Accelerating solar desalination in brine through ion activated hierarchically porous polyion complex hydrogels
Solar-powered water desalination has been considered as one of the most promising solutions to alleviate clean water scarcity. In concentrated brine, the strong hydration ability of ions increases the required energy for water evaporation and thus lowers the desalination performances of most-existin...
Saved in:
Published in | Materials horizons Vol. 7; no. 12; pp. 3187 - 3195 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
01.01.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2051-6347 2051-6355 |
DOI | 10.1039/d0mh01259a |
Cover
Loading…
Abstract | Solar-powered water desalination has been considered as one of the most promising solutions to alleviate clean water scarcity. In concentrated brine, the strong hydration ability of ions increases the required energy for water evaporation and thus lowers the desalination performances of most-existing solar vapor generators (SVGs). Here, a novel SVG is reported that exhibits superior desalination performance in brine than in pure water. This SVG is constructed by the complexation of oppositely charged polyelectrolytes into a hierarchically porous hydrogel (HPH), with interpenetrated polyaniline as efficient light absorbers. With controlled thermal management, the evaporation rate of this HPH-based SVG is 2.79 kg m
−2
h
−1
in simulated brine (3.5 wt% NaCl solutions) under one sun illumination, 67% higher than that in pure water (1.67 kg m
−2
h
−1
) and more prominent than existing salt-resistant SVGs. Desalination tests with real seawater indicate that HPH is salt-resistant and sustainable for fast freshwater production. All-atom molecular dynamics simulations indicate that the unique interactions between the oppositely charged groups of the polyion complex and the mobile ions in brine can alter the water state, resulting in enhanced hydrability of the polymeric skeleton. This work provides a new approach for the development of next-generation SVGs with enhanced solar desalination performance.
A hierarchically porous hydrogel (HPH) mediated by a polyion complex enables accelerated solar desalination performance in brine than in pure water. |
---|---|
AbstractList | Solar-powered water desalination has been considered as one of the most promising solutions to alleviate clean water scarcity. In concentrated brine, the strong hydration ability of ions increases the required energy for water evaporation and thus lowers the desalination performances of most-existing solar vapor generators (SVGs). Here, a novel SVG is reported that exhibits superior desalination performance in brine than in pure water. This SVG is constructed by the complexation of oppositely charged polyelectrolytes into a hierarchically porous hydrogel (HPH), with interpenetrated polyaniline as efficient light absorbers. With controlled thermal management, the evaporation rate of this HPH-based SVG is 2.79 kg m−2 h−1 in simulated brine (3.5 wt% NaCl solutions) under one sun illumination, 67% higher than that in pure water (1.67 kg m−2 h−1) and more prominent than existing salt-resistant SVGs. Desalination tests with real seawater indicate that HPH is salt-resistant and sustainable for fast freshwater production. All-atom molecular dynamics simulations indicate that the unique interactions between the oppositely charged groups of the polyion complex and the mobile ions in brine can alter the water state, resulting in enhanced hydrability of the polymeric skeleton. This work provides a new approach for the development of next-generation SVGs with enhanced solar desalination performance. Solar-powered water desalination has been considered as one of the most promising solutions to alleviate clean water scarcity. In concentrated brine, the strong hydration ability of ions increases the required energy for water evaporation and thus lowers the desalination performances of most-existing solar vapor generators (SVGs). Here, a novel SVG is reported that exhibits superior desalination performance in brine than in pure water. This SVG is constructed by the complexation of oppositely charged polyelectrolytes into a hierarchically porous hydrogel (HPH), with interpenetrated polyaniline as efficient light absorbers. With controlled thermal management, the evaporation rate of this HPH-based SVG is 2.79 kg m −2 h −1 in simulated brine (3.5 wt% NaCl solutions) under one sun illumination, 67% higher than that in pure water (1.67 kg m −2 h −1 ) and more prominent than existing salt-resistant SVGs. Desalination tests with real seawater indicate that HPH is salt-resistant and sustainable for fast freshwater production. All-atom molecular dynamics simulations indicate that the unique interactions between the oppositely charged groups of the polyion complex and the mobile ions in brine can alter the water state, resulting in enhanced hydrability of the polymeric skeleton. This work provides a new approach for the development of next-generation SVGs with enhanced solar desalination performance. A hierarchically porous hydrogel (HPH) mediated by a polyion complex enables accelerated solar desalination performance in brine than in pure water. Solar-powered water desalination has been considered as one of the most promising solutions to alleviate clean water scarcity. In concentrated brine, the strong hydration ability of ions increases the required energy for water evaporation and thus lowers the desalination performances of most-existing solar vapor generators (SVGs). Here, a novel SVG is reported that exhibits superior desalination performance in brine than in pure water. This SVG is constructed by the complexation of oppositely charged polyelectrolytes into a hierarchically porous hydrogel (HPH), with interpenetrated polyaniline as efficient light absorbers. With controlled thermal management, the evaporation rate of this HPH-based SVG is 2.79 kg m −2 h −1 in simulated brine (3.5 wt% NaCl solutions) under one sun illumination, 67% higher than that in pure water (1.67 kg m −2 h −1 ) and more prominent than existing salt-resistant SVGs. Desalination tests with real seawater indicate that HPH is salt-resistant and sustainable for fast freshwater production. All-atom molecular dynamics simulations indicate that the unique interactions between the oppositely charged groups of the polyion complex and the mobile ions in brine can alter the water state, resulting in enhanced hydrability of the polymeric skeleton. This work provides a new approach for the development of next-generation SVGs with enhanced solar desalination performance. |
Author | Demir, Baris Xiao, Rui Zhu, Fengbo An, Meng Zheng, Qiang Yin, Jun Qian, Jin Wu, Zi Liang Wang, Liqian |
AuthorAffiliation | Department of Polymer Science and Engineering Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province State Key Laboratory of Fluid Power and Mechatronic Systems Department of Engineering Mechanics MOE Key Laboratory of Macromolecular Synthesis and Functionalization School of Mechanical Engineering The University of Queensland The Australian Institute for Bioengineering and Nanotechnology College of Mechanical and Electrical Engineering Shaanxi University of Science and Technology Centre for Theoretical and Computational Molecular Science Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province Zhejiang University |
AuthorAffiliation_xml | – name: MOE Key Laboratory of Macromolecular Synthesis and Functionalization – name: Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province – name: Department of Engineering Mechanics – name: State Key Laboratory of Fluid Power and Mechatronic Systems – name: The Australian Institute for Bioengineering and Nanotechnology – name: Shaanxi University of Science and Technology – name: College of Mechanical and Electrical Engineering – name: School of Mechanical Engineering – name: Department of Polymer Science and Engineering – name: Centre for Theoretical and Computational Molecular Science – name: Zhejiang University – name: Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province – name: The University of Queensland |
Author_xml | – sequence: 1 givenname: Fengbo surname: Zhu fullname: Zhu, Fengbo – sequence: 2 givenname: Liqian surname: Wang fullname: Wang, Liqian – sequence: 3 givenname: Baris surname: Demir fullname: Demir, Baris – sequence: 4 givenname: Meng surname: An fullname: An, Meng – sequence: 5 givenname: Zi Liang surname: Wu fullname: Wu, Zi Liang – sequence: 6 givenname: Jun surname: Yin fullname: Yin, Jun – sequence: 7 givenname: Rui surname: Xiao fullname: Xiao, Rui – sequence: 8 givenname: Qiang surname: Zheng fullname: Zheng, Qiang – sequence: 9 givenname: Jin surname: Qian fullname: Qian, Jin |
BookMark | eNptkctLAzEQxoNUsNZevAsBb8JqXvs6lvqoUPGi5yXJZrspabImW3H_e9NWKohzmWH4fTPMN-dgZJ1VAFxidIsRLe9qtGkRJmnJT8CYoBQnGU3T0bFm-RmYhrBGCGHKUlSgMbAzKZVRnvfarmBwhntYq8CNtrHlLNQWCq-tgn3r3XbVwl2Ty15_8l7VsNVR62WrJTdmgJ2LUIjJDDtOuk1n1Bdsh9q7lTLhApw23AQ1_ckT8P748DZfJMvXp-f5bJlIWrA-ETIjjSS1ZEpxVjQinkcYF5iLomyIVJJlecYwKjJKCcvrrGSFyAgWIk8bntMJuD7M7bz72KrQV2u39TaurEiUxqC4jNTNgZLeheBVU3Veb7gfKoyqnaXVPXpZ7C2dRRj9gaXu9x71nmvzv-TqIPFBHkf_fol-A3_Yhr0 |
CitedBy_id | crossref_primary_10_1016_j_isci_2024_111225 crossref_primary_10_1016_j_scitotenv_2022_154545 crossref_primary_10_1016_j_desal_2024_118186 crossref_primary_10_1016_j_watres_2023_120447 crossref_primary_10_1002_adfm_202303272 crossref_primary_10_1039_D3TA06600B crossref_primary_10_1016_j_applthermaleng_2024_124639 crossref_primary_10_1016_j_jclepro_2022_131324 crossref_primary_10_1039_D4TA02883J crossref_primary_10_1016_j_cej_2021_134132 crossref_primary_10_1016_j_jechem_2023_08_018 crossref_primary_10_1016_j_cej_2022_140933 crossref_primary_10_1002_aenm_202200087 crossref_primary_10_1002_adma_202212100 crossref_primary_10_3390_molecules28031157 crossref_primary_10_1016_j_desal_2024_118234 crossref_primary_10_1002_eom2_12144 crossref_primary_10_1002_advs_202204187 crossref_primary_10_1007_s12274_023_5488_2 crossref_primary_10_1016_j_cej_2023_144600 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123211 crossref_primary_10_1016_j_mtphys_2022_100715 crossref_primary_10_1002_adfm_202214045 crossref_primary_10_1002_adma_202207262 crossref_primary_10_1016_j_solener_2022_08_036 crossref_primary_10_1039_D1TA00078K crossref_primary_10_1016_j_cej_2024_149918 crossref_primary_10_1002_smll_202403221 crossref_primary_10_1016_j_seppur_2025_132404 crossref_primary_10_1016_j_cej_2022_140704 crossref_primary_10_1016_j_jcis_2022_04_074 crossref_primary_10_1021_acs_langmuir_3c01786 crossref_primary_10_1016_j_apcatb_2024_123743 crossref_primary_10_1016_j_cej_2025_159849 crossref_primary_10_1039_D2MH00768A crossref_primary_10_1016_j_cej_2022_135756 crossref_primary_10_1016_j_nanoen_2023_108847 crossref_primary_10_1021_acsami_2c14773 crossref_primary_10_1016_j_desal_2025_118843 crossref_primary_10_1016_j_jcis_2022_11_145 crossref_primary_10_1016_j_cej_2023_148364 crossref_primary_10_1021_acsnano_4c16998 crossref_primary_10_1002_advs_202401278 crossref_primary_10_1016_j_desal_2023_116462 crossref_primary_10_1002_smll_202407280 crossref_primary_10_1002_adfm_202209262 crossref_primary_10_1016_j_seppur_2025_131660 crossref_primary_10_1016_j_chphma_2022_04_003 crossref_primary_10_1002_adfm_202107598 crossref_primary_10_1016_j_rser_2022_112767 crossref_primary_10_1016_j_enconman_2022_115645 crossref_primary_10_1016_j_desal_2021_115449 crossref_primary_10_3390_membranes12111076 crossref_primary_10_1016_j_mattod_2024_08_026 crossref_primary_10_1002_adfm_202407268 crossref_primary_10_3390_polym15194001 crossref_primary_10_1016_j_desal_2025_118798 crossref_primary_10_1016_j_cej_2023_144395 crossref_primary_10_1039_D3EN00829K crossref_primary_10_1021_acsami_2c02464 crossref_primary_10_1039_D2TA10083E crossref_primary_10_1039_D1MA00894C crossref_primary_10_1016_j_cej_2024_148524 crossref_primary_10_1016_j_watres_2024_121707 crossref_primary_10_1016_j_nxmate_2024_100432 crossref_primary_10_1021_acs_est_3c09703 crossref_primary_10_1021_cbe_3c00121 crossref_primary_10_1002_slct_202301040 crossref_primary_10_1016_j_solener_2022_05_038 crossref_primary_10_1039_D2ME00066K crossref_primary_10_1016_j_nanoen_2022_107356 crossref_primary_10_1016_j_desal_2024_118129 crossref_primary_10_1002_solr_202400418 crossref_primary_10_1002_adfm_202313155 crossref_primary_10_1002_cey2_548 crossref_primary_10_1016_j_cej_2021_130905 crossref_primary_10_1016_j_desal_2021_115399 crossref_primary_10_1016_j_cej_2023_143440 crossref_primary_10_1002_smll_202312241 crossref_primary_10_3390_polym15112449 crossref_primary_10_1016_j_desal_2023_116999 crossref_primary_10_1039_D0TA11870B crossref_primary_10_1016_j_desal_2022_115706 crossref_primary_10_1016_j_desal_2022_115827 crossref_primary_10_1016_j_icheatmasstransfer_2022_106387 crossref_primary_10_1016_j_cej_2023_148178 crossref_primary_10_2139_ssrn_4150346 crossref_primary_10_1002_ange_202208487 crossref_primary_10_1021_acsami_4c17864 crossref_primary_10_1039_D4GC05004E crossref_primary_10_1016_j_cej_2023_147519 crossref_primary_10_1016_j_ijbiomac_2024_134455 crossref_primary_10_1016_j_desal_2023_116868 crossref_primary_10_1002_anie_202208487 crossref_primary_10_1007_s40820_024_01544_9 crossref_primary_10_1016_j_cej_2021_131618 crossref_primary_10_1016_j_applthermaleng_2023_119985 crossref_primary_10_1016_j_cej_2024_150118 crossref_primary_10_1016_j_cej_2023_147868 crossref_primary_10_1016_j_desal_2024_118164 crossref_primary_10_1002_solr_202300347 crossref_primary_10_1016_j_cej_2024_154040 crossref_primary_10_1039_D0MH02051F crossref_primary_10_1016_j_seppur_2024_129413 crossref_primary_10_1016_j_cej_2022_138676 crossref_primary_10_1016_j_desal_2021_115406 crossref_primary_10_2139_ssrn_4002114 crossref_primary_10_1007_s40843_021_2002_1 crossref_primary_10_1016_j_cej_2024_149763 crossref_primary_10_1016_j_matt_2024_09_008 crossref_primary_10_1016_j_desal_2025_118754 crossref_primary_10_1002_advs_202400310 crossref_primary_10_1016_j_gerr_2023_100011 crossref_primary_10_1016_j_jssc_2022_123443 crossref_primary_10_1039_D1TA04325K crossref_primary_10_1016_j_cej_2021_131008 crossref_primary_10_1021_acsami_1c10854 crossref_primary_10_1002_adma_202313090 crossref_primary_10_1021_acsnano_4c16142 crossref_primary_10_1002_adma_202203137 crossref_primary_10_1016_j_jcis_2021_10_035 crossref_primary_10_1016_j_cej_2024_154673 crossref_primary_10_1039_D1MH02020J crossref_primary_10_1016_j_cej_2021_134224 crossref_primary_10_1039_D2TA02348B crossref_primary_10_1016_j_desal_2025_118627 crossref_primary_10_1002_adfm_202306947 crossref_primary_10_1016_j_greenca_2024_09_003 crossref_primary_10_1016_j_desal_2021_115477 |
Cites_doi | 10.1002/aenm.201901286 10.1038/s41565-018-0097-z 10.1016/j.polymer.2020.122253 10.1039/C8EE00220G 10.1021/acs.macromol.9b01755 10.1021/acsapm.9b00709 10.1039/C8TA10227A 10.1103/PhysRevE.92.052403 10.1038/ncomms5449 10.1002/adma.201900498 10.1021/ma500500q 10.1126/science.1200488 10.1038/natrevmats.2016.18 10.1038/nphoton.2016.75 10.1038/s41578-019-0173-5 10.1126/sciadv.aaw7013 10.1021/acs.jpcb.6b12315 10.1021/acsami.9b12806 10.1073/pnas.1613031113 10.1016/j.polymer.2016.04.043 10.1002/adfm.201901312 10.1021/acs.accounts.9b00455 10.1002/adma.201807716 10.1021/acsami.8b01629 10.1021/acs.biomac.0c00062 10.1002/adma.201606762 10.1126/sciadv.aaw5484 10.1039/C8MH00386F 10.1038/s41467-019-13993-7 10.1002/gch2.201800117 10.1002/aenm.201900552 10.1021/jacs.5b11878 10.1021/acs.macromol.8b01441 10.1002/ente.201900721 10.1021/acsnano.7b08196 10.1039/C9EE00945K 10.1016/j.desal.2020.114385 10.1039/C9RA09667A 10.1039/C9TA01576K 10.1002/adma.201502362 10.1016/j.joule.2019.06.009 10.1039/C3SM52295D 10.1021/acsami.8b01873 10.1039/C9SM01193E 10.1039/C9EE00692C 10.1039/C5SM01184A 10.1021/acs.est.8b03300 10.1021/acs.est.7b03040 10.1021/ja802054k 10.1093/nsr/nwz030 10.1002/adma.201501832 10.1002/aenm.201702884 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION 7SR 7TB 7U5 8BQ 8FD F28 FR3 JG9 L7M |
DOI | 10.1039/d0mh01259a |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2051-6355 |
EndPage | 3195 |
ExternalDocumentID | 10_1039_D0MH01259A d0mh01259a |
GroupedDBID | 0R 4.4 AAEMU AAGNR AAIWI AANOJ ABDVN ABGFH ABRYZ ACIWK ACLDK ADMRA ADSRN AENEX AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV BLAPV BSQNT C6K CKLOX EBS ECGLT EE0 EF- HZ H~N J3I O-G O9- RCNCU RIG RPMJG RRC RSCEA 0R~ AAJAE AARTK AAWGC AAXHV AAYXX ABASK ABEMK ABPDG ABXOH AEFDR AENGV AETIL AFLYV AFOGI AFRZK AGEGJ AGRSR AHGCF AKBGW AKMSF ANUXI APEMP CITATION GGIMP H13 HZ~ RAOCF RVUXY 7SR 7TB 7U5 8BQ 8FD F28 FR3 JG9 L7M |
ID | FETCH-LOGICAL-c384t-bc62fc2dc4eea48fb03924ab1ab89f2cec46764108633247d6948b621bb75fa73 |
ISSN | 2051-6347 |
IngestDate | Sun Jun 29 16:24:28 EDT 2025 Thu Apr 24 23:04:09 EDT 2025 Tue Jul 01 01:36:13 EDT 2025 Sat Jan 08 03:48:12 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c384t-bc62fc2dc4eea48fb03924ab1ab89f2cec46764108633247d6948b621bb75fa73 |
Notes | Electronic supplementary information (ESI) available. See DOI 10.1039/d0mh01259a ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3597-5460 0000-0002-1560-7329 0000-0003-4329-235X 0000-0002-1937-6812 0000-0002-1824-9563 |
PQID | 2467777319 |
PQPubID | 2047518 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1039_D0MH01259A proquest_journals_2467777319 crossref_primary_10_1039_D0MH01259A rsc_primary_d0mh01259a |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 20200101 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Materials horizons |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Liu (D0MH01259A-(cit52)/*[position()=1]) 2019; 7 Yin (D0MH01259A-(cit38)/*[position()=1]) 2018; 10 Yang (D0MH01259A-(cit20)/*[position()=1]) 2018; 5 Zhou (D0MH01259A-(cit11)/*[position()=1]) 2016; 10 Finnerty (D0MH01259A-(cit14)/*[position()=1]) 2017; 51 Kuang (D0MH01259A-(cit19)/*[position()=1]) 2019; 31 Xu (D0MH01259A-(cit12)/*[position()=1]) 2019; 5 Batys (D0MH01259A-(cit36)/*[position()=1]) 2019; 15 Zhang (D0MH01259A-(cit23)/*[position()=1]) 2015; 92 Zhang (D0MH01259A-(cit45)/*[position()=1]) 2017; 121 Wu (D0MH01259A-(cit7)/*[position()=1]) 2019; 9 Bae (D0MH01259A-(cit10)/*[position()=1]) 2015; 6 Li (D0MH01259A-(cit43)/*[position()=1]) 2019; 3 Elimelech (D0MH01259A-(cit2)/*[position()=1]) 2011; 333 Zhu (D0MH01259A-(cit41)/*[position()=1]) 2019; 11 Ito (D0MH01259A-(cit6)/*[position()=1]) 2015; 27 Zhao (D0MH01259A-(cit29)/*[position()=1]) 2020; 5 Werber (D0MH01259A-(cit1)/*[position()=1]) 2016; 1 Zeng (D0MH01259A-(cit13)/*[position()=1]) 2019; 9 He (D0MH01259A-(cit18)/*[position()=1]) 2019; 12 Li (D0MH01259A-(cit47)/*[position()=1]) 2020; 21 Zhu (D0MH01259A-(cit39)/*[position()=1]) 2018; 10 Gao (D0MH01259A-(cit53)/*[position()=1]) 2019; 3 Hu (D0MH01259A-(cit22)/*[position()=1]) 2019; 7 Wang (D0MH01259A-(cit32)/*[position()=1]) 2014; 47 Wang (D0MH01259A-(cit9)/*[position()=1]) 2019; 31 Xu (D0MH01259A-(cit4)/*[position()=1]) 2017; 29 Zhao (D0MH01259A-(cit25)/*[position()=1]) 2018; 13 Li (D0MH01259A-(cit5)/*[position()=1]) 2016; 113 Hu (D0MH01259A-(cit26)/*[position()=1]) 2020; 8 Yang (D0MH01259A-(cit40)/*[position()=1]) 2018; 12 Zhao (D0MH01259A-(cit49)/*[position()=1]) 2020; 482 Xu (D0MH01259A-(cit21)/*[position()=1]) 2018; 8 Demir (D0MH01259A-(cit48)/*[position()=1]) 2020; 191 Ghasemi (D0MH01259A-(cit3)/*[position()=1]) 2014; 5 Shi (D0MH01259A-(cit51)/*[position()=1]) 2018; 52 Han (D0MH01259A-(cit50)/*[position()=1]) 2020; 10 Zhou (D0MH01259A-(cit42)/*[position()=1]) 2019; 6 Zhou (D0MH01259A-(cit24)/*[position()=1]) 2019; 52 Zhou (D0MH01259A-(cit28)/*[position()=1]) 2019; 5 Zhang (D0MH01259A-(cit8)/*[position()=1]) 2015; 27 Xia (D0MH01259A-(cit15)/*[position()=1]) 2019; 12 Fu (D0MH01259A-(cit44)/*[position()=1]) 2016; 138 Demir (D0MH01259A-(cit46)/*[position()=1]) 2019; 1 Xiong (D0MH01259A-(cit30)/*[position()=1]) 2014; 10 Wu (D0MH01259A-(cit16)/*[position()=1]) 2020; 11 Schlenoff (D0MH01259A-(cit31)/*[position()=1]) 2008; 130 Schlenoff (D0MH01259A-(cit34)/*[position()=1]) 2019; 52 Batys (D0MH01259A-(cit35)/*[position()=1]) 2018; 51 Ni (D0MH01259A-(cit17)/*[position()=1]) 2018; 11 Zhang (D0MH01259A-(cit37)/*[position()=1]) 2015; 11 Sun (D0MH01259A-(cit27)/*[position()=1]) 2019; 29 Zhu (D0MH01259A-(cit33)/*[position()=1]) 2016; 95 |
References_xml | – volume: 9 start-page: 1901286 year: 2019 ident: D0MH01259A-(cit7)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901286 – volume: 13 start-page: 489 year: 2018 ident: D0MH01259A-(cit25)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0097-z – volume: 191 start-page: 122253 year: 2020 ident: D0MH01259A-(cit48)/*[position()=1] publication-title: Polymer doi: 10.1016/j.polymer.2020.122253 – volume: 11 start-page: 1510 year: 2018 ident: D0MH01259A-(cit17)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00220G – volume: 52 start-page: 9149 year: 2019 ident: D0MH01259A-(cit34)/*[position()=1] publication-title: Macromolecules doi: 10.1021/acs.macromol.9b01755 – volume: 1 start-page: 3027 year: 2019 ident: D0MH01259A-(cit46)/*[position()=1] publication-title: ACS Appl. Polym. Mater. doi: 10.1021/acsapm.9b00709 – volume: 7 start-page: 2581 year: 2019 ident: D0MH01259A-(cit52)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA10227A – volume: 92 start-page: 052403 year: 2015 ident: D0MH01259A-(cit23)/*[position()=1] publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.92.052403 – volume: 5 start-page: 4449 year: 2014 ident: D0MH01259A-(cit3)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms5449 – volume: 31 start-page: 1900498 year: 2019 ident: D0MH01259A-(cit19)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201900498 – volume: 47 start-page: 3108 year: 2014 ident: D0MH01259A-(cit32)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma500500q – volume: 333 start-page: 712 year: 2011 ident: D0MH01259A-(cit2)/*[position()=1] publication-title: Science doi: 10.1126/science.1200488 – volume: 1 start-page: 1 year: 2016 ident: D0MH01259A-(cit1)/*[position()=1] publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.18 – volume: 10 start-page: 393 year: 2016 ident: D0MH01259A-(cit11)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2016.75 – volume: 5 start-page: 1 year: 2020 ident: D0MH01259A-(cit29)/*[position()=1] publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-019-0173-5 – volume: 5 start-page: eaaw7013 year: 2019 ident: D0MH01259A-(cit12)/*[position()=1] publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw7013 – volume: 121 start-page: 322 year: 2017 ident: D0MH01259A-(cit45)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcb.6b12315 – volume: 11 start-page: 35005 year: 2019 ident: D0MH01259A-(cit41)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b12806 – volume: 113 start-page: 13953 year: 2016 ident: D0MH01259A-(cit5)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1613031113 – volume: 95 start-page: 9 year: 2016 ident: D0MH01259A-(cit33)/*[position()=1] publication-title: Polymer doi: 10.1016/j.polymer.2016.04.043 – volume: 29 start-page: 1901312 year: 2019 ident: D0MH01259A-(cit27)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901312 – volume: 52 start-page: 3244 year: 2019 ident: D0MH01259A-(cit24)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00455 – volume: 31 start-page: 1807716 year: 2019 ident: D0MH01259A-(cit9)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201807716 – volume: 10 start-page: 10998 year: 2018 ident: D0MH01259A-(cit38)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b01629 – volume: 21 start-page: 2087 year: 2020 ident: D0MH01259A-(cit47)/*[position()=1] publication-title: Biomacromolecules doi: 10.1021/acs.biomac.0c00062 – volume: 6 start-page: 1 year: 2015 ident: D0MH01259A-(cit10)/*[position()=1] publication-title: Nat. Commun. – volume: 29 start-page: 1606762 year: 2017 ident: D0MH01259A-(cit4)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201606762 – volume: 5 start-page: eaaw5484 year: 2019 ident: D0MH01259A-(cit28)/*[position()=1] publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw5484 – volume: 5 start-page: 1143 year: 2018 ident: D0MH01259A-(cit20)/*[position()=1] publication-title: Mater. Horiz. doi: 10.1039/C8MH00386F – volume: 11 start-page: 1 year: 2020 ident: D0MH01259A-(cit16)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-13993-7 – volume: 3 start-page: 1800117 year: 2019 ident: D0MH01259A-(cit53)/*[position()=1] publication-title: Glob. Chall. doi: 10.1002/gch2.201800117 – volume: 9 start-page: 1900552 year: 2019 ident: D0MH01259A-(cit13)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900552 – volume: 138 start-page: 980 year: 2016 ident: D0MH01259A-(cit44)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b11878 – volume: 51 start-page: 8268 year: 2018 ident: D0MH01259A-(cit35)/*[position()=1] publication-title: Macromolecules doi: 10.1021/acs.macromol.8b01441 – volume: 8 start-page: 1900721 year: 2020 ident: D0MH01259A-(cit26)/*[position()=1] publication-title: Energy Technol. doi: 10.1002/ente.201900721 – volume: 12 start-page: 829 year: 2018 ident: D0MH01259A-(cit40)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b08196 – volume: 12 start-page: 1558 year: 2019 ident: D0MH01259A-(cit18)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00945K – volume: 482 start-page: 114385 year: 2020 ident: D0MH01259A-(cit49)/*[position()=1] publication-title: Desalination doi: 10.1016/j.desal.2020.114385 – volume: 10 start-page: 2507 year: 2020 ident: D0MH01259A-(cit50)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C9RA09667A – volume: 7 start-page: 15333 year: 2019 ident: D0MH01259A-(cit22)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA01576K – volume: 27 start-page: 4889 year: 2015 ident: D0MH01259A-(cit8)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201502362 – volume: 3 start-page: 1798 year: 2019 ident: D0MH01259A-(cit43)/*[position()=1] publication-title: Joule doi: 10.1016/j.joule.2019.06.009 – volume: 10 start-page: 2124 year: 2014 ident: D0MH01259A-(cit30)/*[position()=1] publication-title: Soft Matter doi: 10.1039/C3SM52295D – volume: 10 start-page: 13685 year: 2018 ident: D0MH01259A-(cit39)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b01873 – volume: 15 start-page: 7823 year: 2019 ident: D0MH01259A-(cit36)/*[position()=1] publication-title: Soft Matter doi: 10.1039/C9SM01193E – volume: 12 start-page: 1840 year: 2019 ident: D0MH01259A-(cit15)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00692C – volume: 11 start-page: 7392 year: 2015 ident: D0MH01259A-(cit37)/*[position()=1] publication-title: Soft Matter doi: 10.1039/C5SM01184A – volume: 52 start-page: 11822 year: 2018 ident: D0MH01259A-(cit51)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b03300 – volume: 51 start-page: 11701 year: 2017 ident: D0MH01259A-(cit14)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b03040 – volume: 130 start-page: 13589 year: 2008 ident: D0MH01259A-(cit31)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja802054k – volume: 6 start-page: 562 year: 2019 ident: D0MH01259A-(cit42)/*[position()=1] publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwz030 – volume: 27 start-page: 4302 year: 2015 ident: D0MH01259A-(cit6)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201501832 – volume: 8 start-page: 1702884 year: 2018 ident: D0MH01259A-(cit21)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702884 |
SSID | ssj0001345080 |
Score | 2.5470815 |
Snippet | Solar-powered water desalination has been considered as one of the most promising solutions to alleviate clean water scarcity. In concentrated brine, the... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3187 |
SubjectTerms | Brines Desalination Evaporation rate Hydrogels Molecular dynamics Polyanilines Polyelectrolytes Seawater Solar energy Thermal management Vaporizers |
Title | Accelerating solar desalination in brine through ion activated hierarchically porous polyion complex hydrogels |
URI | https://www.proquest.com/docview/2467777319 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVoe4ED4qtioSBLcEGrlF3bcZJjRIsW1HLaStwi23G6kdqkTVOJ9tczdhzHlRYJ2EO0chwryXuZGY_HMwh9FAnoFK3SSGYAAyurMjJWdcRUxUoNbULbbJ8_-OqMff8ZBwvtdndJLw_V_dZ9Jf-DKrQBrmaX7D8g6weFBvgP-MIREIbjX2GcKwVaw2BonAJmkjov9Y0we2zHGEZpdvf5ajw29ljZimZgaJoy2HYhAXAyTo62M_GwV-3Fnelng831r_nmruza8yHrsrdjT0U_POB803b1_ejzsx7oW2sQ6-ZctpO7fhApJ_V1QMcjfVl3btGj9gPkQ3SxdirVeSTIIvBIWMFF4EOPOB0yaR7qsG1IyTtK3iQkGAnEKAiaJFDJICbireJ-QU221HJxuQE9G2eBUvOhhtPJHbRHYC4B0nsvP15_O5lccZSBmWq8cf7Ox0S2NPs8DfDQdJnmIzvdWCzGGiXrZ-ipm03gfKDGc_RINy_QkyDH5EvUhCTBliQ4JAmuG2xJgh1JsGn0JMEPSYIHkmBHEuxIgj1JXqGzr8frL6vIFdmIFE1ZH0nFSaVIqZjWgqWVhGcmTMilkGlWEaUVqFLOTEEuCsZ3UvKMpZKTpZRJXImE7qPdpm30a4QJB9s24Uoss4pRnWQSLKSE8LSiCxHzdIY-je-vUC4DvSmEclHYSAiaFUeL05V91_kMffB9r4a8K1t7HYwwFO67vCkI3DD8gDQztA_Q-OsnJN_86cRb9Hhi9AHa7btb_Q6szl6-d6z5DY64h3Y |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerating+solar+desalination+in+brine+through+ion+activated+hierarchically+porous+polyion+complex+hydrogels&rft.jtitle=Materials+horizons&rft.au=Zhu%2C+Fengbo&rft.au=Wang%2C+Liqian&rft.au=Demir%2C+Baris&rft.au=An%2C+Meng&rft.date=2020-01-01&rft.issn=2051-6347&rft.eissn=2051-6355&rft.volume=7&rft.issue=12&rft.spage=3187&rft.epage=3195&rft_id=info:doi/10.1039%2Fd0mh01259a&rft.externalDocID=d0mh01259a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-6347&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-6347&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-6347&client=summon |