Serine/Arginine-Rich Splicing Factor 3 and Heterogeneous Nuclear Ribonucleoprotein A1 Regulate Alternative RNA Splicing and Gene Expression of Human Papillomavirus 18 through Two Functionally Distinguishable cis Elements

Human papillomavirus 18 (HPV18) is the second most common oncogenic HPV type associated with cervical, anogenital, and oropharyngeal cancers. Like other oncogenic HPVs, HPV18 encodes two major (one early and one late) polycistronic pre-mRNAs that are regulated by alternative RNA splicing to produce...

Full description

Saved in:
Bibliographic Details
Published inJournal of virology Vol. 90; no. 20; pp. 9138 - 9152
Main Authors Ajiro, Masahiko, Tang, Shuang, Doorbar, John, Zheng, Zhi-Ming
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 15.10.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Human papillomavirus 18 (HPV18) is the second most common oncogenic HPV type associated with cervical, anogenital, and oropharyngeal cancers. Like other oncogenic HPVs, HPV18 encodes two major (one early and one late) polycistronic pre-mRNAs that are regulated by alternative RNA splicing to produce a repertoire of viral transcripts for the expression of individual viral genes. However, RNA cis -regulatory elements and trans -acting factors contributing to HPV18 alternative RNA splicing remain unknown. In this study, an exonic splicing enhancer (ESE) in the nucleotide (nt) 3520 to 3550 region in the HPV18 genome was identified and characterized for promotion of HPV18 929^3434 splicing and E1^E4 production through interaction with SRSF3, a host oncogenic splicing factor differentially expressed in epithelial cells and keratinocytes. Introduction of point mutations in the SRSF3-binding site or knockdown of SRSF3 expression in cells reduces 929^3434 splicing and E1^E4 production but activates other, minor 929^3465 and 929^3506 splicing. Knockdown of SRSF3 expression also enhances the expression of E2 and L1 mRNAs. An exonic splicing silencer (ESS) in the HPV18 nt 612 to 639 region was identified as being inhibitory to the 233^416 splicing of HPV18 E6E7 pre-mRNAs via binding to hnRNP A1, a well-characterized, abundantly and ubiquitously expressed RNA-binding protein. Introduction of point mutations into the hnRNP A1-binding site or knockdown of hnRNP A1 expression promoted 233^416 splicing and reduced E6 expression. These data provide the first evidence that the alternative RNA splicing of HPV18 pre-mRNAs is subject to regulation by viral RNA cis elements and host trans -acting splicing factors. IMPORTANCE Expression of HPV18 genes is regulated by alternative RNA splicing of viral polycistronic pre-mRNAs to produce a repertoire of viral early and late transcripts. RNA cis elements and trans -acting factors contributing to HPV18 alternative RNA splicing have been discovered in this study for the first time. The identified ESS at the E7 open reading frame (ORF) prevents HPV18 233^416 splicing in the E6 ORF through interaction with a host splicing factor, hnRNP A1, and regulates E6 and E7 expression of the early E6E7 polycistronic pre-mRNA. The identified ESE at the E1^E4 ORF promotes HPV18 929^3434 splicing of both viral early and late pre-mRNAs and E1^E4 production through interaction with SRSF3. This study provides important observations on how alternative RNA splicing of HPV18 pre-mRNAs is subject to regulation by viral RNA cis elements and host splicing factors and offers potential therapeutic targets to overcome HPV-related cancer.
AbstractList Human papillomavirus 18 (HPV18) is the second most common oncogenic HPV type associated with cervical, anogenital, and oropharyngeal cancers. Like other oncogenic HPVs, HPV18 encodes two major (one early and one late) polycistronic pre-mRNAs that are regulated by alternative RNA splicing to produce a repertoire of viral transcripts for the expression of individual viral genes. However, RNA cis-regulatory elements and trans-acting factors contributing to HPV18 alternative RNA splicing remain unknown. In this study, an exonic splicing enhancer (ESE) in the nucleotide (nt) 3520 to 3550 region in the HPV18 genome was identified and characterized for promotion of HPV18 929^3434 splicing and E1^E4 production through interaction with SRSF3, a host oncogenic splicing factor differentially expressed in epithelial cells and keratinocytes. Introduction of point mutations in the SRSF3-binding site or knockdown of SRSF3 expression in cells reduces 929^3434 splicing and E1^E4 production but activates other, minor 929^3465 and 929^3506 splicing. Knockdown of SRSF3 expression also enhances the expression of E2 and L1 mRNAs. An exonic splicing silencer (ESS) in the HPV18 nt 612 to 639 region was identified as being inhibitory to the 233^416 splicing of HPV18 E6E7 pre-mRNAs via binding to hnRNP A1, a well-characterized, abundantly and ubiquitously expressed RNA-binding protein. Introduction of point mutations into the hnRNP A1-binding site or knockdown of hnRNP A1 expression promoted 233^416 splicing and reduced E6 expression. These data provide the first evidence that the alternative RNA splicing of HPV18 pre-mRNAs is subject to regulation by viral RNA cis elements and host trans-acting splicing factors.UNLABELLEDHuman papillomavirus 18 (HPV18) is the second most common oncogenic HPV type associated with cervical, anogenital, and oropharyngeal cancers. Like other oncogenic HPVs, HPV18 encodes two major (one early and one late) polycistronic pre-mRNAs that are regulated by alternative RNA splicing to produce a repertoire of viral transcripts for the expression of individual viral genes. However, RNA cis-regulatory elements and trans-acting factors contributing to HPV18 alternative RNA splicing remain unknown. In this study, an exonic splicing enhancer (ESE) in the nucleotide (nt) 3520 to 3550 region in the HPV18 genome was identified and characterized for promotion of HPV18 929^3434 splicing and E1^E4 production through interaction with SRSF3, a host oncogenic splicing factor differentially expressed in epithelial cells and keratinocytes. Introduction of point mutations in the SRSF3-binding site or knockdown of SRSF3 expression in cells reduces 929^3434 splicing and E1^E4 production but activates other, minor 929^3465 and 929^3506 splicing. Knockdown of SRSF3 expression also enhances the expression of E2 and L1 mRNAs. An exonic splicing silencer (ESS) in the HPV18 nt 612 to 639 region was identified as being inhibitory to the 233^416 splicing of HPV18 E6E7 pre-mRNAs via binding to hnRNP A1, a well-characterized, abundantly and ubiquitously expressed RNA-binding protein. Introduction of point mutations into the hnRNP A1-binding site or knockdown of hnRNP A1 expression promoted 233^416 splicing and reduced E6 expression. These data provide the first evidence that the alternative RNA splicing of HPV18 pre-mRNAs is subject to regulation by viral RNA cis elements and host trans-acting splicing factors.Expression of HPV18 genes is regulated by alternative RNA splicing of viral polycistronic pre-mRNAs to produce a repertoire of viral early and late transcripts. RNA cis elements and trans-acting factors contributing to HPV18 alternative RNA splicing have been discovered in this study for the first time. The identified ESS at the E7 open reading frame (ORF) prevents HPV18 233^416 splicing in the E6 ORF through interaction with a host splicing factor, hnRNP A1, and regulates E6 and E7 expression of the early E6E7 polycistronic pre-mRNA. The identified ESE at the E1^E4 ORF promotes HPV18 929^3434 splicing of both viral early and late pre-mRNAs and E1^E4 production through interaction with SRSF3. This study provides important observations on how alternative RNA splicing of HPV18 pre-mRNAs is subject to regulation by viral RNA cis elements and host splicing factors and offers potential therapeutic targets to overcome HPV-related cancer.IMPORTANCEExpression of HPV18 genes is regulated by alternative RNA splicing of viral polycistronic pre-mRNAs to produce a repertoire of viral early and late transcripts. RNA cis elements and trans-acting factors contributing to HPV18 alternative RNA splicing have been discovered in this study for the first time. The identified ESS at the E7 open reading frame (ORF) prevents HPV18 233^416 splicing in the E6 ORF through interaction with a host splicing factor, hnRNP A1, and regulates E6 and E7 expression of the early E6E7 polycistronic pre-mRNA. The identified ESE at the E1^E4 ORF promotes HPV18 929^3434 splicing of both viral early and late pre-mRNAs and E1^E4 production through interaction with SRSF3. This study provides important observations on how alternative RNA splicing of HPV18 pre-mRNAs is subject to regulation by viral RNA cis elements and host splicing factors and offers potential therapeutic targets to overcome HPV-related cancer.
Human papillomavirus 18 (HPV18) is the second most common oncogenic HPV type associated with cervical, anogenital, and oropharyngeal cancers. Like other oncogenic HPVs, HPV18 encodes two major (one early and one late) polycistronic pre-mRNAs that are regulated by alternative RNA splicing to produce a repertoire of viral transcripts for the expression of individual viral genes. However, RNA cis-regulatory elements and trans-acting factors contributing to HPV18 alternative RNA splicing remain unknown. In this study, an exonic splicing enhancer (ESE) in the nucleotide (nt) 3520 to 3550 region in the HPV18 genome was identified and characterized for promotion of HPV18 929^3434 splicing and E1^E4 production through interaction with SRSF3, a host oncogenic splicing factor differentially expressed in epithelial cells and keratinocytes. Introduction of point mutations in the SRSF3-binding site or knockdown of SRSF3 expression in cells reduces 929^3434 splicing and E1^E4 production but activates other, minor 929^3465 and 929^3506 splicing. Knockdown of SRSF3 expression also enhances the expression of E2 and L1 mRNAs. An exonic splicing silencer (ESS) in the HPV18 nt 612 to 639 region was identified as being inhibitory to the 233^416 splicing of HPV18 E6E7 pre-mRNAs via binding to hnRNP A1, a well-characterized, abundantly and ubiquitously expressed RNA-binding protein. Introduction of point mutations into the hnRNP A1-binding site or knockdown of hnRNP A1 expression promoted 233^416 splicing and reduced E6 expression. These data provide the first evidence that the alternative RNA splicing of HPV18 pre-mRNAs is subject to regulation by viral RNA cis elements and host trans-acting splicing factors. Expression of HPV18 genes is regulated by alternative RNA splicing of viral polycistronic pre-mRNAs to produce a repertoire of viral early and late transcripts. RNA cis elements and trans-acting factors contributing to HPV18 alternative RNA splicing have been discovered in this study for the first time. The identified ESS at the E7 open reading frame (ORF) prevents HPV18 233^416 splicing in the E6 ORF through interaction with a host splicing factor, hnRNP A1, and regulates E6 and E7 expression of the early E6E7 polycistronic pre-mRNA. The identified ESE at the E1^E4 ORF promotes HPV18 929^3434 splicing of both viral early and late pre-mRNAs and E1^E4 production through interaction with SRSF3. This study provides important observations on how alternative RNA splicing of HPV18 pre-mRNAs is subject to regulation by viral RNA cis elements and host splicing factors and offers potential therapeutic targets to overcome HPV-related cancer.
Human papillomavirus 18 (HPV18) is the second most common oncogenic HPV type associated with cervical, anogenital, and oropharyngeal cancers. Like other oncogenic HPVs, HPV18 encodes two major (one early and one late) polycistronic pre-mRNAs that are regulated by alternative RNA splicing to produce a repertoire of viral transcripts for the expression of individual viral genes. However, RNA cis -regulatory elements and trans -acting factors contributing to HPV18 alternative RNA splicing remain unknown. In this study, an exonic splicing enhancer (ESE) in the nucleotide (nt) 3520 to 3550 region in the HPV18 genome was identified and characterized for promotion of HPV18 929^3434 splicing and E1^E4 production through interaction with SRSF3, a host oncogenic splicing factor differentially expressed in epithelial cells and keratinocytes. Introduction of point mutations in the SRSF3-binding site or knockdown of SRSF3 expression in cells reduces 929^3434 splicing and E1^E4 production but activates other, minor 929^3465 and 929^3506 splicing. Knockdown of SRSF3 expression also enhances the expression of E2 and L1 mRNAs. An exonic splicing silencer (ESS) in the HPV18 nt 612 to 639 region was identified as being inhibitory to the 233^416 splicing of HPV18 E6E7 pre-mRNAs via binding to hnRNP A1, a well-characterized, abundantly and ubiquitously expressed RNA-binding protein. Introduction of point mutations into the hnRNP A1-binding site or knockdown of hnRNP A1 expression promoted 233^416 splicing and reduced E6 expression. These data provide the first evidence that the alternative RNA splicing of HPV18 pre-mRNAs is subject to regulation by viral RNA cis elements and host trans -acting splicing factors. IMPORTANCE Expression of HPV18 genes is regulated by alternative RNA splicing of viral polycistronic pre-mRNAs to produce a repertoire of viral early and late transcripts. RNA cis elements and trans -acting factors contributing to HPV18 alternative RNA splicing have been discovered in this study for the first time. The identified ESS at the E7 open reading frame (ORF) prevents HPV18 233^416 splicing in the E6 ORF through interaction with a host splicing factor, hnRNP A1, and regulates E6 and E7 expression of the early E6E7 polycistronic pre-mRNA. The identified ESE at the E1^E4 ORF promotes HPV18 929^3434 splicing of both viral early and late pre-mRNAs and E1^E4 production through interaction with SRSF3. This study provides important observations on how alternative RNA splicing of HPV18 pre-mRNAs is subject to regulation by viral RNA cis elements and host splicing factors and offers potential therapeutic targets to overcome HPV-related cancer.
Author Zheng, Zhi-Ming
Tang, Shuang
Doorbar, John
Ajiro, Masahiko
Author_xml – sequence: 1
  givenname: Masahiko
  surname: Ajiro
  fullname: Ajiro, Masahiko
  organization: Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
– sequence: 2
  givenname: Shuang
  surname: Tang
  fullname: Tang, Shuang
  organization: Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
– sequence: 3
  givenname: John
  surname: Doorbar
  fullname: Doorbar, John
  organization: Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
– sequence: 4
  givenname: Zhi-Ming
  surname: Zheng
  fullname: Zheng, Zhi-Ming
  organization: Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27489271$$D View this record in MEDLINE/PubMed
BookMark eNptkktv1DAUhS1URB-wY428ZEFa24nz2CCNykynqCpoWhA7y-PcZIwcO7Wdgf5XfgyePniJla_kc74j3XsO0Z51FhB6Sckxpaw-ef_5_JiQpuQZLZ-gA0qaOuOcFnvogBDGMp7XX_bRYQhfCaFFURbP0D6rirphFT1AP67AawsnM99rm4ZspdUGX41GK217vJAqOo9zLG2LlxDBux4suCngy0kZkB6v9NrZ3exG7yJoi2cUr6CfjIyAZyZ5rIx6C3h1OftN3gHPEgrPv48eQtDOYtfh5TRIiz_KURvjBrnVPkXRGseNd1O_wdffHF5MVsWkl8bc4nc6xMSbdNjItQGsdMBzAwPYGJ6jp500AV48vEfo02J-fbrMLj6cnZ_OLjKV10XMmrYC2nZVxVmlGqoqxoDnwKBcV6xVdSnzlrCu63ieUyoV7_iaAy9UI8uKAs2P0Nt77jitB2hVyvbSiNHrQfpb4aQWf_9YvRG92wpOiqIuWAK8fgB4dzNBiGLQQYEx8m7XgtaMM1ql8yXpqz-zfoU8njQJ2L1AeReCh04oHeVuXylaG0GJ2PVGpN6Iu94IWibTm39Mj9z_yn8CgC_JmQ
CitedBy_id crossref_primary_10_1038_s41420_022_01129_8
crossref_primary_10_3389_fonc_2020_577636
crossref_primary_10_3390_biom9020039
crossref_primary_10_3390_v12101110
crossref_primary_10_1128_mbio_00729_24
crossref_primary_10_1128_mbio_03594_21
crossref_primary_10_3892_ol_2021_13139
crossref_primary_10_1016_j_bpobgyn_2017_08_001
crossref_primary_10_1158_1541_7786_MCR_21_0567
crossref_primary_10_1007_s11033_020_05375_w
crossref_primary_10_1016_j_gene_2018_09_015
crossref_primary_10_1002_jmv_28761
crossref_primary_10_1007_s11262_022_01889_6
crossref_primary_10_1111_gtc_13121
crossref_primary_10_1016_j_bbamcr_2017_11_005
crossref_primary_10_1016_j_molcel_2020_10_019
crossref_primary_10_1007_s00705_021_05317_2
crossref_primary_10_3389_fphar_2022_986409
crossref_primary_10_3390_ijms18020366
crossref_primary_10_1016_j_semcancer_2022_02_014
crossref_primary_10_3923_tb_2021_1_12
crossref_primary_10_1093_nar_gkac213
crossref_primary_10_1128_JVI_01509_20
crossref_primary_10_1186_s12935_020_01299_4
crossref_primary_10_3390_cancers15235583
crossref_primary_10_3389_fimmu_2024_1446081
crossref_primary_10_1002_jmv_29473
crossref_primary_10_1007_s12250_021_00413_8
crossref_primary_10_1007_s12250_019_00098_0
crossref_primary_10_1186_s12985_023_02098_9
crossref_primary_10_1371_journal_ppat_1010032
crossref_primary_10_1371_journal_ppat_1010311
crossref_primary_10_3389_fcimb_2022_929666
crossref_primary_10_3390_ijms23094943
crossref_primary_10_3389_fviro_2022_1044652
crossref_primary_10_1261_rna_068619_118
crossref_primary_10_3389_fcimb_2024_1443868
crossref_primary_10_3390_v13101892
crossref_primary_10_1016_j_celrep_2022_111704
crossref_primary_10_1128_jvi_00951_24
crossref_primary_10_3390_genes12020130
crossref_primary_10_3390_v10010045
Cites_doi 10.1128/mBio.02068-14
10.1073/pnas.1002620107
10.1101/gad.276477.115
10.1073/pnas.95.24.14088
10.1073/pnas.1401430111
10.1186/gb-2009-10-3-r30
10.1038/sj.emboj.7601385
10.1128/jvi.67.7.4296-4306.1993
10.1128/JVI.80.9.4249-4263.2006
10.1016/j.virusres.2013.06.012
10.1074/jbc.M314298200
10.2741/3307
10.1093/nar/gks319
10.1261/rna.1442309
10.1128/JVI.74.22.10612-10622.2000
10.1016/j.chembiol.2010.11.009
10.1017/S1355838299981967
10.1101/gad.256644.114
10.1128/jvi.71.12.9096-9107.1997
10.1038/onc.2012.288
10.1128/MCB.15.8.4597
10.2741/1971
10.1128/JVI.74.13.5902-5910.2000
10.1128/JVI.00462-10
10.1186/gb-2012-13-3-r17
10.1038/nrmicro2984
10.1021/jm200274d
10.1261/rna.045500.114
10.1128/MCB.19.1.251
10.1128/JVI.79.7.4270-4288.2005
10.1016/j.molcel.2016.01.012
10.1371/journal.ppat.1002127
10.1016/j.cell.2004.11.010
10.1128/AAC.00113-10
10.1093/nar/gkt803
10.1128/JVI.79.18.12002-12015.2005
10.3390/ijms140918999
10.1128/JVI.73.1.29-36.1999
10.1093/emboj/18.14.4060
10.1101/gad.12.13.1998
10.1038/nrg3778
10.1073/pnas.0604616103
10.1016/j.virol.2010.02.023
10.1016/j.virol.2008.12.037
10.1016/j.virol.2007.08.002
10.1371/journal.pone.0046412
10.1016/j.jmb.2004.02.023
10.1128/JVI.01359-10
10.7150/ijbs.6.806
10.1093/nar/gkq444
10.1038/onc.2013.86
10.1007/BF02254432
10.1128/MCB.14.2.1347
10.1128/JVI.77.3.2105-2115.2003
10.1099/vir.0.033183-0
10.1128/JVI.78.20.10888-10905.2004
10.1038/nature10485
10.1101/gr.082503.108
10.1128/JVI.03434-14
10.1038/modpathol.2015.52
10.1016/S1470-2045(12)70137-7
10.1073/pnas.1304855110
10.1016/j.molcel.2006.05.018
10.1002/ijc.27742
10.1016/j.ygeno.2015.01.007
10.1128/JVI.01719-08
10.1038/emi.2014.62
10.1371/journal.pone.0116151
10.2174/157016206775197655
10.1186/s12943-015-0422-1
10.1093/nar/gkv1500
10.1128/jvi.70.7.4691-4699.1996
10.1128/JVI.00670-11
10.1101/gad.7.3.407
10.1016/S0166-0934(99)00172-X
10.1128/JVI.02140-07
10.1124/mol.114.097345
10.1128/JVI.02396-12
10.1017/S1355838200000960
10.1038/onc.2010.426
10.1101/gad.13.5.593
10.1101/gad.1941310
10.1016/S1470-2045(10)70230-8
10.1074/jbc.C115.695049
ContentType Journal Article
Copyright Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Copyright © 2016, American Society for Microbiology. All Rights Reserved. 2016 American Society for Microbiology
Copyright_xml – notice: Copyright © 2016, American Society for Microbiology. All Rights Reserved.
– notice: Copyright © 2016, American Society for Microbiology. All Rights Reserved. 2016 American Society for Microbiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1128/JVI.00965-16
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate SRSF3 and hnRNP A1 in HPV18 RNA Splicing
EISSN 1098-5514
EndPage 9152
ExternalDocumentID PMC5044842
27489271
10_1128_JVI_00965_16
Genre Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MC_PC_13050
– fundername: NCI NIH HHS
  grantid: ZIA SC010357
– fundername: HHS | NIH | NIH Office of the Director (OD)
  grantid: 1ZIASC010357
– fundername: HHS | NIH | Intramural Research Program
GroupedDBID ---
-~X
0R~
18M
29L
2WC
39C
4.4
53G
5GY
5RE
5VS
85S
AAFWJ
AAGFI
AAYXX
ABPPZ
ACGFO
ACNCT
ADBBV
AENEX
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
N9A
O9-
OK1
P2P
RHI
RNS
RPM
RSF
TR2
UPT
W2D
W8F
WH7
WOQ
YQT
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c384t-9d7e1df77527c91c722e53e2e6b72dc86a3d02fff53311ac5f5b5e54c9a671e13
ISSN 0022-538X
1098-5514
IngestDate Thu Aug 21 13:39:37 EDT 2025
Sun Aug 24 03:58:17 EDT 2025
Mon Jul 21 06:04:05 EDT 2025
Tue Jul 01 01:02:46 EDT 2025
Thu Apr 24 23:02:53 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License Copyright © 2016, American Society for Microbiology. All Rights Reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c384t-9d7e1df77527c91c722e53e2e6b72dc86a3d02fff53311ac5f5b5e54c9a671e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Citation Ajiro M, Tang S, Doorbar J, Zheng Z-M. 2016. Serine/arginine-rich splicing factor 3 and heterogeneous nuclear ribonucleoprotein A1 regulate alternative RNA splicing and gene expression of human papillomavirus 18 through two functionally distinguishable cis elements. J Virol 90:9138–9152. doi:10.1128/JVI.00965-16.
Present address: Masahiko Ajiro, Department of Drug Discovery Medicine, Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Shuang Tang, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA.
OpenAccessLink https://jvi.asm.org/content/jvi/90/20/9138.full.pdf
PMID 27489271
PQID 1825217144
PQPubID 23479
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5044842
proquest_miscellaneous_1825217144
pubmed_primary_27489271
crossref_citationtrail_10_1128_JVI_00965_16
crossref_primary_10_1128_JVI_00965_16
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-10-15
PublicationDateYYYYMMDD 2016-10-15
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Journal of virology
PublicationTitleAlternate J Virol
PublicationYear 2016
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_3_50_2
e_1_3_3_71_2
e_1_3_3_77_2
e_1_3_3_79_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_73_2
e_1_3_3_40_2
e_1_3_3_61_2
e_1_3_3_86_2
e_1_3_3_88_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_69_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_67_2
e_1_3_3_80_2
e_1_3_3_44_2
e_1_3_3_65_2
e_1_3_3_82_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_84_2
e_1_3_3_51_2
e_1_3_3_70_2
e_1_3_3_78_2
Carpenter B (e_1_3_3_76_2) 2006; 1765
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_72_2
e_1_3_3_62_2
e_1_3_3_85_2
e_1_3_3_60_2
e_1_3_3_87_2
Patry C (e_1_3_3_74_2) 2003; 63
e_1_3_3_6_2
Ushigome M (e_1_3_3_75_2) 2005; 26
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_68_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_81_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_64_2
e_1_3_3_83_2
References_xml – volume: 1765
  start-page: 85
  year: 2006
  ident: e_1_3_3_76_2
  article-title: The roles of heterogeneous nuclear ribonucleoproteins in tumour development and progression
  publication-title: Biochim Biophys Acta
– ident: e_1_3_3_28_2
  doi: 10.1128/mBio.02068-14
– ident: e_1_3_3_20_2
  doi: 10.1073/pnas.1002620107
– ident: e_1_3_3_70_2
  doi: 10.1101/gad.276477.115
– ident: e_1_3_3_7_2
  doi: 10.1073/pnas.95.24.14088
– ident: e_1_3_3_30_2
  doi: 10.1073/pnas.1401430111
– ident: e_1_3_3_37_2
  doi: 10.1186/gb-2009-10-3-r30
– ident: e_1_3_3_46_2
  doi: 10.1038/sj.emboj.7601385
– ident: e_1_3_3_88_2
  doi: 10.1128/jvi.67.7.4296-4306.1993
– ident: e_1_3_3_47_2
  doi: 10.1128/JVI.80.9.4249-4263.2006
– ident: e_1_3_3_60_2
  doi: 10.1016/j.virusres.2013.06.012
– ident: e_1_3_3_78_2
  doi: 10.1074/jbc.M314298200
– ident: e_1_3_3_48_2
  doi: 10.2741/3307
– ident: e_1_3_3_63_2
  doi: 10.1093/nar/gks319
– ident: e_1_3_3_31_2
  doi: 10.1261/rna.1442309
– volume: 63
  start-page: 7679
  year: 2003
  ident: e_1_3_3_74_2
  article-title: Small interfering RNA-mediated reduction in heterogeneous nuclear ribonucleoparticle A1/A2 proteins induces apoptosis in human cancer cells but not in normal mortal cell lines
  publication-title: Cancer Res
– ident: e_1_3_3_10_2
  doi: 10.1128/JVI.74.22.10612-10622.2000
– ident: e_1_3_3_80_2
  doi: 10.1016/j.chembiol.2010.11.009
– ident: e_1_3_3_45_2
  doi: 10.1017/S1355838299981967
– ident: e_1_3_3_84_2
  doi: 10.1101/gad.256644.114
– ident: e_1_3_3_6_2
  doi: 10.1128/jvi.71.12.9096-9107.1997
– ident: e_1_3_3_68_2
  doi: 10.1038/onc.2012.288
– ident: e_1_3_3_50_2
  doi: 10.1128/MCB.15.8.4597
– ident: e_1_3_3_4_2
  doi: 10.2741/1971
– ident: e_1_3_3_9_2
  doi: 10.1128/JVI.74.13.5902-5910.2000
– ident: e_1_3_3_17_2
  doi: 10.1128/JVI.00462-10
– ident: e_1_3_3_40_2
  doi: 10.1186/gb-2012-13-3-r17
– ident: e_1_3_3_49_2
  doi: 10.1038/nrmicro2984
– ident: e_1_3_3_79_2
  doi: 10.1021/jm200274d
– volume: 26
  start-page: 635
  year: 2005
  ident: e_1_3_3_75_2
  article-title: Up-regulation of hnRNP A1 gene in sporadic human colorectal cancers
  publication-title: Int J Oncol
– ident: e_1_3_3_66_2
  doi: 10.1261/rna.045500.114
– ident: e_1_3_3_56_2
  doi: 10.1128/MCB.19.1.251
– ident: e_1_3_3_14_2
  doi: 10.1128/JVI.79.7.4270-4288.2005
– ident: e_1_3_3_71_2
  doi: 10.1016/j.molcel.2016.01.012
– ident: e_1_3_3_62_2
  doi: 10.1371/journal.ppat.1002127
– ident: e_1_3_3_51_2
  doi: 10.1016/j.cell.2004.11.010
– ident: e_1_3_3_83_2
  doi: 10.1128/AAC.00113-10
– ident: e_1_3_3_22_2
  doi: 10.1093/nar/gkt803
– ident: e_1_3_3_15_2
  doi: 10.1128/JVI.79.18.12002-12015.2005
– ident: e_1_3_3_57_2
  doi: 10.3390/ijms140918999
– ident: e_1_3_3_8_2
  doi: 10.1128/JVI.73.1.29-36.1999
– ident: e_1_3_3_55_2
  doi: 10.1093/emboj/18.14.4060
– ident: e_1_3_3_44_2
  doi: 10.1101/gad.12.13.1998
– ident: e_1_3_3_53_2
  doi: 10.1038/nrg3778
– ident: e_1_3_3_82_2
  doi: 10.1073/pnas.0604616103
– ident: e_1_3_3_65_2
  doi: 10.1016/j.virol.2010.02.023
– ident: e_1_3_3_19_2
  doi: 10.1016/j.virol.2008.12.037
– ident: e_1_3_3_23_2
  doi: 10.1016/j.virol.2007.08.002
– ident: e_1_3_3_21_2
  doi: 10.1371/journal.pone.0046412
– ident: e_1_3_3_34_2
  doi: 10.1016/j.jmb.2004.02.023
– ident: e_1_3_3_64_2
  doi: 10.1128/JVI.01359-10
– ident: e_1_3_3_67_2
  doi: 10.7150/ijbs.6.806
– ident: e_1_3_3_36_2
  doi: 10.1093/nar/gkq444
– ident: e_1_3_3_73_2
  doi: 10.1038/onc.2013.86
– ident: e_1_3_3_38_2
  doi: 10.1007/BF02254432
– ident: e_1_3_3_42_2
  doi: 10.1128/MCB.14.2.1347
– ident: e_1_3_3_11_2
  doi: 10.1128/JVI.77.3.2105-2115.2003
– ident: e_1_3_3_18_2
  doi: 10.1099/vir.0.033183-0
– ident: e_1_3_3_13_2
  doi: 10.1128/JVI.78.20.10888-10905.2004
– ident: e_1_3_3_85_2
  doi: 10.1038/nature10485
– ident: e_1_3_3_41_2
  doi: 10.1101/gr.082503.108
– ident: e_1_3_3_54_2
  doi: 10.1128/JVI.03434-14
– ident: e_1_3_3_32_2
  doi: 10.1038/modpathol.2015.52
– ident: e_1_3_3_2_2
  doi: 10.1016/S1470-2045(12)70137-7
– ident: e_1_3_3_27_2
  doi: 10.1073/pnas.1304855110
– ident: e_1_3_3_52_2
  doi: 10.1016/j.molcel.2006.05.018
– ident: e_1_3_3_77_2
  doi: 10.1002/ijc.27742
– ident: e_1_3_3_87_2
  doi: 10.1016/j.ygeno.2015.01.007
– ident: e_1_3_3_12_2
  doi: 10.1128/JVI.01719-08
– ident: e_1_3_3_3_2
  doi: 10.1038/emi.2014.62
– ident: e_1_3_3_26_2
  doi: 10.1371/journal.pone.0116151
– ident: e_1_3_3_59_2
  doi: 10.2174/157016206775197655
– ident: e_1_3_3_72_2
  doi: 10.1186/s12943-015-0422-1
– ident: e_1_3_3_35_2
  doi: 10.1093/nar/gkv1500
– ident: e_1_3_3_5_2
  doi: 10.1128/jvi.70.7.4691-4699.1996
– ident: e_1_3_3_25_2
  doi: 10.1128/JVI.00670-11
– ident: e_1_3_3_39_2
  doi: 10.1101/gad.7.3.407
– ident: e_1_3_3_33_2
  doi: 10.1016/S0166-0934(99)00172-X
– ident: e_1_3_3_16_2
  doi: 10.1128/JVI.02140-07
– ident: e_1_3_3_81_2
  doi: 10.1124/mol.114.097345
– ident: e_1_3_3_61_2
  doi: 10.1128/JVI.02396-12
– ident: e_1_3_3_43_2
  doi: 10.1017/S1355838200000960
– ident: e_1_3_3_69_2
  doi: 10.1038/onc.2010.426
– ident: e_1_3_3_58_2
  doi: 10.1101/gad.13.5.593
– ident: e_1_3_3_86_2
  doi: 10.1101/gad.1941310
– ident: e_1_3_3_24_2
  doi: 10.1016/S1470-2045(10)70230-8
– ident: e_1_3_3_29_2
  doi: 10.1074/jbc.C115.695049
SSID ssj0014464
Score 2.4124975
Snippet Human papillomavirus 18 (HPV18) is the second most common oncogenic HPV type associated with cervical, anogenital, and oropharyngeal cancers. Like other...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 9138
SubjectTerms Alternative Splicing
Binding Sites
Gene Expression Regulation, Viral
Gene Knockdown Techniques
Genome and Regulation of Viral Gene Expression
Heterogeneous Nuclear Ribonucleoprotein A1
Heterogeneous-Nuclear Ribonucleoprotein Group A-B - metabolism
Host-Pathogen Interactions
Human papillomavirus 18 - genetics
Human papillomavirus 18 - physiology
Humans
Point Mutation
RNA Precursors - genetics
RNA Precursors - metabolism
RNA, Viral - genetics
RNA, Viral - metabolism
Serine-Arginine Splicing Factors - metabolism
Title Serine/Arginine-Rich Splicing Factor 3 and Heterogeneous Nuclear Ribonucleoprotein A1 Regulate Alternative RNA Splicing and Gene Expression of Human Papillomavirus 18 through Two Functionally Distinguishable cis Elements
URI https://www.ncbi.nlm.nih.gov/pubmed/27489271
https://www.proquest.com/docview/1825217144
https://pubmed.ncbi.nlm.nih.gov/PMC5044842
Volume 90
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF61QUi8IG7CpUWCJ8ttdu318RhBo7SoFWpTFPXFWq_XjSHEVY6i8lv5Mcx4bcc5KhVeLCtZj-PM553ZnZlvCPmgmXJU4ClbicSzXaG4Ld2E2dJRcRgL7cdJkSB74vXP3aOhGO7sthpZS4t5vKd-b60r-R-twmegV6yS_QfN1kLhAzgH_cIRNAzHO-n4rKjdQ0qE6SU2etA21slbZxiTxi2AXtFMx3KKCEEfE19ykKUx6_UEeYzl1DrN4nyC53nB2IC7Hwz-86JBvba643K_8FpbpyfdpWQUiIzVSJVsMmkny5DAV3mVjcf5T3mdTeFWLKi7AQ1-5VYPLKnZgBzfIPkn5l0vsAc01nCpbGYdmIz22S1-MxbmNUMB3e-ZqdU5ljM5yn7ky82Icit8tJClfUaPPc8xwrKehnwx0mb0xSizjyt7Xm6HMA_tiCkIbZQnwCw-NAbOzOpImoquYXPaN11KS3jzTmMSD5khnCkdgpAZjt1NY8OxgOLo2-EeLgSFzbZweq_Z2joDslh78SCCq6Pi6oh5u-Qeh8UO9uH4fPiljoXBgt2tOO_xwaryDR7sN--96lhtrJbWk34bXtTgEXlYqpF2DZYfkx09eULum4aoN0_JH4Po_RU80wp11OCZOhTgR1fwTEs80w080y6jFZ5pA88U8LyUjAIRz3SJZ5qntMAzXcUzZQEt8UwBz7SJZ7qGZwp4phWen5Hz3sHgU98u-4_YygncuR0mvmZJ6vuC-ypkClSjhaO59mKfJzDDSSfp8DRNYcnEmFQiFTC7CVeF0vOZZs5z0prkE_2S0LjjulqETpwy7QayE6dJ4gYq9sJQ8NR32sSqlBepkpwfe8SMo21AaZOP9egrQ0pzy7j3FQ4isBoYCpSFUiIWcPDbfcBWm7wwuKglcSSk4j5rE38FMfUAZKRf_WaSjQpmegGPGbj81R1_32vyYPkKvyGt-XSh34KPP4_fFa_AX4xDBs0
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Serine%2FArginine-Rich+Splicing+Factor+3+and+Heterogeneous+Nuclear+Ribonucleoprotein+A1+Regulate+Alternative+RNA+Splicing+and+Gene+Expression+of+Human+Papillomavirus+18+through+Two+Functionally+Distinguishable+cis+Elements&rft.jtitle=Journal+of+virology&rft.au=Ajiro%2C+Masahiko&rft.au=Tang%2C+Shuang&rft.au=Doorbar%2C+John&rft.au=Zheng%2C+Zhi-Ming&rft.date=2016-10-15&rft.issn=0022-538X&rft.eissn=1098-5514&rft.volume=90&rft.issue=20&rft.spage=9138&rft.epage=9152&rft_id=info:doi/10.1128%2FJVI.00965-16&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_JVI_00965_16
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon