Automatic view planning for cardiac MRI acquisition
Conventional cardiac MRI acquisition involves a multi-step approach, requiring a few double-oblique localizers in order to locate the heart and prescribe long- and short-axis views of the heart. This approach is operator-dependent and time-consuming. We propose a new approach to automating and accel...
Saved in:
Published in | Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention Vol. 14; no. Pt 3; p. 479 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
2011
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | Conventional cardiac MRI acquisition involves a multi-step approach, requiring a few double-oblique localizers in order to locate the heart and prescribe long- and short-axis views of the heart. This approach is operator-dependent and time-consuming. We propose a new approach to automating and accelerating the acquisition process to improve the clinical workflow. We capture a highly accelerated static 3D full-chest volume through parallel imaging within one breath-hold. The left ventricle is localized and segmented, including left ventricle outflow tract. A number of cardiac landmarks are then detected to anchor the cardiac chambers and calculate standard 2-, 3-, and 4-chamber long-axis views along with a short-axis stack. Learning-based algorithms are applied to anatomy segmentation and anchor detection. The proposed algorithm is evaluated on 173 localizer acquisitions. The entire view planning is fully automatic and takes less than 10 seconds in our experiments. |
---|---|
AbstractList | Conventional cardiac MRI acquisition involves a multi-step approach, requiring a few double-oblique localizers in order to locate the heart and prescribe long- and short-axis views of the heart. This approach is operator-dependent and time-consuming. We propose a new approach to automating and accelerating the acquisition process to improve the clinical workflow. We capture a highly accelerated static 3D full-chest volume through parallel imaging within one breath-hold. The left ventricle is localized and segmented, including left ventricle outflow tract. A number of cardiac landmarks are then detected to anchor the cardiac chambers and calculate standard 2-, 3-, and 4-chamber long-axis views along with a short-axis stack. Learning-based algorithms are applied to anatomy segmentation and anchor detection. The proposed algorithm is evaluated on 173 localizer acquisitions. The entire view planning is fully automatic and takes less than 10 seconds in our experiments. |
Author | Mueller, Edgar Haye, Carmel Kellman, Peter Kroeker, Randall Jolly, Marie-Pierre Schmidt, Michaela Comaniciu, Dorin Lu, Xiaoguang Speier, Peter Bi, Xiaoming Guehring, Jens Georgescu, Bogdan |
Author_xml | – sequence: 1 givenname: Xiaoguang surname: Lu fullname: Lu, Xiaoguang email: xiaoguang.lu@siemens.com organization: Image Analytics and Informatics, Siemens Corporate Research, Princeton, NJ, USA. xiaoguang.lu@siemens.com – sequence: 2 givenname: Marie-Pierre surname: Jolly fullname: Jolly, Marie-Pierre – sequence: 3 givenname: Bogdan surname: Georgescu fullname: Georgescu, Bogdan – sequence: 4 givenname: Carmel surname: Haye fullname: Haye, Carmel – sequence: 5 givenname: Peter surname: Speier fullname: Speier, Peter – sequence: 6 givenname: Michaela surname: Schmidt fullname: Schmidt, Michaela – sequence: 7 givenname: Xiaoming surname: Bi fullname: Bi, Xiaoming – sequence: 8 givenname: Randall surname: Kroeker fullname: Kroeker, Randall – sequence: 9 givenname: Dorin surname: Comaniciu fullname: Comaniciu, Dorin – sequence: 10 givenname: Peter surname: Kellman fullname: Kellman, Peter – sequence: 11 givenname: Edgar surname: Mueller fullname: Mueller, Edgar – sequence: 12 givenname: Jens surname: Guehring fullname: Guehring, Jens |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22003734$$D View this record in MEDLINE/PubMed |
BookMark | eNo1jstKxEAQRXuh-Bj9A5H-gdZKVb-yHAYfAyOC6DrUdHekYdKJmUTx7x1QN_dwNod7Lo5KX5IQVxXcVADutnZekbIaFZJFq2xj6hNxighAjvSZoOU89R1POcjPnL7ksONScnmXbT_KwGPMHOTTy1py-JjzPk-5LxfiuOXdPl3-cSHe7u9eV49q8_ywXi03KpDXk2KHXGlCiJpbrcF6HzgxG9CGLKBPtj7sQcER2Gg5sEm6Mi7yVlOLC3H92x3mbZdiM4y54_G7-X-PP6dTQSA |
CitedBy_id | crossref_primary_10_1002_mp_16692 crossref_primary_10_1002_mrm_29698 crossref_primary_10_1109_TMI_2022_3154599 crossref_primary_10_1148_ryai_2019180069 crossref_primary_10_3389_fcvm_2022_826283 crossref_primary_10_1007_s00259_021_05319_x crossref_primary_10_20517_2574_1209_2023_123 crossref_primary_10_2463_mrms_2013_0127 crossref_primary_10_1016_j_acra_2019_10_026 crossref_primary_10_1109_TBME_2018_2881952 crossref_primary_10_1109_TMI_2016_2597270 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1007/978-3-642-23626-6_59 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
ExternalDocumentID | 22003734 |
Genre | Journal Article |
GroupedDBID | CGR CUY CVF ECM EIF NPM |
ID | FETCH-LOGICAL-c384t-a72a14320d4af440688caeaa504536028e6902850407306d6aca5e4157dab43f2 |
IngestDate | Fri Sep 17 19:43:13 EDT 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c384t-a72a14320d4af440688caeaa504536028e6902850407306d6aca5e4157dab43f2 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007%2F978-3-642-23626-6_59.pdf |
PMID | 22003734 |
ParticipantIDs | pubmed_primary_22003734 |
PublicationCentury | 2000 |
PublicationDate | 2011-00-00 |
PublicationDateYYYYMMDD | 2011-01-01 |
PublicationDate_xml | – year: 2011 text: 2011-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention |
PublicationTitleAlternate | Med Image Comput Comput Assist Interv |
PublicationYear | 2011 |
Score | 2.1300426 |
Snippet | Conventional cardiac MRI acquisition involves a multi-step approach, requiring a few double-oblique localizers in order to locate the heart and prescribe long-... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 479 |
SubjectTerms | Algorithms Automation Diagnostic Imaging - methods Heart - anatomy & histology Heart Ventricles Humans Imaging, Three-Dimensional - methods Magnetic Resonance Imaging - methods Models, Statistical Myocardium - pathology Pattern Recognition, Automated - methods |
Title | Automatic view planning for cardiac MRI acquisition |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22003734 |
Volume | 14 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBbS7rLLsGLvF3zYLVDg2rKUHrNgRTIgRTC0QG4B9UiRQx7F7MP2S_tzSsqS7abdsO1i2JZt2uZniaI_kox9dqdSQaoVhxRWXGTOcV1oy4dnUMAQjEwVBTjPLuTkSnxbFIte77bDWqpKPTC_Ho0r-R-t4j7UK0XJ_oNmm4viDlxH_eISNYzLv9LxqCp3dcpVH3-yDwWIPHXQeNWb_uz7tA_mplrX5KyuMRp_0qw3RNwxvr5DjFk0odoDR-OakGB9YomGHUmOBFTgeDTtDwaDA79iG0VIvyKilKmXMr4nJdaU4KMoZdqR0pCFKgLCYg276wrCSOtJP6FM9ozm-3yOA3zL5K19_T-MP_XL7tq2X8EEfrrAddmEgAHb-nEbt0fst0UHn_Oyn3f6YVFXqHkwPnQpIZICkygbD5fL4t7h-A73G4-ZjLh7qna3_rn1IGt3bDpiR2pI_e_FfNaJ3HzsDigvdTjrYI7jbZ3L5-xZmKQkoxpxJ6znti9Y3qAtIbQlEW0Joi0JaEsQbUkHbS_Z1fnXy_GEh5Ib3ORDUXJQGaAFnaVWwEoIqkhkwAEUaPnnEm1RJyndD27S0CCtBAOFQyNQWdAiX2Wv2PF2t3VvWCJTSA0Rq85OrRBCaaGdtFrIIlPCZNlb9rp-xuW-zquyjE__7rct79nTFgsf2JMVfsjuI1qFpf7kX_EdphRkuw |
link.rule.ids | 783 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+view+planning+for+cardiac+MRI+acquisition&rft.jtitle=Medical+image+computing+and+computer-assisted+intervention+%3A+MICCAI+...+International+Conference+on+Medical+Image+Computing+and+Computer-Assisted+Intervention&rft.au=Lu%2C+Xiaoguang&rft.au=Jolly%2C+Marie-Pierre&rft.au=Georgescu%2C+Bogdan&rft.au=Haye%2C+Carmel&rft.date=2011-01-01&rft.volume=14&rft.issue=Pt+3&rft.spage=479&rft_id=info:doi/10.1007%2F978-3-642-23626-6_59&rft_id=info%3Apmid%2F22003734&rft_id=info%3Apmid%2F22003734&rft.externalDocID=22003734 |