Serine/Arginine-Rich Splicing Factor 3 and Heterogeneous Nuclear Ribonucleoprotein A1 Regulate Alternative RNA Splicing and Gene Expression of Human Papillomavirus 18 through Two Functionally Distinguishable cis Elements
Human papillomavirus 18 (HPV18) is the second most common oncogenic HPV type associated with cervical, anogenital, and oropharyngeal cancers. Like other oncogenic HPVs, HPV18 encodes two major (one early and one late) polycistronic pre-mRNAs that are regulated by alternative RNA splicing to produce...
Saved in:
Published in | Journal of virology Vol. 90; no. 20; pp. 9138 - 9152 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
15.10.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Human papillomavirus 18 (HPV18) is the second most common oncogenic HPV type associated with cervical, anogenital, and oropharyngeal cancers. Like other oncogenic HPVs, HPV18 encodes two major (one early and one late) polycistronic pre-mRNAs that are regulated by alternative RNA splicing to produce a repertoire of viral transcripts for the expression of individual viral genes. However, RNA
cis
-regulatory elements and
trans
-acting factors contributing to HPV18 alternative RNA splicing remain unknown. In this study, an exonic splicing enhancer (ESE) in the nucleotide (nt) 3520 to 3550 region in the HPV18 genome was identified and characterized for promotion of HPV18 929^3434 splicing and E1^E4 production through interaction with SRSF3, a host oncogenic splicing factor differentially expressed in epithelial cells and keratinocytes. Introduction of point mutations in the SRSF3-binding site or knockdown of SRSF3 expression in cells reduces 929^3434 splicing and E1^E4 production but activates other, minor 929^3465 and 929^3506 splicing. Knockdown of SRSF3 expression also enhances the expression of E2 and L1 mRNAs. An exonic splicing silencer (ESS) in the HPV18 nt 612 to 639 region was identified as being inhibitory to the 233^416 splicing of HPV18 E6E7 pre-mRNAs via binding to hnRNP A1, a well-characterized, abundantly and ubiquitously expressed RNA-binding protein. Introduction of point mutations into the hnRNP A1-binding site or knockdown of hnRNP A1 expression promoted 233^416 splicing and reduced E6 expression. These data provide the first evidence that the alternative RNA splicing of HPV18 pre-mRNAs is subject to regulation by viral RNA
cis
elements and host
trans
-acting splicing factors.
IMPORTANCE
Expression of HPV18 genes is regulated by alternative RNA splicing of viral polycistronic pre-mRNAs to produce a repertoire of viral early and late transcripts. RNA
cis
elements and
trans
-acting factors contributing to HPV18 alternative RNA splicing have been discovered in this study for the first time. The identified ESS at the E7 open reading frame (ORF) prevents HPV18 233^416 splicing in the E6 ORF through interaction with a host splicing factor, hnRNP A1, and regulates E6 and E7 expression of the early E6E7 polycistronic pre-mRNA. The identified ESE at the E1^E4 ORF promotes HPV18 929^3434 splicing of both viral early and late pre-mRNAs and E1^E4 production through interaction with SRSF3. This study provides important observations on how alternative RNA splicing of HPV18 pre-mRNAs is subject to regulation by viral RNA
cis
elements and host splicing factors and offers potential therapeutic targets to overcome HPV-related cancer. |
---|---|
