Accelerating solar desalination in brine through ion activated hierarchically porous polyion complex hydrogels

Solar-powered water desalination has been considered as one of the most promising solutions to alleviate clean water scarcity. In concentrated brine, the strong hydration ability of ions increases the required energy for water evaporation and thus lowers the desalination performances of most-existin...

Full description

Saved in:
Bibliographic Details
Published inMaterials horizons Vol. 7; no. 12; pp. 3187 - 3195
Main Authors Zhu, Fengbo, Wang, Liqian, Demir, Baris, An, Meng, Wu, Zi Liang, Yin, Jun, Xiao, Rui, Zheng, Qiang, Qian, Jin
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 01.01.2020
Subjects
Online AccessGet full text
ISSN2051-6347
2051-6355
DOI10.1039/d0mh01259a

Cover

Loading…
Abstract Solar-powered water desalination has been considered as one of the most promising solutions to alleviate clean water scarcity. In concentrated brine, the strong hydration ability of ions increases the required energy for water evaporation and thus lowers the desalination performances of most-existing solar vapor generators (SVGs). Here, a novel SVG is reported that exhibits superior desalination performance in brine than in pure water. This SVG is constructed by the complexation of oppositely charged polyelectrolytes into a hierarchically porous hydrogel (HPH), with interpenetrated polyaniline as efficient light absorbers. With controlled thermal management, the evaporation rate of this HPH-based SVG is 2.79 kg m −2 h −1 in simulated brine (3.5 wt% NaCl solutions) under one sun illumination, 67% higher than that in pure water (1.67 kg m −2 h −1 ) and more prominent than existing salt-resistant SVGs. Desalination tests with real seawater indicate that HPH is salt-resistant and sustainable for fast freshwater production. All-atom molecular dynamics simulations indicate that the unique interactions between the oppositely charged groups of the polyion complex and the mobile ions in brine can alter the water state, resulting in enhanced hydrability of the polymeric skeleton. This work provides a new approach for the development of next-generation SVGs with enhanced solar desalination performance. A hierarchically porous hydrogel (HPH) mediated by a polyion complex enables accelerated solar desalination performance in brine than in pure water.
AbstractList Solar-powered water desalination has been considered as one of the most promising solutions to alleviate clean water scarcity. In concentrated brine, the strong hydration ability of ions increases the required energy for water evaporation and thus lowers the desalination performances of most-existing solar vapor generators (SVGs). Here, a novel SVG is reported that exhibits superior desalination performance in brine than in pure water. This SVG is constructed by the complexation of oppositely charged polyelectrolytes into a hierarchically porous hydrogel (HPH), with interpenetrated polyaniline as efficient light absorbers. With controlled thermal management, the evaporation rate of this HPH-based SVG is 2.79 kg m−2 h−1 in simulated brine (3.5 wt% NaCl solutions) under one sun illumination, 67% higher than that in pure water (1.67 kg m−2 h−1) and more prominent than existing salt-resistant SVGs. Desalination tests with real seawater indicate that HPH is salt-resistant and sustainable for fast freshwater production. All-atom molecular dynamics simulations indicate that the unique interactions between the oppositely charged groups of the polyion complex and the mobile ions in brine can alter the water state, resulting in enhanced hydrability of the polymeric skeleton. This work provides a new approach for the development of next-generation SVGs with enhanced solar desalination performance.
Solar-powered water desalination has been considered as one of the most promising solutions to alleviate clean water scarcity. In concentrated brine, the strong hydration ability of ions increases the required energy for water evaporation and thus lowers the desalination performances of most-existing solar vapor generators (SVGs). Here, a novel SVG is reported that exhibits superior desalination performance in brine than in pure water. This SVG is constructed by the complexation of oppositely charged polyelectrolytes into a hierarchically porous hydrogel (HPH), with interpenetrated polyaniline as efficient light absorbers. With controlled thermal management, the evaporation rate of this HPH-based SVG is 2.79 kg m −2 h −1 in simulated brine (3.5 wt% NaCl solutions) under one sun illumination, 67% higher than that in pure water (1.67 kg m −2 h −1 ) and more prominent than existing salt-resistant SVGs. Desalination tests with real seawater indicate that HPH is salt-resistant and sustainable for fast freshwater production. All-atom molecular dynamics simulations indicate that the unique interactions between the oppositely charged groups of the polyion complex and the mobile ions in brine can alter the water state, resulting in enhanced hydrability of the polymeric skeleton. This work provides a new approach for the development of next-generation SVGs with enhanced solar desalination performance. A hierarchically porous hydrogel (HPH) mediated by a polyion complex enables accelerated solar desalination performance in brine than in pure water.
Solar-powered water desalination has been considered as one of the most promising solutions to alleviate clean water scarcity. In concentrated brine, the strong hydration ability of ions increases the required energy for water evaporation and thus lowers the desalination performances of most-existing solar vapor generators (SVGs). Here, a novel SVG is reported that exhibits superior desalination performance in brine than in pure water. This SVG is constructed by the complexation of oppositely charged polyelectrolytes into a hierarchically porous hydrogel (HPH), with interpenetrated polyaniline as efficient light absorbers. With controlled thermal management, the evaporation rate of this HPH-based SVG is 2.79 kg m −2 h −1 in simulated brine (3.5 wt% NaCl solutions) under one sun illumination, 67% higher than that in pure water (1.67 kg m −2 h −1 ) and more prominent than existing salt-resistant SVGs. Desalination tests with real seawater indicate that HPH is salt-resistant and sustainable for fast freshwater production. All-atom molecular dynamics simulations indicate that the unique interactions between the oppositely charged groups of the polyion complex and the mobile ions in brine can alter the water state, resulting in enhanced hydrability of the polymeric skeleton. This work provides a new approach for the development of next-generation SVGs with enhanced solar desalination performance.
Author Demir, Baris
Xiao, Rui
Zhu, Fengbo
An, Meng
Zheng, Qiang
Yin, Jun
Qian, Jin
Wu, Zi Liang
Wang, Liqian
AuthorAffiliation Department of Polymer Science and Engineering
Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province
State Key Laboratory of Fluid Power and Mechatronic Systems
Department of Engineering Mechanics
MOE Key Laboratory of Macromolecular Synthesis and Functionalization
School of Mechanical Engineering
The University of Queensland
The Australian Institute for Bioengineering and Nanotechnology
College of Mechanical and Electrical Engineering
Shaanxi University of Science and Technology
Centre for Theoretical and Computational Molecular Science
Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province
Zhejiang University
AuthorAffiliation_xml – name: MOE Key Laboratory of Macromolecular Synthesis and Functionalization
– name: Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province
– name: Department of Engineering Mechanics
– name: State Key Laboratory of Fluid Power and Mechatronic Systems
– name: The Australian Institute for Bioengineering and Nanotechnology
– name: Shaanxi University of Science and Technology
– name: College of Mechanical and Electrical Engineering
– name: School of Mechanical Engineering
– name: Department of Polymer Science and Engineering
– name: Centre for Theoretical and Computational Molecular Science
– name: Zhejiang University
– name: Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province
– name: The University of Queensland
Author_xml – sequence: 1
  givenname: Fengbo
  surname: Zhu
  fullname: Zhu, Fengbo
– sequence: 2
  givenname: Liqian
  surname: Wang
  fullname: Wang, Liqian
– sequence: 3
  givenname: Baris
  surname: Demir
  fullname: Demir, Baris
– sequence: 4
  givenname: Meng
  surname: An
  fullname: An, Meng
– sequence: 5
  givenname: Zi Liang
  surname: Wu
  fullname: Wu, Zi Liang
– sequence: 6
  givenname: Jun
  surname: Yin
  fullname: Yin, Jun
– sequence: 7
  givenname: Rui
  surname: Xiao
  fullname: Xiao, Rui
– sequence: 8
  givenname: Qiang
  surname: Zheng
  fullname: Zheng, Qiang
– sequence: 9
  givenname: Jin
  surname: Qian
  fullname: Qian, Jin
BookMark eNptkctLAzEQxoNUsNZevAsBb8JqXvs6lvqoUPGi5yXJZrspabImW3H_e9NWKohzmWH4fTPMN-dgZJ1VAFxidIsRLe9qtGkRJmnJT8CYoBQnGU3T0bFm-RmYhrBGCGHKUlSgMbAzKZVRnvfarmBwhntYq8CNtrHlLNQWCq-tgn3r3XbVwl2Ty15_8l7VsNVR62WrJTdmgJ2LUIjJDDtOuk1n1Bdsh9q7lTLhApw23AQ1_ckT8P748DZfJMvXp-f5bJlIWrA-ETIjjSS1ZEpxVjQinkcYF5iLomyIVJJlecYwKjJKCcvrrGSFyAgWIk8bntMJuD7M7bz72KrQV2u39TaurEiUxqC4jNTNgZLeheBVU3Veb7gfKoyqnaXVPXpZ7C2dRRj9gaXu9x71nmvzv-TqIPFBHkf_fol-A3_Yhr0
CitedBy_id crossref_primary_10_1016_j_isci_2024_111225
crossref_primary_10_1016_j_scitotenv_2022_154545
crossref_primary_10_1016_j_desal_2024_118186
crossref_primary_10_1016_j_watres_2023_120447
crossref_primary_10_1002_adfm_202303272
crossref_primary_10_1039_D3TA06600B
crossref_primary_10_1016_j_applthermaleng_2024_124639
crossref_primary_10_1016_j_jclepro_2022_131324
crossref_primary_10_1039_D4TA02883J
crossref_primary_10_1016_j_cej_2021_134132
crossref_primary_10_1016_j_jechem_2023_08_018
crossref_primary_10_1016_j_cej_2022_140933
crossref_primary_10_1002_aenm_202200087
crossref_primary_10_1002_adma_202212100
crossref_primary_10_3390_molecules28031157
crossref_primary_10_1016_j_desal_2024_118234
crossref_primary_10_1002_eom2_12144
crossref_primary_10_1002_advs_202204187
crossref_primary_10_1007_s12274_023_5488_2
crossref_primary_10_1016_j_cej_2023_144600
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123211
crossref_primary_10_1016_j_mtphys_2022_100715
crossref_primary_10_1002_adfm_202214045
crossref_primary_10_1002_adma_202207262
crossref_primary_10_1016_j_solener_2022_08_036
crossref_primary_10_1039_D1TA00078K
crossref_primary_10_1016_j_cej_2024_149918
crossref_primary_10_1002_smll_202403221
crossref_primary_10_1016_j_seppur_2025_132404
crossref_primary_10_1016_j_cej_2022_140704
crossref_primary_10_1016_j_jcis_2022_04_074
crossref_primary_10_1021_acs_langmuir_3c01786
crossref_primary_10_1016_j_apcatb_2024_123743
crossref_primary_10_1016_j_cej_2025_159849
crossref_primary_10_1039_D2MH00768A
crossref_primary_10_1016_j_cej_2022_135756
crossref_primary_10_1016_j_nanoen_2023_108847
crossref_primary_10_1021_acsami_2c14773
crossref_primary_10_1016_j_desal_2025_118843
crossref_primary_10_1016_j_jcis_2022_11_145
crossref_primary_10_1016_j_cej_2023_148364
crossref_primary_10_1021_acsnano_4c16998
crossref_primary_10_1002_advs_202401278
crossref_primary_10_1016_j_desal_2023_116462
crossref_primary_10_1002_smll_202407280
crossref_primary_10_1002_adfm_202209262
crossref_primary_10_1016_j_seppur_2025_131660
crossref_primary_10_1016_j_chphma_2022_04_003
crossref_primary_10_1002_adfm_202107598
crossref_primary_10_1016_j_rser_2022_112767
crossref_primary_10_1016_j_enconman_2022_115645
crossref_primary_10_1016_j_desal_2021_115449
crossref_primary_10_3390_membranes12111076
crossref_primary_10_1016_j_mattod_2024_08_026
crossref_primary_10_1002_adfm_202407268
crossref_primary_10_3390_polym15194001
crossref_primary_10_1016_j_desal_2025_118798
crossref_primary_10_1016_j_cej_2023_144395
crossref_primary_10_1039_D3EN00829K
crossref_primary_10_1021_acsami_2c02464
crossref_primary_10_1039_D2TA10083E
crossref_primary_10_1039_D1MA00894C
crossref_primary_10_1016_j_cej_2024_148524
crossref_primary_10_1016_j_watres_2024_121707
crossref_primary_10_1016_j_nxmate_2024_100432
crossref_primary_10_1021_acs_est_3c09703
crossref_primary_10_1021_cbe_3c00121
crossref_primary_10_1002_slct_202301040
crossref_primary_10_1016_j_solener_2022_05_038
crossref_primary_10_1039_D2ME00066K
crossref_primary_10_1016_j_nanoen_2022_107356
crossref_primary_10_1016_j_desal_2024_118129
crossref_primary_10_1002_solr_202400418
crossref_primary_10_1002_adfm_202313155
crossref_primary_10_1002_cey2_548
crossref_primary_10_1016_j_cej_2021_130905
crossref_primary_10_1016_j_desal_2021_115399
crossref_primary_10_1016_j_cej_2023_143440
crossref_primary_10_1002_smll_202312241
crossref_primary_10_3390_polym15112449
crossref_primary_10_1016_j_desal_2023_116999
crossref_primary_10_1039_D0TA11870B
crossref_primary_10_1016_j_desal_2022_115706
crossref_primary_10_1016_j_desal_2022_115827
crossref_primary_10_1016_j_icheatmasstransfer_2022_106387
crossref_primary_10_1016_j_cej_2023_148178
crossref_primary_10_2139_ssrn_4150346
crossref_primary_10_1002_ange_202208487
crossref_primary_10_1021_acsami_4c17864
crossref_primary_10_1039_D4GC05004E
crossref_primary_10_1016_j_cej_2023_147519
crossref_primary_10_1016_j_ijbiomac_2024_134455
crossref_primary_10_1016_j_desal_2023_116868
crossref_primary_10_1002_anie_202208487
crossref_primary_10_1007_s40820_024_01544_9
crossref_primary_10_1016_j_cej_2021_131618
crossref_primary_10_1016_j_applthermaleng_2023_119985
crossref_primary_10_1016_j_cej_2024_150118
crossref_primary_10_1016_j_cej_2023_147868
crossref_primary_10_1016_j_desal_2024_118164
crossref_primary_10_1002_solr_202300347
crossref_primary_10_1016_j_cej_2024_154040
crossref_primary_10_1039_D0MH02051F
crossref_primary_10_1016_j_seppur_2024_129413
crossref_primary_10_1016_j_cej_2022_138676
crossref_primary_10_1016_j_desal_2021_115406
crossref_primary_10_2139_ssrn_4002114
crossref_primary_10_1007_s40843_021_2002_1
crossref_primary_10_1016_j_cej_2024_149763
crossref_primary_10_1016_j_matt_2024_09_008
crossref_primary_10_1016_j_desal_2025_118754
crossref_primary_10_1002_advs_202400310
crossref_primary_10_1016_j_gerr_2023_100011
crossref_primary_10_1016_j_jssc_2022_123443
crossref_primary_10_1039_D1TA04325K
crossref_primary_10_1016_j_cej_2021_131008
crossref_primary_10_1021_acsami_1c10854
crossref_primary_10_1002_adma_202313090
crossref_primary_10_1021_acsnano_4c16142
crossref_primary_10_1002_adma_202203137
crossref_primary_10_1016_j_jcis_2021_10_035
crossref_primary_10_1016_j_cej_2024_154673
crossref_primary_10_1039_D1MH02020J
crossref_primary_10_1016_j_cej_2021_134224
crossref_primary_10_1039_D2TA02348B
crossref_primary_10_1016_j_desal_2025_118627
crossref_primary_10_1002_adfm_202306947
crossref_primary_10_1016_j_greenca_2024_09_003
crossref_primary_10_1016_j_desal_2021_115477
Cites_doi 10.1002/aenm.201901286
10.1038/s41565-018-0097-z
10.1016/j.polymer.2020.122253
10.1039/C8EE00220G
10.1021/acs.macromol.9b01755
10.1021/acsapm.9b00709
10.1039/C8TA10227A
10.1103/PhysRevE.92.052403
10.1038/ncomms5449
10.1002/adma.201900498
10.1021/ma500500q
10.1126/science.1200488
10.1038/natrevmats.2016.18
10.1038/nphoton.2016.75
10.1038/s41578-019-0173-5
10.1126/sciadv.aaw7013
10.1021/acs.jpcb.6b12315
10.1021/acsami.9b12806
10.1073/pnas.1613031113
10.1016/j.polymer.2016.04.043
10.1002/adfm.201901312
10.1021/acs.accounts.9b00455
10.1002/adma.201807716
10.1021/acsami.8b01629
10.1021/acs.biomac.0c00062
10.1002/adma.201606762
10.1126/sciadv.aaw5484
10.1039/C8MH00386F
10.1038/s41467-019-13993-7
10.1002/gch2.201800117
10.1002/aenm.201900552
10.1021/jacs.5b11878
10.1021/acs.macromol.8b01441
10.1002/ente.201900721
10.1021/acsnano.7b08196
10.1039/C9EE00945K
10.1016/j.desal.2020.114385
10.1039/C9RA09667A
10.1039/C9TA01576K
10.1002/adma.201502362
10.1016/j.joule.2019.06.009
10.1039/C3SM52295D
10.1021/acsami.8b01873
10.1039/C9SM01193E
10.1039/C9EE00692C
10.1039/C5SM01184A
10.1021/acs.est.8b03300
10.1021/acs.est.7b03040
10.1021/ja802054k
10.1093/nsr/nwz030
10.1002/adma.201501832
10.1002/aenm.201702884
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
7SR
7TB
7U5
8BQ
8FD
F28
FR3
JG9
L7M
DOI 10.1039/d0mh01259a
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2051-6355
EndPage 3195
ExternalDocumentID 10_1039_D0MH01259A
d0mh01259a
GroupedDBID 0R
4.4
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABGFH
ABRYZ
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CKLOX
EBS
ECGLT
EE0
EF-
HZ
H~N
J3I
O-G
O9-
RCNCU
RIG
RPMJG
RRC
RSCEA
0R~
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABPDG
ABXOH
AEFDR
AENGV
AETIL
AFLYV
AFOGI
AFRZK
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
RVUXY
7SR
7TB
7U5
8BQ
8FD
F28
FR3
JG9
L7M
ID FETCH-LOGICAL-c384t-bc62fc2dc4eea48fb03924ab1ab89f2cec46764108633247d6948b621bb75fa73
ISSN 2051-6347
IngestDate Sun Jun 29 16:24:28 EDT 2025
Thu Apr 24 23:04:09 EDT 2025
Tue Jul 01 01:36:13 EDT 2025
Sat Jan 08 03:48:12 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c384t-bc62fc2dc4eea48fb03924ab1ab89f2cec46764108633247d6948b621bb75fa73
Notes Electronic supplementary information (ESI) available. See DOI
10.1039/d0mh01259a
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3597-5460
0000-0002-1560-7329
0000-0003-4329-235X
0000-0002-1937-6812
0000-0002-1824-9563
PQID 2467777319
PQPubID 2047518
PageCount 9
ParticipantIDs crossref_citationtrail_10_1039_D0MH01259A
proquest_journals_2467777319
crossref_primary_10_1039_D0MH01259A
rsc_primary_d0mh01259a
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 20200101
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Materials horizons
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Liu (D0MH01259A-(cit52)/*[position()=1]) 2019; 7
Yin (D0MH01259A-(cit38)/*[position()=1]) 2018; 10
Yang (D0MH01259A-(cit20)/*[position()=1]) 2018; 5
Zhou (D0MH01259A-(cit11)/*[position()=1]) 2016; 10
Finnerty (D0MH01259A-(cit14)/*[position()=1]) 2017; 51
Kuang (D0MH01259A-(cit19)/*[position()=1]) 2019; 31
Xu (D0MH01259A-(cit12)/*[position()=1]) 2019; 5
Batys (D0MH01259A-(cit36)/*[position()=1]) 2019; 15
Zhang (D0MH01259A-(cit23)/*[position()=1]) 2015; 92
Zhang (D0MH01259A-(cit45)/*[position()=1]) 2017; 121
Wu (D0MH01259A-(cit7)/*[position()=1]) 2019; 9
Bae (D0MH01259A-(cit10)/*[position()=1]) 2015; 6
Li (D0MH01259A-(cit43)/*[position()=1]) 2019; 3
Elimelech (D0MH01259A-(cit2)/*[position()=1]) 2011; 333
Zhu (D0MH01259A-(cit41)/*[position()=1]) 2019; 11
Ito (D0MH01259A-(cit6)/*[position()=1]) 2015; 27
Zhao (D0MH01259A-(cit29)/*[position()=1]) 2020; 5
Werber (D0MH01259A-(cit1)/*[position()=1]) 2016; 1
Zeng (D0MH01259A-(cit13)/*[position()=1]) 2019; 9
He (D0MH01259A-(cit18)/*[position()=1]) 2019; 12
Li (D0MH01259A-(cit47)/*[position()=1]) 2020; 21
Zhu (D0MH01259A-(cit39)/*[position()=1]) 2018; 10
Gao (D0MH01259A-(cit53)/*[position()=1]) 2019; 3
Hu (D0MH01259A-(cit22)/*[position()=1]) 2019; 7
Wang (D0MH01259A-(cit32)/*[position()=1]) 2014; 47
Wang (D0MH01259A-(cit9)/*[position()=1]) 2019; 31
Xu (D0MH01259A-(cit4)/*[position()=1]) 2017; 29
Zhao (D0MH01259A-(cit25)/*[position()=1]) 2018; 13
Li (D0MH01259A-(cit5)/*[position()=1]) 2016; 113
Hu (D0MH01259A-(cit26)/*[position()=1]) 2020; 8
Yang (D0MH01259A-(cit40)/*[position()=1]) 2018; 12
Zhao (D0MH01259A-(cit49)/*[position()=1]) 2020; 482
Xu (D0MH01259A-(cit21)/*[position()=1]) 2018; 8
Demir (D0MH01259A-(cit48)/*[position()=1]) 2020; 191
Ghasemi (D0MH01259A-(cit3)/*[position()=1]) 2014; 5
Shi (D0MH01259A-(cit51)/*[position()=1]) 2018; 52
Han (D0MH01259A-(cit50)/*[position()=1]) 2020; 10
Zhou (D0MH01259A-(cit42)/*[position()=1]) 2019; 6
Zhou (D0MH01259A-(cit24)/*[position()=1]) 2019; 52
Zhou (D0MH01259A-(cit28)/*[position()=1]) 2019; 5
Zhang (D0MH01259A-(cit8)/*[position()=1]) 2015; 27
Xia (D0MH01259A-(cit15)/*[position()=1]) 2019; 12
Fu (D0MH01259A-(cit44)/*[position()=1]) 2016; 138
Demir (D0MH01259A-(cit46)/*[position()=1]) 2019; 1
Xiong (D0MH01259A-(cit30)/*[position()=1]) 2014; 10
Wu (D0MH01259A-(cit16)/*[position()=1]) 2020; 11
Schlenoff (D0MH01259A-(cit31)/*[position()=1]) 2008; 130
Schlenoff (D0MH01259A-(cit34)/*[position()=1]) 2019; 52
Batys (D0MH01259A-(cit35)/*[position()=1]) 2018; 51
Ni (D0MH01259A-(cit17)/*[position()=1]) 2018; 11
Zhang (D0MH01259A-(cit37)/*[position()=1]) 2015; 11
Sun (D0MH01259A-(cit27)/*[position()=1]) 2019; 29
Zhu (D0MH01259A-(cit33)/*[position()=1]) 2016; 95
References_xml – volume: 9
  start-page: 1901286
  year: 2019
  ident: D0MH01259A-(cit7)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901286
– volume: 13
  start-page: 489
  year: 2018
  ident: D0MH01259A-(cit25)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0097-z
– volume: 191
  start-page: 122253
  year: 2020
  ident: D0MH01259A-(cit48)/*[position()=1]
  publication-title: Polymer
  doi: 10.1016/j.polymer.2020.122253
– volume: 11
  start-page: 1510
  year: 2018
  ident: D0MH01259A-(cit17)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00220G
– volume: 52
  start-page: 9149
  year: 2019
  ident: D0MH01259A-(cit34)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.9b01755
– volume: 1
  start-page: 3027
  year: 2019
  ident: D0MH01259A-(cit46)/*[position()=1]
  publication-title: ACS Appl. Polym. Mater.
  doi: 10.1021/acsapm.9b00709
– volume: 7
  start-page: 2581
  year: 2019
  ident: D0MH01259A-(cit52)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA10227A
– volume: 92
  start-page: 052403
  year: 2015
  ident: D0MH01259A-(cit23)/*[position()=1]
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.92.052403
– volume: 5
  start-page: 4449
  year: 2014
  ident: D0MH01259A-(cit3)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5449
– volume: 31
  start-page: 1900498
  year: 2019
  ident: D0MH01259A-(cit19)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900498
– volume: 47
  start-page: 3108
  year: 2014
  ident: D0MH01259A-(cit32)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma500500q
– volume: 333
  start-page: 712
  year: 2011
  ident: D0MH01259A-(cit2)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1200488
– volume: 1
  start-page: 1
  year: 2016
  ident: D0MH01259A-(cit1)/*[position()=1]
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.18
– volume: 10
  start-page: 393
  year: 2016
  ident: D0MH01259A-(cit11)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2016.75
– volume: 5
  start-page: 1
  year: 2020
  ident: D0MH01259A-(cit29)/*[position()=1]
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-019-0173-5
– volume: 5
  start-page: eaaw7013
  year: 2019
  ident: D0MH01259A-(cit12)/*[position()=1]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaw7013
– volume: 121
  start-page: 322
  year: 2017
  ident: D0MH01259A-(cit45)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcb.6b12315
– volume: 11
  start-page: 35005
  year: 2019
  ident: D0MH01259A-(cit41)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b12806
– volume: 113
  start-page: 13953
  year: 2016
  ident: D0MH01259A-(cit5)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1613031113
– volume: 95
  start-page: 9
  year: 2016
  ident: D0MH01259A-(cit33)/*[position()=1]
  publication-title: Polymer
  doi: 10.1016/j.polymer.2016.04.043
– volume: 29
  start-page: 1901312
  year: 2019
  ident: D0MH01259A-(cit27)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201901312
– volume: 52
  start-page: 3244
  year: 2019
  ident: D0MH01259A-(cit24)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00455
– volume: 31
  start-page: 1807716
  year: 2019
  ident: D0MH01259A-(cit9)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807716
– volume: 10
  start-page: 10998
  year: 2018
  ident: D0MH01259A-(cit38)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b01629
– volume: 21
  start-page: 2087
  year: 2020
  ident: D0MH01259A-(cit47)/*[position()=1]
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.0c00062
– volume: 6
  start-page: 1
  year: 2015
  ident: D0MH01259A-(cit10)/*[position()=1]
  publication-title: Nat. Commun.
– volume: 29
  start-page: 1606762
  year: 2017
  ident: D0MH01259A-(cit4)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606762
– volume: 5
  start-page: eaaw5484
  year: 2019
  ident: D0MH01259A-(cit28)/*[position()=1]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaw5484
– volume: 5
  start-page: 1143
  year: 2018
  ident: D0MH01259A-(cit20)/*[position()=1]
  publication-title: Mater. Horiz.
  doi: 10.1039/C8MH00386F
– volume: 11
  start-page: 1
  year: 2020
  ident: D0MH01259A-(cit16)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13993-7
– volume: 3
  start-page: 1800117
  year: 2019
  ident: D0MH01259A-(cit53)/*[position()=1]
  publication-title: Glob. Chall.
  doi: 10.1002/gch2.201800117
– volume: 9
  start-page: 1900552
  year: 2019
  ident: D0MH01259A-(cit13)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900552
– volume: 138
  start-page: 980
  year: 2016
  ident: D0MH01259A-(cit44)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b11878
– volume: 51
  start-page: 8268
  year: 2018
  ident: D0MH01259A-(cit35)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.8b01441
– volume: 8
  start-page: 1900721
  year: 2020
  ident: D0MH01259A-(cit26)/*[position()=1]
  publication-title: Energy Technol.
  doi: 10.1002/ente.201900721
– volume: 12
  start-page: 829
  year: 2018
  ident: D0MH01259A-(cit40)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b08196
– volume: 12
  start-page: 1558
  year: 2019
  ident: D0MH01259A-(cit18)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00945K
– volume: 482
  start-page: 114385
  year: 2020
  ident: D0MH01259A-(cit49)/*[position()=1]
  publication-title: Desalination
  doi: 10.1016/j.desal.2020.114385
– volume: 10
  start-page: 2507
  year: 2020
  ident: D0MH01259A-(cit50)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C9RA09667A
– volume: 7
  start-page: 15333
  year: 2019
  ident: D0MH01259A-(cit22)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA01576K
– volume: 27
  start-page: 4889
  year: 2015
  ident: D0MH01259A-(cit8)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502362
– volume: 3
  start-page: 1798
  year: 2019
  ident: D0MH01259A-(cit43)/*[position()=1]
  publication-title: Joule
  doi: 10.1016/j.joule.2019.06.009
– volume: 10
  start-page: 2124
  year: 2014
  ident: D0MH01259A-(cit30)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/C3SM52295D
– volume: 10
  start-page: 13685
  year: 2018
  ident: D0MH01259A-(cit39)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b01873
– volume: 15
  start-page: 7823
  year: 2019
  ident: D0MH01259A-(cit36)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/C9SM01193E
– volume: 12
  start-page: 1840
  year: 2019
  ident: D0MH01259A-(cit15)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00692C
– volume: 11
  start-page: 7392
  year: 2015
  ident: D0MH01259A-(cit37)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/C5SM01184A
– volume: 52
  start-page: 11822
  year: 2018
  ident: D0MH01259A-(cit51)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b03300
– volume: 51
  start-page: 11701
  year: 2017
  ident: D0MH01259A-(cit14)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b03040
– volume: 130
  start-page: 13589
  year: 2008
  ident: D0MH01259A-(cit31)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja802054k
– volume: 6
  start-page: 562
  year: 2019
  ident: D0MH01259A-(cit42)/*[position()=1]
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwz030
– volume: 27
  start-page: 4302
  year: 2015
  ident: D0MH01259A-(cit6)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501832
– volume: 8
  start-page: 1702884
  year: 2018
  ident: D0MH01259A-(cit21)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702884
SSID ssj0001345080
Score 2.5470815
Snippet Solar-powered water desalination has been considered as one of the most promising solutions to alleviate clean water scarcity. In concentrated brine, the...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3187
SubjectTerms Brines
Desalination
Evaporation rate
Hydrogels
Molecular dynamics
Polyanilines
Polyelectrolytes
Seawater
Solar energy
Thermal management
Vaporizers
Title Accelerating solar desalination in brine through ion activated hierarchically porous polyion complex hydrogels
URI https://www.proquest.com/docview/2467777319
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVoe4ED4qtioSBLcEGrlF3bcZJjRIsW1HLaStwi23G6kdqkTVOJ9tczdhzHlRYJ2EO0chwryXuZGY_HMwh9FAnoFK3SSGYAAyurMjJWdcRUxUoNbULbbJ8_-OqMff8ZBwvtdndJLw_V_dZ9Jf-DKrQBrmaX7D8g6weFBvgP-MIREIbjX2GcKwVaw2BonAJmkjov9Y0we2zHGEZpdvf5ajw29ljZimZgaJoy2HYhAXAyTo62M_GwV-3Fnelng831r_nmruza8yHrsrdjT0U_POB803b1_ejzsx7oW2sQ6-ZctpO7fhApJ_V1QMcjfVl3btGj9gPkQ3SxdirVeSTIIvBIWMFF4EOPOB0yaR7qsG1IyTtK3iQkGAnEKAiaJFDJICbireJ-QU221HJxuQE9G2eBUvOhhtPJHbRHYC4B0nsvP15_O5lccZSBmWq8cf7Ox0S2NPs8DfDQdJnmIzvdWCzGGiXrZ-ipm03gfKDGc_RINy_QkyDH5EvUhCTBliQ4JAmuG2xJgh1JsGn0JMEPSYIHkmBHEuxIgj1JXqGzr8frL6vIFdmIFE1ZH0nFSaVIqZjWgqWVhGcmTMilkGlWEaUVqFLOTEEuCsZ3UvKMpZKTpZRJXImE7qPdpm30a4QJB9s24Uoss4pRnWQSLKSE8LSiCxHzdIY-je-vUC4DvSmEclHYSAiaFUeL05V91_kMffB9r4a8K1t7HYwwFO67vCkI3DD8gDQztA_Q-OsnJN_86cRb9Hhi9AHa7btb_Q6szl6-d6z5DY64h3Y
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerating+solar+desalination+in+brine+through+ion+activated+hierarchically+porous+polyion+complex+hydrogels&rft.jtitle=Materials+horizons&rft.au=Zhu%2C+Fengbo&rft.au=Wang%2C+Liqian&rft.au=Demir%2C+Baris&rft.au=An%2C+Meng&rft.date=2020-01-01&rft.issn=2051-6347&rft.eissn=2051-6355&rft.volume=7&rft.issue=12&rft.spage=3187&rft.epage=3195&rft_id=info:doi/10.1039%2Fd0mh01259a&rft.externalDocID=d0mh01259a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-6347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-6347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-6347&client=summon