Accuracy of Liver Fat Quantification With Advanced CT, MRI, and Ultrasound Techniques: Prospective Comparison With MR Spectroscopy
The purpose of this study was to prospectively evaluate the accuracy of proton-density fat-fraction, single- and dual-energy CT (SECT and DECT), gray-scale ultrasound (US), and US shear-wave elastography (US-SWE) in the quantification of hepatic steatosis with MR spectroscopy (MRS) as the reference...
Saved in:
Published in | American journal of roentgenology (1976) Vol. 208; no. 1; pp. 92 - 100 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.01.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The purpose of this study was to prospectively evaluate the accuracy of proton-density fat-fraction, single- and dual-energy CT (SECT and DECT), gray-scale ultrasound (US), and US shear-wave elastography (US-SWE) in the quantification of hepatic steatosis with MR spectroscopy (MRS) as the reference standard.
Fifty adults who did not have symptoms (23 men, 27 women; mean age, 57 ± 5 years; body mass index, 27 ± 5) underwent liver imaging with un-enhanced SECT, DECT, gray-scale US, US-SWE, proton-density fat-fraction MRI, and MRS for this prospective trial. MRS voxels for the reference standard were colocalized with all other modalities under investigation. For SECT (120 kVp), attenuation values were recorded. For rapid-switching DECT (80/140 kVp), monochromatic images (70-140 keV) and fat density-derived material decomposition images were reconstructed. For proton-density fat fraction MRI, a quantitative chemical shift-encoded method was used. For US, echogenicity was evaluated on a qualitative 0-3 scale. Quantitative US shear-wave velocities were also recorded. Data were analyzed by linear regression for each technique compared with MRS.
There was excellent correlation between MRS and both proton-density fat-fraction MRI (r
= 0.992; slope, 0.974; intercept, -0.943) and SECT (r
= 0.856; slope, -0.559; intercept, 35.418). DECT fat attenuation had moderate correlation with MRS measurements (r
= 0.423; slope, 0.034; intercept, 8.459). There was good correlation between qualitative US echogenicity and MRS measurements with a weighted kappa value of 0.82. US-SWE velocity did not have reliable correlation with MRS measurements (r
= 0.004; slope, 0.069; intercept, 6.168).
Quantitative MRI proton-density fat fraction and SECT fat attenuation have excellent linear correlation with MRS measurements and can serve as accurate noninvasive biomarkers for quantifying steatosis. Material decomposition with DECT does not improve the accuracy of fat quantification over conventional SECT attenuation. US-SWE has poor accuracy for liver fat quantification. |
---|---|
AbstractList | OBJECTIVEThe purpose of this study was to prospectively evaluate the accuracy of proton-density fat-fraction, single- and dual-energy CT (SECT and DECT), gray-scale ultrasound (US), and US shear-wave elastography (US-SWE) in the quantification of hepatic steatosis with MR spectroscopy (MRS) as the reference standard.SUBJECTS AND METHODSFifty adults who did not have symptoms (23 men, 27 women; mean age, 57 ± 5 years; body mass index, 27 ± 5) underwent liver imaging with un-enhanced SECT, DECT, gray-scale US, US-SWE, proton-density fat-fraction MRI, and MRS for this prospective trial. MRS voxels for the reference standard were colocalized with all other modalities under investigation. For SECT (120 kVp), attenuation values were recorded. For rapid-switching DECT (80/140 kVp), monochromatic images (70-140 keV) and fat density-derived material decomposition images were reconstructed. For proton-density fat fraction MRI, a quantitative chemical shift-encoded method was used. For US, echogenicity was evaluated on a qualitative 0-3 scale. Quantitative US shear-wave velocities were also recorded. Data were analyzed by linear regression for each technique compared with MRS.RESULTSThere was excellent correlation between MRS and both proton-density fat-fraction MRI (r2 = 0.992; slope, 0.974; intercept, -0.943) and SECT (r2 = 0.856; slope, -0.559; intercept, 35.418). DECT fat attenuation had moderate correlation with MRS measurements (r2 = 0.423; slope, 0.034; intercept, 8.459). There was good correlation between qualitative US echogenicity and MRS measurements with a weighted kappa value of 0.82. US-SWE velocity did not have reliable correlation with MRS measurements (r2 = 0.004; slope, 0.069; intercept, 6.168).CONCLUSIONQuantitative MRI proton-density fat fraction and SECT fat attenuation have excellent linear correlation with MRS measurements and can serve as accurate noninvasive biomarkers for quantifying steatosis. Material decomposition with DECT does not improve the accuracy of fat quantification over conventional SECT attenuation. US-SWE has poor accuracy for liver fat quantification. The purpose of this study was to prospectively evaluate the accuracy of proton-density fat-fraction, single- and dual-energy CT (SECT and DECT), gray-scale ultrasound (US), and US shear-wave elastography (US-SWE) in the quantification of hepatic steatosis with MR spectroscopy (MRS) as the reference standard. Fifty adults who did not have symptoms (23 men, 27 women; mean age, 57 ± 5 years; body mass index, 27 ± 5) underwent liver imaging with un-enhanced SECT, DECT, gray-scale US, US-SWE, proton-density fat-fraction MRI, and MRS for this prospective trial. MRS voxels for the reference standard were colocalized with all other modalities under investigation. For SECT (120 kVp), attenuation values were recorded. For rapid-switching DECT (80/140 kVp), monochromatic images (70-140 keV) and fat density-derived material decomposition images were reconstructed. For proton-density fat fraction MRI, a quantitative chemical shift-encoded method was used. For US, echogenicity was evaluated on a qualitative 0-3 scale. Quantitative US shear-wave velocities were also recorded. Data were analyzed by linear regression for each technique compared with MRS. There was excellent correlation between MRS and both proton-density fat-fraction MRI (r = 0.992; slope, 0.974; intercept, -0.943) and SECT (r = 0.856; slope, -0.559; intercept, 35.418). DECT fat attenuation had moderate correlation with MRS measurements (r = 0.423; slope, 0.034; intercept, 8.459). There was good correlation between qualitative US echogenicity and MRS measurements with a weighted kappa value of 0.82. US-SWE velocity did not have reliable correlation with MRS measurements (r = 0.004; slope, 0.069; intercept, 6.168). Quantitative MRI proton-density fat fraction and SECT fat attenuation have excellent linear correlation with MRS measurements and can serve as accurate noninvasive biomarkers for quantifying steatosis. Material decomposition with DECT does not improve the accuracy of fat quantification over conventional SECT attenuation. US-SWE has poor accuracy for liver fat quantification. |
Author | Reeder, Scott B. Pickhardt, Perry J. Chen, Guang-Hong Hernando, Diego Zagzebski, James A. Kliewer, Mark A. Kramer, Harald |
AuthorAffiliation | 3 Department of Medical Physics, University of Wisconsin—Madison, Madison, WI 2 Department of Radiology, University of Wisconsin—Madison, Madison, WI 1 Department of Clinical Radiology, University Hospitals Munich, Ludwig Maximilians University, Marchioninistr 15, 81377 Munich, Germany 4 Departments of Biomedical Engineering, Medicine, and Emergency Medicine, University of Wisconsin—Madison, Madison, WI |
AuthorAffiliation_xml | – name: 4 Departments of Biomedical Engineering, Medicine, and Emergency Medicine, University of Wisconsin—Madison, Madison, WI – name: 3 Department of Medical Physics, University of Wisconsin—Madison, Madison, WI – name: 2 Department of Radiology, University of Wisconsin—Madison, Madison, WI – name: 1 Department of Clinical Radiology, University Hospitals Munich, Ludwig Maximilians University, Marchioninistr 15, 81377 Munich, Germany |
Author_xml | – sequence: 1 givenname: Harald surname: Kramer fullname: Kramer, Harald organization: Department of Clinical Radiology, University Hospitals Munich, Ludwig Maximilians University, Marchioninistr 15, 81377 Munich, Germany., Department of Radiology, University of Wisconsin—Madison, Madison, WI – sequence: 2 givenname: Perry J. surname: Pickhardt fullname: Pickhardt, Perry J. organization: Department of Radiology, University of Wisconsin—Madison, Madison, WI – sequence: 3 givenname: Mark A. surname: Kliewer fullname: Kliewer, Mark A. organization: Department of Radiology, University of Wisconsin—Madison, Madison, WI – sequence: 4 givenname: Diego surname: Hernando fullname: Hernando, Diego organization: Department of Radiology, University of Wisconsin—Madison, Madison, WI – sequence: 5 givenname: Guang-Hong surname: Chen fullname: Chen, Guang-Hong organization: Department of Radiology, University of Wisconsin—Madison, Madison, WI., Department of Medical Physics, University of Wisconsin—Madison, Madison, WI – sequence: 6 givenname: James A. surname: Zagzebski fullname: Zagzebski, James A. organization: Department of Radiology, University of Wisconsin—Madison, Madison, WI., Department of Medical Physics, University of Wisconsin—Madison, Madison, WI – sequence: 7 givenname: Scott B. surname: Reeder fullname: Reeder, Scott B. organization: Department of Radiology, University of Wisconsin—Madison, Madison, WI., Department of Medical Physics, University of Wisconsin—Madison, Madison, WI., Departments of Biomedical Engineering, Medicine, and Emergency Medicine, University of Wisconsin—Madison, Madison, WI |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27726414$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1v0zAYxi00xLqNG2fkI4dm-CtOwgGpqhgMddooneBmOY5NjVI7s51KvfKX424rAjTLki29z_t77Oc9AUfOOw3AK4zOCcHs7ezz8hzzvEtePgMTXDJeUMzwEZggynFRI_r9GJzE-BMhVNVN9QIck6oinGE2Ab9mSo1Bqh30Bi7sVgd4IRP8MkqXrLFKJusd_GbTGs66rXRKd3C-msKr5eUUStfB2z4FGf2Yryut1s7ejTq-gzfBx0GrlIlw7jeDDDYeQFdL-HVfyxLlh90ZeG5kH_XLx_MU3F58WM0_FYvrj5fz2aJQtGapkEi3LWENxaTkeRlkKtNwwqSUvDO8Rryj0hCkG00VblVtKs5IV-OG04619BS8f-AOY7vRndIuv7wXQ7AbGXbCSyv-rTi7Fj_8VpQEMVbyDHjzCAh-_8skNjYq3ffSaT9GgWta0hpjXGXp67-9_pgcgs8C8iBQOYUYtBHKpvuws7XtBUZiP12RpyswF_fTzU3T_5oO3CflvwHsSqcm |
CitedBy_id | crossref_primary_10_1097_MCG_0000000000001380 crossref_primary_10_4254_wjh_v10_i8_530 crossref_primary_10_1016_j_crad_2018_01_018 crossref_primary_10_1088_1361_6560_ab7503 crossref_primary_10_1007_s00761_023_01415_9 crossref_primary_10_1016_j_jhep_2018_03_018 crossref_primary_10_1002_mrm_29310 crossref_primary_10_1007_s00256_021_03979_2 crossref_primary_10_1142_S1793545822300142 crossref_primary_10_1002_oby_23865 crossref_primary_10_2214_AJR_23_29651 crossref_primary_10_3348_kjr_2021_0112 crossref_primary_10_1016_j_rgmx_2020_04_002 crossref_primary_10_2214_AJR_20_24415 crossref_primary_10_3390_app9040661 crossref_primary_10_4329_wjr_v15_i10_293 crossref_primary_10_1002_jum_15154 crossref_primary_10_1007_s00261_024_04448_9 crossref_primary_10_1002_mp_14241 crossref_primary_10_1007_s00330_020_06757_1 crossref_primary_10_1007_s00261_021_03266_7 crossref_primary_10_1007_s00261_019_01960_1 crossref_primary_10_1186_s43055_019_0061_4 crossref_primary_10_1002_mrm_29021 crossref_primary_10_1002_lt_25733 crossref_primary_10_1111_ctr_14786 crossref_primary_10_1016_j_clinimag_2021_02_039 crossref_primary_10_1371_journal_pone_0202666 crossref_primary_10_1148_radiol_2017170550 crossref_primary_10_3348_kjr_2020_1262 crossref_primary_10_1007_s00330_017_5189_x crossref_primary_10_12998_wjcc_v10_i25_8906 crossref_primary_10_1016_j_rcl_2022_05_006 crossref_primary_10_1097_MPA_0000000000001252 crossref_primary_10_3390_metabo11090625 crossref_primary_10_1016_j_rxeng_2022_06_003 crossref_primary_10_1590_1806_9282_20210760 crossref_primary_10_3390_diagnostics11050842 crossref_primary_10_1371_journal_pone_0314542 crossref_primary_10_1007_s11605_017_3562_3 crossref_primary_10_1007_s12094_020_02514_4 crossref_primary_10_1038_s41598_024_62887_2 crossref_primary_10_3389_fphys_2017_00906 crossref_primary_10_3390_diagnostics10060431 crossref_primary_10_2174_1573405614666181029115243 crossref_primary_10_4239_wjd_v13_i9_668 crossref_primary_10_1016_j_ejrad_2017_10_026 crossref_primary_10_1016_j_jceh_2021_02_008 crossref_primary_10_3390_diagnostics13101673 crossref_primary_10_1111_joim_20053 crossref_primary_10_1371_journal_pone_0246837 crossref_primary_10_1097_RLI_0000000000000858 crossref_primary_10_1177_87564793221112107 crossref_primary_10_1016_j_ejmp_2024_103210 crossref_primary_10_1007_s00261_020_02783_1 crossref_primary_10_1007_s00261_024_04407_4 crossref_primary_10_1007_s00261_022_03434_3 crossref_primary_10_1016_j_ultrasmedbio_2023_06_020 crossref_primary_10_1016_j_acra_2018_03_029 crossref_primary_10_2147_DMSO_S349153 crossref_primary_10_1097_j_pbj_0000000000000228 crossref_primary_10_1148_radiol_2019190467 crossref_primary_10_7759_cureus_75340 crossref_primary_10_1097_RTI_0000000000000393 crossref_primary_10_1186_s12876_023_02717_3 crossref_primary_10_1186_s43066_023_00269_5 