Structural and Functional Basis for an EBNA1 Hexameric Ring in Epstein-Barr Virus Episome Maintenance

Epstein-Barr virus (EBV) establishes a stable latent infection that can persist for the life of the host. EBNA1 is required for the replication, maintenance, and segregation of the latent episome, but the structural features of EBNA1 that confer each of these functions are not completely understood....

Full description

Saved in:
Bibliographic Details
Published inJournal of virology Vol. 91; no. 19
Main Authors Deakyne, Julianna S., Malecka, Kimberly A., Messick, Troy E., Lieberman, Paul M.
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.10.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Epstein-Barr virus (EBV) establishes a stable latent infection that can persist for the life of the host. EBNA1 is required for the replication, maintenance, and segregation of the latent episome, but the structural features of EBNA1 that confer each of these functions are not completely understood. Here, we have solved the X-ray crystal structure of an EBNA1 DNA-binding domain (DBD) and discovered a novel hexameric ring oligomeric form. The oligomeric interface pivoted around residue T585 as a joint that links and stabilizes higher-order EBNA1 complexes. Substitution mutations around the interface destabilized higher-order complex formation and altered the cooperative DNA-binding properties of EBNA1. Mutations had both positive and negative effects on EBNA1-dependent DNA replication and episome maintenance with OriP. We found that one naturally occurring polymorphism in the oligomer interface (T585P) had greater cooperative DNA binding in vitro , minor defects in DNA replication, and pronounced defects in episome maintenance. The T585P mutant was compromised for binding to OriP in vivo as well as for assembling the origin recognition complex subunit 2 (ORC2) and trimethylated histone 3 lysine 4 (H3K4me3) at OriP. The T585P mutant was also compromised for forming stable subnuclear foci in living cells. These findings reveal a novel oligomeric structure of EBNA1 with an interface subject to naturally occurring polymorphisms that modulate EBNA1 functional properties. We propose that EBNA1 dimers can assemble into higher-order oligomeric structures important for diverse functions of EBNA1. IMPORTANCE Epstein-Barr virus is a human gammaherpesvirus that is causally associated with various cancers. Carcinogenic properties are linked to the ability of the virus to persist in the latent form for the lifetime of the host. EBNA1 is a sequence-specific DNA-binding protein that is consistently expressed in EBV tumors and is the only viral protein required to maintain the viral episome during latency. The structural and biochemical mechanisms by which EBNA1 allows the long-term persistence of the EBV genome are currently unclear. Here, we have solved the crystal structure of an EBNA1 hexameric ring and characterized key residues in the interface required for higher-order complex formation and long-term plasmid maintenance.
AbstractList Epstein-Barr virus (EBV) establishes a stable latent infection that can persist for the life of the host. EBNA1 is required for the replication, maintenance, and segregation of the latent episome, but the structural features of EBNA1 that confer each of these functions are not completely understood. Here, we have solved the X-ray crystal structure of an EBNA1 DNA-binding domain (DBD) and discovered a novel hexameric ring oligomeric form. The oligomeric interface pivoted around residue T585 as a joint that links and stabilizes higher-order EBNA1 complexes. Substitution mutations around the interface destabilized higher-order complex formation and altered the cooperative DNA-binding properties of EBNA1. Mutations had both positive and negative effects on EBNA1-dependent DNA replication and episome maintenance with OriP. We found that one naturally occurring polymorphism in the oligomer interface (T585P) had greater cooperative DNA binding in vitro , minor defects in DNA replication, and pronounced defects in episome maintenance. The T585P mutant was compromised for binding to OriP in vivo as well as for assembling the origin recognition complex subunit 2 (ORC2) and trimethylated histone 3 lysine 4 (H3K4me3) at OriP. The T585P mutant was also compromised for forming stable subnuclear foci in living cells. These findings reveal a novel oligomeric structure of EBNA1 with an interface subject to naturally occurring polymorphisms that modulate EBNA1 functional properties. We propose that EBNA1 dimers can assemble into higher-order oligomeric structures important for diverse functions of EBNA1. IMPORTANCE Epstein-Barr virus is a human gammaherpesvirus that is causally associated with various cancers. Carcinogenic properties are linked to the ability of the virus to persist in the latent form for the lifetime of the host. EBNA1 is a sequence-specific DNA-binding protein that is consistently expressed in EBV tumors and is the only viral protein required to maintain the viral episome during latency. The structural and biochemical mechanisms by which EBNA1 allows the long-term persistence of the EBV genome are currently unclear. Here, we have solved the crystal structure of an EBNA1 hexameric ring and characterized key residues in the interface required for higher-order complex formation and long-term plasmid maintenance.
Epstein-Barr virus (EBV) establishes a stable latent infection that can persist for the life of the host. EBNA1 is required for the replication, maintenance, and segregation of the latent episome, but the structural features of EBNA1 that confer each of these functions are not completely understood. Here, we have solved the X-ray crystal structure of an EBNA1 DNA-binding domain (DBD) and discovered a novel hexameric ring oligomeric form. The oligomeric interface pivoted around residue T585 as a joint that links and stabilizes higher-order EBNA1 complexes. Substitution mutations around the interface destabilized higher-order complex formation and altered the cooperative DNA-binding properties of EBNA1. Mutations had both positive and negative effects on EBNA1-dependent DNA replication and episome maintenance with OriP. We found that one naturally occurring polymorphism in the oligomer interface (T585P) had greater cooperative DNA binding in vitro, minor defects in DNA replication, and pronounced defects in episome maintenance. The T585P mutant was compromised for binding to OriP in vivo as well as for assembling the origin recognition complex subunit 2 (ORC2) and trimethylated histone 3 lysine 4 (H3K4me3) at OriP. The T585P mutant was also compromised for forming stable subnuclear foci in living cells. These findings reveal a novel oligomeric structure of EBNA1 with an interface subject to naturally occurring polymorphisms that modulate EBNA1 functional properties. We propose that EBNA1 dimers can assemble into higher-order oligomeric structures important for diverse functions of EBNA1.IMPORTANCE Epstein-Barr virus is a human gammaherpesvirus that is causally associated with various cancers. Carcinogenic properties are linked to the ability of the virus to persist in the latent form for the lifetime of the host. EBNA1 is a sequence-specific DNA-binding protein that is consistently expressed in EBV tumors and is the only viral protein required to maintain the viral episome during latency. The structural and biochemical mechanisms by which EBNA1 allows the long-term persistence of the EBV genome are currently unclear. Here, we have solved the crystal structure of an EBNA1 hexameric ring and characterized key residues in the interface required for higher-order complex formation and long-term plasmid maintenance.Epstein-Barr virus (EBV) establishes a stable latent infection that can persist for the life of the host. EBNA1 is required for the replication, maintenance, and segregation of the latent episome, but the structural features of EBNA1 that confer each of these functions are not completely understood. Here, we have solved the X-ray crystal structure of an EBNA1 DNA-binding domain (DBD) and discovered a novel hexameric ring oligomeric form. The oligomeric interface pivoted around residue T585 as a joint that links and stabilizes higher-order EBNA1 complexes. Substitution mutations around the interface destabilized higher-order complex formation and altered the cooperative DNA-binding properties of EBNA1. Mutations had both positive and negative effects on EBNA1-dependent DNA replication and episome maintenance with OriP. We found that one naturally occurring polymorphism in the oligomer interface (T585P) had greater cooperative DNA binding in vitro, minor defects in DNA replication, and pronounced defects in episome maintenance. The T585P mutant was compromised for binding to OriP in vivo as well as for assembling the origin recognition complex subunit 2 (ORC2) and trimethylated histone 3 lysine 4 (H3K4me3) at OriP. The T585P mutant was also compromised for forming stable subnuclear foci in living cells. These findings reveal a novel oligomeric structure of EBNA1 with an interface subject to naturally occurring polymorphisms that modulate EBNA1 functional properties. We propose that EBNA1 dimers can assemble into higher-order oligomeric structures important for diverse functions of EBNA1.IMPORTANCE Epstein-Barr virus is a human gammaherpesvirus that is causally associated with various cancers. Carcinogenic properties are linked to the ability of the virus to persist in the latent form for the lifetime of the host. EBNA1 is a sequence-specific DNA-binding protein that is consistently expressed in EBV tumors and is the only viral protein required to maintain the viral episome during latency. The structural and biochemical mechanisms by which EBNA1 allows the long-term persistence of the EBV genome are currently unclear. Here, we have solved the crystal structure of an EBNA1 hexameric ring and characterized key residues in the interface required for higher-order complex formation and long-term plasmid maintenance.
Epstein-Barr virus (EBV) establishes a stable latent infection that can persist for the life of the host. EBNA1 is required for the replication, maintenance, and segregation of the latent episome, but the structural features of EBNA1 that confer each of these functions are not completely understood. Here, we have solved the X-ray crystal structure of an EBNA1 DNA-binding domain (DBD) and discovered a novel hexameric ring oligomeric form. The oligomeric interface pivoted around residue T585 as a joint that links and stabilizes higher-order EBNA1 complexes. Substitution mutations around the interface destabilized higher-order complex formation and altered the cooperative DNA-binding properties of EBNA1. Mutations had both positive and negative effects on EBNA1-dependent DNA replication and episome maintenance with OriP. We found that one naturally occurring polymorphism in the oligomer interface (T585P) had greater cooperative DNA binding , minor defects in DNA replication, and pronounced defects in episome maintenance. The T585P mutant was compromised for binding to OriP as well as for assembling the origin recognition complex subunit 2 (ORC2) and trimethylated histone 3 lysine 4 (H3K4me3) at OriP. The T585P mutant was also compromised for forming stable subnuclear foci in living cells. These findings reveal a novel oligomeric structure of EBNA1 with an interface subject to naturally occurring polymorphisms that modulate EBNA1 functional properties. We propose that EBNA1 dimers can assemble into higher-order oligomeric structures important for diverse functions of EBNA1. Epstein-Barr virus is a human gammaherpesvirus that is causally associated with various cancers. Carcinogenic properties are linked to the ability of the virus to persist in the latent form for the lifetime of the host. EBNA1 is a sequence-specific DNA-binding protein that is consistently expressed in EBV tumors and is the only viral protein required to maintain the viral episome during latency. The structural and biochemical mechanisms by which EBNA1 allows the long-term persistence of the EBV genome are currently unclear. Here, we have solved the crystal structure of an EBNA1 hexameric ring and characterized key residues in the interface required for higher-order complex formation and long-term plasmid maintenance.
Author Deakyne, Julianna S.
Messick, Troy E.
Malecka, Kimberly A.
Lieberman, Paul M.
Author_xml – sequence: 1
  givenname: Julianna S.
  surname: Deakyne
  fullname: Deakyne, Julianna S.
  organization: The Wistar Institute, Philadelphia, Pennsylvania, USA
– sequence: 2
  givenname: Kimberly A.
  surname: Malecka
  fullname: Malecka, Kimberly A.
  organization: The Wistar Institute, Philadelphia, Pennsylvania, USA
– sequence: 3
  givenname: Troy E.
  surname: Messick
  fullname: Messick, Troy E.
  organization: The Wistar Institute, Philadelphia, Pennsylvania, USA
– sequence: 4
  givenname: Paul M.
  surname: Lieberman
  fullname: Lieberman, Paul M.
  organization: The Wistar Institute, Philadelphia, Pennsylvania, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28701406$$D View this record in MEDLINE/PubMed
BookMark eNptkc1vFSEUxYmpsa_VnWvD0oVTuXwNszHpa1pbUzXxo3FHKO9OxczAExij_73U1kaNK-DeH-dcOHtkJ6aIhDwGdgDAzfNXF2cHDJjUHfT3yArYYDqlQO6QFWOcd0qYT7tkr5QvjIGUWj4gu9z0bc_0iuD7mhdfl-wm6uKGnizR15BiO65dCYWOKbcGPV6_OQR6it_djDl4-i7EKxpafVsqhtitXc70IuSltFIoaUb62oVYMbro8SG5P7qp4KPbdZ98PDn-cHTanb99eXZ0eN55YWTtBjnKURtjLntntBiUEGIU3nuunR-M3nDmpB4NeK6EkqiE9hIQjNqo3msQ--TFje52uZxx4zHW9jC7zWF2-YdNLti_OzF8tlfpm1VqGHqtmsDTW4Gcvi5Yqp1D8ThNLmJaioUBjGm2A2_okz-97kx-_20Dnt0APqdSMo53CDB7HZ1t0dlf0VnoG87_wX2o7jqLNmmY_n_pJ90Lm34
CitedBy_id crossref_primary_10_3390_cancers14122899
crossref_primary_10_1016_j_cell_2020_12_022
crossref_primary_10_1073_pnas_1915372116
crossref_primary_10_1128_JVI_01593_18
crossref_primary_10_3390_ijms242115522
crossref_primary_10_3390_v17010110
crossref_primary_10_1111_ctr_13504
crossref_primary_10_1128_JVI_00487_19
crossref_primary_10_1016_j_heliyon_2023_e21486
crossref_primary_10_1128_JVI_02028_19
crossref_primary_10_1002_mco2_739
crossref_primary_10_1128_mbio_00162_24
crossref_primary_10_1146_annurev_virology_092818_015716
crossref_primary_10_3390_cancers10040109
crossref_primary_10_1128_jvi_00949_22
crossref_primary_10_3390_ijms222111316
crossref_primary_10_1016_j_jmb_2023_168380
crossref_primary_10_1055_s_0042_1751301
crossref_primary_10_3389_fonc_2020_00600
crossref_primary_10_3390_ijms241713066
crossref_primary_10_1016_j_tim_2019_09_002
Cites_doi 10.1016/S0021-9258(17)42220-4
10.1007/978-3-319-22822-8_7
10.1038/359505a0
10.1016/j.coviro.2012.09.005
10.6064/2012/438204
10.1007/s11262-014-1101-9
10.1128/JVI.02517-12
10.1016/0166-0934(88)90096-1
10.1107/S0907444909052925
10.1016/S0959-440X(98)80009-2
10.1016/j.virusres.2009.11.010
10.1242/jcs.060913
10.1073/pnas.88.8.3204
10.1093/gbe/evu054
10.1107/S0907444910007493
10.18632/oncotarget.14540
10.1016/j.molcel.2005.09.020
10.1128/jvi.68.6.4067-4071.1994
10.1128/jvi.70.2.1228-1231.1996
10.1371/journal.ppat.1003672
10.1128/MCB.25.12.4934-4945.2005
10.1016/0092-8674(95)90232-5
10.1128/JVI.00239-16
10.1371/journal.ppat.1000469
10.1128/JVI.78.21.11487-11505.2004
10.1371/journal.pone.0140529
10.1093/emboj/21.6.1487
10.1002/(SICI)1099-1654(200003/04)10:2<83::AID-RMV262>3.0.CO;2-T
10.1016/S0092-8674(00)81056-9
10.1073/pnas.1421804112
10.1038/nrmicro3135
10.1128/jvi.63.6.2657-2666.1989
10.1016/S0021-9258(20)89523-4
10.1177/1087057110379154
10.1016/S0960-9822(02)00696-6
10.1074/jbc.272.42.26434
10.1371/journal.pone.0010126
10.1074/jbc.M001414200
10.1073/pnas.88.23.10875
10.1128/JVI.75.22.10603-10611.2001
10.1126/science.1252786
10.1016/0042-6822(87)90025-0
10.1016/S1097-2765(02)00476-8
10.1371/journal.ppat.1003640
10.1128/JVI.77.22.11992-12001.2003
10.1128/jvi.68.3.1913-1925.1994
10.1073/pnas.88.23.10870
10.1016/j.pep.2005.01.016
10.1016/0022-2836(67)90307-5
10.1016/j.plasmid.2007.01.003
10.1038/sj.emboj.7601853
ContentType Journal Article
Copyright Copyright © 2017 American Society for Microbiology.
Copyright © 2017 American Society for Microbiology. 2017 American Society for Microbiology
Copyright_xml – notice: Copyright © 2017 American Society for Microbiology.
– notice: Copyright © 2017 American Society for Microbiology. 2017 American Society for Microbiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1128/JVI.01046-17
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate A Hexameric Form of EBNA1 Functions at OriP
EISSN 1098-5514
ExternalDocumentID PMC5599765
28701406
10_1128_JVI_01046_17
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDCR NIH HHS
  grantid: R01 DE017336
– fundername: Wellcome Trust
– fundername: NCI NIH HHS
  grantid: R01 CA093606
– fundername: NCI NIH HHS
  grantid: P30 CA010815
– fundername: Wellcome Trust
  grantid: WT096496
– fundername: NCI NIH HHS
  grantid: T32 CA009171
– fundername: HHS | NIH | National Cancer Institute (NCI)
  grantid: RO1 CA093606
– fundername: HHS | NIH | National Institute of Dental and Craniofacial Research (NIDCR)
  grantid: RO1 DE017336
– fundername: HHS | NIH | National Cancer Institute (NCI)
  grantid: T32 CA09171
– fundername: Wellcome
  grantid: WT096496
– fundername: HHS | NIH | National Cancer Institute (NCI)
  grantid: P30 CA010815
GroupedDBID ---
-~X
.55
.GJ
0R~
18M
29L
2WC
39C
3O-
4.4
41~
53G
5GY
5RE
5VS
6TJ
85S
AAFWJ
AAGFI
AAYJJ
AAYXX
ABPPZ
ACGFO
ACNCT
ADBBV
ADXHL
AENEX
AFFNX
AGVNZ
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CITATION
CS3
D0S
DIK
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
MVM
N9A
O9-
OHT
OK1
P2P
RHI
RNS
RPM
RSF
TR2
UPT
VH1
W2D
W8F
WH7
WOQ
X7M
Y6R
YQT
ZGI
ZXP
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
RHF
UCJ
7X8
5PM
ID FETCH-LOGICAL-c384t-94f4f6888b7a86395333f3ccc26ac986d20a46f81c25354e536c41e185d57c613
ISSN 0022-538X
1098-5514
IngestDate Thu Aug 21 18:20:19 EDT 2025
Fri Jul 11 02:16:18 EDT 2025
Wed Feb 19 02:43:02 EST 2025
Thu Apr 24 22:58:41 EDT 2025
Tue Jul 01 01:02:51 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords episome maintenance
DNA-binding domain
viral latency
oligomers
hexameric ring
EBNA1
Epstein-Barr virus
OriP
cooperative binding
Language English
License Copyright © 2017 American Society for Microbiology.
All Rights Reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c384t-94f4f6888b7a86395333f3ccc26ac986d20a46f81c25354e536c41e185d57c613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Citation Deakyne JS, Malecka KA, Messick TE, Lieberman PM. 2017. Structural and functional basis for an EBNA1 hexameric ring in Epstein-Barr virus episome maintenance. J Virol 91:e01046-17. https://doi.org/10.1128/JVI.01046-17.
OpenAccessLink https://jvi.asm.org/content/jvi/91/19/e01046-17.full.pdf
PMID 28701406
PQID 1918853692
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5599765
proquest_miscellaneous_1918853692
pubmed_primary_28701406
crossref_primary_10_1128_JVI_01046_17
crossref_citationtrail_10_1128_JVI_01046_17
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-01
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Journal of virology
PublicationTitleAlternate J Virol
PublicationYear 2017
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
Mai SJ (e_1_3_2_39_2) 2007; 17
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
8551585 - J Virol. 1996 Feb;70(2):1228-31
2542579 - J Virol. 1989 Jun;63(6):2657-66
27009953 - J Virol. 2016 May 12;90(11):5353-67
10713596 - Rev Med Virol. 2000 Mar-Apr;10(2):83-100
4291934 - J Mol Biol. 1967 Jun 14;26(2):365-9
11889054 - EMBO J. 2002 Mar 15;21(6):1487-96
15923612 - Mol Cell Biol. 2005 Jun;25(12):4934-45
16285920 - Mol Cell. 2005 Nov 11;20(3):377-89
20405039 - PLoS One. 2010 Apr 12;5(4):e10126
9519296 - Curr Opin Struct Biol. 1998 Feb;8(1):49-53
24653027 - Science. 2014 Mar 21;343(6177):1323-5
24278697 - Scientifica (Cairo). 2012;2012:438204
1328886 - Nature. 1992 Oct 8;359(6395):505-12
1849647 - Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3204-8
1660153 - Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10870-4
20383002 - Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501
8288561 - J Biol Chem. 1994 Jan 14;269(2):1057-62
15915565 - Protein Expr Purif. 2005 May;41(1):207-34
11909532 - Curr Biol. 2002 Mar 19;12(6):472-6
25947153 - Proc Natl Acad Sci U S A. 2015 May 26;112(21):6694-9
20930215 - J Biomol Screen. 2010 Oct;15(9):1107-15
8107251 - J Virol. 1994 Mar;68(3):1913-25
24146617 - PLoS Pathog. 2013;9(10):e1003672
26424646 - Curr Top Microbiol Immunol. 2015;390(Pt 1):119-48
11931758 - Mol Cell. 2002 Mar;9(3):493-503
1660154 - Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10875-9
9334219 - J Biol Chem. 1997 Oct 17;272(42):26434-40
23031715 - Curr Opin Virol. 2012 Dec;2(6):733-9
17350094 - Plasmid. 2007 Jul;58(1):1-12
11602702 - J Virol. 2001 Nov;75(22):10603-11
1850421 - J Biol Chem. 1991 Apr 25;266(12):7819-26
15479791 - J Virol. 2004 Nov;78(21):11487-505
8625416 - Cell. 1996 Mar 8;84(5):791-800
17853891 - EMBO J. 2007 Oct 3;26(19):4252-62
24682154 - Genome Biol Evol. 2014 Apr;6(4):846-60
7553871 - Cell. 1995 Oct 6;83(1):39-46
10801810 - J Biol Chem. 2000 Jul 21;275(29):22273-7
2821690 - Virology. 1987 Oct;160(2):498-501
2851598 - J Virol Methods. 1988 Dec;22(2-3):133-42
24146614 - PLoS Pathog. 2013;9(10):e1003640
25011696 - Virus Genes. 2014 Dec;49(3):358-72
8189545 - J Virol. 1994 Jun;68(6):4067-71
19887584 - J Cell Sci. 2009 Dec 1;122(Pt 23):4341-50
28077791 - Oncotarget. 2017 Jan 31;8(5):7248-7264
26460969 - PLoS One. 2015 Oct 13;10(10):e0140529
23152513 - J Virol. 2013 Jan;87(2):1172-82
20124702 - Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21
24192651 - Nat Rev Microbiol. 2013 Dec;11(12):863-75
19941915 - Virus Res. 2010 Feb;147(2):258-64
14581536 - J Virol. 2003 Nov;77(22):11992-2001
17143491 - Oncol Rep. 2007 Jan;17(1):141-6
19521517 - PLoS Pathog. 2009 Jun;5(6):e1000469
References_xml – ident: e_1_3_2_22_2
  doi: 10.1016/S0021-9258(17)42220-4
– ident: e_1_3_2_40_2
  doi: 10.1007/978-3-319-22822-8_7
– ident: e_1_3_2_15_2
  doi: 10.1038/359505a0
– ident: e_1_3_2_27_2
  doi: 10.1016/j.coviro.2012.09.005
– ident: e_1_3_2_17_2
  doi: 10.6064/2012/438204
– ident: e_1_3_2_23_2
  doi: 10.1007/s11262-014-1101-9
– ident: e_1_3_2_37_2
  doi: 10.1128/JVI.02517-12
– ident: e_1_3_2_44_2
  doi: 10.1016/0166-0934(88)90096-1
– ident: e_1_3_2_49_2
  doi: 10.1107/S0907444909052925
– ident: e_1_3_2_12_2
  doi: 10.1016/S0959-440X(98)80009-2
– ident: e_1_3_2_41_2
  doi: 10.1016/j.virusres.2009.11.010
– ident: e_1_3_2_46_2
  doi: 10.1242/jcs.060913
– ident: e_1_3_2_13_2
  doi: 10.1073/pnas.88.8.3204
– ident: e_1_3_2_38_2
  doi: 10.1093/gbe/evu054
– ident: e_1_3_2_50_2
  doi: 10.1107/S0907444910007493
– ident: e_1_3_2_42_2
  doi: 10.18632/oncotarget.14540
– ident: e_1_3_2_26_2
  doi: 10.1016/j.molcel.2005.09.020
– ident: e_1_3_2_33_2
  doi: 10.1128/jvi.68.6.4067-4071.1994
– ident: e_1_3_2_5_2
  doi: 10.1128/jvi.70.2.1228-1231.1996
– ident: e_1_3_2_10_2
  doi: 10.1371/journal.ppat.1003672
– ident: e_1_3_2_47_2
  doi: 10.1128/MCB.25.12.4934-4945.2005
– ident: e_1_3_2_8_2
  doi: 10.1016/0092-8674(95)90232-5
– ident: e_1_3_2_32_2
  doi: 10.1128/JVI.00239-16
– ident: e_1_3_2_24_2
  doi: 10.1371/journal.ppat.1000469
– ident: e_1_3_2_45_2
  doi: 10.1128/JVI.78.21.11487-11505.2004
– ident: e_1_3_2_36_2
  doi: 10.1371/journal.pone.0140529
– ident: e_1_3_2_14_2
  doi: 10.1093/emboj/21.6.1487
– volume: 17
  start-page: 141
  year: 2007
  ident: e_1_3_2_39_2
  article-title: Functional advantage of NPC-related V-val subtype of Epstein-Barr virus nuclear antigen 1 compared with prototype in epithelial cell line
  publication-title: Oncol Rep
– ident: e_1_3_2_18_2
  doi: 10.1002/(SICI)1099-1654(200003/04)10:2<83::AID-RMV262>3.0.CO;2-T
– ident: e_1_3_2_9_2
  doi: 10.1016/S0092-8674(00)81056-9
– ident: e_1_3_2_16_2
  doi: 10.1073/pnas.1421804112
– ident: e_1_3_2_3_2
  doi: 10.1038/nrmicro3135
– ident: e_1_3_2_30_2
  doi: 10.1128/jvi.63.6.2657-2666.1989
– ident: e_1_3_2_31_2
  doi: 10.1016/S0021-9258(20)89523-4
– ident: e_1_3_2_7_2
  doi: 10.1177/1087057110379154
– ident: e_1_3_2_25_2
  doi: 10.1016/S0960-9822(02)00696-6
– ident: e_1_3_2_20_2
  doi: 10.1074/jbc.272.42.26434
– ident: e_1_3_2_6_2
  doi: 10.1371/journal.pone.0010126
– ident: e_1_3_2_4_2
  doi: 10.1074/jbc.M001414200
– ident: e_1_3_2_29_2
  doi: 10.1073/pnas.88.23.10875
– ident: e_1_3_2_19_2
  doi: 10.1128/JVI.75.22.10603-10611.2001
– ident: e_1_3_2_2_2
  doi: 10.1126/science.1252786
– ident: e_1_3_2_43_2
  doi: 10.1016/0042-6822(87)90025-0
– ident: e_1_3_2_51_2
  doi: 10.1016/S1097-2765(02)00476-8
– ident: e_1_3_2_11_2
  doi: 10.1371/journal.ppat.1003640
– ident: e_1_3_2_52_2
  doi: 10.1128/JVI.77.22.11992-12001.2003
– ident: e_1_3_2_28_2
  doi: 10.1128/jvi.68.3.1913-1925.1994
– ident: e_1_3_2_21_2
  doi: 10.1073/pnas.88.23.10870
– ident: e_1_3_2_48_2
  doi: 10.1016/j.pep.2005.01.016
– ident: e_1_3_2_53_2
  doi: 10.1016/0022-2836(67)90307-5
– ident: e_1_3_2_35_2
  doi: 10.1016/j.plasmid.2007.01.003
– ident: e_1_3_2_34_2
  doi: 10.1038/sj.emboj.7601853
– reference: 17853891 - EMBO J. 2007 Oct 3;26(19):4252-62
– reference: 24653027 - Science. 2014 Mar 21;343(6177):1323-5
– reference: 14581536 - J Virol. 2003 Nov;77(22):11992-2001
– reference: 10713596 - Rev Med Virol. 2000 Mar-Apr;10(2):83-100
– reference: 15923612 - Mol Cell Biol. 2005 Jun;25(12):4934-45
– reference: 25947153 - Proc Natl Acad Sci U S A. 2015 May 26;112(21):6694-9
– reference: 8551585 - J Virol. 1996 Feb;70(2):1228-31
– reference: 16285920 - Mol Cell. 2005 Nov 11;20(3):377-89
– reference: 24146614 - PLoS Pathog. 2013;9(10):e1003640
– reference: 15479791 - J Virol. 2004 Nov;78(21):11487-505
– reference: 20930215 - J Biomol Screen. 2010 Oct;15(9):1107-15
– reference: 19521517 - PLoS Pathog. 2009 Jun;5(6):e1000469
– reference: 26460969 - PLoS One. 2015 Oct 13;10(10):e0140529
– reference: 1849647 - Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3204-8
– reference: 20124702 - Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21
– reference: 1660154 - Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10875-9
– reference: 24192651 - Nat Rev Microbiol. 2013 Dec;11(12):863-75
– reference: 19887584 - J Cell Sci. 2009 Dec 1;122(Pt 23):4341-50
– reference: 8288561 - J Biol Chem. 1994 Jan 14;269(2):1057-62
– reference: 11931758 - Mol Cell. 2002 Mar;9(3):493-503
– reference: 25011696 - Virus Genes. 2014 Dec;49(3):358-72
– reference: 2821690 - Virology. 1987 Oct;160(2):498-501
– reference: 4291934 - J Mol Biol. 1967 Jun 14;26(2):365-9
– reference: 11889054 - EMBO J. 2002 Mar 15;21(6):1487-96
– reference: 2851598 - J Virol Methods. 1988 Dec;22(2-3):133-42
– reference: 8107251 - J Virol. 1994 Mar;68(3):1913-25
– reference: 24682154 - Genome Biol Evol. 2014 Apr;6(4):846-60
– reference: 24146617 - PLoS Pathog. 2013;9(10):e1003672
– reference: 9519296 - Curr Opin Struct Biol. 1998 Feb;8(1):49-53
– reference: 10801810 - J Biol Chem. 2000 Jul 21;275(29):22273-7
– reference: 28077791 - Oncotarget. 2017 Jan 31;8(5):7248-7264
– reference: 17143491 - Oncol Rep. 2007 Jan;17(1):141-6
– reference: 9334219 - J Biol Chem. 1997 Oct 17;272(42):26434-40
– reference: 7553871 - Cell. 1995 Oct 6;83(1):39-46
– reference: 26424646 - Curr Top Microbiol Immunol. 2015;390(Pt 1):119-48
– reference: 27009953 - J Virol. 2016 May 12;90(11):5353-67
– reference: 20405039 - PLoS One. 2010 Apr 12;5(4):e10126
– reference: 2542579 - J Virol. 1989 Jun;63(6):2657-66
– reference: 17350094 - Plasmid. 2007 Jul;58(1):1-12
– reference: 8625416 - Cell. 1996 Mar 8;84(5):791-800
– reference: 1660153 - Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10870-4
– reference: 19941915 - Virus Res. 2010 Feb;147(2):258-64
– reference: 1850421 - J Biol Chem. 1991 Apr 25;266(12):7819-26
– reference: 24278697 - Scientifica (Cairo). 2012;2012:438204
– reference: 11909532 - Curr Biol. 2002 Mar 19;12(6):472-6
– reference: 20383002 - Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501
– reference: 11602702 - J Virol. 2001 Nov;75(22):10603-11
– reference: 23031715 - Curr Opin Virol. 2012 Dec;2(6):733-9
– reference: 8189545 - J Virol. 1994 Jun;68(6):4067-71
– reference: 1328886 - Nature. 1992 Oct 8;359(6395):505-12
– reference: 23152513 - J Virol. 2013 Jan;87(2):1172-82
– reference: 15915565 - Protein Expr Purif. 2005 May;41(1):207-34
SSID ssj0014464
Score 2.357699
Snippet Epstein-Barr virus (EBV) establishes a stable latent infection that can persist for the life of the host. EBNA1 is required for the replication, maintenance,...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Binding Sites - genetics
Cell Line, Tumor
Crystallography, X-Ray
DNA Replication - genetics
DNA, Viral - genetics
DNA-Binding Proteins - genetics
Epstein-Barr Virus Nuclear Antigens - genetics
Epstein-Barr Virus Nuclear Antigens - metabolism
Genome and Regulation of Viral Gene Expression
HEK293 Cells
HeLa Cells
Herpesvirus 4, Human - genetics
Herpesvirus 4, Human - growth & development
Histones - metabolism
Humans
Multiprotein Complexes - metabolism
Origin Recognition Complex - genetics
Plasmids - genetics
Protein Structure, Tertiary
Replication Origin - genetics
Virus Replication - genetics
Title Structural and Functional Basis for an EBNA1 Hexameric Ring in Epstein-Barr Virus Episome Maintenance
URI https://www.ncbi.nlm.nih.gov/pubmed/28701406
https://www.proquest.com/docview/1918853692
https://pubmed.ncbi.nlm.nih.gov/PMC5599765
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEBIviDvlJiPBU5TSODf7sYVOY2J7WTf1LXJcR4tW0iltJcoTP51z4lzcrUiDl6iykzbq98XnknM-E_JxOGdaqChzsf_ABQvtu0LG0kUpcDAfqfQC7Hc-OY2OzoPjWTjr9X5bVUubdTpQv_b2lfwPqjAGuGKX7D8g234pDMBnwBeOgDAc74TxWSX-WglnYP77EGxUndobSxQaMRWSzmR8OvLAwPyUdeF83ccyuV7hXpfuWJalc5GXmxUM5avlD9yPCHUkipYSt91X7I-zM_JftbzamvQo9lzLopDO2aBLeC-0ujLtZznuQbLYOqNuFmtxzbo8LZdbZ9LOfM8B_rLO0mIVo3MysBMVYPyakje7cQDW15kxPWa9RTlTdNrsBVl4NvHE_oWeYfPC8cW3AQaUkWsaQHf1tG_Yubb6sIp7GE_g6qS6OvHie-Q-g0CDNfme-j0UBMtBozePt960TjD-2f7tXafmVqRys-DW8mCmj8mjGjs6Mjx6Qnq6eEoemM1It8-I7thEgU20YxOt2ESBTTBBKzbRlk0U2URzGLfYRCs20ZpN1GLTc3J-OJl-OXLrTThc5fNg7YogC7KIc57GkoM7C-GBn_lKKRZJBQ_0nA1lEGXcUyz0w0CHfqQCT4MbOA9jBc7iC3JQLAv9itB5KgVc4s856lQKKSHYD4TP02HqKz7M-sRp_sVE1Qr1uFHKItmHWJ98as--NsosfznvQwNIAksnvg-ThV5uVoknPA7eaiRYn7w0ALXfhO__PXB2-yTega49AWXZd2eK_LKSZ0cNvzgKX9_x_t6Qh93T8pYcANb6HTi66_R9xcU_pS-mbA
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+and+Functional+Basis+for+an+EBNA1+Hexameric+Ring+in+Epstein-Barr+Virus+Episome+Maintenance&rft.jtitle=Journal+of+virology&rft.au=Deakyne%2C+Julianna+S.&rft.au=Malecka%2C+Kimberly+A.&rft.au=Messick%2C+Troy+E.&rft.au=Lieberman%2C+Paul+M.&rft.date=2017-10-01&rft.issn=0022-538X&rft.eissn=1098-5514&rft.volume=91&rft.issue=19&rft_id=info:doi/10.1128%2FJVI.01046-17&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_JVI_01046_17
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon