Wind deflection analysis of railway catenary under crosswind based on nonlinear finite element model and wind tunnel test

This paper evaluates the railway catenary's wind deflection under crosswind based on wind tunnel experiments and a nonlinear finite element model. A catenary model is constructed based on the absolute nodal coordinate formulation to describe the geometrical nonlinearity of the system. The aerod...

Full description

Saved in:
Bibliographic Details
Published inMechanism and machine theory Vol. 168; p. 104608
Main Authors Song, Yang, Zhang, Mingjie, Øiseth, Ole, Rønnquist, Anders
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2022
Subjects
Online AccessGet full text
ISSN0094-114X
1873-3999
DOI10.1016/j.mechmachtheory.2021.104608

Cover

Loading…
Abstract This paper evaluates the railway catenary's wind deflection under crosswind based on wind tunnel experiments and a nonlinear finite element model. A catenary model is constructed based on the absolute nodal coordinate formulation to describe the geometrical nonlinearity of the system. The aerodynamic forces acting on the catenary are derived according to the quasi-steady theory, and the aerodynamic coefficients are obtained by wind tunnel experiments. A procedure to generate the three-dimensional fluctuating wind field along the catenary is presented. The extreme value of the wind deflection is estimated based on a Poisson approximation of the extreme value distribution. The numerical accuracy is validated by wind tunnel experimental results of an aeroelastic catenary. The response, statistics, frequency characteristics and extreme value of the contact wire's wind deflection are investigated through numerical simulations. The analysis results indicate that the maximum wind deflection will exceed the safety limit for the analysed catenary with a turbulence intensity of more than 15%. The adjustment of some critical parameters of the catenary system can reduce the maximum wind deflection.
AbstractList This paper evaluates the railway catenary's wind deflection under crosswind based on wind tunnel experiments and a nonlinear finite element model. A catenary model is constructed based on the absolute nodal coordinate formulation to describe the geometrical nonlinearity of the system. The aerodynamic forces acting on the catenary are derived according to the quasi-steady theory, and the aerodynamic coefficients are obtained by wind tunnel experiments. A procedure to generate the three-dimensional fluctuating wind field along the catenary is presented. The extreme value of the wind deflection is estimated based on a Poisson approximation of the extreme value distribution. The numerical accuracy is validated by wind tunnel experimental results of an aeroelastic catenary. The response, statistics, frequency characteristics and extreme value of the contact wire's wind deflection are investigated through numerical simulations. The analysis results indicate that the maximum wind deflection will exceed the safety limit for the analysed catenary with a turbulence intensity of more than 15%. The adjustment of some critical parameters of the catenary system can reduce the maximum wind deflection.
ArticleNumber 104608
Author Rønnquist, Anders
Zhang, Mingjie
Song, Yang
Øiseth, Ole
Author_xml – sequence: 1
  givenname: Yang
  surname: Song
  fullname: Song, Yang
  organization: Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway
– sequence: 2
  givenname: Mingjie
  surname: Zhang
  fullname: Zhang, Mingjie
  email: mingjie.zhang@ntnu.no
  organization: Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway
– sequence: 3
  givenname: Ole
  surname: Øiseth
  fullname: Øiseth, Ole
  organization: Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway
– sequence: 4
  givenname: Anders
  surname: Rønnquist
  fullname: Rønnquist, Anders
  organization: Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway
BookMark eNqNkMFqGzEQhkVxoY6bd9Ah13Wl1a68glxak6SFQC4pzU2MpRGW2dUGSY7Zt682zqU9-TQMw_cz_3dFFmEMSMgNZ2vOuPx2WA9o9gOYfd7jGKd1zWpeTo1k3Sey5N1GVEIptSBLxlRTcd68fCFXKR0YY5u2EUsy_fHBUouuR5P9GCgE6KfkEx0djeD7E0zUQMYAcaLHYDFSE8eUTjO3g4SWFqo81vuAEKnzwWek2OOAIdNhtNiXUEvfgXwMoewZU_5KPjvoE15_zBX5fX_3vP1ZPT49_Np-f6yM6JpcKWV2dW2gFS1sZLeTjjfQypY5IcDVIK2CWhrgvDMcpWOdlJJzpRrXCl4LsSI_zrnvb0d02vgMc9c899Oc6VmmPuh_ZepZpj7LLCG3_4W8Rj8UJZfi92ccS9E3j1En4zEYtD4W79qO_rKgv27Ln50
CitedBy_id crossref_primary_10_1016_j_engstruct_2024_118582
crossref_primary_10_3390_s23041773
crossref_primary_10_1080_00423114_2024_2305295
crossref_primary_10_3390_en17215343
crossref_primary_10_3390_sym14040725
crossref_primary_10_3390_app12020756
crossref_primary_10_1109_TVT_2024_3404629
crossref_primary_10_3390_su142113698
crossref_primary_10_1016_j_jfluidstructs_2022_103545
crossref_primary_10_1080_00423114_2023_2199456
crossref_primary_10_3390_app12063086
crossref_primary_10_3390_en16031205
crossref_primary_10_1080_00423114_2023_2199455
crossref_primary_10_3390_s24030976
crossref_primary_10_3390_en15196875
crossref_primary_10_3390_buildings14030656
crossref_primary_10_3390_app12083729
crossref_primary_10_3390_app14156822
crossref_primary_10_3390_s23156797
crossref_primary_10_3390_su15010397
crossref_primary_10_1007_s40996_022_00914_w
crossref_primary_10_1049_els2_12043
crossref_primary_10_1080_00423114_2022_2112607
crossref_primary_10_1109_TTE_2023_3345955
crossref_primary_10_3390_en16031294
crossref_primary_10_1109_TIM_2024_3522408
crossref_primary_10_1109_TTE_2023_3346379
crossref_primary_10_3390_app13010232
crossref_primary_10_3390_app131810418
crossref_primary_10_3390_math12233780
crossref_primary_10_3390_buildings12122182
crossref_primary_10_1016_j_engstruct_2024_118557
crossref_primary_10_3390_su14052542
crossref_primary_10_3390_app12199950
crossref_primary_10_3390_atmos14121787
crossref_primary_10_1080_00423114_2023_2289662
crossref_primary_10_1080_00423114_2023_2289663
crossref_primary_10_3390_app12031488
crossref_primary_10_1016_j_measurement_2023_113470
crossref_primary_10_1016_j_conengprac_2023_105692
crossref_primary_10_3390_infrastructures6120174
crossref_primary_10_3390_su14031058
crossref_primary_10_3390_app142210160
crossref_primary_10_1080_23248378_2022_2129492
crossref_primary_10_3390_su141912900
crossref_primary_10_1016_j_mechmachtheory_2023_105470
crossref_primary_10_3390_app12063101
crossref_primary_10_3390_s23010219
crossref_primary_10_3390_en15249548
crossref_primary_10_30932_1992_3252_2022_20_6_4
crossref_primary_10_3390_app14198801
crossref_primary_10_3390_en16052234
crossref_primary_10_3390_app14209252
crossref_primary_10_3390_ma16010232
crossref_primary_10_1049_cth2_12599
crossref_primary_10_1109_TIM_2021_3135340
crossref_primary_10_1109_TIM_2021_3139661
crossref_primary_10_1109_TIM_2022_3144747
crossref_primary_10_1109_TVT_2021_3136920
crossref_primary_10_3390_ma16051839
crossref_primary_10_3390_su15086803
crossref_primary_10_1109_TVT_2023_3243024
crossref_primary_10_3390_app12199579
crossref_primary_10_3390_en15196942
crossref_primary_10_3390_app12031306
crossref_primary_10_3390_su15065297
crossref_primary_10_3390_su141811684
crossref_primary_10_1016_j_jsv_2022_117506
crossref_primary_10_3390_en15176120
crossref_primary_10_1080_00423114_2023_2200192
crossref_primary_10_3390_en16041810
crossref_primary_10_1016_j_mechmachtheory_2024_105769
crossref_primary_10_1109_TNNLS_2022_3219814
Cites_doi 10.1016/j.mechmachtheory.2020.103825
10.1016/j.mechmachtheory.2020.103968
10.1016/j.jfluidstructs.2005.11.003
10.1080/23248378.2018.1532330
10.1016/j.jweia.2018.11.008
10.1177/0954409718769751
10.1016/S0266-8920(00)00010-2
10.1109/TVT.2020.2985382
10.1016/j.mechmachtheory.2020.104167
10.1016/j.compstruc.2013.01.015
10.1016/S0022-460X(78)80029-7
10.1016/j.mechmachtheory.2019.03.032
10.1080/00423114.2014.922199
10.1016/j.mechmachtheory.2021.104338
10.1016/S0167-6105(96)00059-1
10.1080/00423114.2020.1802493
10.1007/s13296-012-2002-1
10.1016/S0022-460X(78)80028-5
10.1093/qjmam/17.2.225
10.1115/1.4035132
10.1016/j.ymssp.2020.107336
10.1023/A:1009963131610
10.1177/0954409718808990
10.1016/S0889-9746(02)00099-3
10.1016/j.mechmachtheory.2020.103940
10.1080/00423114.2016.1156134
10.1007/s11465-018-0494-x
10.1016/0167-4730(96)00002-1
10.1243/0954409001531298
10.1016/0045-7949(94)00630-L
10.1016/j.mechmachtheory.2020.104215
10.1061/JMCEA3.0001575
10.1016/j.engstruct.2016.01.031
10.1115/1.4037521
10.1109/TVT.2020.3015044
10.1007/s10687-019-00350-6
10.1080/00423110802613402
10.1007/s10546-009-9413-3
10.1016/j.jweia.2020.104170
10.1016/j.engstruct.2013.10.029
10.1007/s40534-020-00205-y
10.1080/23248378.2017.1400156
10.1109/TVT.2021.3054459
ContentType Journal Article
Copyright 2021 The Author(s)
Copyright_xml – notice: 2021 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.mechmachtheory.2021.104608
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3999
ExternalDocumentID 10_1016_j_mechmachtheory_2021_104608
S0094114X21003426
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
T9H
TN5
TWZ
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c384t-99cb22ca535a768b6f14a5650f33af2a6d9a26ca118c1e6f0866611994f531233
IEDL.DBID .~1
ISSN 0094-114X
IngestDate Tue Jul 01 01:48:37 EDT 2025
Thu Apr 24 22:54:18 EDT 2025
Fri Feb 23 02:41:41 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Catenary
Crosswind
Electrified railway
Contact wire
Wind deflection
Finite element
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c384t-99cb22ca535a768b6f14a5650f33af2a6d9a26ca118c1e6f0866611994f531233
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0094114X21003426
ParticipantIDs crossref_citationtrail_10_1016_j_mechmachtheory_2021_104608
crossref_primary_10_1016_j_mechmachtheory_2021_104608
elsevier_sciencedirect_doi_10_1016_j_mechmachtheory_2021_104608
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationTitle Mechanism and machine theory
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chen, Jiang, Ding (bib0012) 2020
Marques, Magalhães, Pombo (bib0014) 2020; 149
Schlichting, Gersten (bib0044) 2016
Wu (bib0034) 2017
Novak (bib0054) 2019; 22
Nåvik, Rønnquist, Stichel (bib0037) 2016; 113
Coles, Heffernan, Tawn (bib0053) 1999; 2
Lu, Wang, Yue (bib0009) 2021; 157
Parkinson, Smith (bib0039) 1964; 17
Song, Liu, Duan (bib0032) 2018; 140
Xu, Ding (bib0047) 2006; 22
Pombo, Ambrosio, Pereira (bib0029) 2009; 47
Song, Rønnquist, Nåvik (bib0028) 2020; 69
Zhang, Xu, Øiseth (bib0005) 2020
Wang, Mei, Xiong (bib0011) 2019; 137
Song, Wang, Liu (bib0019) 2021; 151
Xie, Zhi (bib0033) 2019; 184
Davenport (bib0052) 1964
(bib0048) 2018
.
Song, Liu, Wang (bib0008) 2018; 232
Kim, Hu, Thompson (bib0015) 2020; 28
Kulkarni, Pappalardo, Shabana (bib0027) 2017; 139
Zdziebko, Martowicz, Uhl (bib0018) 2019; 233
Scanion, Stickland, Oldroyd (bib0040) 2000; 214
Novak (bib0038) 1972; 98
Zhang, Zou, Tan (bib0016) 2018; 13
Song, Liu, Ronnquist (bib0024) 2020; 69
Elvebakken (bib0042) 2018
Urda, Aceituno, Muñoz (bib0010) 2020; 153
Solari, Piccardo (bib0049) 2001; 16
Desai, Yu, Popplewell (bib0007) 1995; 57
(bib0055) 2016
Pombo, Ambrosio (bib0030) 2013; 124
(bib0035) 2015
Zhao, Guo, Hong (bib0051) 2021; 156
Cheynet E. Wind field simulation (text-based input) [Internet]. 2020. Available from
Chen, Mannini, Bartoli (bib0004) 2020; 203
Morfiadakis, Glinou, Koulouvari (bib0046) 1996; 62
Zhang, Xu, Han (bib0002) 2020
Vesali, Rezvani, Molatefi (bib0022) 2019; 233
Liu, Liu, Li (bib0013) 2021
Scanlan (bib0003) 1978; 60
Song, Antunes, Pombo (bib0023) 2020; 152
Bruni, Bucca, Carnevale (bib0001) 2018; 6
Song, Rønnquist, Jiang (bib0021) 2021; 162
Song, Liu, Wang (bib0031) 2016; 54
Gu, Li, Li (bib0050) 2014; 59
Kiessling, Puschmann, Schmieder (bib0043) 2018
Song, Zhang, Wang (bib0056) 2021; 70
Van, Massat, Laurent (bib0017) 2014; 52
Song, Liu, Xu (bib0026) 2019; 7
Scanlan (bib0006) 1978; 60
Kim, Kim (bib0036) 2012; 12
Martins, Moraes, Acevedo (bib0058) 2009; 133
Gil, Gregori, Tur (bib0020) 2020
Xu, Song, Liu (bib0025) 2020; 69
Norberg (bib0041) 2003; 17
Michaelov, Sarkani, Lutes (bib0057) 1996; 18
Zhang (10.1016/j.mechmachtheory.2021.104608_bib0005) 2020
Song (10.1016/j.mechmachtheory.2021.104608_bib0024) 2020; 69
Urda (10.1016/j.mechmachtheory.2021.104608_bib0010) 2020; 153
Song (10.1016/j.mechmachtheory.2021.104608_bib0028) 2020; 69
Chen (10.1016/j.mechmachtheory.2021.104608_bib0012) 2020
Scanion (10.1016/j.mechmachtheory.2021.104608_bib0040) 2000; 214
Song (10.1016/j.mechmachtheory.2021.104608_bib0019) 2021; 151
Van (10.1016/j.mechmachtheory.2021.104608_bib0017) 2014; 52
Kiessling (10.1016/j.mechmachtheory.2021.104608_bib0043) 2018
Wang (10.1016/j.mechmachtheory.2021.104608_bib0011) 2019; 137
Martins (10.1016/j.mechmachtheory.2021.104608_bib0058) 2009; 133
Zhang (10.1016/j.mechmachtheory.2021.104608_bib0002) 2020
Bruni (10.1016/j.mechmachtheory.2021.104608_bib0001) 2018; 6
Marques (10.1016/j.mechmachtheory.2021.104608_bib0014) 2020; 149
Kim (10.1016/j.mechmachtheory.2021.104608_bib0015) 2020; 28
Kulkarni (10.1016/j.mechmachtheory.2021.104608_bib0027) 2017; 139
Pombo (10.1016/j.mechmachtheory.2021.104608_bib0030) 2013; 124
Wu (10.1016/j.mechmachtheory.2021.104608_bib0034) 2017
10.1016/j.mechmachtheory.2021.104608_bib0045
Song (10.1016/j.mechmachtheory.2021.104608_bib0023) 2020; 152
Zhang (10.1016/j.mechmachtheory.2021.104608_bib0016) 2018; 13
Kim (10.1016/j.mechmachtheory.2021.104608_bib0036) 2012; 12
(10.1016/j.mechmachtheory.2021.104608_bib0035) 2015
(10.1016/j.mechmachtheory.2021.104608_bib0055) 2016
Scanlan (10.1016/j.mechmachtheory.2021.104608_bib0006) 1978; 60
Nåvik (10.1016/j.mechmachtheory.2021.104608_bib0037) 2016; 113
Elvebakken (10.1016/j.mechmachtheory.2021.104608_bib0042) 2018
Song (10.1016/j.mechmachtheory.2021.104608_bib0031) 2016; 54
Michaelov (10.1016/j.mechmachtheory.2021.104608_bib0057) 1996; 18
Morfiadakis (10.1016/j.mechmachtheory.2021.104608_bib0046) 1996; 62
Scanlan (10.1016/j.mechmachtheory.2021.104608_bib0003) 1978; 60
Parkinson (10.1016/j.mechmachtheory.2021.104608_bib0039) 1964; 17
Song (10.1016/j.mechmachtheory.2021.104608_bib0056) 2021; 70
Zhao (10.1016/j.mechmachtheory.2021.104608_bib0051) 2021; 156
Schlichting (10.1016/j.mechmachtheory.2021.104608_bib0044) 2016
Pombo (10.1016/j.mechmachtheory.2021.104608_bib0029) 2009; 47
Xie (10.1016/j.mechmachtheory.2021.104608_bib0033) 2019; 184
Liu (10.1016/j.mechmachtheory.2021.104608_bib0013) 2021
Song (10.1016/j.mechmachtheory.2021.104608_bib0026) 2019; 7
Gu (10.1016/j.mechmachtheory.2021.104608_bib0050) 2014; 59
Gil (10.1016/j.mechmachtheory.2021.104608_bib0020) 2020
Davenport (10.1016/j.mechmachtheory.2021.104608_bib0052) 1964
Xu (10.1016/j.mechmachtheory.2021.104608_bib0025) 2020; 69
Song (10.1016/j.mechmachtheory.2021.104608_bib0021) 2021; 162
Coles (10.1016/j.mechmachtheory.2021.104608_bib0053) 1999; 2
Desai (10.1016/j.mechmachtheory.2021.104608_bib0007) 1995; 57
Vesali (10.1016/j.mechmachtheory.2021.104608_bib0022) 2019; 233
(10.1016/j.mechmachtheory.2021.104608_bib0048) 2018
Solari (10.1016/j.mechmachtheory.2021.104608_bib0049) 2001; 16
Chen (10.1016/j.mechmachtheory.2021.104608_bib0004) 2020; 203
Xu (10.1016/j.mechmachtheory.2021.104608_bib0047) 2006; 22
Lu (10.1016/j.mechmachtheory.2021.104608_bib0009) 2021; 157
Song (10.1016/j.mechmachtheory.2021.104608_bib0032) 2018; 140
Zdziebko (10.1016/j.mechmachtheory.2021.104608_bib0018) 2019; 233
Norberg (10.1016/j.mechmachtheory.2021.104608_bib0041) 2003; 17
Novak (10.1016/j.mechmachtheory.2021.104608_bib0038) 1972; 98
Song (10.1016/j.mechmachtheory.2021.104608_bib0008) 2018; 232
Novak (10.1016/j.mechmachtheory.2021.104608_bib0054) 2019; 22
References_xml – year: 2017
  ident: bib0034
  article-title: Pantograph and contact line system
  publication-title: Pantogr. Contact Line Syst
– year: 2015
  ident: bib0035
  article-title: European Committee for Electrotechnical Standardization. EN 50119. Railway applications — Fixed installations — Electric traction Overhead Contact Lines
– volume: 52
  start-page: 1254
  year: 2014
  end-page: 1269
  ident: bib0017
  article-title: Introduction of variability into pantograph-catenary dynamic simulations
  publication-title: Veh. Syst. Dyn.
– volume: 162
  year: 2021
  ident: bib0021
  article-title: Identification of short-wavelength contact wire irregularities in electrified railway pantograph–catenary system
  publication-title: Mech. Mach. Theory
– volume: 232
  start-page: 2339
  year: 2018
  end-page: 2352
  ident: bib0008
  article-title: Analysis of the galloping behaviour of an electrified railway overhead contact line using the non-linear finite element method
  publication-title: Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit
– volume: 18
  start-page: 11
  year: 1996
  end-page: 31
  ident: bib0057
  article-title: Fractile levels for non-stationary extreme response of linear structures
  publication-title: Struct. Saf.
– volume: 6
  start-page: 57
  year: 2018
  end-page: 82
  ident: bib0001
  article-title: Pantograph–catenary interaction: recent achievements and future research challenges
  publication-title: Int. J. Rail Transp.
– volume: 98
  start-page: 27
  year: 1972
  end-page: 46
  ident: bib0038
  article-title: Galloping oscillations of prismatic structures
  publication-title: ASCE J. Eng. Mech. Div.
– start-page: 203
  year: 2020
  ident: bib0002
  article-title: Assessment of wind-induced nonlinear post-critical performance of bridge decks
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 54
  start-page: 723
  year: 2016
  end-page: 747
  ident: bib0031
  article-title: Nonlinear analysis of wind-induced vibration of high-speed railway catenary and its influence on pantograph–catenary interaction
  publication-title: Veh. Syst. Dyn.
– volume: 57
  start-page: 407
  year: 1995
  end-page: 420
  ident: bib0007
  article-title: Finite element modelling of transmission line galloping
  publication-title: Comput. Struct.
– volume: 113
  start-page: 71
  year: 2016
  end-page: 78
  ident: bib0037
  article-title: Identification of system damping in railway catenary wire systems from full-scale measurements
  publication-title: Eng. Struct.
– volume: 69
  start-page: 6299
  year: 2020
  end-page: 6309
  ident: bib0025
  article-title: Effective measures to improve current collection quality for double pantographs and catenary based on wave propagation analysis
  publication-title: IEEE Trans. Veh. Technol.
– start-page: 70
  year: 2021
  ident: bib0013
  article-title: An automatic loose defect detection method for catenary bracing wire components using deep convolutional neural networks and image processing
  publication-title: IEEE Trans. Instrum. Meas.
– start-page: 1
  year: 2020
  end-page: 24
  ident: bib0020
  article-title: Analytical model of the pantograph–catenary dynamic interaction and comparison with numerical simulations
  publication-title: Veh. Syst. Dyn.
– year: 2018
  ident: bib0042
  article-title: Estimation of Aerodynamic Forces On a Railway Contact Wire and Their Effect On Galloping Instability-Wind Tunnel Testing of an AC-120 Contact Wire
– volume: 70
  start-page: 1169
  year: 2021
  end-page: 1178
  ident: bib0056
  article-title: A response spectrum analysis of wind deflection in railway overhead contact lines using pseudo-excitation method
  publication-title: IEEE Trans. Veh. Technol.