crossref_primary_10_1259_bjr_20170378 crossref_primary_10_1148_radiol_240038 crossref_primary_10_3179_jjmu_JJMU_R_222 crossref_primary_10_1055_s_0043_1763483 crossref_primary_10_1016_j_nut_2022_111736 crossref_primary_10_1088_1361_6560_ac4562 crossref_primary_10_3390_nu11030544 crossref_primary_10_1148_rg_2021200056 crossref_primary_10_3390_biomedicines8090298 crossref_primary_10_1016_j_acra_2019_04_001 crossref_primary_10_1097_RCT_0000000000001193 crossref_primary_10_1002_edm2_335 crossref_primary_10_1016_j_ejrad_2020_109227 crossref_primary_10_1016_j_jrras_2023_100658 crossref_primary_10_1016_j_rx_2022_06_007 crossref_primary_10_1002_hep_29797 crossref_primary_10_1016_j_ejrad_2021_109741 crossref_primary_10_1016_j_ejrad_2023_110734 crossref_primary_10_1097_TXD_0000000000001431 crossref_primary_10_1007_s00330_019_06076_0 crossref_primary_10_1016_j_jfma_2024_04_012 crossref_primary_10_1161_CIRCIMAGING_117_005447 crossref_primary_10_1186_s43066_022_00216_w crossref_primary_10_1007_s00261_022_03482_9 crossref_primary_10_1055_s_0040_1708824 crossref_primary_10_1007_s00330_023_09731_9 crossref_primary_10_2214_AJR_16_17741 crossref_primary_10_1016_j_ejrad_2024_111552 crossref_primary_10_1186_s41747_023_00387_0 crossref_primary_10_1016_j_cld_2023_01_020 crossref_primary_10_1080_17474124_2019_1621164 crossref_primary_10_2214_AJR_21_26728 crossref_primary_10_35366_93885 crossref_primary_10_1097_RLI_0000000000000797 crossref_primary_10_1148_radiol_2021204288 crossref_primary_10_1016_j_mric_2021_05_002 crossref_primary_10_1007_s00261_017_1289_y crossref_primary_10_1016_j_pan_2024_10_005 crossref_primary_10_1007_s11427_023_2305_0 crossref_primary_10_3390_app13010432 crossref_primary_10_1097_HC9_0000000000000310 crossref_primary_10_1148_rg_240176 crossref_primary_10_1259_bjr_20170959 crossref_primary_10_1016_j_media_2023_102987 crossref_primary_10_3390_diagnostics10080557 crossref_primary_10_1186_s13244_021_01082_7 crossref_primary_10_1007_s10396_021_01136_9 crossref_primary_10_1210_jc_2017_02294 crossref_primary_10_1016_j_rgmxen_2018_05_024 crossref_primary_10_1007_s00261_020_02702_4 crossref_primary_10_1111_ctr_13013 crossref_primary_10_3389_fmed_2024_1425145 crossref_primary_10_1164_rccm_202203_0597OC crossref_primary_10_5812_jkums_142386 crossref_primary_10_1259_bjr_20201377 crossref_primary_10_2214_AJR_18_20947 crossref_primary_10_2214_AJR_20_22842 crossref_primary_10_1007_s44326_024_00025_y crossref_primary_10_1016_j_rgmxen_2020_04_004 crossref_primary_10_3348_kjr_2020_1343 crossref_primary_10_3390_nu11081830 crossref_primary_10_1016_j_rcl_2019_01_004 crossref_primary_10_1038_s41598_023_39390_1 crossref_primary_10_2147_JHC_S268288 crossref_primary_10_1016_j_rgmx_2018_05_007 crossref_primary_10_1016_j_ejrad_2021_109845 crossref_primary_10_1016_j_jacadv_2024_101175 crossref_primary_10_3390_medicina59030469 crossref_primary_10_1111_ctr_14339 crossref_primary_10_1007_s00330_023_09856_x crossref_primary_10_1055_s_0042_1742432 crossref_primary_10_4103_ijmr_IJMR_1777_18 crossref_primary_10_3390_medicina59030500 crossref_primary_10_2463_jjmrm_2023_1800 crossref_primary_10_1136_bmjopen_2021_057820 crossref_primary_10_1007_s00330_024_10660_4 crossref_primary_10_1148_radiol_241677 crossref_primary_10_1053_j_sult_2021_03_001 