Wind deflection analysis of railway catenary under crosswind based on nonlinear finite element model and wind tunnel test
This paper evaluates the railway catenary's wind deflection under crosswind based on wind tunnel experiments and a nonlinear finite element model. A catenary model is constructed based on the absolute nodal coordinate formulation to describe the geometrical nonlinearity of the system. The aerod...
Saved in:
Published in | Mechanism and machine theory Vol. 168; p. 104608 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0094-114X 1873-3999 |
DOI | 10.1016/j.mechmachtheory.2021.104608 |
Cover
Loading…
Abstract | This paper evaluates the railway catenary's wind deflection under crosswind based on wind tunnel experiments and a nonlinear finite element model. A catenary model is constructed based on the absolute nodal coordinate formulation to describe the geometrical nonlinearity of the system. The aerodynamic forces acting on the catenary are derived according to the quasi-steady theory, and the aerodynamic coefficients are obtained by wind tunnel experiments. A procedure to generate the three-dimensional fluctuating wind field along the catenary is presented. The extreme value of the wind deflection is estimated based on a Poisson approximation of the extreme value distribution. The numerical accuracy is validated by wind tunnel experimental results of an aeroelastic catenary. The response, statistics, frequency characteristics and extreme value of the contact wire's wind deflection are investigated through numerical simulations. The analysis results indicate that the maximum wind deflection will exceed the safety limit for the analysed catenary with a turbulence intensity of more than 15%. The adjustment of some critical parameters of the catenary system can reduce the maximum wind deflection. |
---|---|
AbstractList | This paper evaluates the railway catenary's wind deflection under crosswind based on wind tunnel experiments and a nonlinear finite element model. A catenary model is constructed based on the absolute nodal coordinate formulation to describe the geometrical nonlinearity of the system. The aerodynamic forces acting on the catenary are derived according to the quasi-steady theory, and the aerodynamic coefficients are obtained by wind tunnel experiments. A procedure to generate the three-dimensional fluctuating wind field along the catenary is presented. The extreme value of the wind deflection is estimated based on a Poisson approximation of the extreme value distribution. The numerical accuracy is validated by wind tunnel experimental results of an aeroelastic catenary. The response, statistics, frequency characteristics and extreme value of the contact wire's wind deflection are investigated through numerical simulations. The analysis results indicate that the maximum wind deflection will exceed the safety limit for the analysed catenary with a turbulence intensity of more than 15%. The adjustment of some critical parameters of the catenary system can reduce the maximum wind deflection. |
ArticleNumber | 104608 |
Author | Rønnquist, Anders Zhang, Mingjie Song, Yang Øiseth, Ole |
Author_xml | – sequence: 1 givenname: Yang surname: Song fullname: Song, Yang organization: Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway – sequence: 2 givenname: Mingjie surname: Zhang fullname: Zhang, Mingjie email: mingjie.zhang@ntnu.no organization: Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway – sequence: 3 givenname: Ole surname: Øiseth fullname: Øiseth, Ole organization: Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway – sequence: 4 givenname: Anders surname: Rønnquist fullname: Rønnquist, Anders organization: Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway |
BookMark | eNqNkMFqGzEQhkVxoY6bd9Ah13Wl1a68glxak6SFQC4pzU2MpRGW2dUGSY7Zt682zqU9-TQMw_cz_3dFFmEMSMgNZ2vOuPx2WA9o9gOYfd7jGKd1zWpeTo1k3Sey5N1GVEIptSBLxlRTcd68fCFXKR0YY5u2EUsy_fHBUouuR5P9GCgE6KfkEx0djeD7E0zUQMYAcaLHYDFSE8eUTjO3g4SWFqo81vuAEKnzwWek2OOAIdNhtNiXUEvfgXwMoewZU_5KPjvoE15_zBX5fX_3vP1ZPT49_Np-f6yM6JpcKWV2dW2gFS1sZLeTjjfQypY5IcDVIK2CWhrgvDMcpWOdlJJzpRrXCl4LsSI_zrnvb0d02vgMc9c899Oc6VmmPuh_ZepZpj7LLCG3_4W8Rj8UJZfi92ccS9E3j1En4zEYtD4W79qO_rKgv27Ln50 |
CitedBy_id | crossref_primary_10_1016_j_engstruct_2024_118582 crossref_primary_10_3390_s23041773 crossref_primary_10_1080_00423114_2024_2305295 crossref_primary_10_3390_en17215343 crossref_primary_10_3390_sym14040725 crossref_primary_10_3390_app12020756 crossref_primary_10_1109_TVT_2024_3404629 crossref_primary_10_3390_su142113698 crossref_primary_10_1016_j_jfluidstructs_2022_103545 crossref_primary_10_1080_00423114_2023_2199456 crossref_primary_10_3390_app12063086 crossref_primary_10_3390_en16031205 crossref_primary_10_1080_00423114_2023_2199455 crossref_primary_10_3390_s24030976 crossref_primary_10_3390_en15196875 crossref_primary_10_3390_buildings14030656 crossref_primary_10_3390_app12083729 crossref_primary_10_3390_app14156822 crossref_primary_10_3390_s23156797 crossref_primary_10_3390_su15010397 crossref_primary_10_1007_s40996_022_00914_w crossref_primary_10_1049_els2_12043 crossref_primary_10_1080_00423114_2022_2112607 crossref_primary_10_1109_TTE_2023_3345955 crossref_primary_10_3390_en16031294 crossref_primary_10_1109_TIM_2024_3522408 crossref_primary_10_1109_TTE_2023_3346379 crossref_primary_10_3390_app13010232 crossref_primary_10_3390_app131810418 crossref_primary_10_3390_math12233780 crossref_primary_10_3390_buildings12122182 crossref_primary_10_1016_j_engstruct_2024_118557 crossref_primary_10_3390_su14052542 crossref_primary_10_3390_app12199950 crossref_primary_10_3390_atmos14121787 crossref_primary_10_1080_00423114_2023_2289662 crossref_primary_10_1080_00423114_2023_2289663 crossref_primary_10_3390_app12031488 crossref_primary_10_1016_j_measurement_2023_113470 crossref_primary_10_1016_j_conengprac_2023_105692 crossref_primary_10_3390_infrastructures6120174 crossref_primary_10_3390_su14031058 crossref_primary_10_3390_app142210160 crossref_primary_10_1080_23248378_2022_2129492 crossref_primary_10_3390_su141912900 crossref_primary_10_1016_j_mechmachtheory_2023_105470 crossref_primary_10_3390_app12063101 crossref_primary_10_3390_s23010219 crossref_primary_10_3390_en15249548 crossref_primary_10_30932_1992_3252_2022_20_6_4 crossref_primary_10_3390_app14198801 crossref_primary_10_3390_en16052234 crossref_primary_10_3390_app14209252 crossref_primary_10_3390_ma16010232 crossref_primary_10_1049_cth2_12599 crossref_primary_10_1109_TIM_2021_3135340 crossref_primary_10_1109_TIM_2021_3139661 crossref_primary_10_1109_TIM_2022_3144747 crossref_primary_10_1109_TVT_2021_3136920 crossref_primary_10_3390_ma16051839 crossref_primary_10_3390_su15086803 crossref_primary_10_1109_TVT_2023_3243024 crossref_primary_10_3390_app12199579 crossref_primary_10_3390_en15196942 crossref_primary_10_3390_app12031306 crossref_primary_10_3390_su15065297 crossref_primary_10_3390_su141811684 crossref_primary_10_1016_j_jsv_2022_117506 crossref_primary_10_3390_en15176120 crossref_primary_10_1080_00423114_2023_2200192 crossref_primary_10_3390_en16041810 crossref_primary_10_1016_j_mechmachtheory_2024_105769 crossref_primary_10_1109_TNNLS_2022_3219814 |
Cites_doi | 10.1016/j.mechmachtheory.2020.103825 10.1016/j.mechmachtheory.2020.103968 10.1016/j.jfluidstructs.2005.11.003 10.1080/23248378.2018.1532330 10.1016/j.jweia.2018.11.008 10.1177/0954409718769751 10.1016/S0266-8920(00)00010-2 10.1109/TVT.2020.2985382 10.1016/j.mechmachtheory.2020.104167 10.1016/j.compstruc.2013.01.015 10.1016/S0022-460X(78)80029-7 10.1016/j.mechmachtheory.2019.03.032 10.1080/00423114.2014.922199 10.1016/j.mechmachtheory.2021.104338 10.1016/S0167-6105(96)00059-1 10.1080/00423114.2020.1802493 10.1007/s13296-012-2002-1 10.1016/S0022-460X(78)80028-5 10.1093/qjmam/17.2.225 10.1115/1.4035132 10.1016/j.ymssp.2020.107336 10.1023/A:1009963131610 10.1177/0954409718808990 10.1016/S0889-9746(02)00099-3 10.1016/j.mechmachtheory.2020.103940 10.1080/00423114.2016.1156134 10.1007/s11465-018-0494-x 10.1016/0167-4730(96)00002-1 10.1243/0954409001531298 10.1016/0045-7949(94)00630-L 10.1016/j.mechmachtheory.2020.104215 10.1061/JMCEA3.0001575 10.1016/j.engstruct.2016.01.031 10.1115/1.4037521 10.1109/TVT.2020.3015044 10.1007/s10687-019-00350-6 10.1080/00423110802613402 10.1007/s10546-009-9413-3 10.1016/j.jweia.2020.104170 10.1016/j.engstruct.2013.10.029 10.1007/s40534-020-00205-y 10.1080/23248378.2017.1400156 10.1109/TVT.2021.3054459 |
ContentType | Journal Article |
Copyright | 2021 The Author(s) |
Copyright_xml | – notice: 2021 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.mechmachtheory.2021.104608 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3999 |
ExternalDocumentID | 10_1016_j_mechmachtheory_2021_104608 S0094114X21003426 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K T9H TN5 TWZ WUQ XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c384t-99cb22ca535a768b6f14a5650f33af2a6d9a26ca118c1e6f0866611994f531233 |
IEDL.DBID | .~1 |
ISSN | 0094-114X |
IngestDate | Tue Jul 01 01:48:37 EDT 2025 Thu Apr 24 22:54:18 EDT 2025 Fri Feb 23 02:41:41 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Catenary Crosswind Electrified railway Contact wire Wind deflection Finite element |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c384t-99cb22ca535a768b6f14a5650f33af2a6d9a26ca118c1e6f0866611994f531233 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0094114X21003426 |
ParticipantIDs | crossref_citationtrail_10_1016_j_mechmachtheory_2021_104608 crossref_primary_10_1016_j_mechmachtheory_2021_104608 elsevier_sciencedirect_doi_10_1016_j_mechmachtheory_2021_104608 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2022 2022-02-00 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
PublicationDecade | 2020 |
PublicationTitle | Mechanism and machine theory |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Chen, Jiang, Ding (bib0012) 2020 Marques, Magalhães, Pombo (bib0014) 2020; 149 Schlichting, Gersten (bib0044) 2016 Wu (bib0034) 2017 Novak (bib0054) 2019; 22 Nåvik, Rønnquist, Stichel (bib0037) 2016; 113 Coles, Heffernan, Tawn (bib0053) 1999; 2 Lu, Wang, Yue (bib0009) 2021; 157 Parkinson, Smith (bib0039) 1964; 17 Song, Liu, Duan (bib0032) 2018; 140 Xu, Ding (bib0047) 2006; 22 Pombo, Ambrosio, Pereira (bib0029) 2009; 47 Song, Rønnquist, Nåvik (bib0028) 2020; 69 Zhang, Xu, Øiseth (bib0005) 2020 Wang, Mei, Xiong (bib0011) 2019; 137 Song, Wang, Liu (bib0019) 2021; 151 Xie, Zhi (bib0033) 2019; 184 Davenport (bib0052) 1964 (bib0048) 2018 . Song, Liu, Wang (bib0008) 2018; 232 Kim, Hu, Thompson (bib0015) 2020; 28 Kulkarni, Pappalardo, Shabana (bib0027) 2017; 139 Zdziebko, Martowicz, Uhl (bib0018) 2019; 233 Scanion, Stickland, Oldroyd (bib0040) 2000; 214 Novak (bib0038) 1972; 98 Zhang, Zou, Tan (bib0016) 2018; 13 Song, Liu, Ronnquist (bib0024) 2020; 69 Elvebakken (bib0042) 2018 Urda, Aceituno, Muñoz (bib0010) 2020; 153 Solari, Piccardo (bib0049) 2001; 16 Desai, Yu, Popplewell (bib0007) 1995; 57 (bib0055) 2016 Pombo, Ambrosio (bib0030) 2013; 124 (bib0035) 2015 Zhao, Guo, Hong (bib0051) 2021; 156 Cheynet E. Wind field simulation (text-based input) [Internet]. 2020. Available from Chen, Mannini, Bartoli (bib0004) 2020; 203 Morfiadakis, Glinou, Koulouvari (bib0046) 1996; 62 Zhang, Xu, Han (bib0002) 2020 Vesali, Rezvani, Molatefi (bib0022) 2019; 233 Liu, Liu, Li (bib0013) 2021 Scanlan (bib0003) 1978; 60 Song, Antunes, Pombo (bib0023) 2020; 152 Bruni, Bucca, Carnevale (bib0001) 2018; 6 Song, Rønnquist, Jiang (bib0021) 2021; 162 Song, Liu, Wang (bib0031) 2016; 54 Gu, Li, Li (bib0050) 2014; 59 Kiessling, Puschmann, Schmieder (bib0043) 2018 Song, Zhang, Wang (bib0056) 2021; 70 Van, Massat, Laurent (bib0017) 2014; 52 Song, Liu, Xu (bib0026) 2019; 7 Scanlan (bib0006) 1978; 60 Kim, Kim (bib0036) 2012; 12 Martins, Moraes, Acevedo (bib0058) 2009; 133 Gil, Gregori, Tur (bib0020) 2020 Xu, Song, Liu (bib0025) 2020; 69 Norberg (bib0041) 2003; 17 Michaelov, Sarkani, Lutes (bib0057) 1996; 18 Zhang (10.1016/j.mechmachtheory.2021.104608_bib0005) 2020 Song (10.1016/j.mechmachtheory.2021.104608_bib0024) 2020; 69 Urda (10.1016/j.mechmachtheory.2021.104608_bib0010) 2020; 153 Song (10.1016/j.mechmachtheory.2021.104608_bib0028) 2020; 69 Chen (10.1016/j.mechmachtheory.2021.104608_bib0012) 2020 Scanion (10.1016/j.mechmachtheory.2021.104608_bib0040) 2000; 214 Song (10.1016/j.mechmachtheory.2021.104608_bib0019) 2021; 151 Van (10.1016/j.mechmachtheory.2021.104608_bib0017) 2014; 52 Kiessling (10.1016/j.mechmachtheory.2021.104608_bib0043) 2018 Wang (10.1016/j.mechmachtheory.2021.104608_bib0011) 2019; 137 Martins (10.1016/j.mechmachtheory.2021.104608_bib0058) 2009; 133 Zhang (10.1016/j.mechmachtheory.2021.104608_bib0002) 2020 Bruni (10.1016/j.mechmachtheory.2021.104608_bib0001) 2018; 6 Marques (10.1016/j.mechmachtheory.2021.104608_bib0014) 2020; 149 Kim (10.1016/j.mechmachtheory.2021.104608_bib0015) 2020; 28 Kulkarni (10.1016/j.mechmachtheory.2021.104608_bib0027) 2017; 139 Pombo (10.1016/j.mechmachtheory.2021.104608_bib0030) 2013; 124 Wu (10.1016/j.mechmachtheory.2021.104608_bib0034) 2017 10.1016/j.mechmachtheory.2021.104608_bib0045 Song (10.1016/j.mechmachtheory.2021.104608_bib0023) 2020; 152 Zhang (10.1016/j.mechmachtheory.2021.104608_bib0016) 2018; 13 Kim (10.1016/j.mechmachtheory.2021.104608_bib0036) 2012; 12 (10.1016/j.mechmachtheory.2021.104608_bib0035) 2015 (10.1016/j.mechmachtheory.2021.104608_bib0055) 2016 Scanlan (10.1016/j.mechmachtheory.2021.104608_bib0006) 1978; 60 Nåvik (10.1016/j.mechmachtheory.2021.104608_bib0037) 2016; 113 Elvebakken (10.1016/j.mechmachtheory.2021.104608_bib0042) 2018 Song (10.1016/j.mechmachtheory.2021.104608_bib0031) 2016; 54 Michaelov (10.1016/j.mechmachtheory.2021.104608_bib0057) 1996; 18 Morfiadakis (10.1016/j.mechmachtheory.2021.104608_bib0046) 1996; 62 Scanlan (10.1016/j.mechmachtheory.2021.104608_bib0003) 1978; 60 Parkinson (10.1016/j.mechmachtheory.2021.104608_bib0039) 1964; 17 Song (10.1016/j.mechmachtheory.2021.104608_bib0056) 2021; 70 Zhao (10.1016/j.mechmachtheory.2021.104608_bib0051) 2021; 156 Schlichting (10.1016/j.mechmachtheory.2021.104608_bib0044) 2016 Pombo (10.1016/j.mechmachtheory.2021.104608_bib0029) 2009; 47 Xie (10.1016/j.mechmachtheory.2021.104608_bib0033) 2019; 184 Liu (10.1016/j.mechmachtheory.2021.104608_bib0013) 2021 Song (10.1016/j.mechmachtheory.2021.104608_bib0026) 2019; 7 Gu (10.1016/j.mechmachtheory.2021.104608_bib0050) 2014; 59 Gil (10.1016/j.mechmachtheory.2021.104608_bib0020) 2020 Davenport (10.1016/j.mechmachtheory.2021.104608_bib0052) 1964 Xu (10.1016/j.mechmachtheory.2021.104608_bib0025) 2020; 69 Song (10.1016/j.mechmachtheory.2021.104608_bib0021) 2021; 162 Coles (10.1016/j.mechmachtheory.2021.104608_bib0053) 1999; 2 Desai (10.1016/j.mechmachtheory.2021.104608_bib0007) 1995; 57 Vesali (10.1016/j.mechmachtheory.2021.104608_bib0022) 2019; 233 (10.1016/j.mechmachtheory.2021.104608_bib0048) 2018 Solari (10.1016/j.mechmachtheory.2021.104608_bib0049) 2001; 16 Chen (10.1016/j.mechmachtheory.2021.104608_bib0004) 2020; 203 Xu (10.1016/j.mechmachtheory.2021.104608_bib0047) 2006; 22 Lu (10.1016/j.mechmachtheory.2021.104608_bib0009) 2021; 157 Song (10.1016/j.mechmachtheory.2021.104608_bib0032) 2018; 140 Zdziebko (10.1016/j.mechmachtheory.2021.104608_bib0018) 2019; 233 Norberg (10.1016/j.mechmachtheory.2021.104608_bib0041) 2003; 17 Novak (10.1016/j.mechmachtheory.2021.104608_bib0038) 1972; 98 Song (10.1016/j.mechmachtheory.2021.104608_bib0008) 2018; 232 Novak (10.1016/j.mechmachtheory.2021.104608_bib0054) 2019; 22 |
References_xml | – year: 2017 ident: bib0034 article-title: Pantograph and contact line system publication-title: Pantogr. Contact Line Syst – year: 2015 ident: bib0035 article-title: European Committee for Electrotechnical Standardization. EN 50119. Railway applications — Fixed installations — Electric traction Overhead Contact Lines – volume: 52 start-page: 1254 year: 2014 end-page: 1269 ident: bib0017 article-title: Introduction of variability into pantograph-catenary dynamic simulations publication-title: Veh. Syst. Dyn. – volume: 162 year: 2021 ident: bib0021 article-title: Identification of short-wavelength contact wire irregularities in electrified railway pantograph–catenary system publication-title: Mech. Mach. Theory – volume: 232 start-page: 2339 year: 2018 end-page: 2352 ident: bib0008 article-title: Analysis of the galloping behaviour of an electrified railway overhead contact line using the non-linear finite element method publication-title: Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit – volume: 18 start-page: 11 year: 1996 end-page: 31 ident: bib0057 article-title: Fractile levels for non-stationary extreme response of linear structures publication-title: Struct. Saf. – volume: 6 start-page: 57 year: 2018 end-page: 82 ident: bib0001 article-title: Pantograph–catenary interaction: recent achievements and future research challenges publication-title: Int. J. Rail Transp. – volume: 98 start-page: 27 year: 1972 end-page: 46 ident: bib0038 article-title: Galloping oscillations of prismatic structures publication-title: ASCE J. Eng. Mech. Div. – start-page: 203 year: 2020 ident: bib0002 article-title: Assessment of wind-induced nonlinear post-critical performance of bridge decks publication-title: J. Wind Eng. Ind. Aerodyn. – volume: 54 start-page: 723 year: 2016 end-page: 747 ident: bib0031 article-title: Nonlinear analysis of wind-induced vibration of high-speed railway catenary and its influence on pantograph–catenary interaction publication-title: Veh. Syst. Dyn. – volume: 57 start-page: 407 year: 1995 end-page: 420 ident: bib0007 article-title: Finite element modelling of transmission line galloping publication-title: Comput. Struct. – volume: 113 start-page: 71 year: 2016 end-page: 78 ident: bib0037 article-title: Identification of system damping in railway catenary wire systems from full-scale measurements publication-title: Eng. Struct. – volume: 69 start-page: 6299 year: 2020 end-page: 6309 ident: bib0025 article-title: Effective measures to improve current collection quality for double pantographs and catenary based on wave propagation analysis publication-title: IEEE Trans. Veh. Technol. – start-page: 70 year: 2021 ident: bib0013 article-title: An automatic loose defect detection method for catenary bracing wire components using deep convolutional neural networks and image processing publication-title: IEEE Trans. Instrum. Meas. – start-page: 1 year: 2020 end-page: 24 ident: bib0020 article-title: Analytical model of the pantograph–catenary dynamic interaction and comparison with numerical simulations publication-title: Veh. Syst. Dyn. – year: 2018 ident: bib0042 article-title: Estimation of Aerodynamic Forces On a Railway Contact Wire and Their Effect On Galloping Instability-Wind Tunnel Testing of an AC-120 Contact Wire – volume: 70 start-page: 1169 year: 2021 end-page: 1178 ident: bib0056 article-title: A response spectrum analysis of wind deflection in railway overhead contact lines using pseudo-excitation method publication-title: IEEE Trans. Veh. Technol. – volume: 233 start-page: 370 year: 2019 end-page: 383 ident: bib0018 article-title: An investigation on the active control strategy for a high-speed pantograph using co-simulations publication-title: Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. – start-page: 205 year: 2020 ident: bib0005 article-title: Aerodynamic damping models for vortex-induced vibration of a rectangular 4:1 cylinder: comparison of modeling schemes publication-title: J. Wind Eng. Ind. Aerodyn. – volume: 17 start-page: 225 year: 1964 end-page: 239 ident: bib0039 article-title: The square prism as an aeroelastic non-linear oscillator publication-title: Q. J. Mech. Appl. Math. – volume: 133 start-page: 35 year: 2009 end-page: 45 ident: bib0058 article-title: Turbulence intensity parameters over a very complex terrain publication-title: Boundary-Layer Meteorol. – volume: 149 year: 2020 ident: bib0014 article-title: A three-dimensional approach for contact detection between realistic wheel and rail surfaces for improved railway dynamic analysis publication-title: Mech. Mach. Theory – volume: 156 year: 2021 ident: bib0051 article-title: An enhanced moment-based approach to time-dependent positional reliability analysis for robotic manipulators publication-title: Mech. Mach. Theory – volume: 139 year: 2017 ident: bib0027 article-title: Pantograph/Catenary contact formulations publication-title: J. Vib. Acoust. Trans. ASME – volume: 184 start-page: 23 year: 2019 end-page: 33 ident: bib0033 article-title: Wind tunnel test of an aeroelastic model of a catenary system for a high-speed railway in China publication-title: J. Wind Eng. Ind. Aerodyn. – volume: 22 start-page: 729 year: 2019 end-page: 748 ident: bib0054 article-title: On the accuracy of Poisson approximation publication-title: Extremes (Boston) – volume: 157 year: 2021 ident: bib0009 article-title: Coupling model and vibration simulations of railway vehicles and running gear bearings with multitype defects publication-title: Mech. Mach. Theory – year: 2018 ident: bib0043 article-title: Contact Lines For Electric Railways – volume: 60 start-page: 187 year: 1978 end-page: 199 ident: bib0006 article-title: The action of flexible bridges under wind, I: flutter theory publication-title: J. Sound Vib. – volume: 28 start-page: 54 year: 2020 end-page: 74 ident: bib0015 article-title: Effect of cavity flow control on high-speed train pantograph and roof aerodynamic noise publication-title: Railw. Eng. Sci. – volume: 152 year: 2020 ident: bib0023 article-title: A methodology to study high-speed pantograph-catenary interaction with realistic contact wire irregularities publication-title: Mech. Mach. Theory – volume: 2 start-page: 339 year: 1999 end-page: 365 ident: bib0053 article-title: Dependence measures for extreme value analyses publication-title: Extrem – start-page: 1 year: 2020 end-page: 17 ident: bib0012 article-title: Data-driven fault diagnosis for traction systems in high-speed trains: a survey, challenges, and perspectives publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 62 start-page: 237 year: 1996 end-page: 257 ident: bib0046 article-title: The suitability of the von Karman spectrum for the structure of turbulence in a complex terrain wind farm publication-title: J. Wind Eng. Ind. Aerodyn. – volume: 124 start-page: 88 year: 2013 end-page: 101 ident: bib0030 article-title: Environmental and track perturbations on multiple pantograph interaction with catenaries in high-speed trains publication-title: Comput. Struct. – volume: 60 start-page: 201 year: 1978 end-page: 211 ident: bib0003 article-title: The action of flexible bridges under wind, II: buffeting theory publication-title: J. Sound Vib. – volume: 12 start-page: 157 year: 2012 end-page: 174 ident: bib0036 article-title: Efficient combination of a TCUD method and an initial force method for determining initial shapes of cable-supported bridges publication-title: Int. J. Steel Struct. – volume: 153 year: 2020 ident: bib0010 article-title: Artificial neural networks applied to the measurement of lateral wheel-rail contact force: a comparison with a harmonic cancellation method publication-title: Mech. Mach. Theory – volume: 16 start-page: 73 year: 2001 end-page: 86 ident: bib0049 article-title: Probabilistic 3-D turbulence modeling for gust buffeting of structures publication-title: Probabilistic Eng. Mech. – volume: 47 start-page: 1327 year: 2009 end-page: 1347 ident: bib0029 article-title: Influence of the aerodynamic forces on the pantograph-catenary system for high-speed trains publication-title: Veh. Syst. Dyn. – year: 2016 ident: bib0055 article-title: EN 50367. Railway applications — Current collection Systems — Technical criteria For the Interaction Between Pantograph and Overhead Line – volume: 59 start-page: 386 year: 2014 end-page: 392 ident: bib0050 article-title: A novel Bayesian extreme value distribution model of vehicle loads incorporating de-correlated tail fitting: theory and application to the Nanjing 3rd Yangtze River Bridge publication-title: Eng. Struct. – volume: 17 start-page: 57 year: 2003 end-page: 96 ident: bib0041 article-title: Fluctuating lift on a circular cylinder: review and new measurements publication-title: J. Fluids Struct. – volume: 137 start-page: 386 year: 2019 end-page: 403 ident: bib0011 article-title: Motor car–track spatial coupled dynamics model of a high-speed train with traction transmission systems publication-title: Mech. Mach. Theory – year: 1964 ident: bib0052 article-title: Note on the distribution of the largest value of a random function with application to gust loading publication-title: Proc. Inst. Civ. Eng. – year: 2016 ident: bib0044 article-title: Boundary-layer Theory – volume: 13 start-page: 311 year: 2018 end-page: 322 ident: bib0016 article-title: Review of pantograph and catenary interaction publication-title: Front. Mech. Eng. – volume: 233 start-page: 691 year: 2019 end-page: 700 ident: bib0022 article-title: Static form-finding of normal and defective catenaries based on the analytical exact solution of the tensile Euler–Bernoulli beam publication-title: Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit – volume: 22 start-page: 295 year: 2006 end-page: 314 ident: bib0047 article-title: Interaction of railway vehicles with track in cross-winds publication-title: J. Fluids Struct. – volume: 203 year: 2020 ident: bib0004 article-title: Experimental study and mathematical modeling on the unsteady galloping of a bridge deck with open cross section publication-title: J. Wind Eng. Ind. Aerodyn. – volume: 69 start-page: 8196 year: 2020 end-page: 8206 ident: bib0024 article-title: Contact wire irregularity stochastics and effect on high-speed railway pantograph-catenary interactions publication-title: IEEE Trans. Instrum. Meas. – reference: . – volume: 214 start-page: 173 year: 2000 end-page: 182 ident: bib0040 article-title: An investigation into the attenuation of wind speed by the use of windbreaks in the vicinity of overhead wires publication-title: Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit – reference: Cheynet E. Wind field simulation (text-based input) [Internet]. 2020. Available from: – year: 2018 ident: bib0048 article-title: Wind-resistant Design Specification For Highway Bridges (in Chinese) – volume: 151 year: 2021 ident: bib0019 article-title: A spatial coupling model to study dynamic performance of pantograph-catenary with vehicle-track excitation publication-title: Mech. Syst. Signal Process – volume: 69 start-page: 10596 year: 2020 end-page: 10605 ident: bib0028 article-title: Assessment of the high-frequency response in railway pantograph-catenary interaction based on numerical simulation publication-title: IEEE Trans. Veh. Technol. – volume: 7 start-page: 173 year: 2019 end-page: 190 ident: bib0026 article-title: Developed moving mesh method for high-speed railway pantograph-catenary interaction based on nonlinear finite element procedure publication-title: Int. J. Rail Transp. – volume: 140 year: 2018 ident: bib0032 article-title: Study on wind-induced vibration behavior of railway catenary in spatial stochastic wind field based on nonlinear finite element procedure publication-title: J. Vib. Acoust. Trans. ASME – volume: 149 year: 2020 ident: 10.1016/j.mechmachtheory.2021.104608_bib0014 article-title: A three-dimensional approach for contact detection between realistic wheel and rail surfaces for improved railway dynamic analysis publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2020.103825 – volume: 153 year: 2020 ident: 10.1016/j.mechmachtheory.2021.104608_bib0010 article-title: Artificial neural networks applied to the measurement of lateral wheel-rail contact force: a comparison with a harmonic cancellation method publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2020.103968 – volume: 22 start-page: 295 year: 2006 ident: 10.1016/j.mechmachtheory.2021.104608_bib0047 article-title: Interaction of railway vehicles with track in cross-winds publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2005.11.003 – year: 2018 ident: 10.1016/j.mechmachtheory.2021.104608_bib0048 – year: 2018 ident: 10.1016/j.mechmachtheory.2021.104608_bib0043 – volume: 7 start-page: 173 year: 2019 ident: 10.1016/j.mechmachtheory.2021.104608_bib0026 article-title: Developed moving mesh method for high-speed railway pantograph-catenary interaction based on nonlinear finite element procedure publication-title: Int. J. Rail Transp. doi: 10.1080/23248378.2018.1532330 – volume: 184 start-page: 23 year: 2019 ident: 10.1016/j.mechmachtheory.2021.104608_bib0033 article-title: Wind tunnel test of an aeroelastic model of a catenary system for a high-speed railway in China publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2018.11.008 – ident: 10.1016/j.mechmachtheory.2021.104608_bib0045 – volume: 232 start-page: 2339 year: 2018 ident: 10.1016/j.mechmachtheory.2021.104608_bib0008 article-title: Analysis of the galloping behaviour of an electrified railway overhead contact line using the non-linear finite element method publication-title: Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit doi: 10.1177/0954409718769751 – start-page: 70 year: 2021 ident: 10.1016/j.mechmachtheory.2021.104608_bib0013 article-title: An automatic loose defect detection method for catenary bracing wire components using deep convolutional neural networks and image processing publication-title: IEEE Trans. Instrum. Meas. – volume: 16 start-page: 73 year: 2001 ident: 10.1016/j.mechmachtheory.2021.104608_bib0049 article-title: Probabilistic 3-D turbulence modeling for gust buffeting of structures publication-title: Probabilistic Eng. Mech. doi: 10.1016/S0266-8920(00)00010-2 – volume: 69 start-page: 6299 year: 2020 ident: 10.1016/j.mechmachtheory.2021.104608_bib0025 article-title: Effective measures to improve current collection quality for double pantographs and catenary based on wave propagation analysis publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2020.2985382 – volume: 156 year: 2021 ident: 10.1016/j.mechmachtheory.2021.104608_bib0051 article-title: An enhanced moment-based approach to time-dependent positional reliability analysis for robotic manipulators publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2020.104167 – volume: 124 start-page: 88 year: 2013 ident: 10.1016/j.mechmachtheory.2021.104608_bib0030 article-title: Environmental and track perturbations on multiple pantograph interaction with catenaries in high-speed trains publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2013.01.015 – year: 2016 ident: 10.1016/j.mechmachtheory.2021.104608_bib0055 – start-page: 1 year: 2020 ident: 10.1016/j.mechmachtheory.2021.104608_bib0012 article-title: Data-driven fault diagnosis for traction systems in high-speed trains: a survey, challenges, and perspectives publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 60 start-page: 201 year: 1978 ident: 10.1016/j.mechmachtheory.2021.104608_bib0003 article-title: The action of flexible bridges under wind, II: buffeting theory publication-title: J. Sound Vib. doi: 10.1016/S0022-460X(78)80029-7 – volume: 137 start-page: 386 year: 2019 ident: 10.1016/j.mechmachtheory.2021.104608_bib0011 article-title: Motor car–track spatial coupled dynamics model of a high-speed train with traction transmission systems publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2019.03.032 – year: 2016 ident: 10.1016/j.mechmachtheory.2021.104608_bib0044 – volume: 52 start-page: 1254 year: 2014 ident: 10.1016/j.mechmachtheory.2021.104608_bib0017 article-title: Introduction of variability into pantograph-catenary dynamic simulations publication-title: Veh. Syst. Dyn. doi: 10.1080/00423114.2014.922199 – volume: 162 year: 2021 ident: 10.1016/j.mechmachtheory.2021.104608_bib0021 article-title: Identification of short-wavelength contact wire irregularities in electrified railway pantograph–catenary system publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2021.104338 – volume: 62 start-page: 237 year: 1996 ident: 10.1016/j.mechmachtheory.2021.104608_bib0046 article-title: The suitability of the von Karman spectrum for the structure of turbulence in a complex terrain wind farm publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/S0167-6105(96)00059-1 – start-page: 203 year: 2020 ident: 10.1016/j.mechmachtheory.2021.104608_bib0002 article-title: Assessment of wind-induced nonlinear post-critical performance of bridge decks publication-title: J. Wind Eng. Ind. Aerodyn. – start-page: 1 year: 2020 ident: 10.1016/j.mechmachtheory.2021.104608_bib0020 article-title: Analytical model of the pantograph–catenary dynamic interaction and comparison with numerical simulations publication-title: Veh. Syst. Dyn. doi: 10.1080/00423114.2020.1802493 – volume: 12 start-page: 157 year: 2012 ident: 10.1016/j.mechmachtheory.2021.104608_bib0036 article-title: Efficient combination of a TCUD method and an initial force method for determining initial shapes of cable-supported bridges publication-title: Int. J. Steel Struct. doi: 10.1007/s13296-012-2002-1 – volume: 60 start-page: 187 year: 1978 ident: 10.1016/j.mechmachtheory.2021.104608_bib0006 article-title: The action of flexible bridges under wind, I: flutter theory publication-title: J. Sound Vib. doi: 10.1016/S0022-460X(78)80028-5 – year: 2018 ident: 10.1016/j.mechmachtheory.2021.104608_bib0042 – volume: 17 start-page: 225 year: 1964 ident: 10.1016/j.mechmachtheory.2021.104608_bib0039 article-title: The square prism as an aeroelastic non-linear oscillator publication-title: Q. J. Mech. Appl. Math. doi: 10.1093/qjmam/17.2.225 – volume: 139 year: 2017 ident: 10.1016/j.mechmachtheory.2021.104608_bib0027 article-title: Pantograph/Catenary contact formulations publication-title: J. Vib. Acoust. Trans. ASME doi: 10.1115/1.4035132 – volume: 151 year: 2021 ident: 10.1016/j.mechmachtheory.2021.104608_bib0019 article-title: A spatial coupling model to study dynamic performance of pantograph-catenary with vehicle-track excitation publication-title: Mech. Syst. Signal Process doi: 10.1016/j.ymssp.2020.107336 – volume: 2 start-page: 339 year: 1999 ident: 10.1016/j.mechmachtheory.2021.104608_bib0053 article-title: Dependence measures for extreme value analyses publication-title: Extrem doi: 10.1023/A:1009963131610 – start-page: 205 year: 2020 ident: 10.1016/j.mechmachtheory.2021.104608_bib0005 article-title: Aerodynamic damping models for vortex-induced vibration of a rectangular 4:1 cylinder: comparison of modeling schemes publication-title: J. Wind Eng. Ind. Aerodyn. – volume: 233 start-page: 691 year: 2019 ident: 10.1016/j.mechmachtheory.2021.104608_bib0022 article-title: Static form-finding of normal and defective catenaries based on the analytical exact solution of the tensile Euler–Bernoulli beam publication-title: Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit doi: 10.1177/0954409718808990 – volume: 17 start-page: 57 year: 2003 ident: 10.1016/j.mechmachtheory.2021.104608_bib0041 article-title: Fluctuating lift on a circular cylinder: review and new measurements publication-title: J. Fluids Struct. doi: 10.1016/S0889-9746(02)00099-3 – volume: 152 year: 2020 ident: 10.1016/j.mechmachtheory.2021.104608_bib0023 article-title: A methodology to study high-speed pantograph-catenary interaction with realistic contact wire irregularities publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2020.103940 – volume: 69 start-page: 8196 year: 2020 ident: 10.1016/j.mechmachtheory.2021.104608_bib0024 article-title: Contact wire irregularity stochastics and effect on high-speed railway pantograph-catenary interactions publication-title: IEEE Trans. Instrum. Meas. – volume: 54 start-page: 723 year: 2016 ident: 10.1016/j.mechmachtheory.2021.104608_bib0031 article-title: Nonlinear analysis of wind-induced vibration of high-speed railway catenary and its influence on pantograph–catenary interaction publication-title: Veh. Syst. Dyn. doi: 10.1080/00423114.2016.1156134 – volume: 13 start-page: 311 year: 2018 ident: 10.1016/j.mechmachtheory.2021.104608_bib0016 article-title: Review of pantograph and catenary interaction publication-title: Front. Mech. Eng. doi: 10.1007/s11465-018-0494-x – volume: 18 start-page: 11 year: 1996 ident: 10.1016/j.mechmachtheory.2021.104608_bib0057 article-title: Fractile levels for non-stationary extreme response of linear structures publication-title: Struct. Saf. doi: 10.1016/0167-4730(96)00002-1 – volume: 214 start-page: 173 year: 2000 ident: 10.1016/j.mechmachtheory.2021.104608_bib0040 article-title: An investigation into the attenuation of wind speed by the use of windbreaks in the vicinity of overhead wires publication-title: Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit doi: 10.1243/0954409001531298 – volume: 57 start-page: 407 year: 1995 ident: 10.1016/j.mechmachtheory.2021.104608_bib0007 article-title: Finite element modelling of transmission line galloping publication-title: Comput. Struct. doi: 10.1016/0045-7949(94)00630-L – volume: 157 year: 2021 ident: 10.1016/j.mechmachtheory.2021.104608_bib0009 article-title: Coupling model and vibration simulations of railway vehicles and running gear bearings with multitype defects publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2020.104215 – year: 2015 ident: 10.1016/j.mechmachtheory.2021.104608_bib0035 – volume: 98 start-page: 27 year: 1972 ident: 10.1016/j.mechmachtheory.2021.104608_bib0038 article-title: Galloping oscillations of prismatic structures publication-title: ASCE J. Eng. Mech. Div. doi: 10.1061/JMCEA3.0001575 – volume: 113 start-page: 71 year: 2016 ident: 10.1016/j.mechmachtheory.2021.104608_bib0037 article-title: Identification of system damping in railway catenary wire systems from full-scale measurements publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2016.01.031 – volume: 140 year: 2018 ident: 10.1016/j.mechmachtheory.2021.104608_bib0032 article-title: Study on wind-induced vibration behavior of railway catenary in spatial stochastic wind field based on nonlinear finite element procedure publication-title: J. Vib. Acoust. Trans. ASME doi: 10.1115/1.4037521 – volume: 69 start-page: 10596 year: 2020 ident: 10.1016/j.mechmachtheory.2021.104608_bib0028 article-title: Assessment of the high-frequency response in railway pantograph-catenary interaction based on numerical simulation publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2020.3015044 – year: 1964 ident: 10.1016/j.mechmachtheory.2021.104608_bib0052 article-title: Note on the distribution of the largest value of a random function with application to gust loading publication-title: Proc. Inst. Civ. Eng. – volume: 22 start-page: 729 year: 2019 ident: 10.1016/j.mechmachtheory.2021.104608_bib0054 article-title: On the accuracy of Poisson approximation publication-title: Extremes (Boston) doi: 10.1007/s10687-019-00350-6 – volume: 47 start-page: 1327 year: 2009 ident: 10.1016/j.mechmachtheory.2021.104608_bib0029 article-title: Influence of the aerodynamic forces on the pantograph-catenary system for high-speed trains publication-title: Veh. Syst. Dyn. doi: 10.1080/00423110802613402 – volume: 133 start-page: 35 year: 2009 ident: 10.1016/j.mechmachtheory.2021.104608_bib0058 article-title: Turbulence intensity parameters over a very complex terrain publication-title: Boundary-Layer Meteorol. doi: 10.1007/s10546-009-9413-3 – volume: 233 start-page: 370 year: 2019 ident: 10.1016/j.mechmachtheory.2021.104608_bib0018 article-title: An investigation on the active control strategy for a high-speed pantograph using co-simulations publication-title: Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. – year: 2017 ident: 10.1016/j.mechmachtheory.2021.104608_bib0034 article-title: Pantograph and contact line system – volume: 203 year: 2020 ident: 10.1016/j.mechmachtheory.2021.104608_bib0004 article-title: Experimental study and mathematical modeling on the unsteady galloping of a bridge deck with open cross section publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2020.104170 – volume: 59 start-page: 386 year: 2014 ident: 10.1016/j.mechmachtheory.2021.104608_bib0050 article-title: A novel Bayesian extreme value distribution model of vehicle loads incorporating de-correlated tail fitting: theory and application to the Nanjing 3rd Yangtze River Bridge publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2013.10.029 – volume: 28 start-page: 54 year: 2020 ident: 10.1016/j.mechmachtheory.2021.104608_bib0015 article-title: Effect of cavity flow control on high-speed train pantograph and roof aerodynamic noise publication-title: Railw. Eng. Sci. doi: 10.1007/s40534-020-00205-y – volume: 6 start-page: 57 year: 2018 ident: 10.1016/j.mechmachtheory.2021.104608_bib0001 article-title: Pantograph–catenary interaction: recent achievements and future research challenges publication-title: Int. J. Rail Transp. doi: 10.1080/23248378.2017.1400156 – volume: 70 start-page: 1169 year: 2021 ident: 10.1016/j.mechmachtheory.2021.104608_bib0056 article-title: A response spectrum analysis of wind deflection in railway overhead contact lines using pseudo-excitation method publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2021.3054459 |
SSID | ssj0007543 |
Score | 2.571474 |
Snippet | This paper evaluates the railway catenary's wind deflection under crosswind based on wind tunnel experiments and a nonlinear finite element model. A catenary... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 104608 |
SubjectTerms | Catenary Contact wire Crosswind Electrified railway Finite element Wind deflection |
Title | Wind deflection analysis of railway catenary under crosswind based on nonlinear finite element model and wind tunnel test |
URI | https://dx.doi.org/10.1016/j.mechmachtheory.2021.104608 |
Volume | 168 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEF7EQmkPpU9qH7IHr6lms4lZeigiFdtST5V6C5t9oEWtSES89Ld3ZhNrhR6EHnIJmU3Ymex8w37zLSG1ODbSYvBqzUKPS6691AjlwSVtI4382OKO7msv6vb58yAclEh73QuDtMpi7c_XdLdaF3fqxWzWZ6MR9vgKDmh-AEUL6tih7DbnTYzyu68NzaMZFsw5wT18ep_UNhyviVHDiVRD1zS4gmqR-W7TEw-b_CtN_Uo9nWNyVGBG2so_64SUzPSUHP5SEjwjq3eorak2duyoVVMqC7ER-mnpXI7GS7miSH7C7luKjWNz6t68RDtMZZqC1TQXzpBzakcIRqnJ2eXUHZgDg2rqDLIF0mMowNTsnPQ7j2_trlecquCpIOaZJ4RKGVMyDEIJtUYaWZ9LgHUNGwTSMhlpIVmkJFQeyjeRhZoHcjhKCFv4X1kQXJAyfI25JDSMmlak2oiUQ1XpK9GQMcAHowXzI8AdFXK_nsREFZLjePLFOFlzyz6SbRck6IIkd0GFhD_Ws1x6Y0e7h7W_kq1QSiBL7DTC1b9HuCYHDPskHL37hpSz-cLcAnrJ0qoLzyrZaz29dHvfmLr0KQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60go-D-MT63IPXYLNJtlk8iIhSXz0p9hY2-6CVtpaSUvrvnUm2WsGD4CGXwGyWnc3ON-w33wCcp6lVjjavMTwJYhWbILdSB_go18hFmDq60X1ui9Zr_NBJOktwM6-FIVqlP_urM708rf2bC7-aF6Nej2p8ZYxovoNJC-nYiWVYIXWqpAYr1_ePrfbXgdxMPHlOxgEZrML5N81rYHV3oHS3rBucYcLIw_Lek_pN_hapFqLP3RZsetjIrquZbcOSHe7AxoKY4C7M3jC9Zsa6fsmuGjLl9UbYh2Nj1etP1YwR_4kKcBnVjo1Z-eUp2VE0MwythpV2hhoz1yM8ymxFMGdlzxwc1LDSoJgQQ4YhUi324PXu9uWmFfjGCoGO0rgIpNQ551olUaIw3ciFC2OFyK7hokg5roSRigutMPnQoRUO0x4M46Qi7PCX5VG0DzWcjT0Aloimk7mxMo8xsQy1bKgUEYQ1kocCoUcdLueLmGmvOk7NL_rZnF72nv10QUYuyCoX1CH5sh5V6ht_tLua-yv7sZsyDBR_GuHw3yOcwVrr5fkpe7pvPx7BOqeyiZLtfQy1YjyxJwhmivzUb9ZP7Zz22g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wind+deflection+analysis+of+railway+catenary+under+crosswind+based+on+nonlinear+finite+element+model+and+wind+tunnel+test&rft.jtitle=Mechanism+and+machine+theory&rft.au=Song%2C+Yang&rft.au=Zhang%2C+Mingjie&rft.au=%C3%98iseth%2C+Ole&rft.au=R%C3%B8nnquist%2C+Anders&rft.date=2022-02-01&rft.pub=Elsevier+Ltd&rft.issn=0094-114X&rft.eissn=1873-3999&rft.volume=168&rft_id=info:doi/10.1016%2Fj.mechmachtheory.2021.104608&rft.externalDocID=S0094114X21003426 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-114X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-114X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-114X&client=summon |