– volume: 233
  start-page: 370
  year: 2019
  end-page: 383
  ident: bib0018
  article-title: An investigation on the active control strategy for a high-speed pantograph using co-simulations
  publication-title: Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng.
– start-page: 205
  year: 2020
  ident: bib0005
  article-title: Aerodynamic damping models for vortex-induced vibration of a rectangular 4:1 cylinder: comparison of modeling schemes
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 17
  start-page: 225
  year: 1964
  end-page: 239
  ident: bib0039
  article-title: The square prism as an aeroelastic non-linear oscillator
  publication-title: Q. J. Mech. Appl. Math.
– volume: 133
  start-page: 35
  year: 2009
  end-page: 45
  ident: bib0058
  article-title: Turbulence intensity parameters over a very complex terrain
  publication-title: Boundary-Layer Meteorol.
– volume: 149
  year: 2020
  ident: bib0014
  article-title: A three-dimensional approach for contact detection between realistic wheel and rail surfaces for improved railway dynamic analysis
  publication-title: Mech. Mach. Theory
– volume: 156
  year: 2021
  ident: bib0051
  article-title: An enhanced moment-based approach to time-dependent positional reliability analysis for robotic manipulators
  publication-title: Mech. Mach. Theory
– volume: 139
  year: 2017
  ident: bib0027
  article-title: Pantograph/Catenary contact formulations
  publication-title: J. Vib. Acoust. Trans. ASME
– volume: 184
  start-page: 23
  year: 2019
  end-page: 33
  ident: bib0033
  article-title: Wind tunnel test of an aeroelastic model of a catenary system for a high-speed railway in China
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 22
  start-page: 729
  year: 2019
  end-page: 748
  ident: bib0054
  article-title: On the accuracy of Poisson approximation
  publication-title: Extremes (Boston)
– volume: 157
  year: 2021
  ident: bib0009
  article-title: Coupling model and vibration simulations of railway vehicles and running gear bearings with multitype defects
  publication-title: Mech. Mach. Theory
– year: 2018
  ident: bib0043
  article-title: Contact Lines For Electric Railways
– volume: 60
  start-page: 187
  year: 1978
  end-page: 199
  ident: bib0006
  article-title: The action of flexible bridges under wind, I: flutter theory
  publication-title: J. Sound Vib.
– volume: 28
  start-page: 54
  year: 2020
  end-page: 74
  ident: bib0015
  article-title: Effect of cavity flow control on high-speed train pantograph and roof aerodynamic noise
  publication-title: Railw. Eng. Sci.
– volume: 152
  year: 2020
  ident: bib0023
  article-title: A methodology to study high-speed pantograph-catenary interaction with realistic contact wire irregularities
  publication-title: Mech. Mach. Theory
– volume: 2
  start-page: 339
  year: 1999
  end-page: 365
  ident: bib0053
  article-title: Dependence measures for extreme value analyses
  publication-title: Extrem
– start-page: 1
  year: 2020
  end-page: 17
  ident: bib0012
  article-title: Data-driven fault diagnosis for traction systems in high-speed trains: a survey, challenges, and perspectives
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 62
  start-page: 237
  year: 1996
  end-page: 257
  ident: bib0046
  article-title: The suitability of the von Karman spectrum for the structure of turbulence in a complex terrain wind farm
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 124
  start-page: 88
  year: 2013
  end-page: 101
  ident: bib0030
  article-title: Environmental and track perturbations on multiple pantograph interaction with catenaries in high-speed trains
  publication-title: Comput. Struct.
– volume: 60
  start-page: 201
  year: 1978
  end-page: 211
  ident: bib0003
  article-title: The action of flexible bridges under wind, II: buffeting theory
  publication-title: J. Sound Vib.
– volume: 12
  start-page: 157
  year: 2012
  end-page: 174
  ident: bib0036
  article-title: Efficient combination of a TCUD method and an initial force method for determining initial shapes of cable-supported bridges
  publication-title: Int. J. Steel Struct.
– volume: 153
  year: 2020
  ident: bib0010
  article-title: Artificial neural networks applied to the measurement of lateral wheel-rail contact force: a comparison with a harmonic cancellation method
  publication-title: Mech. Mach. Theory
– volume: 16
  start-page: 73
  year: 2001
  end-page: 86
  ident: bib0049
  article-title: Probabilistic 3-D turbulence modeling for gust buffeting of structures
  publication-title: Probabilistic Eng. Mech.
– volume: 47
  start-page: 1327
  year: 2009
  end-page: 1347
  ident: bib0029
  article-title: Influence of the aerodynamic forces on the pantograph-catenary system for high-speed trains
  publication-title: Veh. Syst. Dyn.
– year: 2016
  ident: bib0055
  article-title: EN 50367. Railway applications — Current collection Systems — Technical criteria For the Interaction Between Pantograph and Overhead Line
– volume: 59
  start-page: 386
  year: 2014
  end-page: 392
  ident: bib0050
  article-title: A novel Bayesian extreme value distribution model of vehicle loads incorporating de-correlated tail fitting: theory and application to the Nanjing 3rd Yangtze River Bridge
  publication-title: Eng. Struct.
– volume: 17
  start-page: 57
  year: 2003
  end-page: 96
  ident: bib0041
  article-title: Fluctuating lift on a circular cylinder: review and new measurements
  publication-title: J. Fluids Struct.
– volume: 137
  start-page: 386
  year: 2019
  end-page: 403
  ident: bib0011
  article-title: Motor car–track spatial coupled dynamics model of a high-speed train with traction transmission systems
  publication-title: Mech. Mach. Theory
– year: 1964
  ident: bib0052
  article-title: Note on the distribution of the largest value of a random function with application to gust loading
  publication-title: Proc. Inst. Civ. Eng.
– year: 2016
  ident: bib0044
  article-title: Boundary-layer Theory
– volume: 13
  start-page: 311
  year: 2018
  end-page: 322
  ident: bib0016
  article-title: Review of pantograph and catenary interaction
  publication-title: Front. Mech. Eng.
– volume: 233
  start-page: 691
  year: 2019
  end-page: 700
  ident: bib0022
  article-title: Static form-finding of normal and defective catenaries based on the analytical exact solution of the tensile Euler–Bernoulli beam
  publication-title: Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit
– volume: 22
  start-page: 295
  year: 2006
  end-page: 314
  ident: bib0047
  article-title: Interaction of railway vehicles with track in cross-winds
  publication-title: J. Fluids Struct.
– volume: 203
  year: 2020
  ident: bib0004
  article-title: Experimental study and mathematical modeling on the unsteady galloping of a bridge deck with open cross section
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 69
  start-page: 8196
  year: 2020
  end-page: 8206
  ident: bib0024
  article-title: Contact wire irregularity stochastics and effect on high-speed railway pantograph-catenary interactions
  publication-title: IEEE Trans. Instrum. Meas.
– reference: .
– volume: 214
  start-page: 173
  year: 2000
  end-page: 182
  ident: bib0040
  article-title: An investigation into the attenuation of wind speed by the use of windbreaks in the vicinity of overhead wires
  publication-title: Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit
– reference: Cheynet E. Wind field simulation (text-based input) [Internet]. 2020. Available from:
– year: 2018
  ident: bib0048
  article-title: Wind-resistant Design Specification For Highway Bridges (in Chinese)
– volume: 151
  year: 2021
  ident: bib0019
  article-title: A spatial coupling model to study dynamic performance of pantograph-catenary with vehicle-track excitation
  publication-title: Mech. Syst. Signal Process
– volume: 69
  start-page: 10596
  year: 2020
  end-page: 10605
  ident: bib0028
  article-title: Assessment of the high-frequency response in railway pantograph-catenary interaction based on numerical simulation
  publication-title: IEEE Trans. Veh. Technol.
– volume: 7
  start-page: 173
  year: 2019
  end-page: 190
  ident: bib0026
  article-title: Developed moving mesh method for high-speed railway pantograph-catenary interaction based on nonlinear finite element procedure
  publication-title: Int. J. Rail Transp.
– volume: 140
  year: 2018
  ident: bib0032
  article-title: Study on wind-induced vibration behavior of railway catenary in spatial stochastic wind field based on nonlinear finite element procedure
  publication-title: J. Vib. Acoust. Trans. ASME
– volume: 149
  year: 2020
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0014
  article-title: A three-dimensional approach for contact detection between realistic wheel and rail surfaces for improved railway dynamic analysis
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2020.103825
– volume: 153
  year: 2020
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0010
  article-title: Artificial neural networks applied to the measurement of lateral wheel-rail contact force: a comparison with a harmonic cancellation method
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2020.103968
– volume: 22
  start-page: 295
  year: 2006
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0047
  article-title: Interaction of railway vehicles with track in cross-winds
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2005.11.003
– year: 2018
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0048
– year: 2018
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0043
– volume: 7
  start-page: 173
  year: 2019
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0026
  article-title: Developed moving mesh method for high-speed railway pantograph-catenary interaction based on nonlinear finite element procedure
  publication-title: Int. J. Rail Transp.
  doi: 10.1080/23248378.2018.1532330
– volume: 184
  start-page: 23
  year: 2019
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0033
  article-title: Wind tunnel test of an aeroelastic model of a catenary system for a high-speed railway in China
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2018.11.008
– ident: 10.1016/j.mechmachtheory.2021.104608_bib0045
– volume: 232
  start-page: 2339
  year: 2018
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0008
  article-title: Analysis of the galloping behaviour of an electrified railway overhead contact line using the non-linear finite element method
  publication-title: Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit
  doi: 10.1177/0954409718769751
– start-page: 70
  year: 2021
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0013
  article-title: An automatic loose defect detection method for catenary bracing wire components using deep convolutional neural networks and image processing
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 16
  start-page: 73
  year: 2001
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0049
  article-title: Probabilistic 3-D turbulence modeling for gust buffeting of structures
  publication-title: Probabilistic Eng. Mech.
  doi: 10.1016/S0266-8920(00)00010-2
– volume: 69
  start-page: 6299
  year: 2020
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0025
  article-title: Effective measures to improve current collection quality for double pantographs and catenary based on wave propagation analysis
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.2985382
– volume: 156
  year: 2021
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0051
  article-title: An enhanced moment-based approach to time-dependent positional reliability analysis for robotic manipulators
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2020.104167
– volume: 124
  start-page: 88
  year: 2013
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0030
  article-title: Environmental and track perturbations on multiple pantograph interaction with catenaries in high-speed trains
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2013.01.015
– year: 2016
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0055
– start-page: 1
  year: 2020
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0012
  article-title: Data-driven fault diagnosis for traction systems in high-speed trains: a survey, challenges, and perspectives
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 60
  start-page: 201
  year: 1978
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0003
  article-title: The action of flexible bridges under wind, II: buffeting theory
  publication-title: J. Sound Vib.
  doi: 10.1016/S0022-460X(78)80029-7
– volume: 137
  start-page: 386
  year: 2019
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0011
  article-title: Motor car–track spatial coupled dynamics model of a high-speed train with traction transmission systems
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2019.03.032
– year: 2016
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0044
– volume: 52
  start-page: 1254
  year: 2014
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0017
  article-title: Introduction of variability into pantograph-catenary dynamic simulations
  publication-title: Veh. Syst. Dyn.
  doi: 10.1080/00423114.2014.922199
– volume: 162
  year: 2021
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0021
  article-title: Identification of short-wavelength contact wire irregularities in electrified railway pantograph–catenary system
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2021.104338
– volume: 62
  start-page: 237
  year: 1996
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0046
  article-title: The suitability of the von Karman spectrum for the structure of turbulence in a complex terrain wind farm
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/S0167-6105(96)00059-1
– start-page: 203
  year: 2020
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0002
  article-title: Assessment of wind-induced nonlinear post-critical performance of bridge decks
  publication-title: J. Wind Eng. Ind. Aerodyn.
– start-page: 1
  year: 2020
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0020
  article-title: Analytical model of the pantograph–catenary dynamic interaction and comparison with numerical simulations
  publication-title: Veh. Syst. Dyn.
  doi: 10.1080/00423114.2020.1802493
– volume: 12
  start-page: 157
  year: 2012
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0036
  article-title: Efficient combination of a TCUD method and an initial force method for determining initial shapes of cable-supported bridges
  publication-title: Int. J. Steel Struct.
  doi: 10.1007/s13296-012-2002-1
– volume: 60
  start-page: 187
  year: 1978
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0006
  article-title: The action of flexible bridges under wind, I: flutter theory
  publication-title: J. Sound Vib.
  doi: 10.1016/S0022-460X(78)80028-5
– year: 2018
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0042
– volume: 17
  start-page: 225
  year: 1964
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0039
  article-title: The square prism as an aeroelastic non-linear oscillator
  publication-title: Q. J. Mech. Appl. Math.
  doi: 10.1093/qjmam/17.2.225
– volume: 139
  year: 2017
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0027
  article-title: Pantograph/Catenary contact formulations
  publication-title: J. Vib. Acoust. Trans. ASME
  doi: 10.1115/1.4035132
– volume: 151
  year: 2021
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0019
  article-title: A spatial coupling model to study dynamic performance of pantograph-catenary with vehicle-track excitation
  publication-title: Mech. Syst. Signal Process
  doi: 10.1016/j.ymssp.2020.107336
– volume: 2
  start-page: 339
  year: 1999
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0053
  article-title: Dependence measures for extreme value analyses
  publication-title: Extrem
  doi: 10.1023/A:1009963131610
– start-page: 205
  year: 2020
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0005
  article-title: Aerodynamic damping models for vortex-induced vibration of a rectangular 4:1 cylinder: comparison of modeling schemes
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 233
  start-page: 691
  year: 2019
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0022
  article-title: Static form-finding of normal and defective catenaries based on the analytical exact solution of the tensile Euler–Bernoulli beam
  publication-title: Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit
  doi: 10.1177/0954409718808990
– volume: 17
  start-page: 57
  year: 2003
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0041
  article-title: Fluctuating lift on a circular cylinder: review and new measurements
  publication-title: J. Fluids Struct.
  doi: 10.1016/S0889-9746(02)00099-3
– volume: 152
  year: 2020
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0023
  article-title: A methodology to study high-speed pantograph-catenary interaction with realistic contact wire irregularities
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2020.103940
– volume: 69
  start-page: 8196
  year: 2020
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0024
  article-title: Contact wire irregularity stochastics and effect on high-speed railway pantograph-catenary interactions
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 54
  start-page: 723
  year: 2016
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0031
  article-title: Nonlinear analysis of wind-induced vibration of high-speed railway catenary and its influence on pantograph–catenary interaction
  publication-title: Veh. Syst. Dyn.
  doi: 10.1080/00423114.2016.1156134
– volume: 13
  start-page: 311
  year: 2018
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0016
  article-title: Review of pantograph and catenary interaction
  publication-title: Front. Mech. Eng.
  doi: 10.1007/s11465-018-0494-x
– volume: 18
  start-page: 11
  year: 1996
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0057
  article-title: Fractile levels for non-stationary extreme response of linear structures
  publication-title: Struct. Saf.
  doi: 10.1016/0167-4730(96)00002-1
– volume: 214
  start-page: 173
  year: 2000
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0040
  article-title: An investigation into the attenuation of wind speed by the use of windbreaks in the vicinity of overhead wires
  publication-title: Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit
  doi: 10.1243/0954409001531298
– volume: 57
  start-page: 407
  year: 1995
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0007
  article-title: Finite element modelling of transmission line galloping
  publication-title: Comput. Struct.
  doi: 10.1016/0045-7949(94)00630-L
– volume: 157
  year: 2021
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0009
  article-title: Coupling model and vibration simulations of railway vehicles and running gear bearings with multitype defects
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2020.104215
– year: 2015
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0035
– volume: 98
  start-page: 27
  year: 1972
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0038
  article-title: Galloping oscillations of prismatic structures
  publication-title: ASCE J. Eng. Mech. Div.
  doi: 10.1061/JMCEA3.0001575
– volume: 113
  start-page: 71
  year: 2016
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0037
  article-title: Identification of system damping in railway catenary wire systems from full-scale measurements
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2016.01.031
– volume: 140
  year: 2018
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0032
  article-title: Study on wind-induced vibration behavior of railway catenary in spatial stochastic wind field based on nonlinear finite element procedure
  publication-title: J. Vib. Acoust. Trans. ASME
  doi: 10.1115/1.4037521
– volume: 69
  start-page: 10596
  year: 2020
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0028
  article-title: Assessment of the high-frequency response in railway pantograph-catenary interaction based on numerical simulation
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.3015044
– year: 1964
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0052
  article-title: Note on the distribution of the largest value of a random function with application to gust loading
  publication-title: Proc. Inst. Civ. Eng.
– volume: 22
  start-page: 729
  year: 2019
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0054
  article-title: On the accuracy of Poisson approximation
  publication-title: Extremes (Boston)
  doi: 10.1007/s10687-019-00350-6
– volume: 47
  start-page: 1327
  year: 2009
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0029
  article-title: Influence of the aerodynamic forces on the pantograph-catenary system for high-speed trains
  publication-title: Veh. Syst. Dyn.
  doi: 10.1080/00423110802613402
– volume: 133
  start-page: 35
  year: 2009
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0058
  article-title: Turbulence intensity parameters over a very complex terrain
  publication-title: Boundary-Layer Meteorol.
  doi: 10.1007/s10546-009-9413-3
– volume: 233
  start-page: 370
  year: 2019
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0018
  article-title: An investigation on the active control strategy for a high-speed pantograph using co-simulations
  publication-title: Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng.
– year: 2017
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0034
  article-title: Pantograph and contact line system
– volume: 203
  year: 2020
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0004
  article-title: Experimental study and mathematical modeling on the unsteady galloping of a bridge deck with open cross section
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2020.104170
– volume: 59
  start-page: 386
  year: 2014
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0050
  article-title: A novel Bayesian extreme value distribution model of vehicle loads incorporating de-correlated tail fitting: theory and application to the Nanjing 3rd Yangtze River Bridge
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2013.10.029
– volume: 28
  start-page: 54
  year: 2020
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0015
  article-title: Effect of cavity flow control on high-speed train pantograph and roof aerodynamic noise
  publication-title: Railw. Eng. Sci.
  doi: 10.1007/s40534-020-00205-y
– volume: 6
  start-page: 57
  year: 2018
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0001
  article-title: Pantograph–catenary interaction: recent achievements and future research challenges
  publication-title: Int. J. Rail Transp.
  doi: 10.1080/23248378.2017.1400156
– volume: 70
  start-page: 1169
  year: 2021
  ident: 10.1016/j.mechmachtheory.2021.104608_bib0056
  article-title: A response spectrum analysis of wind deflection in railway overhead contact lines using pseudo-excitation method
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2021.3054459
SSID ssj0007543
Score 2.571474
Snippet This paper evaluates the railway catenary's wind deflection under crosswind based on wind tunnel experiments and a nonlinear finite element model. A catenary...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104608
SubjectTerms Catenary
Contact wire
Crosswind
Electrified railway
Finite element
Wind deflection
Title Wind deflection analysis of railway catenary under crosswind based on nonlinear finite element model and wind tunnel test
URI https://dx.doi.org/10.1016/j.mechmachtheory.2021.104608
Volume 168
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEF7EQmkPpU9qH7IHr6lms4lZeigiFdtST5V6C5t9oEWtSES89Ld3ZhNrhR6EHnIJmU3Ymex8w37zLSG1ODbSYvBqzUKPS6691AjlwSVtI4382OKO7msv6vb58yAclEh73QuDtMpi7c_XdLdaF3fqxWzWZ6MR9vgKDmh-AEUL6tih7DbnTYzyu68NzaMZFsw5wT18ep_UNhyviVHDiVRD1zS4gmqR-W7TEw-b_CtN_Uo9nWNyVGBG2so_64SUzPSUHP5SEjwjq3eorak2duyoVVMqC7ER-mnpXI7GS7miSH7C7luKjWNz6t68RDtMZZqC1TQXzpBzakcIRqnJ2eXUHZgDg2rqDLIF0mMowNTsnPQ7j2_trlecquCpIOaZJ4RKGVMyDEIJtUYaWZ9LgHUNGwTSMhlpIVmkJFQeyjeRhZoHcjhKCFv4X1kQXJAyfI25JDSMmlak2oiUQ1XpK9GQMcAHowXzI8AdFXK_nsREFZLjePLFOFlzyz6SbRck6IIkd0GFhD_Ws1x6Y0e7h7W_kq1QSiBL7DTC1b9HuCYHDPskHL37hpSz-cLcAnrJ0qoLzyrZaz29dHvfmLr0KQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60go-D-MT63IPXYLNJtlk8iIhSXz0p9hY2-6CVtpaSUvrvnUm2WsGD4CGXwGyWnc3ON-w33wCcp6lVjjavMTwJYhWbILdSB_go18hFmDq60X1ui9Zr_NBJOktwM6-FIVqlP_urM708rf2bC7-aF6Nej2p8ZYxovoNJC-nYiWVYIXWqpAYr1_ePrfbXgdxMPHlOxgEZrML5N81rYHV3oHS3rBucYcLIw_Lek_pN_hapFqLP3RZsetjIrquZbcOSHe7AxoKY4C7M3jC9Zsa6fsmuGjLl9UbYh2Nj1etP1YwR_4kKcBnVjo1Z-eUp2VE0MwythpV2hhoz1yM8ymxFMGdlzxwc1LDSoJgQQ4YhUi324PXu9uWmFfjGCoGO0rgIpNQ551olUaIw3ciFC2OFyK7hokg5roSRigutMPnQoRUO0x4M46Qi7PCX5VG0DzWcjT0Aloimk7mxMo8xsQy1bKgUEYQ1kocCoUcdLueLmGmvOk7NL_rZnF72nv10QUYuyCoX1CH5sh5V6ht_tLua-yv7sZsyDBR_GuHw3yOcwVrr5fkpe7pvPx7BOqeyiZLtfQy1YjyxJwhmivzUb9ZP7Zz22g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wind+deflection+analysis+of+railway+catenary+under+crosswind+based+on+nonlinear+finite+element+model+and+wind+tunnel+test&rft.jtitle=Mechanism+and+machine+theory&rft.au=Song%2C+Yang&rft.au=Zhang%2C+Mingjie&rft.au=%C3%98iseth%2C+Ole&rft.au=R%C3%B8nnquist%2C+Anders&rft.date=2022-02-01&rft.pub=Elsevier+Ltd&rft.issn=0094-114X&rft.eissn=1873-3999&rft.volume=168&rft_id=info:doi/10.1016%2Fj.mechmachtheory.2021.104608&rft.externalDocID=S0094114X21003426
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-114X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-114X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-114X&client=summon