crossref_primary_10_1088_1361_6560_ac1023 crossref_primary_10_1016_j_ultrasmedbio_2019_03_021 crossref_primary_10_1002_hep_30672 crossref_primary_10_1111_1753_0407_13086 crossref_primary_10_3390_gastroent15030043 crossref_primary_10_1007_s00330_024_10816_2 crossref_primary_10_2214_AJR_17_19391 crossref_primary_10_1007_s42000_018_0012_x crossref_primary_10_1136_jim_2018_000722 crossref_primary_10_1016_j_jacr_2024_12_014 crossref_primary_10_1002_acm2_13368 crossref_primary_10_1002_mp_15038 crossref_primary_10_1007_s00247_024_06133_x crossref_primary_10_1016_j_ejrad_2024_111840 crossref_primary_10_1097_MD_0000000000038276 crossref_primary_10_2214_AJR_17_17812 crossref_primary_10_1016_j_xcrm_2022_100855 crossref_primary_10_1007_s40134_017_0226_8 crossref_primary_10_3390_nu12040891 crossref_primary_10_1016_j_jceh_2019_09_002 crossref_primary_10_1055_s_0041_1731964 crossref_primary_10_1055_a_1212_6017 crossref_primary_10_3348_kjr_2018_0557 crossref_primary_10_1016_j_jhep_2019_04_013 crossref_primary_10_1016_j_liver_2022_100091 |
Cites_doi | 10.1007/s10654-007-9181-7 10.1007/s00330-015-3703-6 10.1007/s00330-006-0517-6 10.1016/j.acra.2011.08.014 10.1097/RLI.0b013e3181df2afb 10.1002/mrm.22177 10.3748/wjg.v20.i23.7392 10.1016/j.mri.2014.10.001 10.1097/RLI.0b013e31824baff3 10.1097/RLI.0b013e31822b124c 10.1007/s00330-015-3724-1 10.1016/j.cld.2009.07.006 10.1016/S0168-8278(98)80228-6 10.1097/RLI.0b013e31820e1486 10.1097/RLI.0b013e318261fad0 10.1002/hep.22845 10.1002/hep.23135 10.1038/sj.ejcn.1602588 10.1148/radiology.153.1.6089263 10.1053/j.gastro.2005.03.084 10.1152/ajpendo.00064.2004 10.1002/mrm.20126 10.1002/hep.20466 10.1148/radiol.2015141779 10.1001/jama.295.13.1549 10.14366/usg.14003 10.1148/radiol.2303021331 10.2214/AJR.14.12457 10.1148/radiol.2511080666 10.1002/jmri.22514 10.1002/jmri.23741 10.1136/bmj.292.6512.13 10.1055/s-2007-985075 10.1053/j.gastro.2009.12.052 10.1002/mrm.21301 10.1097/00004728-198202000-00009 10.1002/jmri.21957 10.1002/mrm.23044 10.1111/j.1872-034X.2009.00620.x 10.1002/jmri.21090 10.1002/jmri.21809 10.1111/j.1478-3231.2008.01691.x 10.1002/jmri.22580 10.1148/radiol.10100708 10.1016/j.jhep.2012.12.005 10.1002/mrm.1910180211 10.1007/BF02570192 10.1097/RLI.0b013e3181da1343 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.2214/AJR.16.16565 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1546-3141 |
EndPage | 100 |
ExternalDocumentID | PMC5204456 27726414 10_2214_AJR_16_16565 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: K24 DK102595 – fundername: NIDDK NIH HHS grantid: R01 DK083380 – fundername: NIDDK NIH HHS grantid: R01 DK100651 – fundername: NIDDK NIH HHS grantid: R01 DK088925 |
GroupedDBID | --- -DD .55 .GJ 1CY 1KJ 23M 2WC 34G 39C 3O- 53G 5GY 5RE AAEJM AAWTL AAYXX ABOCM ADBBV AENEX AFFNX AI. AJJEV ALMA_UNASSIGNED_HOLDINGS BAWUL C1A CITATION CS3 DIK E3Z EBS EJD F5P GX1 H13 J5H L7B LSO MJL P2P SJN TR2 TRR TWZ UDS VH1 W2D W8F WH7 WOQ X7M YJK YQI YQJ ZGI ZVN ZXP ACRZS CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c384t-a0ebb24931256666f0f7f9624aaa6df6806d3af20e9e3c1bc8f7642d81963d4b3 |
ISSN | 0361-803X |
IngestDate | Thu Aug 21 18:35:44 EDT 2025 Fri Jul 11 03:14:23 EDT 2025 Thu Apr 03 06:57:30 EDT 2025 Tue Jul 01 01:22:26 EDT 2025 Thu Apr 24 23:01:21 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | CT fat quantification MRI ultrasound MR spectroscopy hepatic steatosis |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c384t-a0ebb24931256666f0f7f9624aaa6df6806d3af20e9e3c1bc8f7642d81963d4b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5204456 |
PMID | 27726414 |
PQID | 1835381117 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5204456 proquest_miscellaneous_1835381117 pubmed_primary_27726414 crossref_citationtrail_10_2214_AJR_16_16565 crossref_primary_10_2214_AJR_16_16565 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-01 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | American journal of roentgenology (1976) |
PublicationTitleAlternate | AJR Am J Roentgenol |
PublicationYear | 2017 |
References | Reeder SB (R27) 2011; 34 R21 R20 R23 R22 R25 R24 R26 R29 R28 Mendonça PR (R19) 2013; 16 R1 R2 R3 R4 R5 Radu C (R6) 2008; 17 R7 R8 R9 R30 R32 R31 R34 R33 R36 R38 R37 R39 R40 R43 R42 R45 R47 R46 R49 R48 Lupşor-Platon M (R16) 2014; 16 R50 Hernando D (R41) 2010; 63 R52 Springer F (R35) 2010; 45 R51 R10 R12 R11 R14 R13 R15 R18 R17 |
References_xml | – ident: R4 doi: 10.1007/s10654-007-9181-7 – ident: R48 doi: 10.1007/s00330-015-3703-6 – ident: R51 doi: 10.1007/s00330-006-0517-6 – ident: R24 doi: 10.1016/j.acra.2011.08.014 – volume: 45 start-page: 484 year: 2010 ident: R35 publication-title: Invest Radiol doi: 10.1097/RLI.0b013e3181df2afb – volume: 63 start-page: 79 year: 2010 ident: R41 publication-title: Magn Reson Med doi: 10.1002/mrm.22177 – ident: R46 doi: 10.3748/wjg.v20.i23.7392 – ident: R50 doi: 10.1016/j.mri.2014.10.001 – ident: R33 doi: 10.1097/RLI.0b013e31824baff3 – ident: R34 doi: 10.1097/RLI.0b013e31822b124c – ident: R12 doi: 10.1007/s00330-015-3724-1 – ident: R10 doi: 10.1016/j.cld.2009.07.006 – ident: R21 doi: 10.1016/S0168-8278(98)80228-6 – ident: R22 doi: 10.1097/RLI.0b013e31820e1486 – ident: R23 doi: 10.1097/RLI.0b013e318261fad0 – ident: R2 doi: 10.1002/hep.22845 – ident: R3 doi: 10.1002/hep.23135 – ident: R7 doi: 10.1038/sj.ejcn.1602588 – ident: R28 doi: 10.1148/radiology.153.1.6089263 – ident: R15 doi: 10.1053/j.gastro.2005.03.084 – volume: 17 start-page: 255 year: 2008 ident: R6 publication-title: J Gastrointestin Liver Dis – ident: R47 doi: 10.1152/ajpendo.00064.2004 – ident: R31 doi: 10.1002/mrm.20126 – ident: R1 doi: 10.1002/hep.20466 – ident: R52 doi: 10.1148/radiol.2015141779 – ident: R5 doi: 10.1001/jama.295.13.1549 – ident: R18 doi: 10.14366/usg.14003 – ident: R45 doi: 10.1148/radiol.2303021331 – ident: R39 doi: 10.2214/AJR.14.12457 – ident: R38 doi: 10.1148/radiol.2511080666 – ident: R37 doi: 10.1002/jmri.22514 – volume: 16 start-page: 324 year: 2013 ident: R19 publication-title: Med Image Comput Comput Assist Interv – ident: R26 doi: 10.1002/jmri.23741 – ident: R17 doi: 10.1136/bmj.292.6512.13 – ident: R8 doi: 10.1055/s-2007-985075 – ident: R11 doi: 10.1053/j.gastro.2009.12.052 – ident: R30 doi: 10.1002/mrm.21301 – ident: R20 doi: 10.1097/00004728-198202000-00009 – ident: R40 doi: 10.1002/jmri.21957 – ident: R42 doi: 10.1002/mrm.23044 – ident: R25 doi: 10.1111/j.1872-034X.2009.00620.x – ident: R32 doi: 10.1002/jmri.21090 – ident: R43 doi: 10.1002/jmri.21809 – ident: R14 doi: 10.1111/j.1478-3231.2008.01691.x – volume: 16 start-page: 236 year: 2014 ident: R16 publication-title: Med Ultrason – volume: 34 year: 2011 ident: R27 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.22580 – ident: R36 doi: 10.1148/radiol.10100708 – ident: R9 doi: 10.1016/j.jhep.2012.12.005 – ident: R29 doi: 10.1002/mrm.1910180211 – ident: R13 doi: 10.1007/BF02570192 – ident: R49 doi: 10.1097/RLI.0b013e3181da1343 |
SSID | ssj0007897 |
Score | 2.581247 |
Snippet | The purpose of this study was to prospectively evaluate the accuracy of proton-density fat-fraction, single- and dual-energy CT (SECT and DECT), gray-scale... OBJECTIVEThe purpose of this study was to prospectively evaluate the accuracy of proton-density fat-fraction, single- and dual-energy CT (SECT and DECT),... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 92 |
SubjectTerms | Adiposity - physiology Elasticity Imaging Techniques - methods Female Humans Intra-Abdominal Fat - diagnostic imaging Intra-Abdominal Fat - physiology Liver - diagnostic imaging Liver - physiology Magnetic Resonance Imaging - methods Male Middle Aged Proton Magnetic Resonance Spectroscopy - methods Reproducibility of Results Sensitivity and Specificity Tomography, X-Ray Computed - methods |
Title | Accuracy of Liver Fat Quantification With Advanced CT, MRI, and Ultrasound Techniques: Prospective Comparison With MR Spectroscopy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27726414 https://www.proquest.com/docview/1835381117 https://pubmed.ncbi.nlm.nih.gov/PMC5204456 |
Volume | 208 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zj9MwELbKIiFeVtx0OWQkeOq2xI7jJLxVhVVZVARVK_oW2TmgYtWssqmQeOT_8Z-YsXN1u0gLL1GVxOkxX-fyzDeEvHSThMehdoaZQlJtkbjDUIEyZJ5SiknFdIjNybOPcroUpytv1ev97lQtbUs9in9e2VfyP1KFcyBX7JL9B8k2D4UT8BrkC0eQMByvJeNxHG8LnNeOiX4ssBicQLz_eatsBZCV7RfMtI7rrf7Jwtbuvq_LNpdnZaEucLiSTbMjn6spk_tU5HUbptUadlqhedxsbgbXl0iFmZ_v7Aw3W0AdTooiB9OGbLCG7wmpocA96eQgPmCFmIHOVGGKrNHX6_g7doVVlcQFFviNmkXgPf-wq7DhaDBurkxtbtwkgd-u0695N7XB_E5qo27pYmBCzcBgMFaVhhYSDIdly6pVOHeCPaxahWwH7VWmnRlS1D2rwTkTyF5xOh8xOUI6Iq-1jnVFwCWj2ZQyQhCF6yNYHTEZmdU3yE0OUYvpPV-1FUd-YGb9NN_K9mHg6tfd9971kPbCnsvVux13aHGHHFZxDB1bUN4lvXRzj9yaVZUa98mvGps0z6jBJgVs0l1sUgQTrbFJJ4tjCsg8piA82uKStrh8QzuopC0q7YNmc9pF5QOyPHm3mEyH1byPYewGohwqJ9Wai9AFpxuiapk5mZ-FkgtQGzLJZODIxFUZd9IwdWOm4yDzIXxOArQiidDuQ3KwyTfpY0J1Bqu46yZKhII7vnZT7fqe1B73mZ-xPhnUv3EUV2T4OJPlLLpKnn3yqrn73JLA_OW-F7W4ItDSuPWmNmm-vYjAcIJnAX6F3yePrPiaJyFUpGCiT_wdwTY3IAP87pXN-pthgve4IyACOrrm53tCbrd_s6fkoCy26TPwqUv93CD1D2NEzHw |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accuracy+of+Liver+Fat+Quantification+With+Advanced+CT%2C+MRI%2C+and+Ultrasound+Techniques%3A+Prospective+Comparison+With+MR+Spectroscopy&rft.jtitle=American+journal+of+roentgenology+%281976%29&rft.au=Kramer%2C+Harald&rft.au=Pickhardt%2C+Perry+J.&rft.au=Kliewer%2C+Mark+A.&rft.au=Hernando%2C+Diego&rft.date=2017-01-01&rft.issn=0361-803X&rft.eissn=1546-3141&rft.volume=208&rft.issue=1&rft.spage=92&rft.epage=100&rft_id=info:doi/10.2214%2FAJR.16.16565&rft.externalDBID=n%2Fa&rft.externalDocID=10_2214_AJR_16_16565 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-803X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-803X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-803X&client=summon |