Photonics and thermodynamics concepts in radiative cooling

Radiative cooling is a ubiquitous passive process that uses photon heat flow to carry away energy and entropy. Radiative cooling processes have been studied in the scientific literature for many decades, but advances in nanophotonics have enabled recent breakthroughs in daytime radiative cooling, wh...

Full description

Saved in:
Bibliographic Details
Published inNature photonics Vol. 16; no. 3; pp. 182 - 190
Main Authors Fan, Shanhui, Li, Wei
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.03.2022
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Radiative cooling is a ubiquitous passive process that uses photon heat flow to carry away energy and entropy. Radiative cooling processes have been studied in the scientific literature for many decades, but advances in nanophotonics have enabled recent breakthroughs in daytime radiative cooling, which have inspired intense research efforts in this area. Radiative cooling is now emerging as a frontier in renewable energy research, with important potential for wide ranges of applications. In this Review, we discuss the fundamental photonics and thermodynamics concepts that underlie the processes of radiative cooling. Understanding of these concepts is essential both for the demonstration of cooling effects and for the development of practical technology. This Review details the fundamental photonics and thermodynamics concepts that underlie the processes of radiative cooling, and discusses a few emerging directions associated with radiative cooling research.
AbstractList Not provided.
Radiative cooling is a ubiquitous passive process that uses photon heat flow to carry away energy and entropy. Radiative cooling processes have been studied in the scientific literature for many decades, but advances in nanophotonics have enabled recent breakthroughs in daytime radiative cooling, which have inspired intense research efforts in this area. Radiative cooling is now emerging as a frontier in renewable energy research, with important potential for wide ranges of applications. In this Review, we discuss the fundamental photonics and thermodynamics concepts that underlie the processes of radiative cooling. Understanding of these concepts is essential both for the demonstration of cooling effects and for the development of practical technology. This Review details the fundamental photonics and thermodynamics concepts that underlie the processes of radiative cooling, and discusses a few emerging directions associated with radiative cooling research.
Author Li, Wei
Fan, Shanhui
Author_xml – sequence: 1
  givenname: Shanhui
  orcidid: 0000-0002-0081-9732
  surname: Fan
  fullname: Fan, Shanhui
  email: shanhui@stanford.edu
  organization: E. L. Ginzton Laboratory, and Department of Electrical Engineering, Stanford University
– sequence: 2
  givenname: Wei
  orcidid: 0000-0002-2227-9431
  surname: Li
  fullname: Li, Wei
  email: weili1@ciomp.ac.cn
  organization: GPL Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences
BackLink https://www.osti.gov/biblio/1978655$$D View this record in Osti.gov
BookMark eNp9kE1LAzEQhoNUsK3-AU-L99V8b-JNilahoAc9hzTJtiltUpIo9N-buuLBQy8zw_A-w_BMwCjE4AC4RvAWQSLuMkWM8xZi1EIoa5VnYIw6KlsqJBn9zYJdgEnOGwgZkRiPwf3bOpYYvMmNDrYpa5d20R6C3h1XJgbj9iU3PjRJW6-L_3J1G7c-rC7Bea-32V399in4eHp8nz23i9f5y-xh0RoiaGmllZgbtpTSEC00l9RS12NBkcACLh3CHBNsGXWk7xCBPe2sRBx2wnCHrCBTcDPcjbl4lY0vzqzrZ8GZopDsBGeshsQQMinmnFyvaq6-G0NJ2m8VguooSg2iVBWlfkQpWVH8D90nv9PpcBoiA5RrOKxcUpv4mUL1cIr6BlSPfFQ
CitedBy_id crossref_primary_10_1364_OE_518164
crossref_primary_10_1016_j_jqsrt_2024_109314
crossref_primary_10_1016_j_cej_2023_143765
crossref_primary_10_1515_nanoph_2022_0815
crossref_primary_10_1002_adma_202314130
crossref_primary_10_1016_j_optmat_2023_114068
crossref_primary_10_1016_j_cej_2022_139786
crossref_primary_10_1038_s41467_023_42548_0
crossref_primary_10_1088_2040_8986_ad2f6e
crossref_primary_10_1103_RevModPhys_96_015002
crossref_primary_10_1039_D3MH01008B
crossref_primary_10_1126_science_adl0653
crossref_primary_10_1039_D2TA07453B
crossref_primary_10_1016_j_ijbiomac_2024_139438
crossref_primary_10_1002_aenm_202402667
crossref_primary_10_1002_smll_202301957
crossref_primary_10_1126_sciadv_ado3476
crossref_primary_10_1364_AO_490095
crossref_primary_10_1002_adma_202312879
crossref_primary_10_1093_nsr_nwae408
crossref_primary_10_1021_acsphotonics_4c00981
crossref_primary_10_1002_cjoc_202300282
crossref_primary_10_1063_5_0203602
crossref_primary_10_1016_j_csite_2024_105232
crossref_primary_10_1021_acsami_4c19960
crossref_primary_10_1364_OE_462166
crossref_primary_10_1016_j_applthermaleng_2023_121655
crossref_primary_10_1038_s41467_023_41797_3
crossref_primary_10_1016_j_compscitech_2024_110566
crossref_primary_10_1088_2040_8986_ad6e9d
crossref_primary_10_1016_j_mtphys_2024_101643
crossref_primary_10_1002_adfm_202304073
crossref_primary_10_1016_j_ijthermalsci_2025_109819
crossref_primary_10_29026_oea_2024_230194
crossref_primary_10_1615_ComputThermalScien_2024054285
crossref_primary_10_1038_s41566_024_01409_y
crossref_primary_10_1016_j_solmat_2025_113519
crossref_primary_10_1364_AO_522582
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126783
crossref_primary_10_1038_s42254_023_00565_4
crossref_primary_10_1002_adma_202414300
crossref_primary_10_1021_acsphotonics_4c00057
crossref_primary_10_1016_j_applthermaleng_2023_120561
crossref_primary_10_1038_s41566_023_01261_6
crossref_primary_10_1364_OE_455722
crossref_primary_10_1016_j_tsep_2024_102637
crossref_primary_10_1364_OE_523853
crossref_primary_10_1021_acsphotonics_4c00833
crossref_primary_10_1038_s44286_024_00050_4
crossref_primary_10_1016_j_solmat_2022_111854
crossref_primary_10_1021_acs_nanolett_5c00083
crossref_primary_10_1016_j_applthermaleng_2024_123449
crossref_primary_10_1364_OPTICA_487561
crossref_primary_10_1016_j_advmem_2025_100133
crossref_primary_10_1002_smll_202407204
crossref_primary_10_1016_j_cej_2024_157995
crossref_primary_10_1021_acsaom_4c00030
crossref_primary_10_1360_nso_20240019
crossref_primary_10_1021_acsmaterialslett_4c00337
crossref_primary_10_1002_advs_202309871
crossref_primary_10_1016_j_cej_2023_142095
crossref_primary_10_1016_j_device_2023_100099
crossref_primary_10_1002_adfm_202403061
crossref_primary_10_1063_5_0142347
crossref_primary_10_1515_nanoph_2023_0678
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124465
crossref_primary_10_1002_aenm_202402202
crossref_primary_10_1364_OE_517889
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125176
crossref_primary_10_1016_j_solener_2024_112685
crossref_primary_10_1016_j_xcrp_2024_102345
crossref_primary_10_1016_j_pmatsci_2024_101276
crossref_primary_10_1021_acs_nanolett_4c04969
crossref_primary_10_1016_j_cej_2024_153262
crossref_primary_10_1063_5_0249362
crossref_primary_10_1002_adfm_202405903
crossref_primary_10_1016_j_cej_2025_161629
crossref_primary_10_1016_j_joule_2023_09_016
crossref_primary_10_1016_j_cej_2024_157862
crossref_primary_10_1016_j_mtener_2024_101575
crossref_primary_10_1016_j_softx_2023_101562
crossref_primary_10_1016_j_mtphys_2023_101284
crossref_primary_10_1021_acs_iecr_3c04130
crossref_primary_10_1021_acssuschemeng_3c05583
crossref_primary_10_1002_adma_202409738
crossref_primary_10_1016_j_nanoen_2023_108625
crossref_primary_10_1002_adom_202402432
crossref_primary_10_1016_j_mtener_2024_101579
crossref_primary_10_1016_j_mattod_2024_12_012
crossref_primary_10_1016_j_rser_2024_114641
crossref_primary_10_1515_nanoph_2024_0193
crossref_primary_10_1016_j_porgcoat_2024_108631
crossref_primary_10_1515_nanoph_2023_0742
crossref_primary_10_1016_j_cej_2024_150657
crossref_primary_10_1103_PhysRevB_111_115408
crossref_primary_10_1186_s43593_022_00025_z
crossref_primary_10_1126_science_adn2524
crossref_primary_10_1002_lpor_202400716
crossref_primary_10_1016_j_solmat_2024_112848
crossref_primary_10_1021_acsaem_4c00675
crossref_primary_10_1016_j_solener_2023_05_029
crossref_primary_10_1063_5_0164073
crossref_primary_10_1016_j_solmat_2023_112563
crossref_primary_10_1126_science_adi4725
crossref_primary_10_1021_acsnano_2c11916
crossref_primary_10_1038_s41467_024_54983_8
crossref_primary_10_1103_PhysRevApplied_20_054028
crossref_primary_10_1021_acsami_3c02418
crossref_primary_10_1002_adma_202415386
crossref_primary_10_1016_j_cej_2023_146431
crossref_primary_10_1016_j_solener_2025_113293
crossref_primary_10_1002_adfm_202301319
crossref_primary_10_1038_s41528_024_00339_7
crossref_primary_10_1007_s40820_023_01156_9
crossref_primary_10_1016_j_cej_2023_146668
crossref_primary_10_1016_j_renene_2024_121027
crossref_primary_10_1002_admt_202400713
crossref_primary_10_1016_j_isci_2024_108806
crossref_primary_10_1002_aenm_202404122
crossref_primary_10_1016_j_xcrp_2025_102501
crossref_primary_10_1002_smll_202205091
crossref_primary_10_1103_PhysRevLett_133_093801
crossref_primary_10_1016_j_enbuild_2025_115600
crossref_primary_10_1016_j_buildenv_2024_112462
crossref_primary_10_1016_j_infrared_2025_105717
crossref_primary_10_1002_adma_202310923
crossref_primary_10_1021_acs_nanolett_4c04073
crossref_primary_10_1016_j_solmat_2024_113382
crossref_primary_10_1021_acsaenm_4c00245
crossref_primary_10_1515_nanoph_2023_0520
crossref_primary_10_1016_j_isci_2024_111325
crossref_primary_10_1016_j_energy_2023_129884
crossref_primary_10_1021_acsami_4c20168
crossref_primary_10_1002_aenm_202300260
crossref_primary_10_1016_j_energy_2024_133861
crossref_primary_10_1016_j_renene_2025_122447
crossref_primary_10_1021_acsnano_3c12244
crossref_primary_10_1186_s40580_023_00365_7
crossref_primary_10_1016_j_solmat_2024_113356
crossref_primary_10_1016_j_solmat_2023_112660
crossref_primary_10_1038_s41467_024_48150_2
crossref_primary_10_1021_acsaelm_3c01023
crossref_primary_10_1088_1674_1056_acc061
crossref_primary_10_1038_s41377_023_01341_w
crossref_primary_10_1360_nso_20220063
crossref_primary_10_1038_s41467_024_45095_4
crossref_primary_10_1002_idm2_12123
crossref_primary_10_1016_j_rinp_2024_107795
crossref_primary_10_1021_acsaom_3c00368
crossref_primary_10_1016_j_icheatmasstransfer_2023_106666
crossref_primary_10_1126_sciadv_adg1837
crossref_primary_10_1364_AO_486726
crossref_primary_10_1515_nanoph_2023_0511
crossref_primary_10_1016_j_icheatmasstransfer_2024_107810
crossref_primary_10_1016_j_nxener_2023_100088
crossref_primary_10_1021_acsaom_4c00336
crossref_primary_10_1063_5_0135193
crossref_primary_10_1021_acs_chemrev_3c00136
crossref_primary_10_1063_5_0141734
crossref_primary_10_1021_acs_langmuir_4c02567
crossref_primary_10_1021_acsphotonics_3c00494
crossref_primary_10_1016_j_mtphys_2023_101242
crossref_primary_10_1103_PhysRevMaterials_6_090201
crossref_primary_10_1038_s41377_023_01315_y
crossref_primary_10_1063_5_0089353
crossref_primary_10_1016_j_ceramint_2023_10_002
crossref_primary_10_1039_D3CS00500C
crossref_primary_10_1038_s41598_023_30959_4
crossref_primary_10_1002_smll_202301164
crossref_primary_10_1016_j_solmat_2024_113362
crossref_primary_10_1002_aenm_202302662
crossref_primary_10_1016_j_device_2023_100186
crossref_primary_10_1515_nanoph_2023_0198
crossref_primary_10_1016_j_aiepr_2023_04_001
crossref_primary_10_1021_acsaom_3c00235
crossref_primary_10_1039_D3TA03683A
crossref_primary_10_1088_0256_307X_40_7_077801
crossref_primary_10_1016_j_colsurfa_2023_132962
crossref_primary_10_1016_j_scib_2022_08_028
crossref_primary_10_1002_adfm_202307191
crossref_primary_10_1016_j_cej_2023_143127
crossref_primary_10_1021_acs_chemrev_2c00171
crossref_primary_10_1021_acs_nanolett_4c04891
crossref_primary_10_1038_s41893_023_01200_x
crossref_primary_10_1007_s12274_024_6778_z
crossref_primary_10_1016_j_apenergy_2024_124161
crossref_primary_10_1021_acsphotonics_3c00241
crossref_primary_10_1002_adom_202202163
crossref_primary_10_3390_photonics11100899
crossref_primary_10_1002_advs_202204508
crossref_primary_10_1021_acsami_2c15573
crossref_primary_10_1016_j_solmat_2023_112488
crossref_primary_10_1016_j_pmatsci_2023_101144
crossref_primary_10_1364_OE_477368
crossref_primary_10_1016_j_carbpol_2023_120948
crossref_primary_10_1016_j_cej_2024_152920
crossref_primary_10_1002_marc_202200695
crossref_primary_10_1007_s40820_024_01360_1
crossref_primary_10_1016_j_infrared_2024_105509
crossref_primary_10_1080_15599612_2024_2334293
crossref_primary_10_1088_0256_307X_41_4_044202
crossref_primary_10_1002_adfm_202406393
crossref_primary_10_1016_j_solmat_2024_113291
crossref_primary_10_1016_j_energy_2023_130186
crossref_primary_10_1016_j_nxener_2023_100069
crossref_primary_10_1364_OME_545481
crossref_primary_10_1016_j_solmat_2025_113591
crossref_primary_10_1021_acsami_4c21885
crossref_primary_10_1080_15567265_2024_2315265
crossref_primary_10_1016_j_fmre_2024_12_019
crossref_primary_10_1002_smll_202206145
crossref_primary_10_1016_j_device_2023_100008
crossref_primary_10_1016_j_rser_2023_113801
crossref_primary_10_1021_acsami_3c06952
crossref_primary_10_1002_adma_202409473
crossref_primary_10_1002_adma_202208236
crossref_primary_10_1016_j_xcrp_2024_101876
crossref_primary_10_1016_j_applthermaleng_2025_125852
crossref_primary_10_1039_D4TA04942J
crossref_primary_10_1007_s42114_024_01127_7
crossref_primary_10_1038_s41467_024_49936_0
crossref_primary_10_1016_j_cej_2024_152599
crossref_primary_10_1007_s40820_025_01713_4
crossref_primary_10_1364_OME_517791
crossref_primary_10_1021_acsnano_4c16998
crossref_primary_10_1016_j_apmt_2024_102184
crossref_primary_10_1364_OE_460471
crossref_primary_10_1016_j_joule_2023_06_009
crossref_primary_10_1016_j_solmat_2025_113565
crossref_primary_10_1016_j_ijbiomac_2024_134248
crossref_primary_10_1016_j_matt_2024_10_016
crossref_primary_10_1177_00405175231154018
crossref_primary_10_1016_j_enbuild_2024_114949
crossref_primary_10_1021_acsphotonics_2c01389
crossref_primary_10_1002_smll_202301534
crossref_primary_10_3390_coatings15030340
crossref_primary_10_1016_j_susmat_2024_e01202
crossref_primary_10_1016_j_solmat_2023_112463
crossref_primary_10_1126_science_adn5694
crossref_primary_10_3390_polym16091201
crossref_primary_10_1016_j_solener_2024_112734
crossref_primary_10_1016_j_solmat_2024_113154
crossref_primary_10_1002_adfm_202413813
crossref_primary_10_1016_j_optmat_2024_114845
crossref_primary_10_1021_acsphotonics_3c00339
crossref_primary_10_1021_acsphotonics_3c01307
crossref_primary_10_1016_j_apenergy_2024_123619
crossref_primary_10_1021_acsami_3c14310
crossref_primary_10_1038_s41598_025_91800_8
crossref_primary_10_1515_nanoph_2024_0082
crossref_primary_10_1039_D4MH01697A
crossref_primary_10_1021_acsbiomaterials_4c01712
crossref_primary_10_1016_j_cej_2024_149976
crossref_primary_10_1016_j_ijbiomac_2024_130676
crossref_primary_10_1016_j_solmat_2025_113452
crossref_primary_10_1515_nanoph_2023_0716
crossref_primary_10_1016_j_enbuild_2024_114836
crossref_primary_10_1021_acsami_3c08790
crossref_primary_10_1021_acsami_4c08652
crossref_primary_10_1007_s40820_025_01698_0
crossref_primary_10_1016_j_cej_2022_139739
crossref_primary_10_1021_acs_langmuir_1c03488
crossref_primary_10_1016_j_solmat_2024_113047
crossref_primary_10_1016_j_mtcomm_2024_110797
crossref_primary_10_1016_j_isci_2024_110948
crossref_primary_10_1109_ACCESS_2024_3509592
crossref_primary_10_1021_acsphotonics_4c01401
crossref_primary_10_1002_adom_202401967
crossref_primary_10_1016_j_matt_2024_08_020
crossref_primary_10_1016_j_jechem_2024_06_057
crossref_primary_10_1002_advs_202206575
crossref_primary_10_1002_adma_202500738
crossref_primary_10_1021_acs_nanolett_4c01621
crossref_primary_10_1016_j_mtphys_2023_101057
crossref_primary_10_1016_j_renene_2024_120444
crossref_primary_10_26599_CF_2025_9200033
crossref_primary_10_1016_j_cej_2024_158664
crossref_primary_10_1021_acsphotonics_4c02284
crossref_primary_10_3389_fphot_2023_1193479
crossref_primary_10_1021_acs_nanolett_3c04118
crossref_primary_10_1016_j_enbuild_2024_114887
crossref_primary_10_1016_j_optlastec_2025_112562
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126872
crossref_primary_10_1016_j_xcrp_2024_102362
crossref_primary_10_35848_1882_0786_ac8415
crossref_primary_10_1016_j_conbuildmat_2024_139476
crossref_primary_10_1016_j_diamond_2025_111986
crossref_primary_10_1016_j_optmat_2023_114708
crossref_primary_10_1002_adfm_202206962
crossref_primary_10_1039_D4TC04838E
crossref_primary_10_1007_s40843_024_3264_7
crossref_primary_10_1002_adma_202300179
crossref_primary_10_1016_j_applthermaleng_2023_120647
crossref_primary_10_1515_nanoph_2023_0699
crossref_primary_10_1021_acsaom_4c00519
crossref_primary_10_1016_j_apmt_2024_102331
crossref_primary_10_1002_adom_202200452
crossref_primary_10_1364_OE_530539
crossref_primary_10_1016_j_nanoen_2024_109393
crossref_primary_10_1016_j_porgcoat_2024_108901
crossref_primary_10_1039_D4TA01734J
crossref_primary_10_1016_j_jhazmat_2024_137045
crossref_primary_10_1039_D4TA08945F
crossref_primary_10_1002_adma_202209123
crossref_primary_10_1002_adfm_202419891
crossref_primary_10_1016_j_nanoen_2024_110023
crossref_primary_10_1016_j_isci_2022_104858
crossref_primary_10_1016_j_susmat_2025_e01334
crossref_primary_10_1002_smll_202305706
crossref_primary_10_1016_j_mattod_2024_03_012
crossref_primary_10_1016_j_xcrp_2024_102251
crossref_primary_10_1021_acs_nanolett_3c03711
crossref_primary_10_1038_s41566_022_01126_4
crossref_primary_10_1016_j_renene_2024_121658
crossref_primary_10_1021_acsami_3c19498
crossref_primary_10_1016_j_matlet_2023_135220
crossref_primary_10_1021_acsphotonics_4c01622
crossref_primary_10_1021_acsnano_4c17745
crossref_primary_10_1016_j_solener_2024_113182
crossref_primary_10_1021_acsphotonics_3c01757
crossref_primary_10_1039_D4TC02504K
crossref_primary_10_1016_j_porgcoat_2025_109145
crossref_primary_10_1016_j_optmat_2023_113710
crossref_primary_10_3788_AOS241378
crossref_primary_10_1364_OE_554717
crossref_primary_10_1016_j_cej_2025_159214
crossref_primary_10_1063_5_0134951
crossref_primary_10_1021_acsaom_3c00092
crossref_primary_10_1016_j_physrep_2024_05_004
crossref_primary_10_1088_1361_6463_ac9fde
crossref_primary_10_1515_nanoph_2022_0032
crossref_primary_10_34133_2022_9765089
crossref_primary_10_1080_15567036_2024_2329813
crossref_primary_10_1093_nsr_nwac208
crossref_primary_10_1002_adpr_202200253
crossref_primary_10_1039_D2MA01000C
crossref_primary_10_1016_j_nxener_2023_100003
crossref_primary_10_1016_j_rser_2023_113782
crossref_primary_10_1021_acsaom_3c00082
crossref_primary_10_1039_D3TA00823A
crossref_primary_10_1021_acsnano_3c01184
crossref_primary_10_1515_nanoph_2022_0020
crossref_primary_10_1039_D4TA07793H
crossref_primary_10_1016_j_enbuild_2024_115045
crossref_primary_10_1002_advs_202305228
crossref_primary_10_1002_adom_202401020
crossref_primary_10_1002_adfm_202305734
crossref_primary_10_1002_adfm_202315658
crossref_primary_10_1002_smtd_202301258
crossref_primary_10_1002_adfm_202410613
crossref_primary_10_1016_j_cej_2024_154834
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126887
crossref_primary_10_1021_acsenergylett_3c02325
crossref_primary_10_1021_acs_nanolett_3c03055
crossref_primary_10_1002_adfm_202207940
crossref_primary_10_1364_OL_494539
crossref_primary_10_1515_nanoph_2023_0595
Cites_doi 10.1364/OE.26.00A777
10.1063/1.329270
10.1038/ncomms13729
10.1364/OE.401368
10.1117/12.665077
10.1038/s41467-020-15116-z
10.1109/JPHOTOV.2016.2646062
10.1021/acsphotonics.0c01471
10.1364/OE.397714
10.1002/adom.202002226
10.1038/s41377-020-0300-5
10.1126/science.aaf5471
10.1126/science.abc5381
10.1126/science.aat9513
10.1021/acsphotonics.6b00644
10.1038/s41377-020-0296-x
10.1364/OPTICA.1.000032
10.1016/j.enbenv.2020.07.003
10.1038/s41565-021-00987-0
10.1016/j.xcrp.2020.100231
10.1126/sciadv.aaz5413
10.1016/j.joule.2019.09.016
10.1063/1.5089783
10.1364/OE.26.015995
10.1016/j.joule.2017.07.012
10.1002/adma.201802152
10.1063/1.328187
10.1038/s41467-021-22051-0
10.1021/nl4004283
10.1126/science.aai7899
10.1038/s41566-018-0246-9
10.1016/j.xcrp.2020.100221
10.1073/pnas.1509453112
10.1016/j.nanoen.2020.105461
10.1126/science.abi5484
10.1021/acs.nanolett.0c04810
10.1021/acs.langmuir.0c00051
10.1038/s41467-020-20646-7
10.1103/PhysRevLett.107.045901
10.1126/sciadv.aat9480
10.1002/adma.201401874
10.1002/adma.201501686
10.1073/pnas.1402036111
10.1038/nature13883
10.1364/OE.388208
10.1016/B978-0-12-386944-9.50023-6
10.1364/AO.23.000370
10.1038/s41578-020-00260-1
10.1038/s41893-018-0023-2
10.1126/sciadv.abf3978
10.1080/15567265.2020.1722300
10.1073/pnas.2019292118
10.1016/0038-092X(75)90062-6
10.1002/andp.19083300302
10.1126/science.abe4476
10.1016/j.solener.2021.02.050
10.1021/nl903271d
10.1016/j.solener.2020.08.077
10.1002/adma.202000870
10.1038/416061a
10.1103/PhysRevLett.96.123903
10.1016/j.nanoen.2019.103998
10.1063/1.4835995
10.1103/PhysRevB.62.R2243
10.1038/s41467-018-07293-9
10.1016/j.nanoen.2020.105426
10.1073/pnas.1717595115
10.1021/acsphotonics.5b00140
10.1016/0038-092X(93)90108-Z
10.1038/nenergy.2017.143
10.1016/j.joule.2019.08.009
10.1103/PhysRevA.59.4736
10.1038/s41565-020-00800-4
10.1016/S0017-9310(83)80111-2
10.1016/j.joule.2020.04.010
10.1021/acsphotonics.7b00089
10.1007/978-3-319-49457-9
10.1073/pnas.1120149109
10.1002/advs.201500119
10.1201/9781439894552
10.1073/pnas.2001802117
10.1021/acsphotonics.0c00513
10.1364/OME.9.001990
10.1016/j.joule.2018.10.009
10.1186/s43593-021-00002-y
10.1038/nenergy.2017.142
10.1103/PhysRevB.93.161410
10.1126/science.aab3564
10.1038/s41467-018-06535-0
10.1021/acsphotonics.7b01136
10.1002/adma.201906751
10.1038/s41467-020-19790-x
10.1038/s41893-019-0348-5
10.1109/JPHOTOV.2017.2779842
10.1063/1.91406
10.1016/0306-2619(77)90015-0
10.1016/j.joule.2020.02.011
10.1021/acsphotonics.6b00991
10.1063/1.5094510
10.1126/sciadv.1700895
10.1364/OE.27.031587
10.1021/acs.nanolett.1c00400
10.1126/science.aau9101
10.1038/s41598-017-05235-x
10.1016/j.joule.2020.10.004
10.1038/s43016-021-00307-8
10.1016/j.joule.2018.10.006
ContentType Journal Article
Copyright Springer Nature Limited 2022
Copyright_xml – notice: Springer Nature Limited 2022
CorporateAuthor Stanford Univ., CA (United States)
CorporateAuthor_xml – name: Stanford Univ., CA (United States)
DBID AAYXX
CITATION
OTOTI
DOI 10.1038/s41566-021-00921-9
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1749-4893
EndPage 190
ExternalDocumentID 1978655
10_1038_s41566_021_00921_9
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 62134009; 62121005
  funderid: https://doi.org/10.13039/501100001809
– fundername: U.S. Department of Energy (DOE)
  grantid: DE-FG-07ER46426
  funderid: https://doi.org/10.13039/100000015
GroupedDBID -~X
0R~
123
29M
39C
4.4
5BI
5M7
5S5
70F
8FE
8FG
8FH
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABZEH
ACBWK
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFRAH
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
CCPQU
CS3
DU5
EBS
EE.
EJD
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
HCIFZ
HVGLF
HZ~
I-F
LK8
M7P
NNMJJ
O9-
ODYON
P2P
P62
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
TUS
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
AADEA
AADWK
AAEXX
AAJMP
AAPBV
AAYJO
ABEEJ
ABGIJ
ABPTK
ABVXF
ACBMV
ACBRV
ACBYP
ACIGE
ACTTH
ACVWB
ADMDM
ADQMX
ADZGE
AEDAW
AEFTE
AGEZK
AGGBP
AHGBK
AJDOV
NYICJ
OTOTI
ID FETCH-LOGICAL-c384t-9d926c5b99c3a8a694d4ef28418280be126232d54e3f7130f47d916078c6e1d83
ISSN 1749-4885
IngestDate Mon Jun 12 04:07:18 EDT 2023
Thu Apr 24 23:00:41 EDT 2025
Tue Jul 01 03:07:01 EDT 2025
Fri Feb 21 02:42:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c384t-9d926c5b99c3a8a694d4ef28418280be126232d54e3f7130f47d916078c6e1d83
Notes FG02-07ER46426
USDOE Office of Science (SC)
ORCID 0000-0002-0081-9732
0000-0002-2227-9431
0000000200819732
0000000222279431
PageCount 9
ParticipantIDs osti_scitechconnect_1978655
crossref_citationtrail_10_1038_s41566_021_00921_9
crossref_primary_10_1038_s41566_021_00921_9
springer_journals_10_1038_s41566_021_00921_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
PublicationTitle Nature photonics
PublicationTitleAbbrev Nat. Photon
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References SanthanamPFanSThermal-to-electrical energy conversion by diodes under negative illuminationPhys. Rev. B201693161410(R)2016PhRvB..93p1410S10.1103/PhysRevB.93.161410
FanSThermal photonics and energy applicationsJoule2017126427310.1016/j.joule.2017.07.012
OnoMChenKLiWFanSSelf-adaptive radiative cooling based on phase change materialsOpt. Express201826A777A7872018OExpr..26A.777O10.1364/OE.26.00A777
PerrakisGPassive radiative cooling and other photonic approaches for the temperature control of photovoltaics: a comparative study for crystalline silicon-based architecturesOpt. Express20202818548185652020OExpr..2818548P10.1364/OE.388208
KouJJuradoZChenZFanSMinnichAJDaytime radiative cooling using near-black infrared emittersACS Photonics2017462663010.1021/acsphotonics.6b00991
GranqvistCGHjortsbergARadiative cooling to low temperatures: general considerations and application to selectively emitting SiO filmsJ. Appl. Phys.198152420542201981JAP....52.4205G10.1063/1.329270
ZhuHMultispectral camouflage for infrared, visible, lasers and microwave with radiative coolingNat. Commun.2021122021NatCo..12.1805Z10.1038/s41467-021-22051-0
HaechlerIExploiting radiative cooling for uninterrupted 24-hour water harvesting from the atmosphereSci. Adv.20217eabf39782021SciA....7.3978H10.1126/sciadv.abf3978
LiWBuddhirajuSFanSThermodynamic limits for simultaneous energy harvesting from the hot sun and cold outer spaceLight Sci. Appl.20209682020LSA.....9...68L10.1038/s41377-020-0296-x
MandalJPorous polymers with switchable optical transmittance for optical and thermal regulationJoule201933088309910.1016/j.joule.2019.09.016
GreffetJ-JCoherent emission of light by thermal sourcesNature200241661642002Natur.416...61G10.1038/416061a
SmithGGentleARadiative cooling: energy savings from the skyNat. Energy20172171422017NatEn...217142S10.1038/nenergy.2017.142
ZhuBSubambient daytime radiative cooling textile based on nanoprocessed silkNat. Nanotechnol.202116134213482021NatNa..16.1342Z10.1038/s41565-021-00987-0
TongJKInfrared-transparent visible-opaque fabrics for wearable personal thermal managementACS Photonics2015276977810.1021/acsphotonics.5b00140
WangZLightweight, passive radiative cooling to enhance concentrating photovoltaicsJoule202042702271710.1016/j.joule.2020.10.004
LeeDSub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxideNano Energy20217910542610.1016/j.nanoen.2020.105426
BartoliBNocturnal and diurnal performances of selective radiatorsAppl. Energy1977326728610.1016/0306-2619(77)90015-0
ZhouLA polydimethylsiloxane-coated metal structure for all-day radiative coolingNat. Sustain.2019271872410.1038/s41893-019-0348-5
Howell, J. R., Siegel, R. & Mengüç, M. P. Thermal Radiation Heat Transfer (CRC, 2011).
ZhuLRamanAWangKXAnomaMAFanSRadiative cooling of solar cellsOptica2014132382014Optic...1...32Z10.1364/OPTICA.1.000032
ZhaiYScalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative coolingScience2017355106210662017Sci...355.1062Z10.1126/science.aai7899
ZhuLRamanAFanSColor-preserving daytime radiative coolingAppl. Phys. Lett.20131032239022013ApPhL.103v3902Z10.1063/1.4835995
BlandreEYalçinRAJoulainKDrévillonJMicrostructured surfaces for colored and non-colored sky radiative coolingOpt. Express20202829703297132020OExpr..2829703B10.1364/OE.401368
LuoHOutdoor personal thermal management with simultaneous electricity generationNano Lett.202121387938862021NanoL..21.3879L10.1021/acs.nanolett.1c00400
LinS-YEnhancement and suppression of thermal emission by a three-dimensional photonic crystalPhys. Rev. B200062R2243R22462000PhRvB..62.2243L10.1103/PhysRevB.62.R2243
DongMChenNZhaoXFanSChenZNighttime radiative cooling in hot and humid climatesOpt. Express201927315872019OExpr..2731587D10.1364/OE.27.031587
HsuPCRadiative human body cooling by nanoporous polyethylene textileScience2016353101910232016Sci...353.1019H10.1126/science.aaf5471
ZhouKThree-dimensional printable nanoporous polymer matrix composites for daytime radiative coolingNano Lett.202121149314992021NanoL..21.1493Z10.1021/acs.nanolett.0c04810
GranqvistCGHjortsbergASurfaces for radiative cooling: silicon monoxide films on aluminumAppl. Phys. Lett.1980361391980ApPhL..36..139G10.1063/1.91406
Kittel, C. & Kroemer, H. Thermal Physics (W. H. Freeman, 1980).
ZhangHBiologically inspired flexible photonic films for efficient passive radiative coolingProc. Natl Acad. Sci. USA2020117146571466610.1073/pnas.2001802117
BerkAMODTRAN5: 2006 updateProc. SPIE2006623362331F10.1117/12.665077
LiDScalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative coolingNat. Nanotechnol.2021161531582021NatNa..16..153L10.1038/s41565-020-00800-4
ByrnesSJBlanchardRCapassoFHarvesting renewable energy from Earth’s mid-infrared emissionsProc. Natl Acad. Sci. USA2014111392739322014PNAS..111.3927B10.1073/pnas.1402036111
ShiYLiWRamanAFanSOptimization of multilayer optical films with a memetic algorithm and mixed integer programmingACS Photonics2018568469110.1021/acsphotonics.7b01136
ZhaoHSunQZhouJDengXCuiJSwitchable cavitation in silicone coatings for energy-saving cooling and heatingAdv. Mater.202032200087010.1002/adma.202000870
KimMVisibly transparent radiative cooler under direct sunlightAdv. Opt. Mater.20219200222610.1002/adom.202002226
GoldsteinEARamanAPFanSSub-ambient non-evaporative fluid cooling with the skyNat. Energy20172171432017NatEn...217143G10.1038/nenergy.2017.143
LiMPetersonHBCoimbraCFMRadiative cooling resource maps for the contiguous United StatesJ. Renew. Sustain. Energy20191103650110.1063/1.5094510
SilvermanTJReducing operating temperature in photovoltaic modulesIEEE J. Photovolt.2018853254010.1109/JPHOTOV.2017.2779842
OnoMSanthanamPLiWZhaoBFanSExperimental demonstration of energy harvesting from the sky using the negative illumination effect of a semiconductor photodiodeAppl. Phys. Lett.20191141611022019ApPhL.114p1102O10.1063/1.5089783
LiuXTaming the blackbody with infrared metamaterials as selective thermal emittersPhys. Rev. Lett.20111070459012011PhRvL.107d5901L10.1103/PhysRevLett.107.045901
MandalJHierarchically porous polymer coatings for highly efficient passive daytime radiative coolingScience20183623153192018Sci...362..315M10.1126/science.aat9513
YiZEnergy saving analysis of a transparent radiative cooling film for buildings with roof glazingEnergy Built Environ.2021221422210.1016/j.enbenv.2020.07.003
ThomasNHChenZFanSMinnichAJSemiconductor-based multilayer selective solar absorber for unconcentrated solar thermal energy conversionSci. Rep.201772017NatSR...7.5362T10.1038/s41598-017-05235-x
Modest, M. F. Radiative Heat Transfer (Elsevier, 2013).
DongMFundamental limits of the dew-harvesting technologyNanoscale Microscale Thermophys. Eng.20202443522020NMTE...24...43D10.1080/15567265.2020.1722300
Dupré, O., Vaillon, R. & Green, M. A. Thermal Behavior of Photovoltaic Devices (Springer, 2017).
HsuP-CA dual-mode textile for human body radiative heating and coolingSci. Adv.20173e17008952017SciA....3E0895H10.1126/sciadv.1700895
BuddhirajuSSanthanamPFanSThermodynamic limits of energy harvesting from outgoing thermal radiationProc. Natl Acad. Sci. USA2018115E3609E36152018PNAS..115E3609B10.1073/pnas.1717595115
GentleARSmithGBRadiative heat pumping from the Earth using surface phonon resonant nanoparticlesNano Lett.2010103733792010NanoL..10..373G10.1021/nl903271d
ShiNNKeeping cool: enhanced optical reflection and radiative heat dissipation in Saharan silver antsScience20153492983012015Sci...349..298S10.1126/science.aab3564
BhatiaBPassive directional sub-ambient daytime radiative coolingNat. Commun.201892018NatCo...9.5001B10.1038/s41467-018-07293-9
LiWNighttime radiative cooling for water harvesting from solar panelsACS Photonics2021826927510.1021/acsphotonics.0c01471
LarocheMCarminatiRGreffetJ-JCoherent thermal antenna using a photonic crystal slabPhys. Rev. Lett.2006961239032006PhRvL..96l3903L10.1103/PhysRevLett.96.123903
LinKTELinHYangTJiaBStructured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversionNat. Commun.20201113892020NatCo..11.1389L10.1038/s41467-020-15116-z
RamanAPLiWFanSGenerating light from darknessJoule201932679268610.1016/j.joule.2019.08.009
MandalJYangYYuNRamanAPPaints as a scalable and effective radiative cooling technology for buildingsJoule202041350135610.1016/j.joule.2020.04.010
BerdahlPRadiative cooling with MgO and/or LiF layersAppl. Opt.1984233703721984ApOpt..23..370B10.1364/AO.23.000370
LandsbergPTTongeGThermodynamic energy conversion efficienciesJ. Appl. Phys.198051R11980JAP....51R...1L10.1063/1.328187
LiWShiYChenZFanSPhotonic thermal management of coloured objectsNat. Commun.201892018NatCo...9.4240L10.1038/s41467-018-06535-0
ShenLIncreasing greenhouse production by spectral-shifting and unidirectional light-extracting photonicsNat. Food2021243444110.1038/s43016-021-00307-8
LiWRefractory plasmonics with titanium nitride: broadband metamaterial absorberAdv. Mater.201426795979652014ctpa.book.....L10.1002/adma.201401874
ChenYColored and paintable bilayer coatings with high solar-infrared reflectance for efficient coolingSci. Adv.20206eaaz54132020SciA....6.5413C10.1126/sciadv.aaz5413
XuJMandalJRamanAPBroadband directional control of thermal emissionScience20213723933972021Sci...372..393X10.1126/science.abc5381
WangTA structural polymer for highly efficient all-day passive radiative coolingNat. Commun.20211210.1038/s41467-020-20646-7
ZhuHHigh-temperature infrared camouflage with efficient thermal managementLight Sci. Appl.20209602020LSA.....9...60Z10.1038/s41377-020-0300-5
CatalanottiSThe radiative cooling of selective surfacesSol. Energy19751783891975SoEn...17...83C10.1016/0038-092X(75)90062-6
RephaeliERamanAFanSUltrabroadband photonic structures to achieve high-performance daytime radiative coolingNano Lett.201313145714612013NanoL..13.1457R10.1021/nl4004283
LeroyAHigh-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogelSc
L Cai (921_CR89) 2018; 30
921_CR66
Z Chen (921_CR104) 2021; 1
J Mandal (921_CR37) 2018; 362
L Zhou (921_CR27) 2019; 2
T Li (921_CR38) 2019; 364
K Zhou (921_CR50) 2021; 21
S-Y Lin (921_CR13) 2000; 62
J Jiang (921_CR103) 2021; 6
S Catalanotti (921_CR4) 1975; 17
B Bartoli (921_CR5) 1977; 3
AR Gentle (921_CR34) 2015; 2
W Li (921_CR61) 2017; 4
D Li (921_CR39) 2021; 16
X Li (921_CR42) 2020; 1
Y Peng (921_CR87) 2018; 1
RA Yalçın (921_CR78) 2020; 7
M Laroche (921_CR15) 2006; 96
G Perrakis (921_CR64) 2020; 28
A Berk (921_CR23) 2006; 6233
AR Gentle (921_CR11) 2010; 10
M Ono (921_CR94) 2019; 114
Y Chen (921_CR74) 2020; 6
P Santhanam (921_CR93) 2016; 93
A Leroy (921_CR41) 2019; 5
W Li (921_CR72) 2018; 9
H Luo (921_CR92) 2021; 21
S Molesky (921_CR102) 2018; 12
W Li (921_CR18) 2018; 26
PC Hsu (921_CR84) 2016; 353
Y Peng (921_CR90) 2020; 4
S Son (921_CR79) 2021; 79
HH Kim (921_CR77) 2020; 36
Z Yi (921_CR80) 2021; 2
CM Cornelius (921_CR12) 1999; 59
X Li (921_CR57) 2020; 11
Z Wang (921_CR65) 2020; 4
Z Chen (921_CR24) 2016; 7
921_CR2
X Xue (921_CR43) 2020; 32
921_CR3
W Li (921_CR26) 2021; 8
P Li (921_CR69) 2015; 27
L Zhu (921_CR73) 2013; 103
E Blandre (921_CR76) 2020; 28
PT Landsberg (921_CR98) 1980; 51
921_CR1
W Li (921_CR68) 2014; 26
J Kou (921_CR35) 2017; 4
EA Goldstein (921_CR28) 2017; 2
L Zhu (921_CR59) 2014; 1
NH Thomas (921_CR70) 2017; 7
J Xu (921_CR19) 2021; 372
CG Granqvist (921_CR6) 1980; 36
B Bhatia (921_CR40) 2018; 9
PB Catrysse (921_CR85) 2016; 3
NN Shi (921_CR33) 2015; 349
J Mandal (921_CR55) 2019; 3
W Li (921_CR97) 2020; 9
AP Raman (921_CR30) 2019; 3
S Buddhiraju (921_CR96) 2018; 115
Z Zhou (921_CR81) 2020; 1
B Zhu (921_CR49) 2021; 16
J-J Greffet (921_CR14) 2002; 416
D Lee (921_CR47) 2021; 79
X Liu (921_CR16) 2011; 107
G Smith (921_CR29) 2017; 2
M Zhou (921_CR32) 2021; 118
L Fan (921_CR25) 2020; 28
H Luo (921_CR91) 2019; 65
M Li (921_CR100) 2019; 11
X Sun (921_CR62) 2017; 7
B Orel (921_CR10) 1993; 50
P-C Hsu (921_CR86) 2017; 3
S Zeng (921_CR48) 2021; 373
P Berdahl (921_CR9) 1984; 23
S Fan (921_CR17) 2017; 1
M Dong (921_CR31) 2020; 24
Y Zhai (921_CR36) 2017; 355
YX Yeng (921_CR67) 2012; 109
H Zhao (921_CR56) 2020; 32
M Ono (921_CR54) 2018; 26
JK Tong (921_CR83) 2015; 2
G Mie (921_CR20) 1908; 330
Y Shi (921_CR105) 2018; 5
KTE Lin (921_CR71) 2020; 11
P-C Hsu (921_CR88) 2020; 370
M Kim (921_CR82) 2021; 9
G Ulpiani (921_CR53) 2020; 209
H Zhang (921_CR45) 2020; 117
D Zhao (921_CR51) 2019; 3
Y Zhu (921_CR99) 2021; 218
L Shen (921_CR108) 2021; 2
TJ Silverman (921_CR63) 2018; 8
LM Lozano (921_CR75) 2019; 9
AP Raman (921_CR22) 2014; 515
J Mandal (921_CR44) 2020; 4
Z Chen (921_CR58) 2019; 3
E Rephaeli (921_CR21) 2013; 13
H Zhu (921_CR107) 2021; 12
L Zhu (921_CR60) 2015; 112
H Zhu (921_CR106) 2020; 9
P Berdahl (921_CR8) 1983; 26
I Haechler (921_CR52) 2021; 7
T Wang (921_CR46) 2021; 12
SJ Byrnes (921_CR95) 2014; 111
M Dong (921_CR101) 2019; 27
CG Granqvist (921_CR7) 1981; 52
References_xml – reference: LiWShiYChenZFanSPhotonic thermal management of coloured objectsNat. Commun.201892018NatCo...9.4240L10.1038/s41467-018-06535-0
– reference: GranqvistCGHjortsbergASurfaces for radiative cooling: silicon monoxide films on aluminumAppl. Phys. Lett.1980361391980ApPhL..36..139G10.1063/1.91406
– reference: PengYCuiYAdvanced textiles for personal thermal management and energyJoule2020472474210.1016/j.joule.2020.02.011
– reference: LeeDSub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxideNano Energy20217910542610.1016/j.nanoen.2020.105426
– reference: ZhuLRamanAFanSColor-preserving daytime radiative coolingAppl. Phys. Lett.20131032239022013ApPhL.103v3902Z10.1063/1.4835995
– reference: ShenLIncreasing greenhouse production by spectral-shifting and unidirectional light-extracting photonicsNat. Food2021243444110.1038/s43016-021-00307-8
– reference: BhatiaBPassive directional sub-ambient daytime radiative coolingNat. Commun.201892018NatCo...9.5001B10.1038/s41467-018-07293-9
– reference: LiXIntegration of daytime radiative cooling and solar heating for year-round energy saving in buildingsNat. Commun.2020112020NatCo..11.6101L10.1038/s41467-020-19790-x
– reference: ZhouZWangXMaYHuBZhouJTransparent polymer coatings for energy-efficient daytime window coolingCell Rep. Phys. Sci.2020110023110.1016/j.xcrp.2020.100231
– reference: KimMVisibly transparent radiative cooler under direct sunlightAdv. Opt. Mater.20219200222610.1002/adom.202002226
– reference: BerdahlPRadiative cooling with MgO and/or LiF layersAppl. Opt.1984233703721984ApOpt..23..370B10.1364/AO.23.000370
– reference: LinS-YEnhancement and suppression of thermal emission by a three-dimensional photonic crystalPhys. Rev. B200062R2243R22462000PhRvB..62.2243L10.1103/PhysRevB.62.R2243
– reference: JiangJChenMFanJADeep neural networks for the evaluation and design of photonic devicesNat. Rev. Mater.202166797002021NatRM...6..679J10.1038/s41578-020-00260-1
– reference: ZhuBSubambient daytime radiative cooling textile based on nanoprocessed silkNat. Nanotechnol.202116134213482021NatNa..16.1342Z10.1038/s41565-021-00987-0
– reference: MoleskySInverse design in nanophotonicsNat. Photon.2018126596702018NaPho..12..659M10.1038/s41566-018-0246-9
– reference: ZhaoDSubambient cooling of water: toward real-world applications of daytime radiative coolingJoule2019311112310.1016/j.joule.2018.10.006
– reference: ByrnesSJBlanchardRCapassoFHarvesting renewable energy from Earth’s mid-infrared emissionsProc. Natl Acad. Sci. USA2014111392739322014PNAS..111.3927B10.1073/pnas.1402036111
– reference: ChenYColored and paintable bilayer coatings with high solar-infrared reflectance for efficient coolingSci. Adv.20206eaaz54132020SciA....6.5413C10.1126/sciadv.aaz5413
– reference: ThomasNHChenZFanSMinnichAJSemiconductor-based multilayer selective solar absorber for unconcentrated solar thermal energy conversionSci. Rep.201772017NatSR...7.5362T10.1038/s41598-017-05235-x
– reference: SmithGGentleARadiative cooling: energy savings from the skyNat. Energy20172171422017NatEn...217142S10.1038/nenergy.2017.142
– reference: HaechlerIExploiting radiative cooling for uninterrupted 24-hour water harvesting from the atmosphereSci. Adv.20217eabf39782021SciA....7.3978H10.1126/sciadv.abf3978
– reference: MandalJHierarchically porous polymer coatings for highly efficient passive daytime radiative coolingScience20183623153192018Sci...362..315M10.1126/science.aat9513
– reference: Howell, J. R., Siegel, R. & Mengüç, M. P. Thermal Radiation Heat Transfer (CRC, 2011).
– reference: MandalJPorous polymers with switchable optical transmittance for optical and thermal regulationJoule201933088309910.1016/j.joule.2019.09.016
– reference: Dupré, O., Vaillon, R. & Green, M. A. Thermal Behavior of Photovoltaic Devices (Springer, 2017).
– reference: XuJMandalJRamanAPBroadband directional control of thermal emissionScience20213723933972021Sci...372..393X10.1126/science.abc5381
– reference: HsuP-CLiXPhoton-engineered radiative cooling textilesScience20203707847852020Sci...370..784H10.1126/science.abe4476
– reference: ZengSHierarchical-morphology metafabric for scalable passive daytime radiative coolingScience20213736926962021Sci...373..692Z10.1126/science.abi5484
– reference: GreffetJ-JCoherent emission of light by thermal sourcesNature200241661642002Natur.416...61G10.1038/416061a
– reference: LarocheMCarminatiRGreffetJ-JCoherent thermal antenna using a photonic crystal slabPhys. Rev. Lett.2006961239032006PhRvL..96l3903L10.1103/PhysRevLett.96.123903
– reference: ZhuLRamanAWangKXAnomaMAFanSRadiative cooling of solar cellsOptica2014132382014Optic...1...32Z10.1364/OPTICA.1.000032
– reference: ZhuLRamanAPFanSRadiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbodyProc. Natl Acad. Sci. USA201511212282122872015PNAS..11212282Z10.1073/pnas.1509453112
– reference: ShiYLiWRamanAFanSOptimization of multilayer optical films with a memetic algorithm and mixed integer programmingACS Photonics2018568469110.1021/acsphotonics.7b01136
– reference: Kittel, C. & Kroemer, H. Thermal Physics (W. H. Freeman, 1980).
– reference: ZhaiYScalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative coolingScience2017355106210662017Sci...355.1062Z10.1126/science.aai7899
– reference: ZhuYQianHYangRZhaoDRadiative sky cooling potential maps of China based on atmospheric spectral emissivitySol. Energy20212181952102021SoEn..218..195Z10.1016/j.solener.2021.02.050
– reference: BuddhirajuSSanthanamPFanSThermodynamic limits of energy harvesting from outgoing thermal radiationProc. Natl Acad. Sci. USA2018115E3609E36152018PNAS..115E3609B10.1073/pnas.1717595115
– reference: CorneliusCMDowlingJPModification of Planck blackbody radiation by photonic band-gap structuresPhys. Rev. A199959473647461999PhRvA..59.4736C10.1103/PhysRevA.59.4736
– reference: ZhouMVapor condensation with daytime radiative coolingProc. Natl Acad. Sci. USA2021118e201929211810.1073/pnas.2019292118
– reference: KouJJuradoZChenZFanSMinnichAJDaytime radiative cooling using near-black infrared emittersACS Photonics2017462663010.1021/acsphotonics.6b00991
– reference: CatryssePBSongAYFanSPhotonic structure textile design for localized thermal cooling based on a fiber blending schemeACS Photonics201632420242610.1021/acsphotonics.6b00644
– reference: ChenZSegevMHighlighting photonics: looking into the next decadeeLight20211210.1186/s43593-021-00002-y
– reference: OnoMChenKLiWFanSSelf-adaptive radiative cooling based on phase change materialsOpt. Express201826A777A7872018OExpr..26A.777O10.1364/OE.26.00A777
– reference: HsuP-CA dual-mode textile for human body radiative heating and coolingSci. Adv.20173e17008952017SciA....3E0895H10.1126/sciadv.1700895
– reference: LiWNighttime radiative cooling for water harvesting from solar panelsACS Photonics2021826927510.1021/acsphotonics.0c01471
– reference: MandalJYangYYuNRamanAPPaints as a scalable and effective radiative cooling technology for buildingsJoule202041350135610.1016/j.joule.2020.04.010
– reference: MieGBeiträge zur Optik trüber Medien, speziell kolloidaler MetallösungenAnn. Phys.190833037744539.0890.0210.1002/andp.19083300302
– reference: WangTA structural polymer for highly efficient all-day passive radiative coolingNat. Commun.20211210.1038/s41467-020-20646-7
– reference: GentleARSmithGBRadiative heat pumping from the Earth using surface phonon resonant nanoparticlesNano Lett.2010103733792010NanoL..10..373G10.1021/nl903271d
– reference: RamanAPAnomaMAZhuLRephaeliEFanSPassive radiative cooling below ambient air temperature under direct sunlightNature20145155405442014Natur.515..540R10.1038/nature13883
– reference: WangZLightweight, passive radiative cooling to enhance concentrating photovoltaicsJoule202042702271710.1016/j.joule.2020.10.004
– reference: LiPLarge-scale nanophotonic solar selective absorbers for high-efficiency solar thermal energy conversionAdv. Mater.2015274585459110.1002/adma.201501686
– reference: LiXFull daytime sub-ambient radiative cooling in commercial-like paints with high figure of meritCell Rep. Phys. Sci.202011002212020hsm2.book.....L10.1016/j.xcrp.2020.100221
– reference: ZhouLA polydimethylsiloxane-coated metal structure for all-day radiative coolingNat. Sustain.2019271872410.1038/s41893-019-0348-5
– reference: CaiLSpectrally selective nanocomposite textile for outdoor personal coolingAdv. Mater.201830180215210.1002/adma.201802152
– reference: ShiNNKeeping cool: enhanced optical reflection and radiative heat dissipation in Saharan silver antsScience20153492983012015Sci...349..298S10.1126/science.aab3564
– reference: BartoliBNocturnal and diurnal performances of selective radiatorsAppl. Energy1977326728610.1016/0306-2619(77)90015-0
– reference: SonSColored emitters with silica-embedded perovskite nanocrystals for efficient daytime radiative coolingNano Energy20217910546110.1016/j.nanoen.2020.105461
– reference: TongJKInfrared-transparent visible-opaque fabrics for wearable personal thermal managementACS Photonics2015276977810.1021/acsphotonics.5b00140
– reference: BlandreEYalçinRAJoulainKDrévillonJMicrostructured surfaces for colored and non-colored sky radiative coolingOpt. Express20202829703297132020OExpr..2829703B10.1364/OE.401368
– reference: ZhangHBiologically inspired flexible photonic films for efficient passive radiative coolingProc. Natl Acad. Sci. USA2020117146571466610.1073/pnas.2001802117
– reference: SilvermanTJReducing operating temperature in photovoltaic modulesIEEE J. Photovolt.2018853254010.1109/JPHOTOV.2017.2779842
– reference: FanSThermal photonics and energy applicationsJoule2017126427310.1016/j.joule.2017.07.012
– reference: PerrakisGPassive radiative cooling and other photonic approaches for the temperature control of photovoltaics: a comparative study for crystalline silicon-based architecturesOpt. Express20202818548185652020OExpr..2818548P10.1364/OE.388208
– reference: HsuPCRadiative human body cooling by nanoporous polyethylene textileScience2016353101910232016Sci...353.1019H10.1126/science.aaf5471
– reference: ChenZZhuLRamanAFanSRadiative cooling to deep sub-freezing temperatures through a 24-h day–night cycleNat. Commun.201672016NatCo...713729C10.1038/ncomms13729
– reference: LiuXTaming the blackbody with infrared metamaterials as selective thermal emittersPhys. Rev. Lett.20111070459012011PhRvL.107d5901L10.1103/PhysRevLett.107.045901
– reference: GranqvistCGHjortsbergARadiative cooling to low temperatures: general considerations and application to selectively emitting SiO filmsJ. Appl. Phys.198152420542201981JAP....52.4205G10.1063/1.329270
– reference: DongMFundamental limits of the dew-harvesting technologyNanoscale Microscale Thermophys. Eng.20202443522020NMTE...24...43D10.1080/15567265.2020.1722300
– reference: OnoMSanthanamPLiWZhaoBFanSExperimental demonstration of energy harvesting from the sky using the negative illumination effect of a semiconductor photodiodeAppl. Phys. Lett.20191141611022019ApPhL.114p1102O10.1063/1.5089783
– reference: LiWBuddhirajuSFanSThermodynamic limits for simultaneous energy harvesting from the hot sun and cold outer spaceLight Sci. Appl.20209682020LSA.....9...68L10.1038/s41377-020-0296-x
– reference: FanLLiWJinWOrensteinMFanSMaximal nighttime electrical power generation via optimal radiative coolingOpt. Express20202825460254702020OExpr..2825460F10.1364/OE.397714
– reference: LiTA radiative cooling structural materialScience20193647607632019Sci...364..760L10.1126/science.aau9101
– reference: ZhuHHigh-temperature infrared camouflage with efficient thermal managementLight Sci. Appl.20209602020LSA.....9...60Z10.1038/s41377-020-0300-5
– reference: UlpianiGRanziGShahKWFengJSantamourisMOn the energy modulation of daytime radiative coolers: a review on infrared emissivity dynamic switch against overcoolingSol. Energy20202092783012020SoEn..209..278U10.1016/j.solener.2020.08.077
– reference: LuoHAn ultra-thin colored textile with simultaneous solar and passive heating abilitiesNano Energy20196510399810.1016/j.nanoen.2019.103998
– reference: LeroyAHigh-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogelSci. Adv.20195eaat94802019SciA....5.9480L10.1126/sciadv.aat9480
– reference: ZhouKThree-dimensional printable nanoporous polymer matrix composites for daytime radiative coolingNano Lett.202121149314992021NanoL..21.1493Z10.1021/acs.nanolett.0c04810
– reference: LiWShiYChenKZhuLFanSA comprehensive photonic approach for solar cell coolingACS Photonics2017477478210.1021/acsphotonics.7b00089
– reference: LozanoLMOptical engineering of polymer materials and composites for simultaneous color and thermal managementOpt. Mater. Express20199199020052019OMExp...9.1990L10.1364/OME.9.001990
– reference: DongMChenNZhaoXFanSChenZNighttime radiative cooling in hot and humid climatesOpt. Express201927315872019OExpr..2731587D10.1364/OE.27.031587
– reference: LuoHOutdoor personal thermal management with simultaneous electricity generationNano Lett.202121387938862021NanoL..21.3879L10.1021/acs.nanolett.1c00400
– reference: LandsbergPTTongeGThermodynamic energy conversion efficienciesJ. Appl. Phys.198051R11980JAP....51R...1L10.1063/1.328187
– reference: PengYNanoporous polyethylene microfibres for large-scale radiative cooling fabricNat. Sustain.2018110511210.1038/s41893-018-0023-2
– reference: LiWFanSNanophotonic control of thermal radiation for energy applications [Invited]Opt. Express20182615995160212018OExpr..2615995L10.1364/OE.26.015995
– reference: XueXCreating an eco-friendly building coating with smart subambient radiative coolingAdv. Mater.202032190675110.1002/adma.201906751
– reference: BerdahlPMartinMSakkalFThermal performance of radiative cooling panelsInt. J. Heat Mass Transf.1983268718801983IJHMT..26..871B0511.7608410.1016/S0017-9310(83)80111-2
– reference: Modest, M. F. Radiative Heat Transfer (Elsevier, 2013).
– reference: ZhuHMultispectral camouflage for infrared, visible, lasers and microwave with radiative coolingNat. Commun.2021122021NatCo..12.1805Z10.1038/s41467-021-22051-0
– reference: LiWRefractory plasmonics with titanium nitride: broadband metamaterial absorberAdv. Mater.201426795979652014ctpa.book.....L10.1002/adma.201401874
– reference: OrelBGundeMKKrainerARadiative cooling efficiency of white pigmented paintsSol. Energy1993504774821993SoEn...50..477O10.1016/0038-092X(93)90108-Z
– reference: CatalanottiSThe radiative cooling of selective surfacesSol. Energy19751783891975SoEn...17...83C10.1016/0038-092X(75)90062-6
– reference: BerkAMODTRAN5: 2006 updateProc. SPIE2006623362331F10.1117/12.665077
– reference: GoldsteinEARamanAPFanSSub-ambient non-evaporative fluid cooling with the skyNat. Energy20172171432017NatEn...217143G10.1038/nenergy.2017.143
– reference: YiZEnergy saving analysis of a transparent radiative cooling film for buildings with roof glazingEnergy Built Environ.2021221422210.1016/j.enbenv.2020.07.003
– reference: GentleARSmithGBA subambient open roof surface under the mid-summer sunAdv. Sci.20152150011910.1002/advs.201500119
– reference: RamanAPLiWFanSGenerating light from darknessJoule201932679268610.1016/j.joule.2019.08.009
– reference: KimHHImELeeSColloidal photonic assemblies for colorful radiative coolingLangmuir2020366589659610.1021/acs.langmuir.0c00051
– reference: YalçınRABlandreEJoulainKDrévillonJColored radiative cooling coatings with nanoparticlesACS Photonics202071312132210.1021/acsphotonics.0c00513
– reference: YengYXEnabling high-temperature nanophotonics for energy applicationsProc. Natl Acad. Sci. USA2012109228022852012PNAS..109.2280Y10.1073/pnas.1120149109
– reference: SunXOptics-based approach to thermal management of photovoltaics: selective-spectral and radiative coolingIEEE J. Photovolt.2017756657410.1109/JPHOTOV.2016.2646062
– reference: LiMPetersonHBCoimbraCFMRadiative cooling resource maps for the contiguous United StatesJ. Renew. Sustain. Energy20191103650110.1063/1.5094510
– reference: ZhaoHSunQZhouJDengXCuiJSwitchable cavitation in silicone coatings for energy-saving cooling and heatingAdv. Mater.202032200087010.1002/adma.202000870
– reference: RephaeliERamanAFanSUltrabroadband photonic structures to achieve high-performance daytime radiative coolingNano Lett.201313145714612013NanoL..13.1457R10.1021/nl4004283
– reference: ChenZZhuLLiWFanSSimultaneously and synergistically harvest energy from the Sun and outer spaceJoule2019310111010.1016/j.joule.2018.10.009
– reference: LinKTELinHYangTJiaBStructured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversionNat. Commun.20201113892020NatCo..11.1389L10.1038/s41467-020-15116-z
– reference: SanthanamPFanSThermal-to-electrical energy conversion by diodes under negative illuminationPhys. Rev. B201693161410(R)2016PhRvB..93p1410S10.1103/PhysRevB.93.161410
– reference: LiDScalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative coolingNat. Nanotechnol.2021161531582021NatNa..16..153L10.1038/s41565-020-00800-4
– volume: 26
  start-page: A777
  year: 2018
  ident: 921_CR54
  publication-title: Opt. Express
  doi: 10.1364/OE.26.00A777
– volume: 52
  start-page: 4205
  year: 1981
  ident: 921_CR7
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.329270
– volume: 7
  year: 2016
  ident: 921_CR24
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13729
– volume: 28
  start-page: 29703
  year: 2020
  ident: 921_CR76
  publication-title: Opt. Express
  doi: 10.1364/OE.401368
– volume: 6233
  start-page: 62331F
  year: 2006
  ident: 921_CR23
  publication-title: Proc. SPIE
  doi: 10.1117/12.665077
– volume: 11
  start-page: 1389
  year: 2020
  ident: 921_CR71
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15116-z
– volume: 7
  start-page: 566
  year: 2017
  ident: 921_CR62
  publication-title: IEEE J. Photovolt.
  doi: 10.1109/JPHOTOV.2016.2646062
– volume: 8
  start-page: 269
  year: 2021
  ident: 921_CR26
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.0c01471
– volume: 28
  start-page: 25460
  year: 2020
  ident: 921_CR25
  publication-title: Opt. Express
  doi: 10.1364/OE.397714
– volume: 9
  start-page: 2002226
  year: 2021
  ident: 921_CR82
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202002226
– volume: 9
  start-page: 60
  year: 2020
  ident: 921_CR106
  publication-title: Light Sci. Appl.
  doi: 10.1038/s41377-020-0300-5
– volume: 353
  start-page: 1019
  year: 2016
  ident: 921_CR84
  publication-title: Science
  doi: 10.1126/science.aaf5471
– volume: 372
  start-page: 393
  year: 2021
  ident: 921_CR19
  publication-title: Science
  doi: 10.1126/science.abc5381
– volume: 362
  start-page: 315
  year: 2018
  ident: 921_CR37
  publication-title: Science
  doi: 10.1126/science.aat9513
– volume: 3
  start-page: 2420
  year: 2016
  ident: 921_CR85
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.6b00644
– volume: 9
  start-page: 68
  year: 2020
  ident: 921_CR97
  publication-title: Light Sci. Appl.
  doi: 10.1038/s41377-020-0296-x
– volume: 1
  start-page: 32
  year: 2014
  ident: 921_CR59
  publication-title: Optica
  doi: 10.1364/OPTICA.1.000032
– volume: 2
  start-page: 214
  year: 2021
  ident: 921_CR80
  publication-title: Energy Built Environ.
  doi: 10.1016/j.enbenv.2020.07.003
– volume: 16
  start-page: 1342
  year: 2021
  ident: 921_CR49
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-021-00987-0
– volume: 1
  start-page: 100231
  year: 2020
  ident: 921_CR81
  publication-title: Cell Rep. Phys. Sci.
  doi: 10.1016/j.xcrp.2020.100231
– volume: 6
  start-page: eaaz5413
  year: 2020
  ident: 921_CR74
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaz5413
– volume: 3
  start-page: 3088
  year: 2019
  ident: 921_CR55
  publication-title: Joule
  doi: 10.1016/j.joule.2019.09.016
– volume: 114
  start-page: 161102
  year: 2019
  ident: 921_CR94
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5089783
– volume: 26
  start-page: 15995
  year: 2018
  ident: 921_CR18
  publication-title: Opt. Express
  doi: 10.1364/OE.26.015995
– volume: 1
  start-page: 264
  year: 2017
  ident: 921_CR17
  publication-title: Joule
  doi: 10.1016/j.joule.2017.07.012
– volume: 30
  start-page: 1802152
  year: 2018
  ident: 921_CR89
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802152
– volume: 51
  start-page: R1
  year: 1980
  ident: 921_CR98
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.328187
– volume: 12
  year: 2021
  ident: 921_CR107
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22051-0
– volume: 13
  start-page: 1457
  year: 2013
  ident: 921_CR21
  publication-title: Nano Lett.
  doi: 10.1021/nl4004283
– volume: 355
  start-page: 1062
  year: 2017
  ident: 921_CR36
  publication-title: Science
  doi: 10.1126/science.aai7899
– volume: 12
  start-page: 659
  year: 2018
  ident: 921_CR102
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-018-0246-9
– volume: 1
  start-page: 100221
  year: 2020
  ident: 921_CR42
  publication-title: Cell Rep. Phys. Sci.
  doi: 10.1016/j.xcrp.2020.100221
– volume: 112
  start-page: 12282
  year: 2015
  ident: 921_CR60
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1509453112
– volume: 79
  start-page: 105461
  year: 2021
  ident: 921_CR79
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105461
– volume: 373
  start-page: 692
  year: 2021
  ident: 921_CR48
  publication-title: Science
  doi: 10.1126/science.abi5484
– volume: 21
  start-page: 1493
  year: 2021
  ident: 921_CR50
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c04810
– volume: 36
  start-page: 6589
  year: 2020
  ident: 921_CR77
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.0c00051
– volume: 12
  year: 2021
  ident: 921_CR46
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20646-7
– volume: 107
  start-page: 045901
  year: 2011
  ident: 921_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.045901
– volume: 5
  start-page: eaat9480
  year: 2019
  ident: 921_CR41
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aat9480
– volume: 26
  start-page: 7959
  year: 2014
  ident: 921_CR68
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401874
– volume: 27
  start-page: 4585
  year: 2015
  ident: 921_CR69
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501686
– ident: 921_CR1
– volume: 111
  start-page: 3927
  year: 2014
  ident: 921_CR95
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1402036111
– volume: 515
  start-page: 540
  year: 2014
  ident: 921_CR22
  publication-title: Nature
  doi: 10.1038/nature13883
– volume: 28
  start-page: 18548
  year: 2020
  ident: 921_CR64
  publication-title: Opt. Express
  doi: 10.1364/OE.388208
– ident: 921_CR3
  doi: 10.1016/B978-0-12-386944-9.50023-6
– volume: 23
  start-page: 370
  year: 1984
  ident: 921_CR9
  publication-title: Appl. Opt.
  doi: 10.1364/AO.23.000370
– volume: 6
  start-page: 679
  year: 2021
  ident: 921_CR103
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-020-00260-1
– volume: 1
  start-page: 105
  year: 2018
  ident: 921_CR87
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-018-0023-2
– volume: 7
  start-page: eabf3978
  year: 2021
  ident: 921_CR52
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abf3978
– volume: 24
  start-page: 43
  year: 2020
  ident: 921_CR31
  publication-title: Nanoscale Microscale Thermophys. Eng.
  doi: 10.1080/15567265.2020.1722300
– volume: 118
  start-page: e2019292118
  year: 2021
  ident: 921_CR32
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2019292118
– volume: 17
  start-page: 83
  year: 1975
  ident: 921_CR4
  publication-title: Sol. Energy
  doi: 10.1016/0038-092X(75)90062-6
– volume: 330
  start-page: 377
  year: 1908
  ident: 921_CR20
  publication-title: Ann. Phys.
  doi: 10.1002/andp.19083300302
– volume: 370
  start-page: 784
  year: 2020
  ident: 921_CR88
  publication-title: Science
  doi: 10.1126/science.abe4476
– volume: 218
  start-page: 195
  year: 2021
  ident: 921_CR99
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2021.02.050
– volume: 10
  start-page: 373
  year: 2010
  ident: 921_CR11
  publication-title: Nano Lett.
  doi: 10.1021/nl903271d
– volume: 209
  start-page: 278
  year: 2020
  ident: 921_CR53
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.08.077
– volume: 32
  start-page: 2000870
  year: 2020
  ident: 921_CR56
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202000870
– volume: 416
  start-page: 61
  year: 2002
  ident: 921_CR14
  publication-title: Nature
  doi: 10.1038/416061a
– volume: 96
  start-page: 123903
  year: 2006
  ident: 921_CR15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.123903
– volume: 65
  start-page: 103998
  year: 2019
  ident: 921_CR91
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.103998
– volume: 103
  start-page: 223902
  year: 2013
  ident: 921_CR73
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4835995
– volume: 62
  start-page: R2243
  year: 2000
  ident: 921_CR13
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.62.R2243
– volume: 9
  year: 2018
  ident: 921_CR40
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07293-9
– volume: 79
  start-page: 105426
  year: 2021
  ident: 921_CR47
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105426
– volume: 115
  start-page: E3609
  year: 2018
  ident: 921_CR96
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1717595115
– volume: 2
  start-page: 769
  year: 2015
  ident: 921_CR83
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.5b00140
– volume: 50
  start-page: 477
  year: 1993
  ident: 921_CR10
  publication-title: Sol. Energy
  doi: 10.1016/0038-092X(93)90108-Z
– volume: 2
  start-page: 17143
  year: 2017
  ident: 921_CR28
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.143
– volume: 3
  start-page: 2679
  year: 2019
  ident: 921_CR30
  publication-title: Joule
  doi: 10.1016/j.joule.2019.08.009
– volume: 59
  start-page: 4736
  year: 1999
  ident: 921_CR12
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.59.4736
– volume: 16
  start-page: 153
  year: 2021
  ident: 921_CR39
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-00800-4
– volume: 26
  start-page: 871
  year: 1983
  ident: 921_CR8
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(83)80111-2
– volume: 4
  start-page: 1350
  year: 2020
  ident: 921_CR44
  publication-title: Joule
  doi: 10.1016/j.joule.2020.04.010
– volume: 4
  start-page: 774
  year: 2017
  ident: 921_CR61
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.7b00089
– ident: 921_CR66
  doi: 10.1007/978-3-319-49457-9
– volume: 109
  start-page: 2280
  year: 2012
  ident: 921_CR67
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1120149109
– volume: 2
  start-page: 1500119
  year: 2015
  ident: 921_CR34
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201500119
– ident: 921_CR2
  doi: 10.1201/9781439894552
– volume: 117
  start-page: 14657
  year: 2020
  ident: 921_CR45
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2001802117
– volume: 7
  start-page: 1312
  year: 2020
  ident: 921_CR78
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.0c00513
– volume: 9
  start-page: 1990
  year: 2019
  ident: 921_CR75
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.9.001990
– volume: 3
  start-page: 101
  year: 2019
  ident: 921_CR58
  publication-title: Joule
  doi: 10.1016/j.joule.2018.10.009
– volume: 1
  start-page: 2
  year: 2021
  ident: 921_CR104
  publication-title: eLight
  doi: 10.1186/s43593-021-00002-y
– volume: 2
  start-page: 17142
  year: 2017
  ident: 921_CR29
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.142
– volume: 93
  start-page: 161410(R)
  year: 2016
  ident: 921_CR93
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.161410
– volume: 349
  start-page: 298
  year: 2015
  ident: 921_CR33
  publication-title: Science
  doi: 10.1126/science.aab3564
– volume: 9
  year: 2018
  ident: 921_CR72
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06535-0
– volume: 5
  start-page: 684
  year: 2018
  ident: 921_CR105
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.7b01136
– volume: 32
  start-page: 1906751
  year: 2020
  ident: 921_CR43
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201906751
– volume: 11
  year: 2020
  ident: 921_CR57
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19790-x
– volume: 2
  start-page: 718
  year: 2019
  ident: 921_CR27
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-019-0348-5
– volume: 8
  start-page: 532
  year: 2018
  ident: 921_CR63
  publication-title: IEEE J. Photovolt.
  doi: 10.1109/JPHOTOV.2017.2779842
– volume: 36
  start-page: 139
  year: 1980
  ident: 921_CR6
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.91406
– volume: 3
  start-page: 267
  year: 1977
  ident: 921_CR5
  publication-title: Appl. Energy
  doi: 10.1016/0306-2619(77)90015-0
– volume: 4
  start-page: 724
  year: 2020
  ident: 921_CR90
  publication-title: Joule
  doi: 10.1016/j.joule.2020.02.011
– volume: 4
  start-page: 626
  year: 2017
  ident: 921_CR35
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.6b00991
– volume: 11
  start-page: 036501
  year: 2019
  ident: 921_CR100
  publication-title: J. Renew. Sustain. Energy
  doi: 10.1063/1.5094510
– volume: 3
  start-page: e1700895
  year: 2017
  ident: 921_CR86
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700895
– volume: 27
  start-page: 31587
  year: 2019
  ident: 921_CR101
  publication-title: Opt. Express
  doi: 10.1364/OE.27.031587
– volume: 21
  start-page: 3879
  year: 2021
  ident: 921_CR92
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c00400
– volume: 364
  start-page: 760
  year: 2019
  ident: 921_CR38
  publication-title: Science
  doi: 10.1126/science.aau9101
– volume: 7
  year: 2017
  ident: 921_CR70
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-05235-x
– volume: 4
  start-page: 2702
  year: 2020
  ident: 921_CR65
  publication-title: Joule
  doi: 10.1016/j.joule.2020.10.004
– volume: 2
  start-page: 434
  year: 2021
  ident: 921_CR108
  publication-title: Nat. Food
  doi: 10.1038/s43016-021-00307-8
– volume: 3
  start-page: 111
  year: 2019
  ident: 921_CR51
  publication-title: Joule
  doi: 10.1016/j.joule.2018.10.006
SSID ssj0053922
Score 2.721095
SecondaryResourceType review_article
Snippet Radiative cooling is a ubiquitous passive process that uses photon heat flow to carry away energy and entropy. Radiative cooling processes have been studied in...
Not provided.
SourceID osti
crossref
springer
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 182
SubjectTerms 639/624/1111/1114
639/624/399/1015
Applied and Technical Physics
Optics
Physics
Physics and Astronomy
Quantum Physics
Review Article
Title Photonics and thermodynamics concepts in radiative cooling
URI https://link.springer.com/article/10.1038/s41566-021-00921-9
https://www.osti.gov/biblio/1978655
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELagXLiwuzxEYRflwA0CdeI4Mbd2BUJIVBxAcLMS26GVIKmacNlfzzh2TKAsAi5RZbXT1F89j8w3Mwjt40GeqRjCVEoEBCgsJD5Lc-mHOZgvogZpLHW98-WYnt-Qi7vorh00bqtL6uxI_Hu3ruQ7qMIa4KqrZL-ArBMKC_Aa8IUrIAzXT2F8NSlr3dq2anmQ88dSmhHzleaTa8pKw3ed6w4EDUlIlHpKz33XJx03vT0PZq0wB6l9NjpJi8nT1DF3mvT_rZp2nxdAqOkIU1bFxYT5cGxNLll118ysQqcXaQf_sKPksBkXZO0lNuM-F1SxabxeNQGir4kgur0T9tmL4WmT7W_skWMJNvnxMOFGBgcZvJHB2TJaCSAsAL22Mjwbjcat7Y3A2wtMCaz5jbZMCqQcL97JK1ekV4JKXUiHN17G9U-0ZsMDb2iw_oWWVLGOfthQwbOKuNpAJw56D6D3XkPvtdB708Jz0HsW-k10c3Z6_ffct2MwfBEmpPaZZAEVUcaYCNMkpYxIonJwKwCHZJApHIALG8iIKDhg4JLkJJZM9w1MBFVYJuEW6hVlobY1jy2LRJIzoqgkUZwmmZKYRikJY0JiRfsItzvChe0Rr0eVPPD_Y9FHB-4zM9Mh5cN37-qN5uDf6SbFQrO5RM0xi3WFdB8dtvvP7TmrPhC286Wv3kWrL-fhN-rV8yf1BzzKOtuzf6NnOglsuA
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photonics+and+thermodynamics+concepts+in+radiative+cooling&rft.jtitle=Nature+photonics&rft.au=Fan%2C+Shanhui&rft.au=Li%2C+Wei&rft.date=2022-03-01&rft.issn=1749-4885&rft.eissn=1749-4893&rft.volume=16&rft.issue=3&rft.spage=182&rft.epage=190&rft_id=info:doi/10.1038%2Fs41566-021-00921-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41566_021_00921_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1749-4885&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1749-4885&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1749-4885&client=summon