Photonics and thermodynamics concepts in radiative cooling
Radiative cooling is a ubiquitous passive process that uses photon heat flow to carry away energy and entropy. Radiative cooling processes have been studied in the scientific literature for many decades, but advances in nanophotonics have enabled recent breakthroughs in daytime radiative cooling, wh...
Saved in:
Published in | Nature photonics Vol. 16; no. 3; pp. 182 - 190 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.03.2022
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Radiative cooling is a ubiquitous passive process that uses photon heat flow to carry away energy and entropy. Radiative cooling processes have been studied in the scientific literature for many decades, but advances in nanophotonics have enabled recent breakthroughs in daytime radiative cooling, which have inspired intense research efforts in this area. Radiative cooling is now emerging as a frontier in renewable energy research, with important potential for wide ranges of applications. In this Review, we discuss the fundamental photonics and thermodynamics concepts that underlie the processes of radiative cooling. Understanding of these concepts is essential both for the demonstration of cooling effects and for the development of practical technology.
This Review details the fundamental photonics and thermodynamics concepts that underlie the processes of radiative cooling, and discusses a few emerging directions associated with radiative cooling research. |
---|---|
AbstractList | Not provided. Radiative cooling is a ubiquitous passive process that uses photon heat flow to carry away energy and entropy. Radiative cooling processes have been studied in the scientific literature for many decades, but advances in nanophotonics have enabled recent breakthroughs in daytime radiative cooling, which have inspired intense research efforts in this area. Radiative cooling is now emerging as a frontier in renewable energy research, with important potential for wide ranges of applications. In this Review, we discuss the fundamental photonics and thermodynamics concepts that underlie the processes of radiative cooling. Understanding of these concepts is essential both for the demonstration of cooling effects and for the development of practical technology. This Review details the fundamental photonics and thermodynamics concepts that underlie the processes of radiative cooling, and discusses a few emerging directions associated with radiative cooling research. |
Author | Li, Wei Fan, Shanhui |
Author_xml | – sequence: 1 givenname: Shanhui orcidid: 0000-0002-0081-9732 surname: Fan fullname: Fan, Shanhui email: shanhui@stanford.edu organization: E. L. Ginzton Laboratory, and Department of Electrical Engineering, Stanford University – sequence: 2 givenname: Wei orcidid: 0000-0002-2227-9431 surname: Li fullname: Li, Wei email: weili1@ciomp.ac.cn organization: GPL Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences |
BackLink | https://www.osti.gov/biblio/1978655$$D View this record in Osti.gov |
BookMark | eNp9kE1LAzEQhoNUsK3-AU-L99V8b-JNilahoAc9hzTJtiltUpIo9N-buuLBQy8zw_A-w_BMwCjE4AC4RvAWQSLuMkWM8xZi1EIoa5VnYIw6KlsqJBn9zYJdgEnOGwgZkRiPwf3bOpYYvMmNDrYpa5d20R6C3h1XJgbj9iU3PjRJW6-L_3J1G7c-rC7Bea-32V399in4eHp8nz23i9f5y-xh0RoiaGmllZgbtpTSEC00l9RS12NBkcACLh3CHBNsGXWk7xCBPe2sRBx2wnCHrCBTcDPcjbl4lY0vzqzrZ8GZopDsBGeshsQQMinmnFyvaq6-G0NJ2m8VguooSg2iVBWlfkQpWVH8D90nv9PpcBoiA5RrOKxcUpv4mUL1cIr6BlSPfFQ |
CitedBy_id | crossref_primary_10_1364_OE_518164 crossref_primary_10_1016_j_jqsrt_2024_109314 crossref_primary_10_1016_j_cej_2023_143765 crossref_primary_10_1515_nanoph_2022_0815 crossref_primary_10_1002_adma_202314130 crossref_primary_10_1016_j_optmat_2023_114068 crossref_primary_10_1016_j_cej_2022_139786 crossref_primary_10_1038_s41467_023_42548_0 crossref_primary_10_1088_2040_8986_ad2f6e crossref_primary_10_1103_RevModPhys_96_015002 crossref_primary_10_1039_D3MH01008B crossref_primary_10_1126_science_adl0653 crossref_primary_10_1039_D2TA07453B crossref_primary_10_1016_j_ijbiomac_2024_139438 crossref_primary_10_1002_aenm_202402667 crossref_primary_10_1002_smll_202301957 crossref_primary_10_1126_sciadv_ado3476 crossref_primary_10_1364_AO_490095 crossref_primary_10_1002_adma_202312879 crossref_primary_10_1093_nsr_nwae408 crossref_primary_10_1021_acsphotonics_4c00981 crossref_primary_10_1002_cjoc_202300282 crossref_primary_10_1063_5_0203602 crossref_primary_10_1016_j_csite_2024_105232 crossref_primary_10_1021_acsami_4c19960 crossref_primary_10_1364_OE_462166 crossref_primary_10_1016_j_applthermaleng_2023_121655 crossref_primary_10_1038_s41467_023_41797_3 crossref_primary_10_1016_j_compscitech_2024_110566 crossref_primary_10_1088_2040_8986_ad6e9d crossref_primary_10_1016_j_mtphys_2024_101643 crossref_primary_10_1002_adfm_202304073 crossref_primary_10_1016_j_ijthermalsci_2025_109819 crossref_primary_10_29026_oea_2024_230194 crossref_primary_10_1615_ComputThermalScien_2024054285 crossref_primary_10_1038_s41566_024_01409_y crossref_primary_10_1016_j_solmat_2025_113519 crossref_primary_10_1364_AO_522582 crossref_primary_10_1016_j_ijheatmasstransfer_2025_126783 crossref_primary_10_1038_s42254_023_00565_4 crossref_primary_10_1002_adma_202414300 crossref_primary_10_1021_acsphotonics_4c00057 crossref_primary_10_1016_j_applthermaleng_2023_120561 crossref_primary_10_1038_s41566_023_01261_6 crossref_primary_10_1364_OE_455722 crossref_primary_10_1016_j_tsep_2024_102637 crossref_primary_10_1364_OE_523853 crossref_primary_10_1021_acsphotonics_4c00833 crossref_primary_10_1038_s44286_024_00050_4 crossref_primary_10_1016_j_solmat_2022_111854 crossref_primary_10_1021_acs_nanolett_5c00083 crossref_primary_10_1016_j_applthermaleng_2024_123449 crossref_primary_10_1364_OPTICA_487561 crossref_primary_10_1016_j_advmem_2025_100133 crossref_primary_10_1002_smll_202407204 crossref_primary_10_1016_j_cej_2024_157995 crossref_primary_10_1021_acsaom_4c00030 crossref_primary_10_1360_nso_20240019 crossref_primary_10_1021_acsmaterialslett_4c00337 crossref_primary_10_1002_advs_202309871 crossref_primary_10_1016_j_cej_2023_142095 crossref_primary_10_1016_j_device_2023_100099 crossref_primary_10_1002_adfm_202403061 crossref_primary_10_1063_5_0142347 crossref_primary_10_1515_nanoph_2023_0678 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124465 crossref_primary_10_1002_aenm_202402202 crossref_primary_10_1364_OE_517889 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125176 crossref_primary_10_1016_j_solener_2024_112685 crossref_primary_10_1016_j_xcrp_2024_102345 crossref_primary_10_1016_j_pmatsci_2024_101276 crossref_primary_10_1021_acs_nanolett_4c04969 crossref_primary_10_1016_j_cej_2024_153262 crossref_primary_10_1063_5_0249362 crossref_primary_10_1002_adfm_202405903 crossref_primary_10_1016_j_cej_2025_161629 crossref_primary_10_1016_j_joule_2023_09_016 crossref_primary_10_1016_j_cej_2024_157862 crossref_primary_10_1016_j_mtener_2024_101575 crossref_primary_10_1016_j_softx_2023_101562 crossref_primary_10_1016_j_mtphys_2023_101284 crossref_primary_10_1021_acs_iecr_3c04130 crossref_primary_10_1021_acssuschemeng_3c05583 crossref_primary_10_1002_adma_202409738 crossref_primary_10_1016_j_nanoen_2023_108625 crossref_primary_10_1002_adom_202402432 crossref_primary_10_1016_j_mtener_2024_101579 crossref_primary_10_1016_j_mattod_2024_12_012 crossref_primary_10_1016_j_rser_2024_114641 crossref_primary_10_1515_nanoph_2024_0193 crossref_primary_10_1016_j_porgcoat_2024_108631 crossref_primary_10_1515_nanoph_2023_0742 crossref_primary_10_1016_j_cej_2024_150657 crossref_primary_10_1103_PhysRevB_111_115408 crossref_primary_10_1186_s43593_022_00025_z crossref_primary_10_1126_science_adn2524 crossref_primary_10_1002_lpor_202400716 crossref_primary_10_1016_j_solmat_2024_112848 crossref_primary_10_1021_acsaem_4c00675 crossref_primary_10_1016_j_solener_2023_05_029 crossref_primary_10_1063_5_0164073 crossref_primary_10_1016_j_solmat_2023_112563 crossref_primary_10_1126_science_adi4725 crossref_primary_10_1021_acsnano_2c11916 crossref_primary_10_1038_s41467_024_54983_8 crossref_primary_10_1103_PhysRevApplied_20_054028 crossref_primary_10_1021_acsami_3c02418 crossref_primary_10_1002_adma_202415386 crossref_primary_10_1016_j_cej_2023_146431 crossref_primary_10_1016_j_solener_2025_113293 crossref_primary_10_1002_adfm_202301319 crossref_primary_10_1038_s41528_024_00339_7 crossref_primary_10_1007_s40820_023_01156_9 crossref_primary_10_1016_j_cej_2023_146668 crossref_primary_10_1016_j_renene_2024_121027 crossref_primary_10_1002_admt_202400713 crossref_primary_10_1016_j_isci_2024_108806 crossref_primary_10_1002_aenm_202404122 crossref_primary_10_1016_j_xcrp_2025_102501 crossref_primary_10_1002_smll_202205091 crossref_primary_10_1103_PhysRevLett_133_093801 crossref_primary_10_1016_j_enbuild_2025_115600 crossref_primary_10_1016_j_buildenv_2024_112462 crossref_primary_10_1016_j_infrared_2025_105717 crossref_primary_10_1002_adma_202310923 crossref_primary_10_1021_acs_nanolett_4c04073 crossref_primary_10_1016_j_solmat_2024_113382 crossref_primary_10_1021_acsaenm_4c00245 crossref_primary_10_1515_nanoph_2023_0520 crossref_primary_10_1016_j_isci_2024_111325 crossref_primary_10_1016_j_energy_2023_129884 crossref_primary_10_1021_acsami_4c20168 crossref_primary_10_1002_aenm_202300260 crossref_primary_10_1016_j_energy_2024_133861 crossref_primary_10_1016_j_renene_2025_122447 crossref_primary_10_1021_acsnano_3c12244 crossref_primary_10_1186_s40580_023_00365_7 crossref_primary_10_1016_j_solmat_2024_113356 crossref_primary_10_1016_j_solmat_2023_112660 crossref_primary_10_1038_s41467_024_48150_2 crossref_primary_10_1021_acsaelm_3c01023 crossref_primary_10_1088_1674_1056_acc061 crossref_primary_10_1038_s41377_023_01341_w crossref_primary_10_1360_nso_20220063 crossref_primary_10_1038_s41467_024_45095_4 crossref_primary_10_1002_idm2_12123 crossref_primary_10_1016_j_rinp_2024_107795 crossref_primary_10_1021_acsaom_3c00368 crossref_primary_10_1016_j_icheatmasstransfer_2023_106666 crossref_primary_10_1126_sciadv_adg1837 crossref_primary_10_1364_AO_486726 crossref_primary_10_1515_nanoph_2023_0511 crossref_primary_10_1016_j_icheatmasstransfer_2024_107810 crossref_primary_10_1016_j_nxener_2023_100088 crossref_primary_10_1021_acsaom_4c00336 crossref_primary_10_1063_5_0135193 crossref_primary_10_1021_acs_chemrev_3c00136 crossref_primary_10_1063_5_0141734 crossref_primary_10_1021_acs_langmuir_4c02567 crossref_primary_10_1021_acsphotonics_3c00494 crossref_primary_10_1016_j_mtphys_2023_101242 crossref_primary_10_1103_PhysRevMaterials_6_090201 crossref_primary_10_1038_s41377_023_01315_y crossref_primary_10_1063_5_0089353 crossref_primary_10_1016_j_ceramint_2023_10_002 crossref_primary_10_1039_D3CS00500C crossref_primary_10_1038_s41598_023_30959_4 crossref_primary_10_1002_smll_202301164 crossref_primary_10_1016_j_solmat_2024_113362 crossref_primary_10_1002_aenm_202302662 crossref_primary_10_1016_j_device_2023_100186 crossref_primary_10_1515_nanoph_2023_0198 crossref_primary_10_1016_j_aiepr_2023_04_001 crossref_primary_10_1021_acsaom_3c00235 crossref_primary_10_1039_D3TA03683A crossref_primary_10_1088_0256_307X_40_7_077801 crossref_primary_10_1016_j_colsurfa_2023_132962 crossref_primary_10_1016_j_scib_2022_08_028 crossref_primary_10_1002_adfm_202307191 crossref_primary_10_1016_j_cej_2023_143127 crossref_primary_10_1021_acs_chemrev_2c00171 crossref_primary_10_1021_acs_nanolett_4c04891 crossref_primary_10_1038_s41893_023_01200_x crossref_primary_10_1007_s12274_024_6778_z crossref_primary_10_1016_j_apenergy_2024_124161 crossref_primary_10_1021_acsphotonics_3c00241 crossref_primary_10_1002_adom_202202163 crossref_primary_10_3390_photonics11100899 crossref_primary_10_1002_advs_202204508 crossref_primary_10_1021_acsami_2c15573 crossref_primary_10_1016_j_solmat_2023_112488 crossref_primary_10_1016_j_pmatsci_2023_101144 crossref_primary_10_1364_OE_477368 crossref_primary_10_1016_j_carbpol_2023_120948 crossref_primary_10_1016_j_cej_2024_152920 crossref_primary_10_1002_marc_202200695 crossref_primary_10_1007_s40820_024_01360_1 crossref_primary_10_1016_j_infrared_2024_105509 crossref_primary_10_1080_15599612_2024_2334293 crossref_primary_10_1088_0256_307X_41_4_044202 crossref_primary_10_1002_adfm_202406393 crossref_primary_10_1016_j_solmat_2024_113291 crossref_primary_10_1016_j_energy_2023_130186 crossref_primary_10_1016_j_nxener_2023_100069 crossref_primary_10_1364_OME_545481 crossref_primary_10_1016_j_solmat_2025_113591 crossref_primary_10_1021_acsami_4c21885 crossref_primary_10_1080_15567265_2024_2315265 crossref_primary_10_1016_j_fmre_2024_12_019 crossref_primary_10_1002_smll_202206145 crossref_primary_10_1016_j_device_2023_100008 crossref_primary_10_1016_j_rser_2023_113801 crossref_primary_10_1021_acsami_3c06952 crossref_primary_10_1002_adma_202409473 crossref_primary_10_1002_adma_202208236 crossref_primary_10_1016_j_xcrp_2024_101876 crossref_primary_10_1016_j_applthermaleng_2025_125852 crossref_primary_10_1039_D4TA04942J crossref_primary_10_1007_s42114_024_01127_7 crossref_primary_10_1038_s41467_024_49936_0 crossref_primary_10_1016_j_cej_2024_152599 crossref_primary_10_1007_s40820_025_01713_4 crossref_primary_10_1364_OME_517791 crossref_primary_10_1021_acsnano_4c16998 crossref_primary_10_1016_j_apmt_2024_102184 crossref_primary_10_1364_OE_460471 crossref_primary_10_1016_j_joule_2023_06_009 crossref_primary_10_1016_j_solmat_2025_113565 crossref_primary_10_1016_j_ijbiomac_2024_134248 crossref_primary_10_1016_j_matt_2024_10_016 crossref_primary_10_1177_00405175231154018 crossref_primary_10_1016_j_enbuild_2024_114949 crossref_primary_10_1021_acsphotonics_2c01389 crossref_primary_10_1002_smll_202301534 crossref_primary_10_3390_coatings15030340 crossref_primary_10_1016_j_susmat_2024_e01202 crossref_primary_10_1016_j_solmat_2023_112463 crossref_primary_10_1126_science_adn5694 crossref_primary_10_3390_polym16091201 crossref_primary_10_1016_j_solener_2024_112734 crossref_primary_10_1016_j_solmat_2024_113154 crossref_primary_10_1002_adfm_202413813 crossref_primary_10_1016_j_optmat_2024_114845 crossref_primary_10_1021_acsphotonics_3c00339 crossref_primary_10_1021_acsphotonics_3c01307 crossref_primary_10_1016_j_apenergy_2024_123619 crossref_primary_10_1021_acsami_3c14310 crossref_primary_10_1038_s41598_025_91800_8 crossref_primary_10_1515_nanoph_2024_0082 crossref_primary_10_1039_D4MH01697A crossref_primary_10_1021_acsbiomaterials_4c01712 crossref_primary_10_1016_j_cej_2024_149976 crossref_primary_10_1016_j_ijbiomac_2024_130676 crossref_primary_10_1016_j_solmat_2025_113452 crossref_primary_10_1515_nanoph_2023_0716 crossref_primary_10_1016_j_enbuild_2024_114836 crossref_primary_10_1021_acsami_3c08790 crossref_primary_10_1021_acsami_4c08652 crossref_primary_10_1007_s40820_025_01698_0 crossref_primary_10_1016_j_cej_2022_139739 crossref_primary_10_1021_acs_langmuir_1c03488 crossref_primary_10_1016_j_solmat_2024_113047 crossref_primary_10_1016_j_mtcomm_2024_110797 crossref_primary_10_1016_j_isci_2024_110948 crossref_primary_10_1109_ACCESS_2024_3509592 crossref_primary_10_1021_acsphotonics_4c01401 crossref_primary_10_1002_adom_202401967 crossref_primary_10_1016_j_matt_2024_08_020 crossref_primary_10_1016_j_jechem_2024_06_057 crossref_primary_10_1002_advs_202206575 crossref_primary_10_1002_adma_202500738 crossref_primary_10_1021_acs_nanolett_4c01621 crossref_primary_10_1016_j_mtphys_2023_101057 crossref_primary_10_1016_j_renene_2024_120444 crossref_primary_10_26599_CF_2025_9200033 crossref_primary_10_1016_j_cej_2024_158664 crossref_primary_10_1021_acsphotonics_4c02284 crossref_primary_10_3389_fphot_2023_1193479 crossref_primary_10_1021_acs_nanolett_3c04118 crossref_primary_10_1016_j_enbuild_2024_114887 crossref_primary_10_1016_j_optlastec_2025_112562 crossref_primary_10_1016_j_ijheatmasstransfer_2025_126872 crossref_primary_10_1016_j_xcrp_2024_102362 crossref_primary_10_35848_1882_0786_ac8415 crossref_primary_10_1016_j_conbuildmat_2024_139476 crossref_primary_10_1016_j_diamond_2025_111986 crossref_primary_10_1016_j_optmat_2023_114708 crossref_primary_10_1002_adfm_202206962 crossref_primary_10_1039_D4TC04838E crossref_primary_10_1007_s40843_024_3264_7 crossref_primary_10_1002_adma_202300179 crossref_primary_10_1016_j_applthermaleng_2023_120647 crossref_primary_10_1515_nanoph_2023_0699 crossref_primary_10_1021_acsaom_4c00519 crossref_primary_10_1016_j_apmt_2024_102331 crossref_primary_10_1002_adom_202200452 crossref_primary_10_1364_OE_530539 crossref_primary_10_1016_j_nanoen_2024_109393 crossref_primary_10_1016_j_porgcoat_2024_108901 crossref_primary_10_1039_D4TA01734J crossref_primary_10_1016_j_jhazmat_2024_137045 crossref_primary_10_1039_D4TA08945F crossref_primary_10_1002_adma_202209123 crossref_primary_10_1002_adfm_202419891 crossref_primary_10_1016_j_nanoen_2024_110023 crossref_primary_10_1016_j_isci_2022_104858 crossref_primary_10_1016_j_susmat_2025_e01334 crossref_primary_10_1002_smll_202305706 crossref_primary_10_1016_j_mattod_2024_03_012 crossref_primary_10_1016_j_xcrp_2024_102251 crossref_primary_10_1021_acs_nanolett_3c03711 crossref_primary_10_1038_s41566_022_01126_4 crossref_primary_10_1016_j_renene_2024_121658 crossref_primary_10_1021_acsami_3c19498 crossref_primary_10_1016_j_matlet_2023_135220 crossref_primary_10_1021_acsphotonics_4c01622 crossref_primary_10_1021_acsnano_4c17745 crossref_primary_10_1016_j_solener_2024_113182 crossref_primary_10_1021_acsphotonics_3c01757 crossref_primary_10_1039_D4TC02504K crossref_primary_10_1016_j_porgcoat_2025_109145 crossref_primary_10_1016_j_optmat_2023_113710 crossref_primary_10_3788_AOS241378 crossref_primary_10_1364_OE_554717 crossref_primary_10_1016_j_cej_2025_159214 crossref_primary_10_1063_5_0134951 crossref_primary_10_1021_acsaom_3c00092 crossref_primary_10_1016_j_physrep_2024_05_004 crossref_primary_10_1088_1361_6463_ac9fde crossref_primary_10_1515_nanoph_2022_0032 crossref_primary_10_34133_2022_9765089 crossref_primary_10_1080_15567036_2024_2329813 crossref_primary_10_1093_nsr_nwac208 crossref_primary_10_1002_adpr_202200253 crossref_primary_10_1039_D2MA01000C crossref_primary_10_1016_j_nxener_2023_100003 crossref_primary_10_1016_j_rser_2023_113782 crossref_primary_10_1021_acsaom_3c00082 crossref_primary_10_1039_D3TA00823A crossref_primary_10_1021_acsnano_3c01184 crossref_primary_10_1515_nanoph_2022_0020 crossref_primary_10_1039_D4TA07793H crossref_primary_10_1016_j_enbuild_2024_115045 crossref_primary_10_1002_advs_202305228 crossref_primary_10_1002_adom_202401020 crossref_primary_10_1002_adfm_202305734 crossref_primary_10_1002_adfm_202315658 crossref_primary_10_1002_smtd_202301258 crossref_primary_10_1002_adfm_202410613 crossref_primary_10_1016_j_cej_2024_154834 crossref_primary_10_1016_j_ijheatmasstransfer_2025_126887 crossref_primary_10_1021_acsenergylett_3c02325 crossref_primary_10_1021_acs_nanolett_3c03055 crossref_primary_10_1002_adfm_202207940 crossref_primary_10_1364_OL_494539 crossref_primary_10_1515_nanoph_2023_0595 |
Cites_doi | 10.1364/OE.26.00A777 10.1063/1.329270 10.1038/ncomms13729 10.1364/OE.401368 10.1117/12.665077 10.1038/s41467-020-15116-z 10.1109/JPHOTOV.2016.2646062 10.1021/acsphotonics.0c01471 10.1364/OE.397714 10.1002/adom.202002226 10.1038/s41377-020-0300-5 10.1126/science.aaf5471 10.1126/science.abc5381 10.1126/science.aat9513 10.1021/acsphotonics.6b00644 10.1038/s41377-020-0296-x 10.1364/OPTICA.1.000032 10.1016/j.enbenv.2020.07.003 10.1038/s41565-021-00987-0 10.1016/j.xcrp.2020.100231 10.1126/sciadv.aaz5413 10.1016/j.joule.2019.09.016 10.1063/1.5089783 10.1364/OE.26.015995 10.1016/j.joule.2017.07.012 10.1002/adma.201802152 10.1063/1.328187 10.1038/s41467-021-22051-0 10.1021/nl4004283 10.1126/science.aai7899 10.1038/s41566-018-0246-9 10.1016/j.xcrp.2020.100221 10.1073/pnas.1509453112 10.1016/j.nanoen.2020.105461 10.1126/science.abi5484 10.1021/acs.nanolett.0c04810 10.1021/acs.langmuir.0c00051 10.1038/s41467-020-20646-7 10.1103/PhysRevLett.107.045901 10.1126/sciadv.aat9480 10.1002/adma.201401874 10.1002/adma.201501686 10.1073/pnas.1402036111 10.1038/nature13883 10.1364/OE.388208 10.1016/B978-0-12-386944-9.50023-6 10.1364/AO.23.000370 10.1038/s41578-020-00260-1 10.1038/s41893-018-0023-2 10.1126/sciadv.abf3978 10.1080/15567265.2020.1722300 10.1073/pnas.2019292118 10.1016/0038-092X(75)90062-6 10.1002/andp.19083300302 10.1126/science.abe4476 10.1016/j.solener.2021.02.050 10.1021/nl903271d 10.1016/j.solener.2020.08.077 10.1002/adma.202000870 10.1038/416061a 10.1103/PhysRevLett.96.123903 10.1016/j.nanoen.2019.103998 10.1063/1.4835995 10.1103/PhysRevB.62.R2243 10.1038/s41467-018-07293-9 10.1016/j.nanoen.2020.105426 10.1073/pnas.1717595115 10.1021/acsphotonics.5b00140 10.1016/0038-092X(93)90108-Z 10.1038/nenergy.2017.143 10.1016/j.joule.2019.08.009 10.1103/PhysRevA.59.4736 10.1038/s41565-020-00800-4 10.1016/S0017-9310(83)80111-2 10.1016/j.joule.2020.04.010 10.1021/acsphotonics.7b00089 10.1007/978-3-319-49457-9 10.1073/pnas.1120149109 10.1002/advs.201500119 10.1201/9781439894552 10.1073/pnas.2001802117 10.1021/acsphotonics.0c00513 10.1364/OME.9.001990 10.1016/j.joule.2018.10.009 10.1186/s43593-021-00002-y 10.1038/nenergy.2017.142 10.1103/PhysRevB.93.161410 10.1126/science.aab3564 10.1038/s41467-018-06535-0 10.1021/acsphotonics.7b01136 10.1002/adma.201906751 10.1038/s41467-020-19790-x 10.1038/s41893-019-0348-5 10.1109/JPHOTOV.2017.2779842 10.1063/1.91406 10.1016/0306-2619(77)90015-0 10.1016/j.joule.2020.02.011 10.1021/acsphotonics.6b00991 10.1063/1.5094510 10.1126/sciadv.1700895 10.1364/OE.27.031587 10.1021/acs.nanolett.1c00400 10.1126/science.aau9101 10.1038/s41598-017-05235-x 10.1016/j.joule.2020.10.004 10.1038/s43016-021-00307-8 10.1016/j.joule.2018.10.006 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2022 |
Copyright_xml | – notice: Springer Nature Limited 2022 |
CorporateAuthor | Stanford Univ., CA (United States) |
CorporateAuthor_xml | – name: Stanford Univ., CA (United States) |
DBID | AAYXX CITATION OTOTI |
DOI | 10.1038/s41566-021-00921-9 |
DatabaseName | CrossRef OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1749-4893 |
EndPage | 190 |
ExternalDocumentID | 1978655 10_1038_s41566_021_00921_9 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 62134009; 62121005 funderid: https://doi.org/10.13039/501100001809 – fundername: U.S. Department of Energy (DOE) grantid: DE-FG-07ER46426 funderid: https://doi.org/10.13039/100000015 |
GroupedDBID | -~X 0R~ 123 29M 39C 4.4 5BI 5M7 5S5 70F 8FE 8FG 8FH 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABZEH ACBWK ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFRAH AFSHS AFWHJ AGAYW AGHTU AHBCP AHOSX AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO CCPQU CS3 DU5 EBS EE. EJD ESX EXGXG F5P FEDTE FQGFK FSGXE HCIFZ HVGLF HZ~ I-F LK8 M7P NNMJJ O9- ODYON P2P P62 Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG TUS ~8M AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT AADEA AADWK AAEXX AAJMP AAPBV AAYJO ABEEJ ABGIJ ABPTK ABVXF ACBMV ACBRV ACBYP ACIGE ACTTH ACVWB ADMDM ADQMX ADZGE AEDAW AEFTE AGEZK AGGBP AHGBK AJDOV NYICJ OTOTI |
ID | FETCH-LOGICAL-c384t-9d926c5b99c3a8a694d4ef28418280be126232d54e3f7130f47d916078c6e1d83 |
ISSN | 1749-4885 |
IngestDate | Mon Jun 12 04:07:18 EDT 2023 Thu Apr 24 23:00:41 EDT 2025 Tue Jul 01 03:07:01 EDT 2025 Fri Feb 21 02:42:04 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c384t-9d926c5b99c3a8a694d4ef28418280be126232d54e3f7130f47d916078c6e1d83 |
Notes | FG02-07ER46426 USDOE Office of Science (SC) |
ORCID | 0000-0002-0081-9732 0000-0002-2227-9431 0000000200819732 0000000222279431 |
PageCount | 9 |
ParticipantIDs | osti_scitechconnect_1978655 crossref_citationtrail_10_1038_s41566_021_00921_9 crossref_primary_10_1038_s41566_021_00921_9 springer_journals_10_1038_s41566_021_00921_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: United States |
PublicationTitle | Nature photonics |
PublicationTitleAbbrev | Nat. Photon |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | SanthanamPFanSThermal-to-electrical energy conversion by diodes under negative illuminationPhys. Rev. B201693161410(R)2016PhRvB..93p1410S10.1103/PhysRevB.93.161410 FanSThermal photonics and energy applicationsJoule2017126427310.1016/j.joule.2017.07.012 OnoMChenKLiWFanSSelf-adaptive radiative cooling based on phase change materialsOpt. Express201826A777A7872018OExpr..26A.777O10.1364/OE.26.00A777 PerrakisGPassive radiative cooling and other photonic approaches for the temperature control of photovoltaics: a comparative study for crystalline silicon-based architecturesOpt. Express20202818548185652020OExpr..2818548P10.1364/OE.388208 KouJJuradoZChenZFanSMinnichAJDaytime radiative cooling using near-black infrared emittersACS Photonics2017462663010.1021/acsphotonics.6b00991 GranqvistCGHjortsbergARadiative cooling to low temperatures: general considerations and application to selectively emitting SiO filmsJ. Appl. Phys.198152420542201981JAP....52.4205G10.1063/1.329270 ZhuHMultispectral camouflage for infrared, visible, lasers and microwave with radiative coolingNat. Commun.2021122021NatCo..12.1805Z10.1038/s41467-021-22051-0 HaechlerIExploiting radiative cooling for uninterrupted 24-hour water harvesting from the atmosphereSci. Adv.20217eabf39782021SciA....7.3978H10.1126/sciadv.abf3978 LiWBuddhirajuSFanSThermodynamic limits for simultaneous energy harvesting from the hot sun and cold outer spaceLight Sci. Appl.20209682020LSA.....9...68L10.1038/s41377-020-0296-x MandalJPorous polymers with switchable optical transmittance for optical and thermal regulationJoule201933088309910.1016/j.joule.2019.09.016 GreffetJ-JCoherent emission of light by thermal sourcesNature200241661642002Natur.416...61G10.1038/416061a SmithGGentleARadiative cooling: energy savings from the skyNat. Energy20172171422017NatEn...217142S10.1038/nenergy.2017.142 ZhuBSubambient daytime radiative cooling textile based on nanoprocessed silkNat. Nanotechnol.202116134213482021NatNa..16.1342Z10.1038/s41565-021-00987-0 TongJKInfrared-transparent visible-opaque fabrics for wearable personal thermal managementACS Photonics2015276977810.1021/acsphotonics.5b00140 WangZLightweight, passive radiative cooling to enhance concentrating photovoltaicsJoule202042702271710.1016/j.joule.2020.10.004 LeeDSub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxideNano Energy20217910542610.1016/j.nanoen.2020.105426 BartoliBNocturnal and diurnal performances of selective radiatorsAppl. Energy1977326728610.1016/0306-2619(77)90015-0 ZhouLA polydimethylsiloxane-coated metal structure for all-day radiative coolingNat. Sustain.2019271872410.1038/s41893-019-0348-5 Howell, J. R., Siegel, R. & Mengüç, M. P. Thermal Radiation Heat Transfer (CRC, 2011). ZhuLRamanAWangKXAnomaMAFanSRadiative cooling of solar cellsOptica2014132382014Optic...1...32Z10.1364/OPTICA.1.000032 ZhaiYScalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative coolingScience2017355106210662017Sci...355.1062Z10.1126/science.aai7899 ZhuLRamanAFanSColor-preserving daytime radiative coolingAppl. Phys. Lett.20131032239022013ApPhL.103v3902Z10.1063/1.4835995 BlandreEYalçinRAJoulainKDrévillonJMicrostructured surfaces for colored and non-colored sky radiative coolingOpt. Express20202829703297132020OExpr..2829703B10.1364/OE.401368 LuoHOutdoor personal thermal management with simultaneous electricity generationNano Lett.202121387938862021NanoL..21.3879L10.1021/acs.nanolett.1c00400 LinS-YEnhancement and suppression of thermal emission by a three-dimensional photonic crystalPhys. Rev. B200062R2243R22462000PhRvB..62.2243L10.1103/PhysRevB.62.R2243 DongMChenNZhaoXFanSChenZNighttime radiative cooling in hot and humid climatesOpt. Express201927315872019OExpr..2731587D10.1364/OE.27.031587 HsuPCRadiative human body cooling by nanoporous polyethylene textileScience2016353101910232016Sci...353.1019H10.1126/science.aaf5471 ZhouKThree-dimensional printable nanoporous polymer matrix composites for daytime radiative coolingNano Lett.202121149314992021NanoL..21.1493Z10.1021/acs.nanolett.0c04810 GranqvistCGHjortsbergASurfaces for radiative cooling: silicon monoxide films on aluminumAppl. Phys. Lett.1980361391980ApPhL..36..139G10.1063/1.91406 Kittel, C. & Kroemer, H. Thermal Physics (W. H. Freeman, 1980). ZhangHBiologically inspired flexible photonic films for efficient passive radiative coolingProc. Natl Acad. Sci. USA2020117146571466610.1073/pnas.2001802117 BerkAMODTRAN5: 2006 updateProc. SPIE2006623362331F10.1117/12.665077 LiDScalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative coolingNat. Nanotechnol.2021161531582021NatNa..16..153L10.1038/s41565-020-00800-4 ByrnesSJBlanchardRCapassoFHarvesting renewable energy from Earth’s mid-infrared emissionsProc. Natl Acad. Sci. USA2014111392739322014PNAS..111.3927B10.1073/pnas.1402036111 ShiYLiWRamanAFanSOptimization of multilayer optical films with a memetic algorithm and mixed integer programmingACS Photonics2018568469110.1021/acsphotonics.7b01136 ZhaoHSunQZhouJDengXCuiJSwitchable cavitation in silicone coatings for energy-saving cooling and heatingAdv. Mater.202032200087010.1002/adma.202000870 KimMVisibly transparent radiative cooler under direct sunlightAdv. Opt. Mater.20219200222610.1002/adom.202002226 GoldsteinEARamanAPFanSSub-ambient non-evaporative fluid cooling with the skyNat. Energy20172171432017NatEn...217143G10.1038/nenergy.2017.143 LiMPetersonHBCoimbraCFMRadiative cooling resource maps for the contiguous United StatesJ. Renew. Sustain. Energy20191103650110.1063/1.5094510 SilvermanTJReducing operating temperature in photovoltaic modulesIEEE J. Photovolt.2018853254010.1109/JPHOTOV.2017.2779842 OnoMSanthanamPLiWZhaoBFanSExperimental demonstration of energy harvesting from the sky using the negative illumination effect of a semiconductor photodiodeAppl. Phys. Lett.20191141611022019ApPhL.114p1102O10.1063/1.5089783 LiuXTaming the blackbody with infrared metamaterials as selective thermal emittersPhys. Rev. Lett.20111070459012011PhRvL.107d5901L10.1103/PhysRevLett.107.045901 MandalJHierarchically porous polymer coatings for highly efficient passive daytime radiative coolingScience20183623153192018Sci...362..315M10.1126/science.aat9513 YiZEnergy saving analysis of a transparent radiative cooling film for buildings with roof glazingEnergy Built Environ.2021221422210.1016/j.enbenv.2020.07.003 ThomasNHChenZFanSMinnichAJSemiconductor-based multilayer selective solar absorber for unconcentrated solar thermal energy conversionSci. Rep.201772017NatSR...7.5362T10.1038/s41598-017-05235-x Modest, M. F. Radiative Heat Transfer (Elsevier, 2013). DongMFundamental limits of the dew-harvesting technologyNanoscale Microscale Thermophys. Eng.20202443522020NMTE...24...43D10.1080/15567265.2020.1722300 Dupré, O., Vaillon, R. & Green, M. A. Thermal Behavior of Photovoltaic Devices (Springer, 2017). HsuP-CA dual-mode textile for human body radiative heating and coolingSci. Adv.20173e17008952017SciA....3E0895H10.1126/sciadv.1700895 BuddhirajuSSanthanamPFanSThermodynamic limits of energy harvesting from outgoing thermal radiationProc. Natl Acad. Sci. USA2018115E3609E36152018PNAS..115E3609B10.1073/pnas.1717595115 GentleARSmithGBRadiative heat pumping from the Earth using surface phonon resonant nanoparticlesNano Lett.2010103733792010NanoL..10..373G10.1021/nl903271d ShiNNKeeping cool: enhanced optical reflection and radiative heat dissipation in Saharan silver antsScience20153492983012015Sci...349..298S10.1126/science.aab3564 BhatiaBPassive directional sub-ambient daytime radiative coolingNat. Commun.201892018NatCo...9.5001B10.1038/s41467-018-07293-9 LiWNighttime radiative cooling for water harvesting from solar panelsACS Photonics2021826927510.1021/acsphotonics.0c01471 LarocheMCarminatiRGreffetJ-JCoherent thermal antenna using a photonic crystal slabPhys. Rev. Lett.2006961239032006PhRvL..96l3903L10.1103/PhysRevLett.96.123903 LinKTELinHYangTJiaBStructured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversionNat. Commun.20201113892020NatCo..11.1389L10.1038/s41467-020-15116-z RamanAPLiWFanSGenerating light from darknessJoule201932679268610.1016/j.joule.2019.08.009 MandalJYangYYuNRamanAPPaints as a scalable and effective radiative cooling technology for buildingsJoule202041350135610.1016/j.joule.2020.04.010 BerdahlPRadiative cooling with MgO and/or LiF layersAppl. Opt.1984233703721984ApOpt..23..370B10.1364/AO.23.000370 LandsbergPTTongeGThermodynamic energy conversion efficienciesJ. Appl. Phys.198051R11980JAP....51R...1L10.1063/1.328187 LiWShiYChenZFanSPhotonic thermal management of coloured objectsNat. Commun.201892018NatCo...9.4240L10.1038/s41467-018-06535-0 ShenLIncreasing greenhouse production by spectral-shifting and unidirectional light-extracting photonicsNat. Food2021243444110.1038/s43016-021-00307-8 LiWRefractory plasmonics with titanium nitride: broadband metamaterial absorberAdv. Mater.201426795979652014ctpa.book.....L10.1002/adma.201401874 ChenYColored and paintable bilayer coatings with high solar-infrared reflectance for efficient coolingSci. Adv.20206eaaz54132020SciA....6.5413C10.1126/sciadv.aaz5413 XuJMandalJRamanAPBroadband directional control of thermal emissionScience20213723933972021Sci...372..393X10.1126/science.abc5381 WangTA structural polymer for highly efficient all-day passive radiative coolingNat. Commun.20211210.1038/s41467-020-20646-7 ZhuHHigh-temperature infrared camouflage with efficient thermal managementLight Sci. Appl.20209602020LSA.....9...60Z10.1038/s41377-020-0300-5 CatalanottiSThe radiative cooling of selective surfacesSol. Energy19751783891975SoEn...17...83C10.1016/0038-092X(75)90062-6 RephaeliERamanAFanSUltrabroadband photonic structures to achieve high-performance daytime radiative coolingNano Lett.201313145714612013NanoL..13.1457R10.1021/nl4004283 LeroyAHigh-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogelSc L Cai (921_CR89) 2018; 30 921_CR66 Z Chen (921_CR104) 2021; 1 J Mandal (921_CR37) 2018; 362 L Zhou (921_CR27) 2019; 2 T Li (921_CR38) 2019; 364 K Zhou (921_CR50) 2021; 21 S-Y Lin (921_CR13) 2000; 62 J Jiang (921_CR103) 2021; 6 S Catalanotti (921_CR4) 1975; 17 B Bartoli (921_CR5) 1977; 3 AR Gentle (921_CR34) 2015; 2 W Li (921_CR61) 2017; 4 D Li (921_CR39) 2021; 16 X Li (921_CR42) 2020; 1 Y Peng (921_CR87) 2018; 1 RA Yalçın (921_CR78) 2020; 7 M Laroche (921_CR15) 2006; 96 G Perrakis (921_CR64) 2020; 28 A Berk (921_CR23) 2006; 6233 AR Gentle (921_CR11) 2010; 10 M Ono (921_CR94) 2019; 114 Y Chen (921_CR74) 2020; 6 P Santhanam (921_CR93) 2016; 93 A Leroy (921_CR41) 2019; 5 W Li (921_CR72) 2018; 9 H Luo (921_CR92) 2021; 21 S Molesky (921_CR102) 2018; 12 W Li (921_CR18) 2018; 26 PC Hsu (921_CR84) 2016; 353 Y Peng (921_CR90) 2020; 4 S Son (921_CR79) 2021; 79 HH Kim (921_CR77) 2020; 36 Z Yi (921_CR80) 2021; 2 CM Cornelius (921_CR12) 1999; 59 X Li (921_CR57) 2020; 11 Z Wang (921_CR65) 2020; 4 Z Chen (921_CR24) 2016; 7 921_CR2 X Xue (921_CR43) 2020; 32 921_CR3 W Li (921_CR26) 2021; 8 P Li (921_CR69) 2015; 27 L Zhu (921_CR73) 2013; 103 E Blandre (921_CR76) 2020; 28 PT Landsberg (921_CR98) 1980; 51 921_CR1 W Li (921_CR68) 2014; 26 J Kou (921_CR35) 2017; 4 EA Goldstein (921_CR28) 2017; 2 L Zhu (921_CR59) 2014; 1 NH Thomas (921_CR70) 2017; 7 J Xu (921_CR19) 2021; 372 CG Granqvist (921_CR6) 1980; 36 B Bhatia (921_CR40) 2018; 9 PB Catrysse (921_CR85) 2016; 3 NN Shi (921_CR33) 2015; 349 J Mandal (921_CR55) 2019; 3 W Li (921_CR97) 2020; 9 AP Raman (921_CR30) 2019; 3 S Buddhiraju (921_CR96) 2018; 115 Z Zhou (921_CR81) 2020; 1 B Zhu (921_CR49) 2021; 16 J-J Greffet (921_CR14) 2002; 416 D Lee (921_CR47) 2021; 79 X Liu (921_CR16) 2011; 107 G Smith (921_CR29) 2017; 2 M Zhou (921_CR32) 2021; 118 L Fan (921_CR25) 2020; 28 H Luo (921_CR91) 2019; 65 M Li (921_CR100) 2019; 11 X Sun (921_CR62) 2017; 7 B Orel (921_CR10) 1993; 50 P-C Hsu (921_CR86) 2017; 3 S Zeng (921_CR48) 2021; 373 P Berdahl (921_CR9) 1984; 23 S Fan (921_CR17) 2017; 1 M Dong (921_CR31) 2020; 24 Y Zhai (921_CR36) 2017; 355 YX Yeng (921_CR67) 2012; 109 H Zhao (921_CR56) 2020; 32 M Ono (921_CR54) 2018; 26 JK Tong (921_CR83) 2015; 2 G Mie (921_CR20) 1908; 330 Y Shi (921_CR105) 2018; 5 KTE Lin (921_CR71) 2020; 11 P-C Hsu (921_CR88) 2020; 370 M Kim (921_CR82) 2021; 9 G Ulpiani (921_CR53) 2020; 209 H Zhang (921_CR45) 2020; 117 D Zhao (921_CR51) 2019; 3 Y Zhu (921_CR99) 2021; 218 L Shen (921_CR108) 2021; 2 TJ Silverman (921_CR63) 2018; 8 LM Lozano (921_CR75) 2019; 9 AP Raman (921_CR22) 2014; 515 J Mandal (921_CR44) 2020; 4 Z Chen (921_CR58) 2019; 3 E Rephaeli (921_CR21) 2013; 13 H Zhu (921_CR107) 2021; 12 L Zhu (921_CR60) 2015; 112 H Zhu (921_CR106) 2020; 9 P Berdahl (921_CR8) 1983; 26 I Haechler (921_CR52) 2021; 7 T Wang (921_CR46) 2021; 12 SJ Byrnes (921_CR95) 2014; 111 M Dong (921_CR101) 2019; 27 CG Granqvist (921_CR7) 1981; 52 |
References_xml | – reference: LiWShiYChenZFanSPhotonic thermal management of coloured objectsNat. Commun.201892018NatCo...9.4240L10.1038/s41467-018-06535-0 – reference: GranqvistCGHjortsbergASurfaces for radiative cooling: silicon monoxide films on aluminumAppl. Phys. Lett.1980361391980ApPhL..36..139G10.1063/1.91406 – reference: PengYCuiYAdvanced textiles for personal thermal management and energyJoule2020472474210.1016/j.joule.2020.02.011 – reference: LeeDSub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxideNano Energy20217910542610.1016/j.nanoen.2020.105426 – reference: ZhuLRamanAFanSColor-preserving daytime radiative coolingAppl. Phys. Lett.20131032239022013ApPhL.103v3902Z10.1063/1.4835995 – reference: ShenLIncreasing greenhouse production by spectral-shifting and unidirectional light-extracting photonicsNat. Food2021243444110.1038/s43016-021-00307-8 – reference: BhatiaBPassive directional sub-ambient daytime radiative coolingNat. Commun.201892018NatCo...9.5001B10.1038/s41467-018-07293-9 – reference: LiXIntegration of daytime radiative cooling and solar heating for year-round energy saving in buildingsNat. Commun.2020112020NatCo..11.6101L10.1038/s41467-020-19790-x – reference: ZhouZWangXMaYHuBZhouJTransparent polymer coatings for energy-efficient daytime window coolingCell Rep. Phys. Sci.2020110023110.1016/j.xcrp.2020.100231 – reference: KimMVisibly transparent radiative cooler under direct sunlightAdv. Opt. Mater.20219200222610.1002/adom.202002226 – reference: BerdahlPRadiative cooling with MgO and/or LiF layersAppl. Opt.1984233703721984ApOpt..23..370B10.1364/AO.23.000370 – reference: LinS-YEnhancement and suppression of thermal emission by a three-dimensional photonic crystalPhys. Rev. B200062R2243R22462000PhRvB..62.2243L10.1103/PhysRevB.62.R2243 – reference: JiangJChenMFanJADeep neural networks for the evaluation and design of photonic devicesNat. Rev. Mater.202166797002021NatRM...6..679J10.1038/s41578-020-00260-1 – reference: ZhuBSubambient daytime radiative cooling textile based on nanoprocessed silkNat. Nanotechnol.202116134213482021NatNa..16.1342Z10.1038/s41565-021-00987-0 – reference: MoleskySInverse design in nanophotonicsNat. Photon.2018126596702018NaPho..12..659M10.1038/s41566-018-0246-9 – reference: ZhaoDSubambient cooling of water: toward real-world applications of daytime radiative coolingJoule2019311112310.1016/j.joule.2018.10.006 – reference: ByrnesSJBlanchardRCapassoFHarvesting renewable energy from Earth’s mid-infrared emissionsProc. Natl Acad. Sci. USA2014111392739322014PNAS..111.3927B10.1073/pnas.1402036111 – reference: ChenYColored and paintable bilayer coatings with high solar-infrared reflectance for efficient coolingSci. Adv.20206eaaz54132020SciA....6.5413C10.1126/sciadv.aaz5413 – reference: ThomasNHChenZFanSMinnichAJSemiconductor-based multilayer selective solar absorber for unconcentrated solar thermal energy conversionSci. Rep.201772017NatSR...7.5362T10.1038/s41598-017-05235-x – reference: SmithGGentleARadiative cooling: energy savings from the skyNat. Energy20172171422017NatEn...217142S10.1038/nenergy.2017.142 – reference: HaechlerIExploiting radiative cooling for uninterrupted 24-hour water harvesting from the atmosphereSci. Adv.20217eabf39782021SciA....7.3978H10.1126/sciadv.abf3978 – reference: MandalJHierarchically porous polymer coatings for highly efficient passive daytime radiative coolingScience20183623153192018Sci...362..315M10.1126/science.aat9513 – reference: Howell, J. R., Siegel, R. & Mengüç, M. P. Thermal Radiation Heat Transfer (CRC, 2011). – reference: MandalJPorous polymers with switchable optical transmittance for optical and thermal regulationJoule201933088309910.1016/j.joule.2019.09.016 – reference: Dupré, O., Vaillon, R. & Green, M. A. Thermal Behavior of Photovoltaic Devices (Springer, 2017). – reference: XuJMandalJRamanAPBroadband directional control of thermal emissionScience20213723933972021Sci...372..393X10.1126/science.abc5381 – reference: HsuP-CLiXPhoton-engineered radiative cooling textilesScience20203707847852020Sci...370..784H10.1126/science.abe4476 – reference: ZengSHierarchical-morphology metafabric for scalable passive daytime radiative coolingScience20213736926962021Sci...373..692Z10.1126/science.abi5484 – reference: GreffetJ-JCoherent emission of light by thermal sourcesNature200241661642002Natur.416...61G10.1038/416061a – reference: LarocheMCarminatiRGreffetJ-JCoherent thermal antenna using a photonic crystal slabPhys. Rev. Lett.2006961239032006PhRvL..96l3903L10.1103/PhysRevLett.96.123903 – reference: ZhuLRamanAWangKXAnomaMAFanSRadiative cooling of solar cellsOptica2014132382014Optic...1...32Z10.1364/OPTICA.1.000032 – reference: ZhuLRamanAPFanSRadiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbodyProc. Natl Acad. Sci. USA201511212282122872015PNAS..11212282Z10.1073/pnas.1509453112 – reference: ShiYLiWRamanAFanSOptimization of multilayer optical films with a memetic algorithm and mixed integer programmingACS Photonics2018568469110.1021/acsphotonics.7b01136 – reference: Kittel, C. & Kroemer, H. Thermal Physics (W. H. Freeman, 1980). – reference: ZhaiYScalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative coolingScience2017355106210662017Sci...355.1062Z10.1126/science.aai7899 – reference: ZhuYQianHYangRZhaoDRadiative sky cooling potential maps of China based on atmospheric spectral emissivitySol. Energy20212181952102021SoEn..218..195Z10.1016/j.solener.2021.02.050 – reference: BuddhirajuSSanthanamPFanSThermodynamic limits of energy harvesting from outgoing thermal radiationProc. Natl Acad. Sci. USA2018115E3609E36152018PNAS..115E3609B10.1073/pnas.1717595115 – reference: CorneliusCMDowlingJPModification of Planck blackbody radiation by photonic band-gap structuresPhys. Rev. A199959473647461999PhRvA..59.4736C10.1103/PhysRevA.59.4736 – reference: ZhouMVapor condensation with daytime radiative coolingProc. Natl Acad. Sci. USA2021118e201929211810.1073/pnas.2019292118 – reference: KouJJuradoZChenZFanSMinnichAJDaytime radiative cooling using near-black infrared emittersACS Photonics2017462663010.1021/acsphotonics.6b00991 – reference: CatryssePBSongAYFanSPhotonic structure textile design for localized thermal cooling based on a fiber blending schemeACS Photonics201632420242610.1021/acsphotonics.6b00644 – reference: ChenZSegevMHighlighting photonics: looking into the next decadeeLight20211210.1186/s43593-021-00002-y – reference: OnoMChenKLiWFanSSelf-adaptive radiative cooling based on phase change materialsOpt. Express201826A777A7872018OExpr..26A.777O10.1364/OE.26.00A777 – reference: HsuP-CA dual-mode textile for human body radiative heating and coolingSci. Adv.20173e17008952017SciA....3E0895H10.1126/sciadv.1700895 – reference: LiWNighttime radiative cooling for water harvesting from solar panelsACS Photonics2021826927510.1021/acsphotonics.0c01471 – reference: MandalJYangYYuNRamanAPPaints as a scalable and effective radiative cooling technology for buildingsJoule202041350135610.1016/j.joule.2020.04.010 – reference: MieGBeiträge zur Optik trüber Medien, speziell kolloidaler MetallösungenAnn. Phys.190833037744539.0890.0210.1002/andp.19083300302 – reference: WangTA structural polymer for highly efficient all-day passive radiative coolingNat. Commun.20211210.1038/s41467-020-20646-7 – reference: GentleARSmithGBRadiative heat pumping from the Earth using surface phonon resonant nanoparticlesNano Lett.2010103733792010NanoL..10..373G10.1021/nl903271d – reference: RamanAPAnomaMAZhuLRephaeliEFanSPassive radiative cooling below ambient air temperature under direct sunlightNature20145155405442014Natur.515..540R10.1038/nature13883 – reference: WangZLightweight, passive radiative cooling to enhance concentrating photovoltaicsJoule202042702271710.1016/j.joule.2020.10.004 – reference: LiPLarge-scale nanophotonic solar selective absorbers for high-efficiency solar thermal energy conversionAdv. Mater.2015274585459110.1002/adma.201501686 – reference: LiXFull daytime sub-ambient radiative cooling in commercial-like paints with high figure of meritCell Rep. Phys. Sci.202011002212020hsm2.book.....L10.1016/j.xcrp.2020.100221 – reference: ZhouLA polydimethylsiloxane-coated metal structure for all-day radiative coolingNat. Sustain.2019271872410.1038/s41893-019-0348-5 – reference: CaiLSpectrally selective nanocomposite textile for outdoor personal coolingAdv. Mater.201830180215210.1002/adma.201802152 – reference: ShiNNKeeping cool: enhanced optical reflection and radiative heat dissipation in Saharan silver antsScience20153492983012015Sci...349..298S10.1126/science.aab3564 – reference: BartoliBNocturnal and diurnal performances of selective radiatorsAppl. Energy1977326728610.1016/0306-2619(77)90015-0 – reference: SonSColored emitters with silica-embedded perovskite nanocrystals for efficient daytime radiative coolingNano Energy20217910546110.1016/j.nanoen.2020.105461 – reference: TongJKInfrared-transparent visible-opaque fabrics for wearable personal thermal managementACS Photonics2015276977810.1021/acsphotonics.5b00140 – reference: BlandreEYalçinRAJoulainKDrévillonJMicrostructured surfaces for colored and non-colored sky radiative coolingOpt. Express20202829703297132020OExpr..2829703B10.1364/OE.401368 – reference: ZhangHBiologically inspired flexible photonic films for efficient passive radiative coolingProc. Natl Acad. Sci. USA2020117146571466610.1073/pnas.2001802117 – reference: SilvermanTJReducing operating temperature in photovoltaic modulesIEEE J. Photovolt.2018853254010.1109/JPHOTOV.2017.2779842 – reference: FanSThermal photonics and energy applicationsJoule2017126427310.1016/j.joule.2017.07.012 – reference: PerrakisGPassive radiative cooling and other photonic approaches for the temperature control of photovoltaics: a comparative study for crystalline silicon-based architecturesOpt. Express20202818548185652020OExpr..2818548P10.1364/OE.388208 – reference: HsuPCRadiative human body cooling by nanoporous polyethylene textileScience2016353101910232016Sci...353.1019H10.1126/science.aaf5471 – reference: ChenZZhuLRamanAFanSRadiative cooling to deep sub-freezing temperatures through a 24-h day–night cycleNat. Commun.201672016NatCo...713729C10.1038/ncomms13729 – reference: LiuXTaming the blackbody with infrared metamaterials as selective thermal emittersPhys. Rev. Lett.20111070459012011PhRvL.107d5901L10.1103/PhysRevLett.107.045901 – reference: GranqvistCGHjortsbergARadiative cooling to low temperatures: general considerations and application to selectively emitting SiO filmsJ. Appl. Phys.198152420542201981JAP....52.4205G10.1063/1.329270 – reference: DongMFundamental limits of the dew-harvesting technologyNanoscale Microscale Thermophys. Eng.20202443522020NMTE...24...43D10.1080/15567265.2020.1722300 – reference: OnoMSanthanamPLiWZhaoBFanSExperimental demonstration of energy harvesting from the sky using the negative illumination effect of a semiconductor photodiodeAppl. Phys. Lett.20191141611022019ApPhL.114p1102O10.1063/1.5089783 – reference: LiWBuddhirajuSFanSThermodynamic limits for simultaneous energy harvesting from the hot sun and cold outer spaceLight Sci. Appl.20209682020LSA.....9...68L10.1038/s41377-020-0296-x – reference: FanLLiWJinWOrensteinMFanSMaximal nighttime electrical power generation via optimal radiative coolingOpt. Express20202825460254702020OExpr..2825460F10.1364/OE.397714 – reference: LiTA radiative cooling structural materialScience20193647607632019Sci...364..760L10.1126/science.aau9101 – reference: ZhuHHigh-temperature infrared camouflage with efficient thermal managementLight Sci. Appl.20209602020LSA.....9...60Z10.1038/s41377-020-0300-5 – reference: UlpianiGRanziGShahKWFengJSantamourisMOn the energy modulation of daytime radiative coolers: a review on infrared emissivity dynamic switch against overcoolingSol. Energy20202092783012020SoEn..209..278U10.1016/j.solener.2020.08.077 – reference: LuoHAn ultra-thin colored textile with simultaneous solar and passive heating abilitiesNano Energy20196510399810.1016/j.nanoen.2019.103998 – reference: LeroyAHigh-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogelSci. Adv.20195eaat94802019SciA....5.9480L10.1126/sciadv.aat9480 – reference: ZhouKThree-dimensional printable nanoporous polymer matrix composites for daytime radiative coolingNano Lett.202121149314992021NanoL..21.1493Z10.1021/acs.nanolett.0c04810 – reference: LiWShiYChenKZhuLFanSA comprehensive photonic approach for solar cell coolingACS Photonics2017477478210.1021/acsphotonics.7b00089 – reference: LozanoLMOptical engineering of polymer materials and composites for simultaneous color and thermal managementOpt. Mater. Express20199199020052019OMExp...9.1990L10.1364/OME.9.001990 – reference: DongMChenNZhaoXFanSChenZNighttime radiative cooling in hot and humid climatesOpt. Express201927315872019OExpr..2731587D10.1364/OE.27.031587 – reference: LuoHOutdoor personal thermal management with simultaneous electricity generationNano Lett.202121387938862021NanoL..21.3879L10.1021/acs.nanolett.1c00400 – reference: LandsbergPTTongeGThermodynamic energy conversion efficienciesJ. Appl. Phys.198051R11980JAP....51R...1L10.1063/1.328187 – reference: PengYNanoporous polyethylene microfibres for large-scale radiative cooling fabricNat. Sustain.2018110511210.1038/s41893-018-0023-2 – reference: LiWFanSNanophotonic control of thermal radiation for energy applications [Invited]Opt. Express20182615995160212018OExpr..2615995L10.1364/OE.26.015995 – reference: XueXCreating an eco-friendly building coating with smart subambient radiative coolingAdv. Mater.202032190675110.1002/adma.201906751 – reference: BerdahlPMartinMSakkalFThermal performance of radiative cooling panelsInt. J. Heat Mass Transf.1983268718801983IJHMT..26..871B0511.7608410.1016/S0017-9310(83)80111-2 – reference: Modest, M. F. Radiative Heat Transfer (Elsevier, 2013). – reference: ZhuHMultispectral camouflage for infrared, visible, lasers and microwave with radiative coolingNat. Commun.2021122021NatCo..12.1805Z10.1038/s41467-021-22051-0 – reference: LiWRefractory plasmonics with titanium nitride: broadband metamaterial absorberAdv. Mater.201426795979652014ctpa.book.....L10.1002/adma.201401874 – reference: OrelBGundeMKKrainerARadiative cooling efficiency of white pigmented paintsSol. Energy1993504774821993SoEn...50..477O10.1016/0038-092X(93)90108-Z – reference: CatalanottiSThe radiative cooling of selective surfacesSol. Energy19751783891975SoEn...17...83C10.1016/0038-092X(75)90062-6 – reference: BerkAMODTRAN5: 2006 updateProc. SPIE2006623362331F10.1117/12.665077 – reference: GoldsteinEARamanAPFanSSub-ambient non-evaporative fluid cooling with the skyNat. Energy20172171432017NatEn...217143G10.1038/nenergy.2017.143 – reference: YiZEnergy saving analysis of a transparent radiative cooling film for buildings with roof glazingEnergy Built Environ.2021221422210.1016/j.enbenv.2020.07.003 – reference: GentleARSmithGBA subambient open roof surface under the mid-summer sunAdv. Sci.20152150011910.1002/advs.201500119 – reference: RamanAPLiWFanSGenerating light from darknessJoule201932679268610.1016/j.joule.2019.08.009 – reference: KimHHImELeeSColloidal photonic assemblies for colorful radiative coolingLangmuir2020366589659610.1021/acs.langmuir.0c00051 – reference: YalçınRABlandreEJoulainKDrévillonJColored radiative cooling coatings with nanoparticlesACS Photonics202071312132210.1021/acsphotonics.0c00513 – reference: YengYXEnabling high-temperature nanophotonics for energy applicationsProc. Natl Acad. Sci. USA2012109228022852012PNAS..109.2280Y10.1073/pnas.1120149109 – reference: SunXOptics-based approach to thermal management of photovoltaics: selective-spectral and radiative coolingIEEE J. Photovolt.2017756657410.1109/JPHOTOV.2016.2646062 – reference: LiMPetersonHBCoimbraCFMRadiative cooling resource maps for the contiguous United StatesJ. Renew. Sustain. Energy20191103650110.1063/1.5094510 – reference: ZhaoHSunQZhouJDengXCuiJSwitchable cavitation in silicone coatings for energy-saving cooling and heatingAdv. Mater.202032200087010.1002/adma.202000870 – reference: RephaeliERamanAFanSUltrabroadband photonic structures to achieve high-performance daytime radiative coolingNano Lett.201313145714612013NanoL..13.1457R10.1021/nl4004283 – reference: ChenZZhuLLiWFanSSimultaneously and synergistically harvest energy from the Sun and outer spaceJoule2019310111010.1016/j.joule.2018.10.009 – reference: LinKTELinHYangTJiaBStructured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversionNat. Commun.20201113892020NatCo..11.1389L10.1038/s41467-020-15116-z – reference: SanthanamPFanSThermal-to-electrical energy conversion by diodes under negative illuminationPhys. Rev. B201693161410(R)2016PhRvB..93p1410S10.1103/PhysRevB.93.161410 – reference: LiDScalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative coolingNat. Nanotechnol.2021161531582021NatNa..16..153L10.1038/s41565-020-00800-4 – volume: 26 start-page: A777 year: 2018 ident: 921_CR54 publication-title: Opt. Express doi: 10.1364/OE.26.00A777 – volume: 52 start-page: 4205 year: 1981 ident: 921_CR7 publication-title: J. Appl. Phys. doi: 10.1063/1.329270 – volume: 7 year: 2016 ident: 921_CR24 publication-title: Nat. Commun. doi: 10.1038/ncomms13729 – volume: 28 start-page: 29703 year: 2020 ident: 921_CR76 publication-title: Opt. Express doi: 10.1364/OE.401368 – volume: 6233 start-page: 62331F year: 2006 ident: 921_CR23 publication-title: Proc. SPIE doi: 10.1117/12.665077 – volume: 11 start-page: 1389 year: 2020 ident: 921_CR71 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15116-z – volume: 7 start-page: 566 year: 2017 ident: 921_CR62 publication-title: IEEE J. Photovolt. doi: 10.1109/JPHOTOV.2016.2646062 – volume: 8 start-page: 269 year: 2021 ident: 921_CR26 publication-title: ACS Photonics doi: 10.1021/acsphotonics.0c01471 – volume: 28 start-page: 25460 year: 2020 ident: 921_CR25 publication-title: Opt. Express doi: 10.1364/OE.397714 – volume: 9 start-page: 2002226 year: 2021 ident: 921_CR82 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202002226 – volume: 9 start-page: 60 year: 2020 ident: 921_CR106 publication-title: Light Sci. Appl. doi: 10.1038/s41377-020-0300-5 – volume: 353 start-page: 1019 year: 2016 ident: 921_CR84 publication-title: Science doi: 10.1126/science.aaf5471 – volume: 372 start-page: 393 year: 2021 ident: 921_CR19 publication-title: Science doi: 10.1126/science.abc5381 – volume: 362 start-page: 315 year: 2018 ident: 921_CR37 publication-title: Science doi: 10.1126/science.aat9513 – volume: 3 start-page: 2420 year: 2016 ident: 921_CR85 publication-title: ACS Photonics doi: 10.1021/acsphotonics.6b00644 – volume: 9 start-page: 68 year: 2020 ident: 921_CR97 publication-title: Light Sci. Appl. doi: 10.1038/s41377-020-0296-x – volume: 1 start-page: 32 year: 2014 ident: 921_CR59 publication-title: Optica doi: 10.1364/OPTICA.1.000032 – volume: 2 start-page: 214 year: 2021 ident: 921_CR80 publication-title: Energy Built Environ. doi: 10.1016/j.enbenv.2020.07.003 – volume: 16 start-page: 1342 year: 2021 ident: 921_CR49 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-00987-0 – volume: 1 start-page: 100231 year: 2020 ident: 921_CR81 publication-title: Cell Rep. Phys. Sci. doi: 10.1016/j.xcrp.2020.100231 – volume: 6 start-page: eaaz5413 year: 2020 ident: 921_CR74 publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz5413 – volume: 3 start-page: 3088 year: 2019 ident: 921_CR55 publication-title: Joule doi: 10.1016/j.joule.2019.09.016 – volume: 114 start-page: 161102 year: 2019 ident: 921_CR94 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5089783 – volume: 26 start-page: 15995 year: 2018 ident: 921_CR18 publication-title: Opt. Express doi: 10.1364/OE.26.015995 – volume: 1 start-page: 264 year: 2017 ident: 921_CR17 publication-title: Joule doi: 10.1016/j.joule.2017.07.012 – volume: 30 start-page: 1802152 year: 2018 ident: 921_CR89 publication-title: Adv. Mater. doi: 10.1002/adma.201802152 – volume: 51 start-page: R1 year: 1980 ident: 921_CR98 publication-title: J. Appl. Phys. doi: 10.1063/1.328187 – volume: 12 year: 2021 ident: 921_CR107 publication-title: Nat. Commun. doi: 10.1038/s41467-021-22051-0 – volume: 13 start-page: 1457 year: 2013 ident: 921_CR21 publication-title: Nano Lett. doi: 10.1021/nl4004283 – volume: 355 start-page: 1062 year: 2017 ident: 921_CR36 publication-title: Science doi: 10.1126/science.aai7899 – volume: 12 start-page: 659 year: 2018 ident: 921_CR102 publication-title: Nat. Photon. doi: 10.1038/s41566-018-0246-9 – volume: 1 start-page: 100221 year: 2020 ident: 921_CR42 publication-title: Cell Rep. Phys. Sci. doi: 10.1016/j.xcrp.2020.100221 – volume: 112 start-page: 12282 year: 2015 ident: 921_CR60 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1509453112 – volume: 79 start-page: 105461 year: 2021 ident: 921_CR79 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105461 – volume: 373 start-page: 692 year: 2021 ident: 921_CR48 publication-title: Science doi: 10.1126/science.abi5484 – volume: 21 start-page: 1493 year: 2021 ident: 921_CR50 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c04810 – volume: 36 start-page: 6589 year: 2020 ident: 921_CR77 publication-title: Langmuir doi: 10.1021/acs.langmuir.0c00051 – volume: 12 year: 2021 ident: 921_CR46 publication-title: Nat. Commun. doi: 10.1038/s41467-020-20646-7 – volume: 107 start-page: 045901 year: 2011 ident: 921_CR16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.045901 – volume: 5 start-page: eaat9480 year: 2019 ident: 921_CR41 publication-title: Sci. Adv. doi: 10.1126/sciadv.aat9480 – volume: 26 start-page: 7959 year: 2014 ident: 921_CR68 publication-title: Adv. Mater. doi: 10.1002/adma.201401874 – volume: 27 start-page: 4585 year: 2015 ident: 921_CR69 publication-title: Adv. Mater. doi: 10.1002/adma.201501686 – ident: 921_CR1 – volume: 111 start-page: 3927 year: 2014 ident: 921_CR95 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1402036111 – volume: 515 start-page: 540 year: 2014 ident: 921_CR22 publication-title: Nature doi: 10.1038/nature13883 – volume: 28 start-page: 18548 year: 2020 ident: 921_CR64 publication-title: Opt. Express doi: 10.1364/OE.388208 – ident: 921_CR3 doi: 10.1016/B978-0-12-386944-9.50023-6 – volume: 23 start-page: 370 year: 1984 ident: 921_CR9 publication-title: Appl. Opt. doi: 10.1364/AO.23.000370 – volume: 6 start-page: 679 year: 2021 ident: 921_CR103 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-020-00260-1 – volume: 1 start-page: 105 year: 2018 ident: 921_CR87 publication-title: Nat. Sustain. doi: 10.1038/s41893-018-0023-2 – volume: 7 start-page: eabf3978 year: 2021 ident: 921_CR52 publication-title: Sci. Adv. doi: 10.1126/sciadv.abf3978 – volume: 24 start-page: 43 year: 2020 ident: 921_CR31 publication-title: Nanoscale Microscale Thermophys. Eng. doi: 10.1080/15567265.2020.1722300 – volume: 118 start-page: e2019292118 year: 2021 ident: 921_CR32 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2019292118 – volume: 17 start-page: 83 year: 1975 ident: 921_CR4 publication-title: Sol. Energy doi: 10.1016/0038-092X(75)90062-6 – volume: 330 start-page: 377 year: 1908 ident: 921_CR20 publication-title: Ann. Phys. doi: 10.1002/andp.19083300302 – volume: 370 start-page: 784 year: 2020 ident: 921_CR88 publication-title: Science doi: 10.1126/science.abe4476 – volume: 218 start-page: 195 year: 2021 ident: 921_CR99 publication-title: Sol. Energy doi: 10.1016/j.solener.2021.02.050 – volume: 10 start-page: 373 year: 2010 ident: 921_CR11 publication-title: Nano Lett. doi: 10.1021/nl903271d – volume: 209 start-page: 278 year: 2020 ident: 921_CR53 publication-title: Sol. Energy doi: 10.1016/j.solener.2020.08.077 – volume: 32 start-page: 2000870 year: 2020 ident: 921_CR56 publication-title: Adv. Mater. doi: 10.1002/adma.202000870 – volume: 416 start-page: 61 year: 2002 ident: 921_CR14 publication-title: Nature doi: 10.1038/416061a – volume: 96 start-page: 123903 year: 2006 ident: 921_CR15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.123903 – volume: 65 start-page: 103998 year: 2019 ident: 921_CR91 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.103998 – volume: 103 start-page: 223902 year: 2013 ident: 921_CR73 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4835995 – volume: 62 start-page: R2243 year: 2000 ident: 921_CR13 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.62.R2243 – volume: 9 year: 2018 ident: 921_CR40 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07293-9 – volume: 79 start-page: 105426 year: 2021 ident: 921_CR47 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105426 – volume: 115 start-page: E3609 year: 2018 ident: 921_CR96 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1717595115 – volume: 2 start-page: 769 year: 2015 ident: 921_CR83 publication-title: ACS Photonics doi: 10.1021/acsphotonics.5b00140 – volume: 50 start-page: 477 year: 1993 ident: 921_CR10 publication-title: Sol. Energy doi: 10.1016/0038-092X(93)90108-Z – volume: 2 start-page: 17143 year: 2017 ident: 921_CR28 publication-title: Nat. Energy doi: 10.1038/nenergy.2017.143 – volume: 3 start-page: 2679 year: 2019 ident: 921_CR30 publication-title: Joule doi: 10.1016/j.joule.2019.08.009 – volume: 59 start-page: 4736 year: 1999 ident: 921_CR12 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.59.4736 – volume: 16 start-page: 153 year: 2021 ident: 921_CR39 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-00800-4 – volume: 26 start-page: 871 year: 1983 ident: 921_CR8 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(83)80111-2 – volume: 4 start-page: 1350 year: 2020 ident: 921_CR44 publication-title: Joule doi: 10.1016/j.joule.2020.04.010 – volume: 4 start-page: 774 year: 2017 ident: 921_CR61 publication-title: ACS Photonics doi: 10.1021/acsphotonics.7b00089 – ident: 921_CR66 doi: 10.1007/978-3-319-49457-9 – volume: 109 start-page: 2280 year: 2012 ident: 921_CR67 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1120149109 – volume: 2 start-page: 1500119 year: 2015 ident: 921_CR34 publication-title: Adv. Sci. doi: 10.1002/advs.201500119 – ident: 921_CR2 doi: 10.1201/9781439894552 – volume: 117 start-page: 14657 year: 2020 ident: 921_CR45 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2001802117 – volume: 7 start-page: 1312 year: 2020 ident: 921_CR78 publication-title: ACS Photonics doi: 10.1021/acsphotonics.0c00513 – volume: 9 start-page: 1990 year: 2019 ident: 921_CR75 publication-title: Opt. Mater. Express doi: 10.1364/OME.9.001990 – volume: 3 start-page: 101 year: 2019 ident: 921_CR58 publication-title: Joule doi: 10.1016/j.joule.2018.10.009 – volume: 1 start-page: 2 year: 2021 ident: 921_CR104 publication-title: eLight doi: 10.1186/s43593-021-00002-y – volume: 2 start-page: 17142 year: 2017 ident: 921_CR29 publication-title: Nat. Energy doi: 10.1038/nenergy.2017.142 – volume: 93 start-page: 161410(R) year: 2016 ident: 921_CR93 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.161410 – volume: 349 start-page: 298 year: 2015 ident: 921_CR33 publication-title: Science doi: 10.1126/science.aab3564 – volume: 9 year: 2018 ident: 921_CR72 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06535-0 – volume: 5 start-page: 684 year: 2018 ident: 921_CR105 publication-title: ACS Photonics doi: 10.1021/acsphotonics.7b01136 – volume: 32 start-page: 1906751 year: 2020 ident: 921_CR43 publication-title: Adv. Mater. doi: 10.1002/adma.201906751 – volume: 11 year: 2020 ident: 921_CR57 publication-title: Nat. Commun. doi: 10.1038/s41467-020-19790-x – volume: 2 start-page: 718 year: 2019 ident: 921_CR27 publication-title: Nat. Sustain. doi: 10.1038/s41893-019-0348-5 – volume: 8 start-page: 532 year: 2018 ident: 921_CR63 publication-title: IEEE J. Photovolt. doi: 10.1109/JPHOTOV.2017.2779842 – volume: 36 start-page: 139 year: 1980 ident: 921_CR6 publication-title: Appl. Phys. Lett. doi: 10.1063/1.91406 – volume: 3 start-page: 267 year: 1977 ident: 921_CR5 publication-title: Appl. Energy doi: 10.1016/0306-2619(77)90015-0 – volume: 4 start-page: 724 year: 2020 ident: 921_CR90 publication-title: Joule doi: 10.1016/j.joule.2020.02.011 – volume: 4 start-page: 626 year: 2017 ident: 921_CR35 publication-title: ACS Photonics doi: 10.1021/acsphotonics.6b00991 – volume: 11 start-page: 036501 year: 2019 ident: 921_CR100 publication-title: J. Renew. Sustain. Energy doi: 10.1063/1.5094510 – volume: 3 start-page: e1700895 year: 2017 ident: 921_CR86 publication-title: Sci. Adv. doi: 10.1126/sciadv.1700895 – volume: 27 start-page: 31587 year: 2019 ident: 921_CR101 publication-title: Opt. Express doi: 10.1364/OE.27.031587 – volume: 21 start-page: 3879 year: 2021 ident: 921_CR92 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c00400 – volume: 364 start-page: 760 year: 2019 ident: 921_CR38 publication-title: Science doi: 10.1126/science.aau9101 – volume: 7 year: 2017 ident: 921_CR70 publication-title: Sci. Rep. doi: 10.1038/s41598-017-05235-x – volume: 4 start-page: 2702 year: 2020 ident: 921_CR65 publication-title: Joule doi: 10.1016/j.joule.2020.10.004 – volume: 2 start-page: 434 year: 2021 ident: 921_CR108 publication-title: Nat. Food doi: 10.1038/s43016-021-00307-8 – volume: 3 start-page: 111 year: 2019 ident: 921_CR51 publication-title: Joule doi: 10.1016/j.joule.2018.10.006 |
SSID | ssj0053922 |
Score | 2.721095 |
SecondaryResourceType | review_article |
Snippet | Radiative cooling is a ubiquitous passive process that uses photon heat flow to carry away energy and entropy. Radiative cooling processes have been studied in... Not provided. |
SourceID | osti crossref springer |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 182 |
SubjectTerms | 639/624/1111/1114 639/624/399/1015 Applied and Technical Physics Optics Physics Physics and Astronomy Quantum Physics Review Article |
Title | Photonics and thermodynamics concepts in radiative cooling |
URI | https://link.springer.com/article/10.1038/s41566-021-00921-9 https://www.osti.gov/biblio/1978655 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELagXLiwuzxEYRflwA0CdeI4Mbd2BUJIVBxAcLMS26GVIKmacNlfzzh2TKAsAi5RZbXT1F89j8w3Mwjt40GeqRjCVEoEBCgsJD5Lc-mHOZgvogZpLHW98-WYnt-Qi7vorh00bqtL6uxI_Hu3ruQ7qMIa4KqrZL-ArBMKC_Aa8IUrIAzXT2F8NSlr3dq2anmQ88dSmhHzleaTa8pKw3ed6w4EDUlIlHpKz33XJx03vT0PZq0wB6l9NjpJi8nT1DF3mvT_rZp2nxdAqOkIU1bFxYT5cGxNLll118ysQqcXaQf_sKPksBkXZO0lNuM-F1SxabxeNQGir4kgur0T9tmL4WmT7W_skWMJNvnxMOFGBgcZvJHB2TJaCSAsAL22Mjwbjcat7Y3A2wtMCaz5jbZMCqQcL97JK1ekV4JKXUiHN17G9U-0ZsMDb2iw_oWWVLGOfthQwbOKuNpAJw56D6D3XkPvtdB708Jz0HsW-k10c3Z6_ffct2MwfBEmpPaZZAEVUcaYCNMkpYxIonJwKwCHZJApHIALG8iIKDhg4JLkJJZM9w1MBFVYJuEW6hVlobY1jy2LRJIzoqgkUZwmmZKYRikJY0JiRfsItzvChe0Rr0eVPPD_Y9FHB-4zM9Mh5cN37-qN5uDf6SbFQrO5RM0xi3WFdB8dtvvP7TmrPhC286Wv3kWrL-fhN-rV8yf1BzzKOtuzf6NnOglsuA |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photonics+and+thermodynamics+concepts+in+radiative+cooling&rft.jtitle=Nature+photonics&rft.au=Fan%2C+Shanhui&rft.au=Li%2C+Wei&rft.date=2022-03-01&rft.issn=1749-4885&rft.eissn=1749-4893&rft.volume=16&rft.issue=3&rft.spage=182&rft.epage=190&rft_id=info:doi/10.1038%2Fs41566-021-00921-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41566_021_00921_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1749-4885&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1749-4885&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1749-4885&client=summon |