AbstractList | Human papillomavirus 18 (HPV18) is the second most common oncogenic HPV type associated with cervical, anogenital, and oropharyngeal cancers. Like other oncogenic HPVs, HPV18 encodes two major (one early and one late) polycistronic pre-mRNAs that are regulated by alternative RNA splicing to produce a repertoire of viral transcripts for the expression of individual viral genes. However, RNA cis-regulatory elements and trans-acting factors contributing to HPV18 alternative RNA splicing remain unknown. In this study, an exonic splicing enhancer (ESE) in the nucleotide (nt) 3520 to 3550 region in the HPV18 genome was identified and characterized for promotion of HPV18 929^3434 splicing and E1^E4 production through interaction with SRSF3, a host oncogenic splicing factor differentially expressed in epithelial cells and keratinocytes. Introduction of point mutations in the SRSF3-binding site or knockdown of SRSF3 expression in cells reduces 929^3434 splicing and E1^E4 production but activates other, minor 929^3465 and 929^3506 splicing. Knockdown of SRSF3 expression also enhances the expression of E2 and L1 mRNAs. An exonic splicing silencer (ESS) in the HPV18 nt 612 to 639 region was identified as being inhibitory to the 233^416 splicing of HPV18 E6E7 pre-mRNAs via binding to hnRNP A1, a well-characterized, abundantly and ubiquitously expressed RNA-binding protein. Introduction of point mutations into the hnRNP A1-binding site or knockdown of hnRNP A1 expression promoted 233^416 splicing and reduced E6 expression. These data provide the first evidence that the alternative RNA splicing of HPV18 pre-mRNAs is subject to regulation by viral RNA cis elements and host trans-acting splicing factors.UNLABELLEDHuman papillomavirus 18 (HPV18) is the second most common oncogenic HPV type associated with cervical, anogenital, and oropharyngeal cancers. Like other oncogenic HPVs, HPV18 encodes two major (one early and one late) polycistronic pre-mRNAs that are regulated by alternative RNA splicing to produce a repertoire of viral transcripts for the expression of individual viral genes. However, RNA cis-regulatory elements and trans-acting factors contributing to HPV18 alternative RNA splicing remain unknown. In this study, an exonic splicing enhancer (ESE) in the nucleotide (nt) 3520 to 3550 region in the HPV18 genome was identified and characterized for promotion of HPV18 929^3434 splicing and E1^E4 production through interaction with SRSF3, a host oncogenic splicing factor differentially expressed in epithelial cells and keratinocytes. Introduction of point mutations in the SRSF3-binding site or knockdown of SRSF3 expression in cells reduces 929^3434 splicing and E1^E4 production but activates other, minor 929^3465 and 929^3506 splicing. Knockdown of SRSF3 expression also enhances the expression of E2 and L1 mRNAs. An exonic splicing silencer (ESS) in the HPV18 nt 612 to 639 region was identified as being inhibitory to the 233^416 splicing of HPV18 E6E7 pre-mRNAs via binding to hnRNP A1, a well-characterized, abundantly and ubiquitously expressed RNA-binding protein. Introduction of point mutations into the hnRNP A1-binding site or knockdown of hnRNP A1 expression promoted 233^416 splicing and reduced E6 expression. These data provide the first evidence that the alternative RNA splicing of HPV18 pre-mRNAs is subject to regulation by viral RNA cis elements and host trans-acting splicing factors.Expression of HPV18 genes is regulated by alternative RNA splicing of viral polycistronic pre-mRNAs to produce a repertoire of viral early and late transcripts. RNA cis elements and trans-acting factors contributing to HPV18 alternative RNA splicing have been discovered in this study for the first time. The identified ESS at the E7 open reading frame (ORF) prevents HPV18 233^416 splicing in the E6 ORF through interaction with a host splicing factor, hnRNP A1, and regulates E6 and E7 expression of the early E6E7 polycistronic pre-mRNA. The identified ESE at the E1^E4 ORF promotes HPV18 929^3434 splicing of both viral early and late pre-mRNAs and E1^E4 production through interaction with SRSF3. This study provides important observations on how alternative RNA splicing of HPV18 pre-mRNAs is subject to regulation by viral RNA cis elements and host splicing factors and offers potential therapeutic targets to overcome HPV-related cancer.IMPORTANCEExpression of HPV18 genes is regulated by alternative RNA splicing of viral polycistronic pre-mRNAs to produce a repertoire of viral early and late transcripts. RNA cis elements and trans-acting factors contributing to HPV18 alternative RNA splicing have been discovered in this study for the first time. The identified ESS at the E7 open reading frame (ORF) prevents HPV18 233^416 splicing in the E6 ORF through interaction with a host splicing factor, hnRNP A1, and regulates E6 and E7 expression of the early E6E7 polycistronic pre-mRNA. The identified ESE at the E1^E4 ORF promotes HPV18 929^3434 splicing of both viral early and late pre-mRNAs and E1^E4 production through interaction with SRSF3. This study provides important observations on how alternative RNA splicing of HPV18 pre-mRNAs is subject to regulation by viral RNA cis elements and host splicing factors and offers potential therapeutic targets to overcome HPV-related cancer. Human papillomavirus 18 (HPV18) is the second most common oncogenic HPV type associated with cervical, anogenital, and oropharyngeal cancers. Like other oncogenic HPVs, HPV18 encodes two major (one early and one late) polycistronic pre-mRNAs that are regulated by alternative RNA splicing to produce a repertoire of viral transcripts for the expression of individual viral genes. However, RNA cis-regulatory elements and trans-acting factors contributing to HPV18 alternative RNA splicing remain unknown. In this study, an exonic splicing enhancer (ESE) in the nucleotide (nt) 3520 to 3550 region in the HPV18 genome was identified and characterized for promotion of HPV18 929^3434 splicing and E1^E4 production through interaction with SRSF3, a host oncogenic splicing factor differentially expressed in epithelial cells and keratinocytes. Introduction of point mutations in the SRSF3-binding site or knockdown of SRSF3 expression in cells reduces 929^3434 splicing and E1^E4 production but activates other, minor 929^3465 and 929^3506 splicing. Knockdown of SRSF3 expression also enhances the expression of E2 and L1 mRNAs. An exonic splicing silencer (ESS) in the HPV18 nt 612 to 639 region was identified as being inhibitory to the 233^416 splicing of HPV18 E6E7 pre-mRNAs via binding to hnRNP A1, a well-characterized, abundantly and ubiquitously expressed RNA-binding protein. Introduction of point mutations into the hnRNP A1-binding site or knockdown of hnRNP A1 expression promoted 233^416 splicing and reduced E6 expression. These data provide the first evidence that the alternative RNA splicing of HPV18 pre-mRNAs is subject to regulation by viral RNA cis elements and host trans-acting splicing factors. Expression of HPV18 genes is regulated by alternative RNA splicing of viral polycistronic pre-mRNAs to produce a repertoire of viral early and late transcripts. RNA cis elements and trans-acting factors contributing to HPV18 alternative RNA splicing have been discovered in this study for the first time. The identified ESS at the E7 open reading frame (ORF) prevents HPV18 233^416 splicing in the E6 ORF through interaction with a host splicing factor, hnRNP A1, and regulates E6 and E7 expression of the early E6E7 polycistronic pre-mRNA. The identified ESE at the E1^E4 ORF promotes HPV18 929^3434 splicing of both viral early and late pre-mRNAs and E1^E4 production through interaction with SRSF3. This study provides important observations on how alternative RNA splicing of HPV18 pre-mRNAs is subject to regulation by viral RNA cis elements and host splicing factors and offers potential therapeutic targets to overcome HPV-related cancer. Human papillomavirus 18 (HPV18) is the second most common oncogenic HPV type associated with cervical, anogenital, and oropharyngeal cancers. Like other oncogenic HPVs, HPV18 encodes two major (one early and one late) polycistronic pre-mRNAs that are regulated by alternative RNA splicing to produce a repertoire of viral transcripts for the expression of individual viral genes. However, RNA cis -regulatory elements and trans -acting factors contributing to HPV18 alternative RNA splicing remain unknown. In this study, an exonic splicing enhancer (ESE) in the nucleotide (nt) 3520 to 3550 region in the HPV18 genome was identified and characterized for promotion of HPV18 929^3434 splicing and E1^E4 production through interaction with SRSF3, a host oncogenic splicing factor differentially expressed in epithelial cells and keratinocytes. Introduction of point mutations in the SRSF3-binding site or knockdown of SRSF3 expression in cells reduces 929^3434 splicing and E1^E4 production but activates other, minor 929^3465 and 929^3506 splicing. Knockdown of SRSF3 expression also enhances the expression of E2 and L1 mRNAs. An exonic splicing silencer (ESS) in the HPV18 nt 612 to 639 region was identified as being inhibitory to the 233^416 splicing of HPV18 E6E7 pre-mRNAs via binding to hnRNP A1, a well-characterized, abundantly and ubiquitously expressed RNA-binding protein. Introduction of point mutations into the hnRNP A1-binding site or knockdown of hnRNP A1 expression promoted 233^416 splicing and reduced E6 expression. These data provide the first evidence that the alternative RNA splicing of HPV18 pre-mRNAs is subject to regulation by viral RNA cis elements and host trans -acting splicing factors. IMPORTANCE Expression of HPV18 genes is regulated by alternative RNA splicing of viral polycistronic pre-mRNAs to produce a repertoire of viral early and late transcripts. RNA cis elements and trans -acting factors contributing to HPV18 alternative RNA splicing have been discovered in this study for the first time. The identified ESS at the E7 open reading frame (ORF) prevents HPV18 233^416 splicing in the E6 ORF through interaction with a host splicing factor, hnRNP A1, and regulates E6 and E7 expression of the early E6E7 polycistronic pre-mRNA. The identified ESE at the E1^E4 ORF promotes HPV18 929^3434 splicing of both viral early and late pre-mRNAs and E1^E4 production through interaction with SRSF3. This study provides important observations on how alternative RNA splicing of HPV18 pre-mRNAs is subject to regulation by viral RNA cis elements and host splicing factors and offers potential therapeutic targets to overcome HPV-related cancer. |
Author | Zheng, Zhi-Ming Tang, Shuang Doorbar, John Ajiro, Masahiko |
Author_xml | – sequence: 1 givenname: Masahiko surname: Ajiro fullname: Ajiro, Masahiko organization: Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA – sequence: 2 givenname: Shuang surname: Tang fullname: Tang, Shuang organization: Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA – sequence: 3 givenname: John surname: Doorbar fullname: Doorbar, John organization: Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK – sequence: 4 givenname: Zhi-Ming surname: Zheng fullname: Zheng, Zhi-Ming organization: Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27489271$$D View this record in MEDLINE/PubMed |
BookMark | eNptkktv1DAUhS1URB-wY428ZEFa24nz2CCNykynqCpoWhA7y-PcZIwcO7Wdgf5XfgyePniJla_kc74j3XsO0Z51FhB6Sckxpaw-ef_5_JiQpuQZLZ-gA0qaOuOcFnvogBDGMp7XX_bRYQhfCaFFURbP0D6rirphFT1AP67AawsnM99rm4ZspdUGX41GK217vJAqOo9zLG2LlxDBux4suCngy0kZkB6v9NrZ3exG7yJoi2cUr6CfjIyAZyZ5rIx6C3h1OftN3gHPEgrPv48eQtDOYtfh5TRIiz_KURvjBrnVPkXRGseNd1O_wdffHF5MVsWkl8bc4nc6xMSbdNjItQGsdMBzAwPYGJ6jp500AV48vEfo02J-fbrMLj6cnZ_OLjKV10XMmrYC2nZVxVmlGqoqxoDnwKBcV6xVdSnzlrCu63ieUyoV7_iaAy9UI8uKAs2P0Nt77jitB2hVyvbSiNHrQfpb4aQWf_9YvRG92wpOiqIuWAK8fgB4dzNBiGLQQYEx8m7XgtaMM1ql8yXpqz-zfoU8njQJ2L1AeReCh04oHeVuXylaG0GJ2PVGpN6Iu94IWibTm39Mj9z_yn8CgC_JmQ |
CitedBy_id | crossref_primary_10_1038_s41420_022_01129_8 crossref_primary_10_3389_fonc_2020_577636 crossref_primary_10_3390_biom9020039 crossref_primary_10_3390_v12101110 crossref_primary_10_1128_mbio_00729_24 crossref_primary_10_1128_mbio_03594_21 crossref_primary_10_3892_ol_2021_13139 crossref_primary_10_1016_j_bpobgyn_2017_08_001 crossref_primary_10_1158_1541_7786_MCR_21_0567 crossref_primary_10_1007_s11033_020_05375_w crossref_primary_10_1016_j_gene_2018_09_015 crossref_primary_10_1002_jmv_28761 crossref_primary_10_1007_s11262_022_01889_6 crossref_primary_10_1111_gtc_13121 crossref_primary_10_1016_j_bbamcr_2017_11_005 crossref_primary_10_1016_j_molcel_2020_10_019 crossref_primary_10_1007_s00705_021_05317_2 crossref_primary_10_3389_fphar_2022_986409 crossref_primary_10_3390_ijms18020366 crossref_primary_10_1016_j_semcancer_2022_02_014 crossref_primary_10_3923_tb_2021_1_12 crossref_primary_10_1093_nar_gkac213 crossref_primary_10_1128_JVI_01509_20 crossref_primary_10_1186_s12935_020_01299_4 crossref_primary_10_3390_cancers15235583 crossref_primary_10_3389_fimmu_2024_1446081 crossref_primary_10_1002_jmv_29473 crossref_primary_10_1007_s12250_021_00413_8 crossref_primary_10_1007_s12250_019_00098_0 crossref_primary_10_1186_s12985_023_02098_9 crossref_primary_10_1371_journal_ppat_1010032 crossref_primary_10_1371_journal_ppat_1010311 crossref_primary_10_3389_fcimb_2022_929666 crossref_primary_10_3390_ijms23094943 crossref_primary_10_3389_fviro_2022_1044652 crossref_primary_10_1261_rna_068619_118 crossref_primary_10_3389_fcimb_2024_1443868 crossref_primary_10_3390_v13101892 crossref_primary_10_1016_j_celrep_2022_111704 crossref_primary_10_1128_jvi_00951_24 crossref_primary_10_3390_genes12020130 crossref_primary_10_3390_v10010045 |
Cites_doi | 10.1128/mBio.02068-14 10.1073/pnas.1002620107 10.1101/gad.276477.115 10.1073/pnas.95.24.14088 10.1073/pnas.1401430111 10.1186/gb-2009-10-3-r30 10.1038/sj.emboj.7601385 10.1128/jvi.67.7.4296-4306.1993 10.1128/JVI.80.9.4249-4263.2006 10.1016/j.virusres.2013.06.012 10.1074/jbc.M314298200 10.2741/3307 10.1093/nar/gks319 10.1261/rna.1442309 10.1128/JVI.74.22.10612-10622.2000 10.1016/j.chembiol.2010.11.009 10.1017/S1355838299981967 10.1101/gad.256644.114 10.1128/jvi.71.12.9096-9107.1997 10.1038/onc.2012.288 10.1128/MCB.15.8.4597 10.2741/1971 10.1128/JVI.74.13.5902-5910.2000 10.1128/JVI.00462-10 10.1186/gb-2012-13-3-r17 10.1038/nrmicro2984 10.1021/jm200274d 10.1261/rna.045500.114 10.1128/MCB.19.1.251 10.1128/JVI.79.7.4270-4288.2005 10.1016/j.molcel.2016.01.012 10.1371/journal.ppat.1002127 10.1016/j.cell.2004.11.010 10.1128/AAC.00113-10 10.1093/nar/gkt803 10.1128/JVI.79.18.12002-12015.2005 10.3390/ijms140918999 10.1128/JVI.73.1.29-36.1999 10.1093/emboj/18.14.4060 10.1101/gad.12.13.1998 10.1038/nrg3778 10.1073/pnas.0604616103 10.1016/j.virol.2010.02.023 10.1016/j.virol.2008.12.037 10.1016/j.virol.2007.08.002 10.1371/journal.pone.0046412 10.1016/j.jmb.2004.02.023 10.1128/JVI.01359-10 10.7150/ijbs.6.806 10.1093/nar/gkq444 10.1038/onc.2013.86 10.1007/BF02254432 10.1128/MCB.14.2.1347 10.1128/JVI.77.3.2105-2115.2003 10.1099/vir.0.033183-0 10.1128/JVI.78.20.10888-10905.2004 10.1038/nature10485 10.1101/gr.082503.108 10.1128/JVI.03434-14 10.1038/modpathol.2015.52 10.1016/S1470-2045(12)70137-7 10.1073/pnas.1304855110 10.1016/j.molcel.2006.05.018 10.1002/ijc.27742 10.1016/j.ygeno.2015.01.007 10.1128/JVI.01719-08 10.1038/emi.2014.62 10.1371/journal.pone.0116151 10.2174/157016206775197655 10.1186/s12943-015-0422-1 10.1093/nar/gkv1500 10.1128/jvi.70.7.4691-4699.1996 10.1128/JVI.00670-11 10.1101/gad.7.3.407 10.1016/S0166-0934(99)00172-X 10.1128/JVI.02140-07 10.1124/mol.114.097345 10.1128/JVI.02396-12 10.1017/S1355838200000960 10.1038/onc.2010.426 10.1101/gad.13.5.593 10.1101/gad.1941310 10.1016/S1470-2045(10)70230-8 10.1074/jbc.C115.695049 |
ContentType | Journal Article |
Copyright | Copyright © 2016, American Society for Microbiology. All Rights Reserved. Copyright © 2016, American Society for Microbiology. All Rights Reserved. 2016 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2016, American Society for Microbiology. All Rights Reserved. – notice: Copyright © 2016, American Society for Microbiology. All Rights Reserved. 2016 American Society for Microbiology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1128/JVI.00965-16 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | SRSF3 and hnRNP A1 in HPV18 RNA Splicing |
EISSN | 1098-5514 |
EndPage | 9152 |
ExternalDocumentID | PMC5044842 27489271 10_1128_JVI_00965_16 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: MC_PC_13050 – fundername: NCI NIH HHS grantid: ZIA SC010357 – fundername: HHS | NIH | NIH Office of the Director (OD) grantid: 1ZIASC010357 – fundername: HHS | NIH | Intramural Research Program |
GroupedDBID | --- -~X 0R~ 18M 29L 2WC 39C 4.4 53G 5GY 5RE 5VS 85S AAFWJ AAGFI AAYXX ABPPZ ACGFO ACNCT ADBBV AENEX AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION CS3 DIK E3Z EBS EJD F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 N9A O9- OK1 P2P RHI RNS RPM RSF TR2 UPT W2D W8F WH7 WOQ YQT ~02 ~KM CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c384t-9d7e1df77527c91c722e53e2e6b72dc86a3d02fff53311ac5f5b5e54c9a671e13 |
ISSN | 0022-538X 1098-5514 |
IngestDate | Thu Aug 21 13:39:37 EDT 2025 Sun Aug 24 03:58:17 EDT 2025 Mon Jul 21 06:04:05 EDT 2025 Tue Jul 01 01:02:46 EDT 2025 Thu Apr 24 23:02:53 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
License | Copyright © 2016, American Society for Microbiology. All Rights Reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c384t-9d7e1df77527c91c722e53e2e6b72dc86a3d02fff53311ac5f5b5e54c9a671e13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Citation Ajiro M, Tang S, Doorbar J, Zheng Z-M. 2016. Serine/arginine-rich splicing factor 3 and heterogeneous nuclear ribonucleoprotein A1 regulate alternative RNA splicing and gene expression of human papillomavirus 18 through two functionally distinguishable cis elements. J Virol 90:9138–9152. doi:10.1128/JVI.00965-16. Present address: Masahiko Ajiro, Department of Drug Discovery Medicine, Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Shuang Tang, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA. |
OpenAccessLink | https://jvi.asm.org/content/jvi/90/20/9138.full.pdf |
PMID | 27489271 |
PQID | 1825217144 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5044842 proquest_miscellaneous_1825217144 pubmed_primary_27489271 crossref_citationtrail_10_1128_JVI_00965_16 crossref_primary_10_1128_JVI_00965_16 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-10-15 |
PublicationDateYYYYMMDD | 2016-10-15 |
PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Journal of virology |
PublicationTitleAlternate | J Virol |
PublicationYear | 2016 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_3_50_2 e_1_3_3_71_2 e_1_3_3_77_2 e_1_3_3_79_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_73_2 e_1_3_3_40_2 e_1_3_3_61_2 e_1_3_3_86_2 e_1_3_3_88_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_69_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_67_2 e_1_3_3_80_2 e_1_3_3_44_2 e_1_3_3_65_2 e_1_3_3_82_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_84_2 e_1_3_3_51_2 e_1_3_3_70_2 e_1_3_3_78_2 Carpenter B (e_1_3_3_76_2) 2006; 1765 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_72_2 e_1_3_3_62_2 e_1_3_3_85_2 e_1_3_3_60_2 e_1_3_3_87_2 Patry C (e_1_3_3_74_2) 2003; 63 e_1_3_3_6_2 Ushigome M (e_1_3_3_75_2) 2005; 26 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_68_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_81_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_64_2 e_1_3_3_83_2 |
References_xml | – volume: 1765 start-page: 85 year: 2006 ident: e_1_3_3_76_2 article-title: The roles of heterogeneous nuclear ribonucleoproteins in tumour development and progression publication-title: Biochim Biophys Acta – ident: e_1_3_3_28_2 doi: 10.1128/mBio.02068-14 – ident: e_1_3_3_20_2 doi: 10.1073/pnas.1002620107 – ident: e_1_3_3_70_2 doi: 10.1101/gad.276477.115 – ident: e_1_3_3_7_2 doi: 10.1073/pnas.95.24.14088 – ident: e_1_3_3_30_2 doi: 10.1073/pnas.1401430111 – ident: e_1_3_3_37_2 doi: 10.1186/gb-2009-10-3-r30 – ident: e_1_3_3_46_2 doi: 10.1038/sj.emboj.7601385 – ident: e_1_3_3_88_2 doi: 10.1128/jvi.67.7.4296-4306.1993 – ident: e_1_3_3_47_2 doi: 10.1128/JVI.80.9.4249-4263.2006 – ident: e_1_3_3_60_2 doi: 10.1016/j.virusres.2013.06.012 – ident: e_1_3_3_78_2 doi: 10.1074/jbc.M314298200 – ident: e_1_3_3_48_2 doi: 10.2741/3307 – ident: e_1_3_3_63_2 doi: 10.1093/nar/gks319 – ident: e_1_3_3_31_2 doi: 10.1261/rna.1442309 – volume: 63 start-page: 7679 year: 2003 ident: e_1_3_3_74_2 article-title: Small interfering RNA-mediated reduction in heterogeneous nuclear ribonucleoparticle A1/A2 proteins induces apoptosis in human cancer cells but not in normal mortal cell lines publication-title: Cancer Res – ident: e_1_3_3_10_2 doi: 10.1128/JVI.74.22.10612-10622.2000 – ident: e_1_3_3_80_2 doi: 10.1016/j.chembiol.2010.11.009 – ident: e_1_3_3_45_2 doi: 10.1017/S1355838299981967 – ident: e_1_3_3_84_2 doi: 10.1101/gad.256644.114 – ident: e_1_3_3_6_2 doi: 10.1128/jvi.71.12.9096-9107.1997 – ident: e_1_3_3_68_2 doi: 10.1038/onc.2012.288 – ident: e_1_3_3_50_2 doi: 10.1128/MCB.15.8.4597 – ident: e_1_3_3_4_2 doi: 10.2741/1971 – ident: e_1_3_3_9_2 doi: 10.1128/JVI.74.13.5902-5910.2000 – ident: e_1_3_3_17_2 doi: 10.1128/JVI.00462-10 – ident: e_1_3_3_40_2 doi: 10.1186/gb-2012-13-3-r17 – ident: e_1_3_3_49_2 doi: 10.1038/nrmicro2984 – ident: e_1_3_3_79_2 doi: 10.1021/jm200274d – volume: 26 start-page: 635 year: 2005 ident: e_1_3_3_75_2 article-title: Up-regulation of hnRNP A1 gene in sporadic human colorectal cancers publication-title: Int J Oncol – ident: e_1_3_3_66_2 doi: 10.1261/rna.045500.114 – ident: e_1_3_3_56_2 doi: 10.1128/MCB.19.1.251 – ident: e_1_3_3_14_2 doi: 10.1128/JVI.79.7.4270-4288.2005 – ident: e_1_3_3_71_2 doi: 10.1016/j.molcel.2016.01.012 – ident: e_1_3_3_62_2 doi: 10.1371/journal.ppat.1002127 – ident: e_1_3_3_51_2 doi: 10.1016/j.cell.2004.11.010 – ident: e_1_3_3_83_2 doi: 10.1128/AAC.00113-10 – ident: e_1_3_3_22_2 doi: 10.1093/nar/gkt803 – ident: e_1_3_3_15_2 doi: 10.1128/JVI.79.18.12002-12015.2005 – ident: e_1_3_3_57_2 doi: 10.3390/ijms140918999 – ident: e_1_3_3_8_2 doi: 10.1128/JVI.73.1.29-36.1999 – ident: e_1_3_3_55_2 doi: 10.1093/emboj/18.14.4060 – ident: e_1_3_3_44_2 doi: 10.1101/gad.12.13.1998 – ident: e_1_3_3_53_2 doi: 10.1038/nrg3778 – ident: e_1_3_3_82_2 doi: 10.1073/pnas.0604616103 – ident: e_1_3_3_65_2 doi: 10.1016/j.virol.2010.02.023 – ident: e_1_3_3_19_2 doi: 10.1016/j.virol.2008.12.037 – ident: e_1_3_3_23_2 doi: 10.1016/j.virol.2007.08.002 – ident: e_1_3_3_21_2 doi: 10.1371/journal.pone.0046412 – ident: e_1_3_3_34_2 doi: 10.1016/j.jmb.2004.02.023 – ident: e_1_3_3_64_2 doi: 10.1128/JVI.01359-10 – ident: e_1_3_3_67_2 doi: 10.7150/ijbs.6.806 – ident: e_1_3_3_36_2 doi: 10.1093/nar/gkq444 – ident: e_1_3_3_73_2 doi: 10.1038/onc.2013.86 – ident: e_1_3_3_38_2 doi: 10.1007/BF02254432 – ident: e_1_3_3_42_2 doi: 10.1128/MCB.14.2.1347 – ident: e_1_3_3_11_2 doi: 10.1128/JVI.77.3.2105-2115.2003 – ident: e_1_3_3_18_2 doi: 10.1099/vir.0.033183-0 – ident: e_1_3_3_13_2 doi: 10.1128/JVI.78.20.10888-10905.2004 – ident: e_1_3_3_85_2 doi: 10.1038/nature10485 – ident: e_1_3_3_41_2 doi: 10.1101/gr.082503.108 – ident: e_1_3_3_54_2 doi: 10.1128/JVI.03434-14 – ident: e_1_3_3_32_2 doi: 10.1038/modpathol.2015.52 – ident: e_1_3_3_2_2 doi: 10.1016/S1470-2045(12)70137-7 – ident: e_1_3_3_27_2 doi: 10.1073/pnas.1304855110 – ident: e_1_3_3_52_2 doi: 10.1016/j.molcel.2006.05.018 – ident: e_1_3_3_77_2 doi: 10.1002/ijc.27742 – ident: e_1_3_3_87_2 doi: 10.1016/j.ygeno.2015.01.007 – ident: e_1_3_3_12_2 doi: 10.1128/JVI.01719-08 – ident: e_1_3_3_3_2 doi: 10.1038/emi.2014.62 – ident: e_1_3_3_26_2 doi: 10.1371/journal.pone.0116151 – ident: e_1_3_3_59_2 doi: 10.2174/157016206775197655 – ident: e_1_3_3_72_2 doi: 10.1186/s12943-015-0422-1 – ident: e_1_3_3_35_2 doi: 10.1093/nar/gkv1500 – ident: e_1_3_3_5_2 doi: 10.1128/jvi.70.7.4691-4699.1996 – ident: e_1_3_3_25_2 doi: 10.1128/JVI.00670-11 – ident: e_1_3_3_39_2 doi: 10.1101/gad.7.3.407 – ident: e_1_3_3_33_2 doi: 10.1016/S0166-0934(99)00172-X – ident: e_1_3_3_16_2 doi: 10.1128/JVI.02140-07 – ident: e_1_3_3_81_2 doi: 10.1124/mol.114.097345 – ident: e_1_3_3_61_2 doi: 10.1128/JVI.02396-12 – ident: e_1_3_3_43_2 doi: 10.1017/S1355838200000960 – ident: e_1_3_3_69_2 doi: 10.1038/onc.2010.426 – ident: e_1_3_3_58_2 doi: 10.1101/gad.13.5.593 – ident: e_1_3_3_86_2 doi: 10.1101/gad.1941310 – ident: e_1_3_3_24_2 doi: 10.1016/S1470-2045(10)70230-8 – ident: e_1_3_3_29_2 doi: 10.1074/jbc.C115.695049 |
SSID | ssj0014464 |
Score | 2.4124975 |
Snippet | Human papillomavirus 18 (HPV18) is the second most common oncogenic HPV type associated with cervical, anogenital, and oropharyngeal cancers. Like other... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 9138 |
SubjectTerms | Alternative Splicing Binding Sites Gene Expression Regulation, Viral Gene Knockdown Techniques Genome and Regulation of Viral Gene Expression Heterogeneous Nuclear Ribonucleoprotein A1 Heterogeneous-Nuclear Ribonucleoprotein Group A-B - metabolism Host-Pathogen Interactions Human papillomavirus 18 - genetics Human papillomavirus 18 - physiology Humans Point Mutation RNA Precursors - genetics RNA Precursors - metabolism RNA, Viral - genetics RNA, Viral - metabolism Serine-Arginine Splicing Factors - metabolism |
Title | Serine/Arginine-Rich Splicing Factor 3 and Heterogeneous Nuclear Ribonucleoprotein A1 Regulate Alternative RNA Splicing and Gene Expression of Human Papillomavirus 18 through Two Functionally Distinguishable cis Elements |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27489271 https://www.proquest.com/docview/1825217144 https://pubmed.ncbi.nlm.nih.gov/PMC5044842 |
Volume | 90 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF61QUi8IG7CpUWCJ8ttdu318RhBo7SoFWpTFPXFWq_XjSHEVY6i8lv5Mcx4bcc5KhVeLCtZj-PM553ZnZlvCPmgmXJU4ClbicSzXaG4Ld2E2dJRcRgL7cdJkSB74vXP3aOhGO7sthpZS4t5vKd-b60r-R-twmegV6yS_QfN1kLhAzgH_cIRNAzHO-n4rKjdQ0qE6SU2etA21slbZxiTxi2AXtFMx3KKCEEfE19ykKUx6_UEeYzl1DrN4nyC53nB2IC7Hwz-86JBvba643K_8FpbpyfdpWQUiIzVSJVsMmkny5DAV3mVjcf5T3mdTeFWLKi7AQ1-5VYPLKnZgBzfIPkn5l0vsAc01nCpbGYdmIz22S1-MxbmNUMB3e-ZqdU5ljM5yn7ky82Icit8tJClfUaPPc8xwrKehnwx0mb0xSizjyt7Xm6HMA_tiCkIbZQnwCw-NAbOzOpImoquYXPaN11KS3jzTmMSD5khnCkdgpAZjt1NY8OxgOLo2-EeLgSFzbZweq_Z2joDslh78SCCq6Pi6oh5u-Qeh8UO9uH4fPiljoXBgt2tOO_xwaryDR7sN--96lhtrJbWk34bXtTgEXlYqpF2DZYfkx09eULum4aoN0_JH4Po_RU80wp11OCZOhTgR1fwTEs80w080y6jFZ5pA88U8LyUjAIRz3SJZ5qntMAzXcUzZQEt8UwBz7SJZ7qGZwp4phWen5Hz3sHgU98u-4_YygncuR0mvmZJ6vuC-ypkClSjhaO59mKfJzDDSSfp8DRNYcnEmFQiFTC7CVeF0vOZZs5z0prkE_2S0LjjulqETpwy7QayE6dJ4gYq9sJQ8NR32sSqlBepkpwfe8SMo21AaZOP9egrQ0pzy7j3FQ4isBoYCpSFUiIWcPDbfcBWm7wwuKglcSSk4j5rE38FMfUAZKRf_WaSjQpmegGPGbj81R1_32vyYPkKvyGt-XSh34KPP4_fFa_AX4xDBs0 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Serine%2FArginine-Rich+Splicing+Factor+3+and+Heterogeneous+Nuclear+Ribonucleoprotein+A1+Regulate+Alternative+RNA+Splicing+and+Gene+Expression+of+Human+Papillomavirus+18+through+Two+Functionally+Distinguishable+cis+Elements&rft.jtitle=Journal+of+virology&rft.au=Ajiro%2C+Masahiko&rft.au=Tang%2C+Shuang&rft.au=Doorbar%2C+John&rft.au=Zheng%2C+Zhi-Ming&rft.date=2016-10-15&rft.issn=0022-538X&rft.eissn=1098-5514&rft.volume=90&rft.issue=20&rft.spage=9138&rft.epage=9152&rft_id=info:doi/10.1128%2FJVI.00965-16&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_JVI_00965_16 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon |