short-circuit current density ( J sc ) of 26.56 mA cm −2 for TOSCs based on the polymer donor PM6 and Y6:BTP-M acceptor alloy. Consequently, a best efficiency of 17.03% is achieved for the corresponding TOSCs, which is among the best values for single-junction OSCs. In addition, our TOSCs also exhibit good thickness tolerance, and can reach 14.23% efficiency even though the active layer is as thick as 300 nm. An alloy-like model based on Y6 and its derivative BTP-M is constructed to fabricate ternary organic solar cells, leading to a best efficiency of 17.03%.
Nowadays, organic solar cells (OSCs) with Y6 and its derivatives as electron acceptors provide the highest efficiencies among the studied binary OSCs. To further improve the performances of OSCs, the fabrication of ternary OSCs (TOSCs) is a convenient strategy. Essentially, morphology control and the trade-off between voltage and photocurrent are the main critical issues in TOSCs. Herein, we address these problems by constructing TOSCs where an alloy-like composite is formed between Y6 and a newly designed derivative, BTP-M. Employing an electron-pushing methyl substituent as a replacement for the electron-withdrawing F atoms on Y6, BTP-M shows higher energy levels and lower crystallinity than Y6. As a result, the obtained Y6:BTP-M alloy can simultaneously optimize energy levels to reduce energy loss as well as the morphologies of the active layers to favor photocurrent generation, leading to an enhanced open-circuit voltage ( V oc ) of 0.875 V together with a larger short-circuit current density ( J sc ) of 26.56 mA cm −2 for TOSCs based on the polymer donor PM6 and Y6:BTP-M acceptor alloy. Consequently, a best efficiency of 17.03% is achieved for the corresponding TOSCs, which is among the best values for single-junction OSCs. In addition, our TOSCs also exhibit good thickness tolerance, and can reach 14.23% efficiency even though the active layer is as thick as 300 nm.
Author Shi, Minmin
Hou, Jianhui
Li, Chang-Zhi
Li, Hanying
Cui, Yong
Lu, Xinhui
Lau, Tsz-Ki
Chen, Hongzheng
Zhan, Lingling
Li, Shuixing
AuthorAffiliation Department of Polymer Science and Engineering
Chinese Academy of Sciences
Institute of Chemistry
New Territories
State Key Laboratory of Silicon Materials
Chinese University of Hong Kong
Zhejiang University
MOE Key Laboratory of Macromolecular Synthesis and Functionalization
Department of Physics
AuthorAffiliation_xml – sequence: 0
  name: Department of Physics
– sequence: 0
  name: Chinese University of Hong Kong
– sequence: 0
  name: Chinese Academy of Sciences
– sequence: 0
  name: Department of Polymer Science and Engineering
– sequence: 0
  name: MOE Key Laboratory of Macromolecular Synthesis and Functionalization
– sequence: 0
  name: New Territories
– sequence: 0
  name: Zhejiang University
– sequence: 0
  name: Institute of Chemistry
– sequence: 0
  name: State Key Laboratory of Silicon Materials
Author_xml – sequence: 1
  givenname: Lingling
  surname: Zhan
  fullname: Zhan, Lingling
– sequence: 2
  givenname: Shuixing
  surname: Li
  fullname: Li, Shuixing
– sequence: 3
  givenname: Tsz-Ki
  surname: Lau
  fullname: Lau, Tsz-Ki
– sequence: 4
  givenname: Yong
  surname: Cui
  fullname: Cui, Yong
– sequence: 5
  givenname: Xinhui
  surname: Lu
  fullname: Lu, Xinhui
– sequence: 6
  givenname: Minmin
  surname: Shi
  fullname: Shi, Minmin
– sequence: 7
  givenname: Chang-Zhi
  surname: Li
  fullname: Li, Chang-Zhi
– sequence: 8
  givenname: Hanying
  surname: Li
  fullname: Li, Hanying
– sequence: 9
  givenname: Jianhui
  surname: Hou
  fullname: Hou, Jianhui
– sequence: 10
  givenname: Hongzheng
  surname: Chen
  fullname: Chen, Hongzheng
BookMark eNptkc1LAzEQxYMo2FYv3oWAeBFWk83uZnMspX5AoRc9L9nspKRNk5psLf3vjdYPEGFg5vB7b5g3Q3TsvAOELii5pYSJOyUACOOUyCM0oLwsspKT6vh7rkR-ioYxLgmpcsLFAG3nbxAw5dcYtDbKgFN73ENwMuyxDwvpjMLRWxmwAmsjBidbCx1uE7bzOO3P9NZaCOAAS6Vg0_sQ8c6HlXELbByWqaz1-8yaFeC178CeoRMtbYTzrz5CL_fT58ljNps_PE3Gs0yxuuiztit4TVumCe9aLnJelpIxokleSKGhUFxXLM8ZEEFoyWTNuw6ELDpeM9WWlI3Q1cF3E_zrFmLfLP023WZjk7OSF0XKTCTq5kCp4GMMoJtNMOsUQENJ8xFrMxHT6Wes4wSTP7AyveyNd32Qxv4vuTxIQlQ_1r-fYu-Z7IYP
CitedBy_id crossref_primary_10_1038_s41565_021_01011_1
crossref_primary_10_1002_aenm_202302029
crossref_primary_10_1002_ange_202116111
crossref_primary_10_1002_anie_202005662
crossref_primary_10_1007_s40042_023_00733_w
crossref_primary_10_1016_j_dyepig_2021_109171
crossref_primary_10_1021_acs_energyfuels_1c02113
crossref_primary_10_1002_adfm_202101238
crossref_primary_10_1016_j_jmgm_2023_108464
crossref_primary_10_1039_D2TA09874A
crossref_primary_10_1039_D1TA08495J
crossref_primary_10_1002_solr_202200957
crossref_primary_10_1039_D1EE03989J
crossref_primary_10_1039_D1TC02241E
crossref_primary_10_1039_D1NR03728E
crossref_primary_10_1002_adfm_201910466
crossref_primary_10_1002_solr_202000396
crossref_primary_10_1016_j_nanoen_2021_106538
crossref_primary_10_1002_elan_202100359
crossref_primary_10_1021_jacs_0c04084
crossref_primary_10_1016_j_colcom_2021_100563
crossref_primary_10_1016_j_optmat_2021_111912
crossref_primary_10_1021_acsomega_1c01394
crossref_primary_10_1039_D2TC00024E
crossref_primary_10_1016_j_solener_2021_12_010
crossref_primary_10_1039_D1TC01285A
crossref_primary_10_1002_solr_202000498
crossref_primary_10_1002_aenm_202200129
crossref_primary_10_1002_adma_202101833
crossref_primary_10_1039_D2TA00564F
crossref_primary_10_1016_j_xcrp_2021_100408
crossref_primary_10_1039_D2EE03483B
crossref_primary_10_1021_acsami_3c02071
crossref_primary_10_1002_solr_202000142
crossref_primary_10_1021_acsami_2c11265
crossref_primary_10_1016_j_jechem_2024_12_070
crossref_primary_10_1016_j_nanoen_2020_105272
crossref_primary_10_1021_acsami_2c10059
crossref_primary_10_1002_aenm_202003177
crossref_primary_10_1016_j_solener_2021_04_049
crossref_primary_10_1021_acsapm_0c00791
crossref_primary_10_1016_j_mtchem_2024_102124
crossref_primary_10_1039_D1TA01135A
crossref_primary_10_1002_admt_202101556
crossref_primary_10_1039_D2EE00977C
crossref_primary_10_1039_D1TA02345D
crossref_primary_10_1016_j_jcis_2022_05_068
crossref_primary_10_1016_j_orgel_2020_105776
crossref_primary_10_1002_adfm_202205338
crossref_primary_10_1016_j_orgel_2020_105771
crossref_primary_10_1002_adma_202210146
crossref_primary_10_1016_j_cej_2020_127444
crossref_primary_10_1039_D0TA08725D
crossref_primary_10_3390_en16186456
crossref_primary_10_1021_acsenergylett_0c00537
crossref_primary_10_1021_accountsmr_0c00033
crossref_primary_10_1021_acsenergylett_4c03168
crossref_primary_10_1002_adma_202101733
crossref_primary_10_1039_D0TC05691J
crossref_primary_10_1007_s40843_024_3123_2
crossref_primary_10_1016_j_nexres_2024_100042
crossref_primary_10_1002_solr_202000165
crossref_primary_10_1002_solr_202000286
crossref_primary_10_1039_D0TC03066J
crossref_primary_10_1016_j_ijleo_2021_167098
crossref_primary_10_26565_2312_4334_2024_2_57
crossref_primary_10_1016_j_nanoen_2020_105376
crossref_primary_10_1038_s41528_022_00222_3
crossref_primary_10_1002_pol_20220582
crossref_primary_10_1039_D0TA03924A
crossref_primary_10_1021_acsnano_1c01345
crossref_primary_10_1039_D0TA06658C
crossref_primary_10_1016_j_xcrp_2020_100292
crossref_primary_10_1021_acsapm_2c00519
crossref_primary_10_1021_acsenergylett_0c01554
crossref_primary_10_1016_j_mssp_2023_107541
crossref_primary_10_1016_j_solener_2020_08_002
crossref_primary_10_1002_adfm_202102764
crossref_primary_10_1007_s00894_022_05351_0
crossref_primary_10_1016_j_joule_2023_10_006
crossref_primary_10_1002_smsc_202100092
crossref_primary_10_1021_acsaem_0c03220
crossref_primary_10_1002_solr_202200994
crossref_primary_10_1021_acs_energyfuels_4c05783
crossref_primary_10_1039_D1MH00868D
crossref_primary_10_1021_acs_jpclett_1c03943
crossref_primary_10_1039_D1TA04623C
crossref_primary_10_1002_aenm_202303169
crossref_primary_10_1002_adma_202100830
crossref_primary_10_1021_acs_chemrev_1c00955
crossref_primary_10_1007_s10118_022_2803_4
crossref_primary_10_1002_adts_202000116
crossref_primary_10_1002_aenm_202405451
crossref_primary_10_1039_D0QM00016G
crossref_primary_10_3390_nano10030427
crossref_primary_10_1002_anie_202116111
crossref_primary_10_1007_s12274_023_5693_z
crossref_primary_10_1002_adma_202107330
crossref_primary_10_1039_D1QM00060H
crossref_primary_10_1021_acsenergylett_0c01688
crossref_primary_10_1021_acs_jpclett_0c03177
crossref_primary_10_1002_adma_202200044
crossref_primary_10_1007_s11051_022_05568_3
crossref_primary_10_1039_D0TA09707A
crossref_primary_10_1016_j_molstruc_2024_139498
crossref_primary_10_1002_adma_202205844
crossref_primary_10_1039_D2RA05239C
crossref_primary_10_1002_solr_202000460
crossref_primary_10_1016_j_synthmet_2021_116783
crossref_primary_10_1002_adfm_202406066
crossref_primary_10_1039_D0TC03096A
crossref_primary_10_1002_aenm_202001076
crossref_primary_10_1016_j_nanoen_2020_105111
crossref_primary_10_1016_j_commatsci_2024_113146
crossref_primary_10_3390_en14144200
crossref_primary_10_1002_anie_202200329
crossref_primary_10_1021_acsaem_2c00393
crossref_primary_10_1021_acsaem_0c02469
crossref_primary_10_1002_solr_202000246
crossref_primary_10_1002_cjoc_202300427
crossref_primary_10_1002_solr_202000250
crossref_primary_10_1038_s41467_020_19434_0
crossref_primary_10_1016_j_cej_2022_137621
crossref_primary_10_1016_j_dyepig_2020_109079
crossref_primary_10_1016_j_dyepig_2022_110787
crossref_primary_10_1016_j_nanoen_2020_105106
crossref_primary_10_1021_acs_chemmater_0c04297
crossref_primary_10_1002_solr_202000130
crossref_primary_10_1021_acsaem_2c01473
crossref_primary_10_3390_ma15124238
crossref_primary_10_1021_acs_jpcc_2c01298
crossref_primary_10_1007_s00339_021_05025_3
crossref_primary_10_1021_acsaem_3c03067
crossref_primary_10_1002_adma_202107476
crossref_primary_10_1039_D2TA03941A
crossref_primary_10_1002_solr_202000357
crossref_primary_10_1039_D2TA04800K
crossref_primary_10_1002_solr_202000476
crossref_primary_10_1055_s_0041_1727234
crossref_primary_10_1002_smll_202311648
crossref_primary_10_3390_polym16111496
crossref_primary_10_1002_solr_202000364
crossref_primary_10_1002_adma_202001160
crossref_primary_10_1002_aenm_202303756
crossref_primary_10_1021_acs_chemmater_1c04293
crossref_primary_10_1002_adfm_202423287
crossref_primary_10_1016_j_mtchem_2022_101094
crossref_primary_10_1038_s41467_020_19429_x
crossref_primary_10_1016_j_joule_2022_01_006
crossref_primary_10_1016_j_orgel_2021_106085
crossref_primary_10_1002_qua_26861
crossref_primary_10_1002_eom2_12156
crossref_primary_10_1002_solr_202000787
crossref_primary_10_1002_nano_202000146
crossref_primary_10_1039_D3TA00052D
crossref_primary_10_1021_acs_jpca_4c04640
crossref_primary_10_1002_aenm_202104028
crossref_primary_10_1021_acsami_0c13085
crossref_primary_10_1016_j_jpcs_2024_112158
crossref_primary_10_1002_adfm_202205711
crossref_primary_10_1002_adma_202100474
crossref_primary_10_1007_s43630_022_00322_z
crossref_primary_10_1021_acsami_2c23190
crossref_primary_10_1038_s41467_020_16509_w
crossref_primary_10_1021_acsaem_0c02719
crossref_primary_10_1002_aenm_202001149
crossref_primary_10_1021_acsenergylett_0c01364
crossref_primary_10_1007_s40843_022_2172_6
crossref_primary_10_1002_adfm_202100316
crossref_primary_10_1039_D0EE03378B
crossref_primary_10_1002_ange_202200329
crossref_primary_10_1002_solr_202000537
crossref_primary_10_1002_aenm_202201614
crossref_primary_10_1002_nano_202000012
crossref_primary_10_1038_s41467_021_25148_8
crossref_primary_10_1021_acsaem_1c01737
crossref_primary_10_2139_ssrn_3932608
crossref_primary_10_1039_D0QM00633E
crossref_primary_10_1002_ente_202200504
crossref_primary_10_1021_acs_jpclett_1c00407
crossref_primary_10_1021_acs_jpcc_1c06448
crossref_primary_10_3390_molecules27061800
crossref_primary_10_1016_j_orgel_2021_106063
crossref_primary_10_1021_acsaem_0c01858
crossref_primary_10_1002_bte2_20220040
crossref_primary_10_1002_smtd_202200828
crossref_primary_10_1002_adom_202000669
crossref_primary_10_1039_D0TC02778B
crossref_primary_10_1002_adfm_202213324
crossref_primary_10_1039_D1TC02748D
crossref_primary_10_1088_1402_4896_ac9091
crossref_primary_10_1039_D3CC04412B
crossref_primary_10_1039_D3CP06166C
crossref_primary_10_1088_1361_6463_abbd66
crossref_primary_10_1016_j_dyepig_2020_108988
crossref_primary_10_1021_acsaem_1c00734
crossref_primary_10_1002_adma_202007231
crossref_primary_10_1002_adfm_202202103
crossref_primary_10_1016_j_jallcom_2022_165509
crossref_primary_10_1021_acsenergylett_2c01438
crossref_primary_10_1016_j_jpap_2021_100060
crossref_primary_10_1039_D0QM00305K
crossref_primary_10_1038_s41467_020_19853_z
crossref_primary_10_1002_solr_202100007
crossref_primary_10_1002_adma_202402143
crossref_primary_10_1002_smll_202311561
crossref_primary_10_1002_solr_202100008
crossref_primary_10_1002_agt2_46
crossref_primary_10_1016_j_dyepig_2023_111737
crossref_primary_10_1039_D0TC04749J
crossref_primary_10_1016_j_patter_2021_100333
crossref_primary_10_1002_adfm_202005011
crossref_primary_10_1039_D3RA00431G
crossref_primary_10_1088_2515_7639_ac0c0a
crossref_primary_10_3390_sym12081240
crossref_primary_10_1038_s41570_022_00409_2
crossref_primary_10_1103_PhysRevApplied_17_054016
crossref_primary_10_1021_acsaem_1c00626
crossref_primary_10_1039_D0EE00714E
crossref_primary_10_1016_j_optmat_2021_111647
crossref_primary_10_1039_D0EE02034F
crossref_primary_10_3390_en15051620
crossref_primary_10_1002_adma_202008429
crossref_primary_10_1002_aenm_202003777
crossref_primary_10_1016_j_cej_2023_145501
crossref_primary_10_1063_5_0057001
crossref_primary_10_1016_j_cej_2024_151467
crossref_primary_10_1039_D1SE01429C
crossref_primary_10_3390_polym13010115
crossref_primary_10_1007_s11426_020_9799_4
crossref_primary_10_1039_D3SE00703K
crossref_primary_10_1002_ente_202001100
crossref_primary_10_1021_acsami_3c06981
crossref_primary_10_1039_D2TA05157E
crossref_primary_10_1055_s_0041_1726427
crossref_primary_10_1149_2162_8777_ac12b4
crossref_primary_10_1021_acsaem_1c00797
crossref_primary_10_1016_j_cej_2021_134337
crossref_primary_10_1002_cplu_202100392
crossref_primary_10_1093_ce_zkab031
crossref_primary_10_1002_cssc_202401138
crossref_primary_10_1021_acsami_0c03484
crossref_primary_10_1039_D2QM00088A
crossref_primary_10_1016_j_orgel_2020_105996
crossref_primary_10_1002_adma_202005153
crossref_primary_10_1016_j_nanoen_2020_105087
crossref_primary_10_1021_acs_chemmater_0c04318
crossref_primary_10_1038_s41467_024_46797_5
crossref_primary_10_1039_D0EE02461A
crossref_primary_10_1142_S2737416523500035
crossref_primary_10_1002_adfm_202100870
crossref_primary_10_1002_advs_202405303
crossref_primary_10_1002_cssc_202100787
crossref_primary_10_1039_D1TA01679B
crossref_primary_10_1002_aenm_202001589
crossref_primary_10_1002_eom2_12061
crossref_primary_10_1002_aenm_202002678
crossref_primary_10_1002_aenm_202003408
crossref_primary_10_1021_acsenergylett_4c02218
crossref_primary_10_2139_ssrn_4089368
crossref_primary_10_1109_JEDS_2023_3294888
crossref_primary_10_1007_s11664_021_09041_0
crossref_primary_10_1002_cssc_202101407
crossref_primary_10_3390_app11020646
crossref_primary_10_1016_j_matt_2020_09_001
crossref_primary_10_1021_acsami_2c02272
crossref_primary_10_1002_solr_202300228
crossref_primary_10_1021_acsami_1c13035
crossref_primary_10_1016_j_nxmate_2024_100224
crossref_primary_10_1002_anie_202316039
crossref_primary_10_1002_solr_202000523
crossref_primary_10_1039_D0TC00341G
crossref_primary_10_1021_acs_nanolett_0c05045
crossref_primary_10_1039_D1TA03196A
crossref_primary_10_1002_ange_202209454
crossref_primary_10_1039_D4QM00231H
crossref_primary_10_1039_D3YA00163F
crossref_primary_10_1002_adfm_202301701
crossref_primary_10_1016_j_cej_2022_134878
crossref_primary_10_1039_D1TC03409J
crossref_primary_10_1007_s10118_020_2440_8
crossref_primary_10_1039_D0QM00882F
crossref_primary_10_1039_D2TC00730D
crossref_primary_10_1360_SSC_2023_0173
crossref_primary_10_1002_aenm_202003506
crossref_primary_10_1002_eom2_12281
crossref_primary_10_1039_D0TA04941G
crossref_primary_10_1039_D0SE00310G
crossref_primary_10_1039_D1EE00496D
crossref_primary_10_1002_cssc_202100689
crossref_primary_10_1002_adfm_202101627
crossref_primary_10_1039_D0NR07788G
crossref_primary_10_1002_adma_202203379
crossref_primary_10_1088_1757_899X_1305_1_012036
crossref_primary_10_1039_D3EE00630A
crossref_primary_10_1016_j_cclet_2021_03_067
crossref_primary_10_1016_j_dyepig_2023_111423
crossref_primary_10_3390_molecules28155823
crossref_primary_10_1016_j_cclet_2023_108802
crossref_primary_10_1002_sus2_10
crossref_primary_10_1016_j_cej_2022_135975
crossref_primary_10_1021_acsaem_1c01994
crossref_primary_10_1063_5_0036223
crossref_primary_10_1016_j_rinma_2022_100271
crossref_primary_10_1002_pssa_202000597
crossref_primary_10_1016_j_nanoen_2021_106681
crossref_primary_10_1016_j_nanoen_2021_106323
crossref_primary_10_1002_adfm_202112511
crossref_primary_10_1002_aenm_202001436
crossref_primary_10_1016_j_mtener_2021_100728
crossref_primary_10_1002_adma_202300400
crossref_primary_10_1002_solr_202201012
crossref_primary_10_1002_aenm_202002649
crossref_primary_10_1016_j_cclet_2020_10_042
crossref_primary_10_1002_EXP_70001
crossref_primary_10_1039_D4TC03309D
crossref_primary_10_1021_jacs_4c01503
crossref_primary_10_1021_acs_macromol_0c02496
crossref_primary_10_1039_D1TA05268C
crossref_primary_10_1016_j_nanoen_2023_108956
crossref_primary_10_1016_j_mtener_2024_101548
crossref_primary_10_1039_D3TC04206E
crossref_primary_10_1016_j_dyepig_2023_111493
crossref_primary_10_1039_D2NJ01906J
crossref_primary_10_1002_adfm_202110743
crossref_primary_10_1016_j_orgel_2025_107212
crossref_primary_10_1016_j_orgel_2021_106132
crossref_primary_10_1002_aenm_202001788
crossref_primary_10_1021_acsami_0c08442
crossref_primary_10_1002_solr_202100549
crossref_primary_10_1016_j_surfin_2022_101875
crossref_primary_10_1002_solr_202000812
crossref_primary_10_1021_acsaem_1c00369
crossref_primary_10_1002_aenm_202100079
crossref_primary_10_1021_acsaem_1c00126
crossref_primary_10_1016_j_nanoen_2020_104988
crossref_primary_10_1016_j_cclet_2020_09_032
crossref_primary_10_3390_polym12081673
crossref_primary_10_1016_j_dyepig_2020_109109
crossref_primary_10_1109_JPHOTOV_2021_3052767
crossref_primary_10_1016_j_dyepig_2021_109606
crossref_primary_10_1016_j_mtener_2021_100843
crossref_primary_10_1002_marc_202200049
crossref_primary_10_1016_j_orgel_2022_106541
crossref_primary_10_1021_acsami_1c12028
crossref_primary_10_1021_acsenergylett_0c02384
crossref_primary_10_1002_aenm_202002746
crossref_primary_10_1016_j_cej_2021_131674
crossref_primary_10_1002_aenm_202404632
crossref_primary_10_1002_adma_202208986
crossref_primary_10_1039_D1TA00796C
crossref_primary_10_1039_D1TA00971K
crossref_primary_10_1088_1361_6463_ac24c8
crossref_primary_10_1021_acsaem_1c00455
crossref_primary_10_1021_acsaem_1c02752
crossref_primary_10_1002_ange_202303066
crossref_primary_10_1039_D1TA02075G
crossref_primary_10_1002_adma_202001763
crossref_primary_10_1002_solr_202100522
crossref_primary_10_1002_adma_202002973
crossref_primary_10_1039_D0TA10334A
crossref_primary_10_1016_j_synthmet_2023_117455
crossref_primary_10_1002_aenm_202001404
crossref_primary_10_1016_j_dyepig_2022_110908
crossref_primary_10_1016_j_solener_2021_01_027
crossref_primary_10_1039_D2TC05441H
crossref_primary_10_1021_acsami_2c22972
crossref_primary_10_1039_D2EE00595F
crossref_primary_10_1021_acsaem_1c02524
crossref_primary_10_1039_D1NR00470K
crossref_primary_10_1016_j_jechem_2021_01_027
crossref_primary_10_1021_acsami_0c06048
crossref_primary_10_1021_acsami_1c06830
crossref_primary_10_1039_D0TA08018G
crossref_primary_10_1007_s10853_020_05390_z
crossref_primary_10_1039_D4EE01705F
crossref_primary_10_1039_D0EE02838J
crossref_primary_10_1002_anie_202303066
crossref_primary_10_1021_acs_energyfuels_2c00462
crossref_primary_10_1007_s11664_020_08567_z
crossref_primary_10_1364_PRJ_416229
crossref_primary_10_1002_smll_202400826
crossref_primary_10_1016_j_mtener_2021_100802
crossref_primary_10_1016_j_orgel_2022_106560
crossref_primary_10_3390_polym13152398
crossref_primary_10_1039_D5TC00204D
crossref_primary_10_1021_acs_jpclett_1c01099
crossref_primary_10_1039_D0TC01177K
crossref_primary_10_6023_A20120589
crossref_primary_10_1021_acsenergylett_2c02140
crossref_primary_10_1002_adma_202206269
crossref_primary_10_1021_acsami_3c15503
crossref_primary_10_1016_j_cclet_2023_108438
crossref_primary_10_1039_D2EE01340A
crossref_primary_10_1016_j_rser_2021_110726
crossref_primary_10_1016_j_cej_2022_138018
crossref_primary_10_1016_j_cej_2022_139228
crossref_primary_10_1002_inf2_12370
crossref_primary_10_1002_solr_202100480
crossref_primary_10_1016_j_dyepig_2022_110083
crossref_primary_10_1021_acsami_4c08868
crossref_primary_10_1002_er_5658
crossref_primary_10_1016_j_joule_2022_02_001
crossref_primary_10_1021_acsami_4c06326
crossref_primary_10_1021_acsaelm_2c01076
crossref_primary_10_1002_solr_202100365
crossref_primary_10_1039_D1EE02124A
crossref_primary_10_1109_TED_2024_3362919
crossref_primary_10_1002_adma_202001621
crossref_primary_10_1016_j_solener_2021_10_068
crossref_primary_10_1021_acsami_0c16389
crossref_primary_10_1002_pssa_202100639
crossref_primary_10_1021_acsaem_3c02876
crossref_primary_10_1039_D3EE04169G
crossref_primary_10_1039_D0RA09262B
crossref_primary_10_1007_s11426_023_1828_8
crossref_primary_10_1016_j_orgel_2020_105904
crossref_primary_10_1002_adfm_202007931
crossref_primary_10_1002_adfm_202005753
crossref_primary_10_1016_j_nanoen_2023_108805
crossref_primary_10_1002_adfm_202304824
crossref_primary_10_1016_j_orgel_2022_106438
crossref_primary_10_1002_solr_202100592
crossref_primary_10_1039_D0TA06146H
crossref_primary_10_1002_smtd_202101475
crossref_primary_10_1002_solr_202000802
crossref_primary_10_1016_j_cej_2023_145201
crossref_primary_10_1016_j_cej_2023_146538
crossref_primary_10_1002_solr_202100339
crossref_primary_10_1016_j_matre_2021_100066
crossref_primary_10_1002_adfm_202300214
crossref_primary_10_1002_sus2_203
crossref_primary_10_1055_a_1472_7302
crossref_primary_10_1002_aenm_202101383
crossref_primary_10_1021_acsami_2c01900
crossref_primary_10_1021_acsmaterialslett_3c00523
crossref_primary_10_1002_solr_202201076
crossref_primary_10_1039_D0TC02499F
crossref_primary_10_1002_agt2_280
crossref_primary_10_1021_acs_jpcb_1c04758
crossref_primary_10_1007_s11426_020_9805_7
crossref_primary_10_1039_D0TA06907H
crossref_primary_10_1093_nsr_nwaa305
crossref_primary_10_1016_j_optmat_2021_111217
crossref_primary_10_1016_j_orgel_2022_106465
crossref_primary_10_1002_sstr_202100099
crossref_primary_10_1002_marc_202200070
crossref_primary_10_1016_j_jechem_2023_12_036
crossref_primary_10_1016_j_orgel_2021_106153
crossref_primary_10_1021_acsami_2c03196
crossref_primary_10_1021_acsenergylett_0c02077
crossref_primary_10_1016_j_cej_2021_130397
crossref_primary_10_1016_j_surfin_2020_100921
crossref_primary_10_1021_acsaem_1c00149
crossref_primary_10_1039_D2TA00174H
crossref_primary_10_1016_j_joule_2022_12_007
crossref_primary_10_1002_solr_202100450
crossref_primary_10_1016_j_dyepig_2021_109949
crossref_primary_10_1021_acsami_0c21986
crossref_primary_10_1016_j_scib_2020_08_027
crossref_primary_10_1039_D0MA01017K
crossref_primary_10_1039_D0QM00398K
crossref_primary_10_1039_D0QM00277A
crossref_primary_10_1142_S1793604723400155
crossref_primary_10_1002_adma_202002122
crossref_primary_10_1016_j_matchemphys_2022_125898
crossref_primary_10_1002_jcc_27065
crossref_primary_10_2139_ssrn_4087412
crossref_primary_10_1017_S1431927622004068
crossref_primary_10_1039_D1EE01832A
crossref_primary_10_2139_ssrn_4050371
crossref_primary_10_3390_solar2030022
crossref_primary_10_1016_j_nanoen_2020_105565
crossref_primary_10_3390_polym13111770
crossref_primary_10_1021_acsami_2c21574
crossref_primary_10_1002_adfm_202215095
crossref_primary_10_3389_fchem_2021_732132
crossref_primary_10_1016_j_orgel_2020_106008
crossref_primary_10_1002_smll_202308863
crossref_primary_10_1002_adfm_202010172
crossref_primary_10_1016_j_cej_2020_127033
crossref_primary_10_1039_D0QM00581A
crossref_primary_10_1002_advs_202001117
crossref_primary_10_1039_D1RA01348C
crossref_primary_10_1021_acsaem_4c01690
crossref_primary_10_1002_adfm_202205150
crossref_primary_10_1016_j_cej_2023_142822
crossref_primary_10_1039_D4TA01944J
crossref_primary_10_1016_j_dyepig_2021_109560
crossref_primary_10_1002_solr_202200445
crossref_primary_10_1002_aenm_202203241
crossref_primary_10_1016_j_nanoen_2020_105679
crossref_primary_10_1039_D0TA08666E
crossref_primary_10_1002_adma_202107659
crossref_primary_10_1016_j_nanoen_2020_105310
crossref_primary_10_1039_D0TA10594E
crossref_primary_10_1002_adma_202002344
crossref_primary_10_1039_D0QM00287A
crossref_primary_10_1002_er_6803
crossref_primary_10_1039_D2TA05846D
crossref_primary_10_1016_j_seta_2024_103632
crossref_primary_10_1002_solr_202100819
crossref_primary_10_1039_D0TC00822B
crossref_primary_10_1016_j_solener_2022_07_011
crossref_primary_10_1002_aenm_202101338
crossref_primary_10_1007_s11426_020_9921_4
crossref_primary_10_1039_D2TC04311D
crossref_primary_10_1016_j_solener_2021_11_077
crossref_primary_10_1021_acsaem_1c02353
crossref_primary_10_1002_cjoc_202400397
crossref_primary_10_1016_j_nanoen_2021_106915
crossref_primary_10_1039_D4TA04725G
crossref_primary_10_1021_acs_chemmater_1c01433
crossref_primary_10_1039_D3EE01320K
crossref_primary_10_1002_ange_202005662
crossref_primary_10_1002_smll_202303399
crossref_primary_10_1002_macp_202000030
crossref_primary_10_1039_D0EE00662A
crossref_primary_10_1039_D0CC01038C
crossref_primary_10_1002_pssa_202300550
crossref_primary_10_1016_j_ijleo_2021_166839
crossref_primary_10_1021_acsami_1c13404
crossref_primary_10_1002_adma_202002217
crossref_primary_10_1039_D0TA03016C
crossref_primary_10_1002_aenm_202403132
crossref_primary_10_1007_s10853_020_04883_1
crossref_primary_10_1039_D1TA06861J
crossref_primary_10_1039_D1TA04454K
crossref_primary_10_1021_acsaem_1c03578
crossref_primary_10_1021_jacs_3c11062
crossref_primary_10_35848_1347_4065_acc66b
crossref_primary_10_1039_D2TA06706D
crossref_primary_10_1021_acsami_0c19198
crossref_primary_10_1039_D0EE01338B
crossref_primary_10_1155_2021_6692858
crossref_primary_10_1016_j_dyepig_2021_109346
crossref_primary_10_1016_j_solmat_2021_111046
crossref_primary_10_1039_D0EE02426K
crossref_primary_10_1002_adfm_202304449
crossref_primary_10_1021_acs_jpcc_1c00228
crossref_primary_10_1039_D0TA08559F
crossref_primary_10_1002_cssc_202101067
crossref_primary_10_1007_s11426_022_1270_5
crossref_primary_10_1016_j_synthmet_2023_117292
crossref_primary_10_1002_ijch_202100091
crossref_primary_10_1016_j_cej_2021_129539
crossref_primary_10_1021_acsami_1c14901
crossref_primary_10_1016_j_nanoen_2023_108991
crossref_primary_10_1021_acsaem_2c02395
crossref_primary_10_1039_D1EE02977K
crossref_primary_10_1002_aelm_202201310
crossref_primary_10_1002_smsc_202100001
crossref_primary_10_1007_s11426_022_1429_x
crossref_primary_10_1021_acs_energyfuels_1c00253
crossref_primary_10_1002_pol_20210938
crossref_primary_10_1016_j_tsf_2022_139394
crossref_primary_10_1021_acs_energyfuels_1c01582
crossref_primary_10_1016_j_cej_2022_135384
crossref_primary_10_1002_ente_202000926
crossref_primary_10_1016_j_cej_2020_127192
crossref_primary_10_1002_adfm_202305765
crossref_primary_10_1039_D0TA01260B
crossref_primary_10_1039_D4TA07223E
crossref_primary_10_1021_acsaem_2c02025
crossref_primary_10_1039_D1TC04222J
crossref_primary_10_1016_j_orgel_2021_106201
crossref_primary_10_1021_acsami_1c07254
crossref_primary_10_1002_adfm_202002529
crossref_primary_10_1002_adfm_202107827
crossref_primary_10_1002_adma_202005942
crossref_primary_10_1016_j_synthmet_2022_117054
crossref_primary_10_1038_s41467_021_24937_5
crossref_primary_10_1002_solr_202100503
crossref_primary_10_1016_j_optmat_2022_112772
crossref_primary_10_1063_5_0077882
crossref_primary_10_1021_acs_jpclett_1c02234
crossref_primary_10_1021_acsami_0c14922
crossref_primary_10_1002_adma_202002315
crossref_primary_10_1002_ange_202316039
crossref_primary_10_1002_advs_202203606
crossref_primary_10_1002_anie_202209454
crossref_primary_10_1002_sstr_202000052
crossref_primary_10_1016_j_nanoen_2020_105513
crossref_primary_10_1002_aenm_202103702
crossref_primary_10_1039_D4EE04879B
crossref_primary_10_1016_j_dyepig_2021_109523
crossref_primary_10_1039_D4TC01424C
crossref_primary_10_1002_aenm_202103940
crossref_primary_10_1021_acsaem_2c03465
crossref_primary_10_1039_D2TC00045H
crossref_primary_10_1039_D1EE02858H
crossref_primary_10_1016_j_nanoen_2022_107133
crossref_primary_10_1021_acsami_1c06299
crossref_primary_10_1039_D4NJ00137K
crossref_primary_10_1002_adma_202302005
crossref_primary_10_1002_aenm_202300784
crossref_primary_10_1016_j_saa_2024_124034
crossref_primary_10_1021_acsami_5c00969
crossref_primary_10_1039_D4TC03192J
crossref_primary_10_1002_adma_202209350
crossref_primary_10_1002_aenm_202405889
crossref_primary_10_1016_j_synthmet_2020_116508
crossref_primary_10_1166_jnn_2021_19493
crossref_primary_10_1038_s41586_022_04455_0
crossref_primary_10_1002_aenm_202201076
crossref_primary_10_1021_acsenergylett_0c00604
crossref_primary_10_1002_aenm_202103957
crossref_primary_10_1016_j_comptc_2023_114201
crossref_primary_10_1016_j_nanoen_2020_104896
crossref_primary_10_1038_s41598_024_80007_y
crossref_primary_10_1039_D1QM01100F
crossref_primary_10_1039_D1TA00287B
crossref_primary_10_1002_smll_202107106
crossref_primary_10_1039_D0EE03506H
crossref_primary_10_1021_acsaem_1c02277
crossref_primary_10_1016_j_cej_2024_158769
crossref_primary_10_1016_j_dyepig_2021_109434
crossref_primary_10_1016_j_orgel_2021_106308
crossref_primary_10_1039_D2CC04999F
crossref_primary_10_1038_s41578_023_00545_1
crossref_primary_10_1007_s40843_020_1508_7
crossref_primary_10_1016_j_ssc_2023_115319
crossref_primary_10_1039_D0EE02516J
crossref_primary_10_1021_acs_macromol_0c00459
crossref_primary_10_1016_j_orgel_2020_106026
crossref_primary_10_1039_D1TC05228D
crossref_primary_10_1002_adma_202003500
crossref_primary_10_1002_adma_202101090
crossref_primary_10_1021_acsmaterialslett_2c00823
crossref_primary_10_1088_2399_7532_abf337
crossref_primary_10_1002_adfm_202209211
crossref_primary_10_1039_D0TA07960J
crossref_primary_10_18311_jmmf_2024_47253
crossref_primary_10_1016_j_optmat_2021_111048
crossref_primary_10_1039_D3TC04516A
crossref_primary_10_1063_5_0013912
crossref_primary_10_1039_D1TC05653K
crossref_primary_10_1002_adfm_202007088
crossref_primary_10_1002_advs_202200366
crossref_primary_10_1039_D2TA04501J
crossref_primary_10_1039_D2TA10091F
crossref_primary_10_1021_acsenergylett_0c00857
crossref_primary_10_1021_acs_macromol_1c01301
crossref_primary_10_1021_acssuschemeng_4c09617
crossref_primary_10_1021_acsami_1c23513
crossref_primary_10_1002_ente_202201176
crossref_primary_10_1016_j_nanoen_2020_105612
crossref_primary_10_1016_j_dyepig_2021_109424
crossref_primary_10_1039_D1TC02351A
crossref_primary_10_1007_s40820_024_01547_6
crossref_primary_10_1002_adfm_202010000
crossref_primary_10_1002_marc_202200345
crossref_primary_10_1016_j_joule_2021_02_010
crossref_primary_10_1039_D0MA00133C
crossref_primary_10_1039_D0TA08830G
Cites_doi 10.1002/adma.201404317
10.1039/C5EE02641E
10.1021/acsami.8b16131
10.1039/C9EE01890E
10.1002/adma.201802888
10.1021/acsenergylett.9b00534
10.1039/C6CP07465K
10.1021/ma301900h
10.1021/jacs.7b02677
10.1039/C8EE01564C
10.1002/smtd.201900531
10.1002/solr.201900079
10.1002/aenm.201702741
10.1038/s41467-019-10351-5
10.1016/j.nanoen.2017.05.060
10.1016/j.joule.2018.08.002
10.1038/s41563-017-0005-1
10.1038/ncomms8327
10.1021/jacs.5b03449
10.1039/C9MH01351B
10.1039/C8TA03753A
10.1002/adma.201804762
10.1016/j.joule.2019.09.009
10.1021/nn401267s
10.1038/s41560-018-0234-9
10.1038/ncomms11585
10.1002/aenm.201702814
10.1021/jacs.8b12126
10.1002/adma.201807577
10.1002/solr.201900317
10.1039/C8EE01107A
10.1038/natrevmats.2018.3
10.1002/adma.201601197
10.1038/s41563-018-0128-z
10.1002/advs.201901613
10.1016/j.scib.2017.10.017
10.1038/nphoton.2015.128
10.1039/C8EE01700J
10.1007/s11426-019-9431-8
10.1002/adma.201602067
10.1038/s41467-019-08386-9
10.1039/C9TA06929A
10.1002/advs.201800755
10.1002/adma.201705208
10.1002/adma.201902210
10.1039/C9TA01497G
10.1039/C8EE00215K
10.1016/j.joule.2019.01.004
10.1002/adma.201502110
10.1002/aenm.201602540
10.1038/s41467-019-10098-z
10.1002/smll.201701120
10.1021/acsenergylett.9b00681
10.1002/adma.201902302
10.1002/adma.201705706
10.1002/adma.201602776
10.1016/j.isci.2019.06.033
10.1021/acs.chemmater.6b02264
10.1002/adma.201901872
10.1039/C9EE01030K
10.1002/adma.201603154
10.1016/S1369-7021(12)70019-6
10.3866/PKU.WHXB201805091
10.1038/nenergy.2016.89
10.1038/nmat5063
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
DOI 10.1039/c9ee03710a
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1754-5706
EndPage 645
ExternalDocumentID 10_1039_C9EE03710A
c9ee03710a
GroupedDBID -JG
0-7
0R~
29G
4.4
5GY
705
70~
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
J3I
M4U
N9A
O-G
O9-
P2P
RAOCF
RCNCU
RPMJG
RRC
RSCEA
RVUXY
SKA
SLH
TOV
UCJ
AAYXX
AFRZK
AKMSF
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
ID FETCH-LOGICAL-c384t-bd4781b3f07db792755a330f024a9fe4c7f63223e090153a87dde9a4d783cb513
ISSN 1754-5692
IngestDate Mon Jun 30 12:02:25 EDT 2025
Tue Jul 01 01:45:45 EDT 2025
Thu Apr 24 23:06:29 EDT 2025
Tue Dec 17 20:58:55 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c384t-bd4781b3f07db792755a330f024a9fe4c7f63223e090153a87dde9a4d783cb513
Notes 10.1039/c9ee03710a
Electronic supplementary information (ESI) available: Materials and methods, synthesis details, UV-vis absorption, DSC, CV, PL, SCLC, and NMR spectra data
See DOI
etc.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5922-9550
0000-0003-1968-2032
0000-0002-2105-6922
0000-0002-1908-3294
0000-0001-7692-2624
0000-0002-5841-6805
PQID 2357440399
PQPubID 2047494
PageCount 11
ParticipantIDs crossref_citationtrail_10_1039_C9EE03710A
proquest_journals_2357440399
crossref_primary_10_1039_C9EE03710A
rsc_primary_c9ee03710a
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 20200101
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Energy & environmental science
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Mai (C9EE03710A-(cit63)/*[position()=1]) 2018; 30
Lee (C9EE03710A-(cit24)/*[position()=1]) 2019; 31
Liu (C9EE03710A-(cit46)/*[position()=1]) 2019; 12
Kyaw (C9EE03710A-(cit61)/*[position()=1]) 2013; 7
Xu (C9EE03710A-(cit19)/*[position()=1]) 2019; 31
Holliday (C9EE03710A-(cit9)/*[position()=1]) 2016; 7
Yan (C9EE03710A-(cit3)/*[position()=1]) 2018; 3
Cui (C9EE03710A-(cit18)/*[position()=1]) 2019; 10
Wang (C9EE03710A-(cit48)/*[position()=1]) 2019; 3
Sun (C9EE03710A-(cit20)/*[position()=1]) 2019; 12
Yuan (C9EE03710A-(cit15)/*[position()=1]) 2019; 31
Mai (C9EE03710A-(cit64)/*[position()=1]) 2016; 28
Zhan (C9EE03710A-(cit36)/*[position()=1]) 2018; 5
Zerio (C9EE03710A-(cit39)/*[position()=1]) 2018; 8
Yu (C9EE03710A-(cit32)/*[position()=1]) 2019; 31
Zhang (C9EE03710A-(cit31)/*[position()=1]) 2018; 11
Li (C9EE03710A-(cit52)/*[position()=1]) 2018; 6
Xiao (C9EE03710A-(cit58)/*[position()=1]) 2018; 2
Liu (C9EE03710A-(cit65)/*[position()=1]) 2018; 11
Yuan (C9EE03710A-(cit14)/*[position()=1]) 2019; 10
Lin (C9EE03710A-(cit6)/*[position()=1]) 2015; 27
Yu (C9EE03710A-(cit11)/*[position()=1]) 2019; 10
Qian (C9EE03710A-(cit49)/*[position()=1]) 2018; 17
Xiao (C9EE03710A-(cit8)/*[position()=1]) 2017; 62
Ye (C9EE03710A-(cit53)/*[position()=1]) 2018; 17
Li (C9EE03710A-(cit35)/*[position()=1]) 2017; 19
Li (C9EE03710A-(cit54)/*[position()=1]) 2016; 28
Yu (C9EE03710A-(cit22)/*[position()=1]) 2018; 8
Ma (C9EE03710A-(cit45)/*[position()=1]) 2019; 7
Li (C9EE03710A-(cit51)/*[position()=1]) 2019; 141
Pan (C9EE03710A-(cit34)/*[position()=1]) 2019; 7
Zhang (C9EE03710A-(cit12)/*[position()=1]) 2019; 35
Søndergaard (C9EE03710A-(cit56)/*[position()=1]) 2012; 15
Zhang (C9EE03710A-(cit40)/*[position()=1]) 2015; 137
Chen (C9EE03710A-(cit62)/*[position()=1]) 2019; 3
Zhang (C9EE03710A-(cit17)/*[position()=1]) 2015; 27
An (C9EE03710A-(cit26)/*[position()=1]) 2016; 9
Huang (C9EE03710A-(cit57)/*[position()=1]) 2020; 7
Li (C9EE03710A-(cit10)/*[position()=1]) 2018; 30
Zhan (C9EE03710A-(cit28)/*[position()=1]) 2019; 3
Zhao (C9EE03710A-(cit7)/*[position()=1]) 2017; 139
Lu (C9EE03710A-(cit21)/*[position()=1]) 2015; 9
Zhou (C9EE03710A-(cit42)/*[position()=1]) 2018; 3
Hou (C9EE03710A-(cit1)/*[position()=1]) 2018; 17
Kang (C9EE03710A-(cit5)/*[position()=1]) 2016; 28
Tang (C9EE03710A-(cit60)/*[position()=1]) 2019; 6
Nian (C9EE03710A-(cit30)/*[position()=1]) 2018; 11
Li (C9EE03710A-(cit2)/*[position()=1]) 2017; 13
Yuan (C9EE03710A-(cit13)/*[position()=1]) 2019; 3
Qian (C9EE03710A-(cit59)/*[position()=1]) 2012; 45
Li (C9EE03710A-(cit4)/*[position()=1]) 2019; 3
Zhan (C9EE03710A-(cit37)/*[position()=1]) 2018; 10
Su (C9EE03710A-(cit41)/*[position()=1]) 2017; 38
Zhao (C9EE03710A-(cit43)/*[position()=1]) 2019; 4
Yan (C9EE03710A-(cit33)/*[position()=1]) 2019; 31
Li (C9EE03710A-(cit25)/*[position()=1]) 2017; 7
Lai (C9EE03710A-(cit55)/*[position()=1]) 2019; 17
Cheng (C9EE03710A-(cit38)/*[position()=1]) 2016; 28
Chen (C9EE03710A-(cit16)/*[position()=1]) 2019; 62
Xie (C9EE03710A-(cit47)/*[position()=1]) 2019; 4
Chen (C9EE03710A-(cit44)/*[position()=1]) 2017; 29
Lu (C9EE03710A-(cit27)/*[position()=1]) 2015; 6
Ma (C9EE03710A-(cit29)/*[position()=1]) 2018; 11
Huang (C9EE03710A-(cit23)/*[position()=1]) 2018; 30
Liu (C9EE03710A-(cit50)/*[position()=1]) 2016; 1
References_xml – volume: 27
  start-page: 1170
  year: 2015
  ident: C9EE03710A-(cit6)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404317
– volume: 9
  start-page: 281
  year: 2016
  ident: C9EE03710A-(cit26)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE02641E
– volume: 10
  start-page: 42444
  year: 2018
  ident: C9EE03710A-(cit37)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b16131
– volume: 12
  start-page: 3328
  year: 2019
  ident: C9EE03710A-(cit20)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE01890E
– volume: 30
  start-page: 1802888
  year: 2018
  ident: C9EE03710A-(cit63)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802888
– volume: 4
  start-page: 1106
  year: 2019
  ident: C9EE03710A-(cit43)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b00534
– volume: 19
  start-page: 3440
  year: 2017
  ident: C9EE03710A-(cit35)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP07465K
– volume: 45
  start-page: 9611
  year: 2012
  ident: C9EE03710A-(cit59)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma301900h
– volume: 139
  start-page: 7148
  year: 2017
  ident: C9EE03710A-(cit7)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b02677
– volume: 11
  start-page: 3392
  year: 2018
  ident: C9EE03710A-(cit30)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE01564C
– volume: 3
  start-page: 1900531
  year: 2019
  ident: C9EE03710A-(cit4)/*[position()=1]
  publication-title: Small Methods
  doi: 10.1002/smtd.201900531
– volume: 3
  start-page: 1900079
  year: 2019
  ident: C9EE03710A-(cit48)/*[position()=1]
  publication-title: Sol. RRL
  doi: 10.1002/solr.201900079
– volume: 8
  start-page: 1702741
  year: 2018
  ident: C9EE03710A-(cit39)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702741
– volume: 10
  start-page: 2515
  year: 2019
  ident: C9EE03710A-(cit18)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10351-5
– volume: 38
  start-page: 510
  year: 2017
  ident: C9EE03710A-(cit41)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.05.060
– volume: 2
  start-page: 2154
  year: 2018
  ident: C9EE03710A-(cit58)/*[position()=1]
  publication-title: Joule
  doi: 10.1016/j.joule.2018.08.002
– volume: 17
  start-page: 253
  year: 2018
  ident: C9EE03710A-(cit53)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-017-0005-1
– volume: 6
  start-page: 7327
  year: 2015
  ident: C9EE03710A-(cit27)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8327
– volume: 137
  start-page: 8176
  year: 2015
  ident: C9EE03710A-(cit40)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b03449
– volume: 7
  start-page: 244
  year: 2020
  ident: C9EE03710A-(cit57)/*[position()=1]
  publication-title: Mater. Horiz.
  doi: 10.1039/C9MH01351B
– volume: 6
  start-page: 12132
  year: 2018
  ident: C9EE03710A-(cit52)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA03753A
– volume: 31
  start-page: 1804762
  year: 2019
  ident: C9EE03710A-(cit24)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804762
– volume: 3
  start-page: 3034
  year: 2019
  ident: C9EE03710A-(cit62)/*[position()=1]
  publication-title: Joule
  doi: 10.1016/j.joule.2019.09.009
– volume: 7
  start-page: 4569
  year: 2013
  ident: C9EE03710A-(cit61)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn401267s
– volume: 3
  start-page: 952
  year: 2018
  ident: C9EE03710A-(cit42)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0234-9
– volume: 7
  start-page: 11585
  year: 2016
  ident: C9EE03710A-(cit9)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11585
– volume: 8
  start-page: 1702814
  year: 2018
  ident: C9EE03710A-(cit22)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702814
– volume: 141
  start-page: 3073
  year: 2019
  ident: C9EE03710A-(cit51)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b12126
– volume: 31
  start-page: 1807577
  year: 2019
  ident: C9EE03710A-(cit15)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807577
– volume: 3
  start-page: 1900317
  year: 2019
  ident: C9EE03710A-(cit28)/*[position()=1]
  publication-title: Sol. RRL
  doi: 10.1002/solr.201900317
– volume: 11
  start-page: 2134
  year: 2018
  ident: C9EE03710A-(cit29)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE01107A
– volume: 3
  start-page: 18003
  year: 2018
  ident: C9EE03710A-(cit3)/*[position()=1]
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2018.3
– volume: 28
  start-page: 7821
  year: 2016
  ident: C9EE03710A-(cit5)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601197
– volume: 17
  start-page: 703
  year: 2018
  ident: C9EE03710A-(cit49)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0128-z
– volume: 6
  start-page: 1901613
  year: 2019
  ident: C9EE03710A-(cit60)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201901613
– volume: 62
  start-page: 1494
  year: 2017
  ident: C9EE03710A-(cit8)/*[position()=1]
  publication-title: Sci. Bullet.
  doi: 10.1016/j.scib.2017.10.017
– volume: 9
  start-page: 491
  year: 2015
  ident: C9EE03710A-(cit21)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2015.128
– volume: 11
  start-page: 3275
  year: 2018
  ident: C9EE03710A-(cit65)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE01700J
– volume: 62
  start-page: 403
  year: 2019
  ident: C9EE03710A-(cit16)/*[position()=1]
  publication-title: Sci. China: Chem.
  doi: 10.1007/s11426-019-9431-8
– volume: 28
  start-page: 8021
  year: 2016
  ident: C9EE03710A-(cit38)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602067
– volume: 10
  start-page: 570
  year: 2019
  ident: C9EE03710A-(cit14)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08386-9
– volume: 7
  start-page: 20713
  year: 2019
  ident: C9EE03710A-(cit34)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA06929A
– volume: 5
  start-page: 1800755
  year: 2018
  ident: C9EE03710A-(cit36)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201800755
– volume: 30
  start-page: 1705208
  year: 2018
  ident: C9EE03710A-(cit10)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705208
– volume: 31
  start-page: 1902210
  year: 2019
  ident: C9EE03710A-(cit33)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902210
– volume: 7
  start-page: 7843
  year: 2019
  ident: C9EE03710A-(cit45)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA01497G
– volume: 11
  start-page: 841
  year: 2018
  ident: C9EE03710A-(cit31)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00215K
– volume: 3
  start-page: 1140
  year: 2019
  ident: C9EE03710A-(cit13)/*[position()=1]
  publication-title: Joule
  doi: 10.1016/j.joule.2019.01.004
– volume: 27
  start-page: 4655
  year: 2015
  ident: C9EE03710A-(cit17)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502110
– volume: 7
  start-page: 1602540
  year: 2017
  ident: C9EE03710A-(cit25)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602540
– volume: 10
  start-page: 2152
  year: 2019
  ident: C9EE03710A-(cit11)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10098-z
– volume: 13
  start-page: 1701120
  year: 2017
  ident: C9EE03710A-(cit2)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201701120
– volume: 4
  start-page: 1196
  year: 2019
  ident: C9EE03710A-(cit47)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b00681
– volume: 31
  start-page: 1902302
  year: 2019
  ident: C9EE03710A-(cit32)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902302
– volume: 30
  start-page: 1705706
  year: 2018
  ident: C9EE03710A-(cit23)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705706
– volume: 28
  start-page: 9423
  year: 2016
  ident: C9EE03710A-(cit54)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602776
– volume: 17
  start-page: 302
  year: 2019
  ident: C9EE03710A-(cit55)/*[position()=1]
  publication-title: iScience
  doi: 10.1016/j.isci.2019.06.033
– volume: 28
  start-page: 6186
  year: 2016
  ident: C9EE03710A-(cit64)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b02264
– volume: 31
  start-page: 1901872
  year: 2019
  ident: C9EE03710A-(cit19)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901872
– volume: 12
  start-page: 2529
  year: 2019
  ident: C9EE03710A-(cit46)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE01030K
– volume: 29
  start-page: 1603154
  year: 2017
  ident: C9EE03710A-(cit44)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603154
– volume: 15
  start-page: 36
  year: 2012
  ident: C9EE03710A-(cit56)/*[position()=1]
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(12)70019-6
– volume: 35
  start-page: 394
  year: 2019
  ident: C9EE03710A-(cit12)/*[position()=1]
  publication-title: Acta Phys. – Chim. Sin.
  doi: 10.3866/PKU.WHXB201805091
– volume: 1
  start-page: 16089
  year: 2016
  ident: C9EE03710A-(cit50)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.89
– volume: 17
  start-page: 119
  year: 2018
  ident: C9EE03710A-(cit1)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat5063
SSID ssj0062079
Score 2.7090673
Snippet Nowadays, organic solar cells (OSCs) with Y6 and its derivatives as electron acceptors provide the highest efficiencies among the studied binary OSCs. To...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 635
SubjectTerms Circuits
Efficiency
Electrons
Energy
Energy dissipation
Energy levels
Energy loss
Fabrication
Fullerenes
Morphology
NMR
Nuclear magnetic resonance
Open circuit voltage
Organic chemistry
Performance enhancement
Photoelectric effect
Photoelectric emission
Photovoltaic cells
Polymers
Short circuit currents
Short-circuit current
Solar cells
Voltage
Title Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model
URI https://www.proquest.com/docview/2357440399
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELbS9gIHxKsiUJAluKCVi7O293EMVUpFS3sgEeG0WnsdiIga1GQV6J_hrzLj9T4CFQKkaBVZsyvL89nz8DwIeSFAx8hFkTOulWUyMYJpsJqZNKkAa0DbuECH_rvz6GQi307VtNf70YlaKtf60FzfmFfyP1yFMeArZsn-A2ebj8IA_Af-whM4DM-_4vEFzDjAAkYK4zLmbpuCNokuPrw5d2mWJlih9Rqgh34VWJcqVSmdm2UAtj9DB7xrkRLkBmNcsPvOpnKhozME9j_ezX9ni_kXWzXO2fLmV7mDCKBOzlydadnCBh3T3gfwaVGLSwwEctEE7z-X82_d0bx0QFpds9N5c01SOtqPS0_nfRUh_8VXUXlE6nBUF27im9p1TuBYSaaiqkHeoe2MxTzaOrZFB55h5wyOqvonXpxHVbXK3yQFF1ho1aTWYtFC3pGHdQzA-UV2PDk7y8aj6XiH7IVgh8BBujc8ff3mQy3so5C7co7NrOsKuCJ91X57W-dpDZmdq7rLjNNmxnfJHW-G0GGFqXukZy_vk9ud4pQPSInoooAu2mKLemxRjy3qsEUdtqjHFtVAtlnSLWzRBlvUY4vOL2kOvwZb1GHrIZkcj8ZHJ8w36WBGJHLNdIHJylrMeFzoOA1jpXIh-Ax0vzydWWniWQRCQ1iOmqfIkxgEaprLIk6E0Wog9skuTMg-IlRqUQy4DgdaRTIHy8FwYZNYJBpWnheqT17Wy5gZX8EeG6ksMhdJIdLsKB2N3JIP--R5Q_u1qttyI9VBzY3M7-tVhgWgpATCtE_2gUPN-y1DH__5vSfkVov-A7K7virtU9Bd1_qZx89PE0ycnQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Over+17%25+efficiency+ternary+organic+solar+cells+enabled+by+two+non-fullerene+acceptors+working+in+an+alloy-like+model&rft.jtitle=Energy+%26+environmental+science&rft.au=Zhan%2C+Lingling&rft.au=Li%2C+Shuixing&rft.au=Lau%2C+Tsz-Ki&rft.au=Cui%2C+Yong&rft.date=2020-01-01&rft.pub=Royal+Society+of+Chemistry&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=13&rft.issue=2&rft.spage=635&rft.epage=645&rft_id=info:doi/10.1039%2Fc9ee03710a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon