Structural and Functional Basis for an EBNA1 Hexameric Ring in Epstein-Barr Virus Episome Maintenance
Epstein-Barr virus (EBV) establishes a stable latent infection that can persist for the life of the host. EBNA1 is required for the replication, maintenance, and segregation of the latent episome, but the structural features of EBNA1 that confer each of these functions are not completely understood....
Saved in:
Published in | Journal of virology Vol. 91; no. 19 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.10.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Epstein-Barr virus (EBV) establishes a stable latent infection that can persist for the life of the host. EBNA1 is required for the replication, maintenance, and segregation of the latent episome, but the structural features of EBNA1 that confer each of these functions are not completely understood. Here, we have solved the X-ray crystal structure of an EBNA1 DNA-binding domain (DBD) and discovered a novel hexameric ring oligomeric form. The oligomeric interface pivoted around residue T585 as a joint that links and stabilizes higher-order EBNA1 complexes. Substitution mutations around the interface destabilized higher-order complex formation and altered the cooperative DNA-binding properties of EBNA1. Mutations had both positive and negative effects on EBNA1-dependent DNA replication and episome maintenance with OriP. We found that one naturally occurring polymorphism in the oligomer interface (T585P) had greater cooperative DNA binding
in vitro
, minor defects in DNA replication, and pronounced defects in episome maintenance. The T585P mutant was compromised for binding to OriP
in vivo
as well as for assembling the origin recognition complex subunit 2 (ORC2) and trimethylated histone 3 lysine 4 (H3K4me3) at OriP. The T585P mutant was also compromised for forming stable subnuclear foci in living cells. These findings reveal a novel oligomeric structure of EBNA1 with an interface subject to naturally occurring polymorphisms that modulate EBNA1 functional properties. We propose that EBNA1 dimers can assemble into higher-order oligomeric structures important for diverse functions of EBNA1.
IMPORTANCE
Epstein-Barr virus is a human gammaherpesvirus that is causally associated with various cancers. Carcinogenic properties are linked to the ability of the virus to persist in the latent form for the lifetime of the host. EBNA1 is a sequence-specific DNA-binding protein that is consistently expressed in EBV tumors and is the only viral protein required to maintain the viral episome during latency. The structural and biochemical mechanisms by which EBNA1 allows the long-term persistence of the EBV genome are currently unclear. Here, we have solved the crystal structure of an EBNA1 hexameric ring and characterized key residues in the interface required for higher-order complex formation and long-term plasmid maintenance. |
---|---|
AbstractList | Epstein-Barr virus (EBV) establishes a stable latent infection that can persist for the life of the host. EBNA1 is required for the replication, maintenance, and segregation of the latent episome, but the structural features of EBNA1 that confer each of these functions are not completely understood. Here, we have solved the X-ray crystal structure of an EBNA1 DNA-binding domain (DBD) and discovered a novel hexameric ring oligomeric form. The oligomeric interface pivoted around residue T585 as a joint that links and stabilizes higher-order EBNA1 complexes. Substitution mutations around the interface destabilized higher-order complex formation and altered the cooperative DNA-binding properties of EBNA1. Mutations had both positive and negative effects on EBNA1-dependent DNA replication and episome maintenance with OriP. We found that one naturally occurring polymorphism in the oligomer interface (T585P) had greater cooperative DNA binding
in vitro
, minor defects in DNA replication, and pronounced defects in episome maintenance. The T585P mutant was compromised for binding to OriP
in vivo
as well as for assembling the origin recognition complex subunit 2 (ORC2) and trimethylated histone 3 lysine 4 (H3K4me3) at OriP. The T585P mutant was also compromised for forming stable subnuclear foci in living cells. These findings reveal a novel oligomeric structure of EBNA1 with an interface subject to naturally occurring polymorphisms that modulate EBNA1 functional properties. We propose that EBNA1 dimers can assemble into higher-order oligomeric structures important for diverse functions of EBNA1.
IMPORTANCE
Epstein-Barr virus is a human gammaherpesvirus that is causally associated with various cancers. Carcinogenic properties are linked to the ability of the virus to persist in the latent form for the lifetime of the host. EBNA1 is a sequence-specific DNA-binding protein that is consistently expressed in EBV tumors and is the only viral protein required to maintain the viral episome during latency. The structural and biochemical mechanisms by which EBNA1 allows the long-term persistence of the EBV genome are currently unclear. Here, we have solved the crystal structure of an EBNA1 hexameric ring and characterized key residues in the interface required for higher-order complex formation and long-term plasmid maintenance. Epstein-Barr virus (EBV) establishes a stable latent infection that can persist for the life of the host. EBNA1 is required for the replication, maintenance, and segregation of the latent episome, but the structural features of EBNA1 that confer each of these functions are not completely understood. Here, we have solved the X-ray crystal structure of an EBNA1 DNA-binding domain (DBD) and discovered a novel hexameric ring oligomeric form. The oligomeric interface pivoted around residue T585 as a joint that links and stabilizes higher-order EBNA1 complexes. Substitution mutations around the interface destabilized higher-order complex formation and altered the cooperative DNA-binding properties of EBNA1. Mutations had both positive and negative effects on EBNA1-dependent DNA replication and episome maintenance with OriP. We found that one naturally occurring polymorphism in the oligomer interface (T585P) had greater cooperative DNA binding in vitro, minor defects in DNA replication, and pronounced defects in episome maintenance. The T585P mutant was compromised for binding to OriP in vivo as well as for assembling the origin recognition complex subunit 2 (ORC2) and trimethylated histone 3 lysine 4 (H3K4me3) at OriP. The T585P mutant was also compromised for forming stable subnuclear foci in living cells. These findings reveal a novel oligomeric structure of EBNA1 with an interface subject to naturally occurring polymorphisms that modulate EBNA1 functional properties. We propose that EBNA1 dimers can assemble into higher-order oligomeric structures important for diverse functions of EBNA1.IMPORTANCE Epstein-Barr virus is a human gammaherpesvirus that is causally associated with various cancers. Carcinogenic properties are linked to the ability of the virus to persist in the latent form for the lifetime of the host. EBNA1 is a sequence-specific DNA-binding protein that is consistently expressed in EBV tumors and is the only viral protein required to maintain the viral episome during latency. The structural and biochemical mechanisms by which EBNA1 allows the long-term persistence of the EBV genome are currently unclear. Here, we have solved the crystal structure of an EBNA1 hexameric ring and characterized key residues in the interface required for higher-order complex formation and long-term plasmid maintenance.Epstein-Barr virus (EBV) establishes a stable latent infection that can persist for the life of the host. EBNA1 is required for the replication, maintenance, and segregation of the latent episome, but the structural features of EBNA1 that confer each of these functions are not completely understood. Here, we have solved the X-ray crystal structure of an EBNA1 DNA-binding domain (DBD) and discovered a novel hexameric ring oligomeric form. The oligomeric interface pivoted around residue T585 as a joint that links and stabilizes higher-order EBNA1 complexes. Substitution mutations around the interface destabilized higher-order complex formation and altered the cooperative DNA-binding properties of EBNA1. Mutations had both positive and negative effects on EBNA1-dependent DNA replication and episome maintenance with OriP. We found that one naturally occurring polymorphism in the oligomer interface (T585P) had greater cooperative DNA binding in vitro, minor defects in DNA replication, and pronounced defects in episome maintenance. The T585P mutant was compromised for binding to OriP in vivo as well as for assembling the origin recognition complex subunit 2 (ORC2) and trimethylated histone 3 lysine 4 (H3K4me3) at OriP. The T585P mutant was also compromised for forming stable subnuclear foci in living cells. These findings reveal a novel oligomeric structure of EBNA1 with an interface subject to naturally occurring polymorphisms that modulate EBNA1 functional properties. We propose that EBNA1 dimers can assemble into higher-order oligomeric structures important for diverse functions of EBNA1.IMPORTANCE Epstein-Barr virus is a human gammaherpesvirus that is causally associated with various cancers. Carcinogenic properties are linked to the ability of the virus to persist in the latent form for the lifetime of the host. EBNA1 is a sequence-specific DNA-binding protein that is consistently expressed in EBV tumors and is the only viral protein required to maintain the viral episome during latency. The structural and biochemical mechanisms by which EBNA1 allows the long-term persistence of the EBV genome are currently unclear. Here, we have solved the crystal structure of an EBNA1 hexameric ring and characterized key residues in the interface required for higher-order complex formation and long-term plasmid maintenance. Epstein-Barr virus (EBV) establishes a stable latent infection that can persist for the life of the host. EBNA1 is required for the replication, maintenance, and segregation of the latent episome, but the structural features of EBNA1 that confer each of these functions are not completely understood. Here, we have solved the X-ray crystal structure of an EBNA1 DNA-binding domain (DBD) and discovered a novel hexameric ring oligomeric form. The oligomeric interface pivoted around residue T585 as a joint that links and stabilizes higher-order EBNA1 complexes. Substitution mutations around the interface destabilized higher-order complex formation and altered the cooperative DNA-binding properties of EBNA1. Mutations had both positive and negative effects on EBNA1-dependent DNA replication and episome maintenance with OriP. We found that one naturally occurring polymorphism in the oligomer interface (T585P) had greater cooperative DNA binding , minor defects in DNA replication, and pronounced defects in episome maintenance. The T585P mutant was compromised for binding to OriP as well as for assembling the origin recognition complex subunit 2 (ORC2) and trimethylated histone 3 lysine 4 (H3K4me3) at OriP. The T585P mutant was also compromised for forming stable subnuclear foci in living cells. These findings reveal a novel oligomeric structure of EBNA1 with an interface subject to naturally occurring polymorphisms that modulate EBNA1 functional properties. We propose that EBNA1 dimers can assemble into higher-order oligomeric structures important for diverse functions of EBNA1. Epstein-Barr virus is a human gammaherpesvirus that is causally associated with various cancers. Carcinogenic properties are linked to the ability of the virus to persist in the latent form for the lifetime of the host. EBNA1 is a sequence-specific DNA-binding protein that is consistently expressed in EBV tumors and is the only viral protein required to maintain the viral episome during latency. The structural and biochemical mechanisms by which EBNA1 allows the long-term persistence of the EBV genome are currently unclear. Here, we have solved the crystal structure of an EBNA1 hexameric ring and characterized key residues in the interface required for higher-order complex formation and long-term plasmid maintenance. |
Author | Deakyne, Julianna S. Messick, Troy E. Malecka, Kimberly A. Lieberman, Paul M. |
Author_xml | – sequence: 1 givenname: Julianna S. surname: Deakyne fullname: Deakyne, Julianna S. organization: The Wistar Institute, Philadelphia, Pennsylvania, USA – sequence: 2 givenname: Kimberly A. surname: Malecka fullname: Malecka, Kimberly A. organization: The Wistar Institute, Philadelphia, Pennsylvania, USA – sequence: 3 givenname: Troy E. surname: Messick fullname: Messick, Troy E. organization: The Wistar Institute, Philadelphia, Pennsylvania, USA – sequence: 4 givenname: Paul M. surname: Lieberman fullname: Lieberman, Paul M. organization: The Wistar Institute, Philadelphia, Pennsylvania, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28701406$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1vFSEUxYmpsa_VnWvD0oVTuXwNszHpa1pbUzXxo3FHKO9OxczAExij_73U1kaNK-DeH-dcOHtkJ6aIhDwGdgDAzfNXF2cHDJjUHfT3yArYYDqlQO6QFWOcd0qYT7tkr5QvjIGUWj4gu9z0bc_0iuD7mhdfl-wm6uKGnizR15BiO65dCYWOKbcGPV6_OQR6it_djDl4-i7EKxpafVsqhtitXc70IuSltFIoaUb62oVYMbro8SG5P7qp4KPbdZ98PDn-cHTanb99eXZ0eN55YWTtBjnKURtjLntntBiUEGIU3nuunR-M3nDmpB4NeK6EkqiE9hIQjNqo3msQ--TFje52uZxx4zHW9jC7zWF2-YdNLti_OzF8tlfpm1VqGHqtmsDTW4Gcvi5Yqp1D8ThNLmJaioUBjGm2A2_okz-97kx-_20Dnt0APqdSMo53CDB7HZ1t0dlf0VnoG87_wX2o7jqLNmmY_n_pJ90Lm34 |
CitedBy_id | crossref_primary_10_3390_cancers14122899 crossref_primary_10_1016_j_cell_2020_12_022 crossref_primary_10_1073_pnas_1915372116 crossref_primary_10_1128_JVI_01593_18 crossref_primary_10_3390_ijms242115522 crossref_primary_10_3390_v17010110 crossref_primary_10_1111_ctr_13504 crossref_primary_10_1128_JVI_00487_19 crossref_primary_10_1016_j_heliyon_2023_e21486 crossref_primary_10_1128_JVI_02028_19 crossref_primary_10_1002_mco2_739 crossref_primary_10_1128_mbio_00162_24 crossref_primary_10_1146_annurev_virology_092818_015716 crossref_primary_10_3390_cancers10040109 crossref_primary_10_1128_jvi_00949_22 crossref_primary_10_3390_ijms222111316 crossref_primary_10_1016_j_jmb_2023_168380 crossref_primary_10_1055_s_0042_1751301 crossref_primary_10_3389_fonc_2020_00600 crossref_primary_10_3390_ijms241713066 crossref_primary_10_1016_j_tim_2019_09_002 |
Cites_doi | 10.1016/S0021-9258(17)42220-4 10.1007/978-3-319-22822-8_7 10.1038/359505a0 10.1016/j.coviro.2012.09.005 10.6064/2012/438204 10.1007/s11262-014-1101-9 10.1128/JVI.02517-12 10.1016/0166-0934(88)90096-1 10.1107/S0907444909052925 10.1016/S0959-440X(98)80009-2 10.1016/j.virusres.2009.11.010 10.1242/jcs.060913 10.1073/pnas.88.8.3204 10.1093/gbe/evu054 10.1107/S0907444910007493 10.18632/oncotarget.14540 10.1016/j.molcel.2005.09.020 10.1128/jvi.68.6.4067-4071.1994 10.1128/jvi.70.2.1228-1231.1996 10.1371/journal.ppat.1003672 10.1128/MCB.25.12.4934-4945.2005 10.1016/0092-8674(95)90232-5 10.1128/JVI.00239-16 10.1371/journal.ppat.1000469 10.1128/JVI.78.21.11487-11505.2004 10.1371/journal.pone.0140529 10.1093/emboj/21.6.1487 10.1002/(SICI)1099-1654(200003/04)10:2<83::AID-RMV262>3.0.CO;2-T 10.1016/S0092-8674(00)81056-9 10.1073/pnas.1421804112 10.1038/nrmicro3135 10.1128/jvi.63.6.2657-2666.1989 10.1016/S0021-9258(20)89523-4 10.1177/1087057110379154 10.1016/S0960-9822(02)00696-6 10.1074/jbc.272.42.26434 10.1371/journal.pone.0010126 10.1074/jbc.M001414200 10.1073/pnas.88.23.10875 10.1128/JVI.75.22.10603-10611.2001 10.1126/science.1252786 10.1016/0042-6822(87)90025-0 10.1016/S1097-2765(02)00476-8 10.1371/journal.ppat.1003640 10.1128/JVI.77.22.11992-12001.2003 10.1128/jvi.68.3.1913-1925.1994 10.1073/pnas.88.23.10870 10.1016/j.pep.2005.01.016 10.1016/0022-2836(67)90307-5 10.1016/j.plasmid.2007.01.003 10.1038/sj.emboj.7601853 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Society for Microbiology. Copyright © 2017 American Society for Microbiology. 2017 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2017 American Society for Microbiology. – notice: Copyright © 2017 American Society for Microbiology. 2017 American Society for Microbiology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1128/JVI.01046-17 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | A Hexameric Form of EBNA1 Functions at OriP |
EISSN | 1098-5514 |
ExternalDocumentID | PMC5599765 28701406 10_1128_JVI_01046_17 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDCR NIH HHS grantid: R01 DE017336 – fundername: Wellcome Trust – fundername: NCI NIH HHS grantid: R01 CA093606 – fundername: NCI NIH HHS grantid: P30 CA010815 – fundername: Wellcome Trust grantid: WT096496 – fundername: NCI NIH HHS grantid: T32 CA009171 – fundername: HHS | NIH | National Cancer Institute (NCI) grantid: RO1 CA093606 – fundername: HHS | NIH | National Institute of Dental and Craniofacial Research (NIDCR) grantid: RO1 DE017336 – fundername: HHS | NIH | National Cancer Institute (NCI) grantid: T32 CA09171 – fundername: Wellcome grantid: WT096496 – fundername: HHS | NIH | National Cancer Institute (NCI) grantid: P30 CA010815 |
GroupedDBID | --- -~X .55 .GJ 0R~ 18M 29L 2WC 39C 3O- 4.4 41~ 53G 5GY 5RE 5VS 6TJ 85S AAFWJ AAGFI AAYJJ AAYXX ABPPZ ACGFO ACNCT ADBBV ADXHL AENEX AFFNX AGVNZ AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C1A CITATION CS3 D0S DIK E3Z EBS EJD F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 MVM N9A O9- OHT OK1 P2P RHI RNS RPM RSF TR2 UPT VH1 W2D W8F WH7 WOQ X7M Y6R YQT ZGI ZXP ~02 ~KM CGR CUY CVF ECM EIF NPM RHF UCJ 7X8 5PM |
ID | FETCH-LOGICAL-c384t-94f4f6888b7a86395333f3ccc26ac986d20a46f81c25354e536c41e185d57c613 |
ISSN | 0022-538X 1098-5514 |
IngestDate | Thu Aug 21 18:20:19 EDT 2025 Fri Jul 11 02:16:18 EDT 2025 Wed Feb 19 02:43:02 EST 2025 Thu Apr 24 22:58:41 EDT 2025 Tue Jul 01 01:02:51 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | episome maintenance DNA-binding domain viral latency oligomers hexameric ring EBNA1 Epstein-Barr virus OriP cooperative binding |
Language | English |
License | Copyright © 2017 American Society for Microbiology. All Rights Reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c384t-94f4f6888b7a86395333f3ccc26ac986d20a46f81c25354e536c41e185d57c613 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Citation Deakyne JS, Malecka KA, Messick TE, Lieberman PM. 2017. Structural and functional basis for an EBNA1 hexameric ring in Epstein-Barr virus episome maintenance. J Virol 91:e01046-17. https://doi.org/10.1128/JVI.01046-17. |
OpenAccessLink | https://jvi.asm.org/content/jvi/91/19/e01046-17.full.pdf |
PMID | 28701406 |
PQID | 1918853692 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5599765 proquest_miscellaneous_1918853692 pubmed_primary_28701406 crossref_primary_10_1128_JVI_01046_17 crossref_citationtrail_10_1128_JVI_01046_17 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-10-01 |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Journal of virology |
PublicationTitleAlternate | J Virol |
PublicationYear | 2017 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 Mai SJ (e_1_3_2_39_2) 2007; 17 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 8551585 - J Virol. 1996 Feb;70(2):1228-31 2542579 - J Virol. 1989 Jun;63(6):2657-66 27009953 - J Virol. 2016 May 12;90(11):5353-67 10713596 - Rev Med Virol. 2000 Mar-Apr;10(2):83-100 4291934 - J Mol Biol. 1967 Jun 14;26(2):365-9 11889054 - EMBO J. 2002 Mar 15;21(6):1487-96 15923612 - Mol Cell Biol. 2005 Jun;25(12):4934-45 16285920 - Mol Cell. 2005 Nov 11;20(3):377-89 20405039 - PLoS One. 2010 Apr 12;5(4):e10126 9519296 - Curr Opin Struct Biol. 1998 Feb;8(1):49-53 24653027 - Science. 2014 Mar 21;343(6177):1323-5 24278697 - Scientifica (Cairo). 2012;2012:438204 1328886 - Nature. 1992 Oct 8;359(6395):505-12 1849647 - Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3204-8 1660153 - Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10870-4 20383002 - Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501 8288561 - J Biol Chem. 1994 Jan 14;269(2):1057-62 15915565 - Protein Expr Purif. 2005 May;41(1):207-34 11909532 - Curr Biol. 2002 Mar 19;12(6):472-6 25947153 - Proc Natl Acad Sci U S A. 2015 May 26;112(21):6694-9 20930215 - J Biomol Screen. 2010 Oct;15(9):1107-15 8107251 - J Virol. 1994 Mar;68(3):1913-25 24146617 - PLoS Pathog. 2013;9(10):e1003672 26424646 - Curr Top Microbiol Immunol. 2015;390(Pt 1):119-48 11931758 - Mol Cell. 2002 Mar;9(3):493-503 1660154 - Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10875-9 9334219 - J Biol Chem. 1997 Oct 17;272(42):26434-40 23031715 - Curr Opin Virol. 2012 Dec;2(6):733-9 17350094 - Plasmid. 2007 Jul;58(1):1-12 11602702 - J Virol. 2001 Nov;75(22):10603-11 1850421 - J Biol Chem. 1991 Apr 25;266(12):7819-26 15479791 - J Virol. 2004 Nov;78(21):11487-505 8625416 - Cell. 1996 Mar 8;84(5):791-800 17853891 - EMBO J. 2007 Oct 3;26(19):4252-62 24682154 - Genome Biol Evol. 2014 Apr;6(4):846-60 7553871 - Cell. 1995 Oct 6;83(1):39-46 10801810 - J Biol Chem. 2000 Jul 21;275(29):22273-7 2821690 - Virology. 1987 Oct;160(2):498-501 2851598 - J Virol Methods. 1988 Dec;22(2-3):133-42 24146614 - PLoS Pathog. 2013;9(10):e1003640 25011696 - Virus Genes. 2014 Dec;49(3):358-72 8189545 - J Virol. 1994 Jun;68(6):4067-71 19887584 - J Cell Sci. 2009 Dec 1;122(Pt 23):4341-50 28077791 - Oncotarget. 2017 Jan 31;8(5):7248-7264 26460969 - PLoS One. 2015 Oct 13;10(10):e0140529 23152513 - J Virol. 2013 Jan;87(2):1172-82 20124702 - Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21 24192651 - Nat Rev Microbiol. 2013 Dec;11(12):863-75 19941915 - Virus Res. 2010 Feb;147(2):258-64 14581536 - J Virol. 2003 Nov;77(22):11992-2001 17143491 - Oncol Rep. 2007 Jan;17(1):141-6 19521517 - PLoS Pathog. 2009 Jun;5(6):e1000469 |
References_xml | – ident: e_1_3_2_22_2 doi: 10.1016/S0021-9258(17)42220-4 – ident: e_1_3_2_40_2 doi: 10.1007/978-3-319-22822-8_7 – ident: e_1_3_2_15_2 doi: 10.1038/359505a0 – ident: e_1_3_2_27_2 doi: 10.1016/j.coviro.2012.09.005 – ident: e_1_3_2_17_2 doi: 10.6064/2012/438204 – ident: e_1_3_2_23_2 doi: 10.1007/s11262-014-1101-9 – ident: e_1_3_2_37_2 doi: 10.1128/JVI.02517-12 – ident: e_1_3_2_44_2 doi: 10.1016/0166-0934(88)90096-1 – ident: e_1_3_2_49_2 doi: 10.1107/S0907444909052925 – ident: e_1_3_2_12_2 doi: 10.1016/S0959-440X(98)80009-2 – ident: e_1_3_2_41_2 doi: 10.1016/j.virusres.2009.11.010 – ident: e_1_3_2_46_2 doi: 10.1242/jcs.060913 – ident: e_1_3_2_13_2 doi: 10.1073/pnas.88.8.3204 – ident: e_1_3_2_38_2 doi: 10.1093/gbe/evu054 – ident: e_1_3_2_50_2 doi: 10.1107/S0907444910007493 – ident: e_1_3_2_42_2 doi: 10.18632/oncotarget.14540 – ident: e_1_3_2_26_2 doi: 10.1016/j.molcel.2005.09.020 – ident: e_1_3_2_33_2 doi: 10.1128/jvi.68.6.4067-4071.1994 – ident: e_1_3_2_5_2 doi: 10.1128/jvi.70.2.1228-1231.1996 – ident: e_1_3_2_10_2 doi: 10.1371/journal.ppat.1003672 – ident: e_1_3_2_47_2 doi: 10.1128/MCB.25.12.4934-4945.2005 – ident: e_1_3_2_8_2 doi: 10.1016/0092-8674(95)90232-5 – ident: e_1_3_2_32_2 doi: 10.1128/JVI.00239-16 – ident: e_1_3_2_24_2 doi: 10.1371/journal.ppat.1000469 – ident: e_1_3_2_45_2 doi: 10.1128/JVI.78.21.11487-11505.2004 – ident: e_1_3_2_36_2 doi: 10.1371/journal.pone.0140529 – ident: e_1_3_2_14_2 doi: 10.1093/emboj/21.6.1487 – volume: 17 start-page: 141 year: 2007 ident: e_1_3_2_39_2 article-title: Functional advantage of NPC-related V-val subtype of Epstein-Barr virus nuclear antigen 1 compared with prototype in epithelial cell line publication-title: Oncol Rep – ident: e_1_3_2_18_2 doi: 10.1002/(SICI)1099-1654(200003/04)10:2<83::AID-RMV262>3.0.CO;2-T – ident: e_1_3_2_9_2 doi: 10.1016/S0092-8674(00)81056-9 – ident: e_1_3_2_16_2 doi: 10.1073/pnas.1421804112 – ident: e_1_3_2_3_2 doi: 10.1038/nrmicro3135 – ident: e_1_3_2_30_2 doi: 10.1128/jvi.63.6.2657-2666.1989 – ident: e_1_3_2_31_2 doi: 10.1016/S0021-9258(20)89523-4 – ident: e_1_3_2_7_2 doi: 10.1177/1087057110379154 – ident: e_1_3_2_25_2 doi: 10.1016/S0960-9822(02)00696-6 – ident: e_1_3_2_20_2 doi: 10.1074/jbc.272.42.26434 – ident: e_1_3_2_6_2 doi: 10.1371/journal.pone.0010126 – ident: e_1_3_2_4_2 doi: 10.1074/jbc.M001414200 – ident: e_1_3_2_29_2 doi: 10.1073/pnas.88.23.10875 – ident: e_1_3_2_19_2 doi: 10.1128/JVI.75.22.10603-10611.2001 – ident: e_1_3_2_2_2 doi: 10.1126/science.1252786 – ident: e_1_3_2_43_2 doi: 10.1016/0042-6822(87)90025-0 – ident: e_1_3_2_51_2 doi: 10.1016/S1097-2765(02)00476-8 – ident: e_1_3_2_11_2 doi: 10.1371/journal.ppat.1003640 – ident: e_1_3_2_52_2 doi: 10.1128/JVI.77.22.11992-12001.2003 – ident: e_1_3_2_28_2 doi: 10.1128/jvi.68.3.1913-1925.1994 – ident: e_1_3_2_21_2 doi: 10.1073/pnas.88.23.10870 – ident: e_1_3_2_48_2 doi: 10.1016/j.pep.2005.01.016 – ident: e_1_3_2_53_2 doi: 10.1016/0022-2836(67)90307-5 – ident: e_1_3_2_35_2 doi: 10.1016/j.plasmid.2007.01.003 – ident: e_1_3_2_34_2 doi: 10.1038/sj.emboj.7601853 – reference: 17853891 - EMBO J. 2007 Oct 3;26(19):4252-62 – reference: 24653027 - Science. 2014 Mar 21;343(6177):1323-5 – reference: 14581536 - J Virol. 2003 Nov;77(22):11992-2001 – reference: 10713596 - Rev Med Virol. 2000 Mar-Apr;10(2):83-100 – reference: 15923612 - Mol Cell Biol. 2005 Jun;25(12):4934-45 – reference: 25947153 - Proc Natl Acad Sci U S A. 2015 May 26;112(21):6694-9 – reference: 8551585 - J Virol. 1996 Feb;70(2):1228-31 – reference: 16285920 - Mol Cell. 2005 Nov 11;20(3):377-89 – reference: 24146614 - PLoS Pathog. 2013;9(10):e1003640 – reference: 15479791 - J Virol. 2004 Nov;78(21):11487-505 – reference: 20930215 - J Biomol Screen. 2010 Oct;15(9):1107-15 – reference: 19521517 - PLoS Pathog. 2009 Jun;5(6):e1000469 – reference: 26460969 - PLoS One. 2015 Oct 13;10(10):e0140529 – reference: 1849647 - Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3204-8 – reference: 20124702 - Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21 – reference: 1660154 - Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10875-9 – reference: 24192651 - Nat Rev Microbiol. 2013 Dec;11(12):863-75 – reference: 19887584 - J Cell Sci. 2009 Dec 1;122(Pt 23):4341-50 – reference: 8288561 - J Biol Chem. 1994 Jan 14;269(2):1057-62 – reference: 11931758 - Mol Cell. 2002 Mar;9(3):493-503 – reference: 25011696 - Virus Genes. 2014 Dec;49(3):358-72 – reference: 2821690 - Virology. 1987 Oct;160(2):498-501 – reference: 4291934 - J Mol Biol. 1967 Jun 14;26(2):365-9 – reference: 11889054 - EMBO J. 2002 Mar 15;21(6):1487-96 – reference: 2851598 - J Virol Methods. 1988 Dec;22(2-3):133-42 – reference: 8107251 - J Virol. 1994 Mar;68(3):1913-25 – reference: 24682154 - Genome Biol Evol. 2014 Apr;6(4):846-60 – reference: 24146617 - PLoS Pathog. 2013;9(10):e1003672 – reference: 9519296 - Curr Opin Struct Biol. 1998 Feb;8(1):49-53 – reference: 10801810 - J Biol Chem. 2000 Jul 21;275(29):22273-7 – reference: 28077791 - Oncotarget. 2017 Jan 31;8(5):7248-7264 – reference: 17143491 - Oncol Rep. 2007 Jan;17(1):141-6 – reference: 9334219 - J Biol Chem. 1997 Oct 17;272(42):26434-40 – reference: 7553871 - Cell. 1995 Oct 6;83(1):39-46 – reference: 26424646 - Curr Top Microbiol Immunol. 2015;390(Pt 1):119-48 – reference: 27009953 - J Virol. 2016 May 12;90(11):5353-67 – reference: 20405039 - PLoS One. 2010 Apr 12;5(4):e10126 – reference: 2542579 - J Virol. 1989 Jun;63(6):2657-66 – reference: 17350094 - Plasmid. 2007 Jul;58(1):1-12 – reference: 8625416 - Cell. 1996 Mar 8;84(5):791-800 – reference: 1660153 - Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10870-4 – reference: 19941915 - Virus Res. 2010 Feb;147(2):258-64 – reference: 1850421 - J Biol Chem. 1991 Apr 25;266(12):7819-26 – reference: 24278697 - Scientifica (Cairo). 2012;2012:438204 – reference: 11909532 - Curr Biol. 2002 Mar 19;12(6):472-6 – reference: 20383002 - Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501 – reference: 11602702 - J Virol. 2001 Nov;75(22):10603-11 – reference: 23031715 - Curr Opin Virol. 2012 Dec;2(6):733-9 – reference: 8189545 - J Virol. 1994 Jun;68(6):4067-71 – reference: 1328886 - Nature. 1992 Oct 8;359(6395):505-12 – reference: 23152513 - J Virol. 2013 Jan;87(2):1172-82 – reference: 15915565 - Protein Expr Purif. 2005 May;41(1):207-34 |
SSID | ssj0014464 |
Score | 2.357699 |
Snippet | Epstein-Barr virus (EBV) establishes a stable latent infection that can persist for the life of the host. EBNA1 is required for the replication, maintenance,... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Binding Sites - genetics Cell Line, Tumor Crystallography, X-Ray DNA Replication - genetics DNA, Viral - genetics DNA-Binding Proteins - genetics Epstein-Barr Virus Nuclear Antigens - genetics Epstein-Barr Virus Nuclear Antigens - metabolism Genome and Regulation of Viral Gene Expression HEK293 Cells HeLa Cells Herpesvirus 4, Human - genetics Herpesvirus 4, Human - growth & development Histones - metabolism Humans Multiprotein Complexes - metabolism Origin Recognition Complex - genetics Plasmids - genetics Protein Structure, Tertiary Replication Origin - genetics Virus Replication - genetics |
Title | Structural and Functional Basis for an EBNA1 Hexameric Ring in Epstein-Barr Virus Episome Maintenance |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28701406 https://www.proquest.com/docview/1918853692 https://pubmed.ncbi.nlm.nih.gov/PMC5599765 |
Volume | 91 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEBIviDvlJiPBU5TSODf7sYVOY2J7WTf1LXJcR4tW0iltJcoTP51z4lzcrUiDl6iykzbq98XnknM-E_JxOGdaqChzsf_ABQvtu0LG0kUpcDAfqfQC7Hc-OY2OzoPjWTjr9X5bVUubdTpQv_b2lfwPqjAGuGKX7D8g234pDMBnwBeOgDAc74TxWSX-WglnYP77EGxUndobSxQaMRWSzmR8OvLAwPyUdeF83ccyuV7hXpfuWJalc5GXmxUM5avlD9yPCHUkipYSt91X7I-zM_JftbzamvQo9lzLopDO2aBLeC-0ujLtZznuQbLYOqNuFmtxzbo8LZdbZ9LOfM8B_rLO0mIVo3MysBMVYPyakje7cQDW15kxPWa9RTlTdNrsBVl4NvHE_oWeYfPC8cW3AQaUkWsaQHf1tG_Yubb6sIp7GE_g6qS6OvHie-Q-g0CDNfme-j0UBMtBozePt960TjD-2f7tXafmVqRys-DW8mCmj8mjGjs6Mjx6Qnq6eEoemM1It8-I7thEgU20YxOt2ESBTTBBKzbRlk0U2URzGLfYRCs20ZpN1GLTc3J-OJl-OXLrTThc5fNg7YogC7KIc57GkoM7C-GBn_lKKRZJBQ_0nA1lEGXcUyz0w0CHfqQCT4MbOA9jBc7iC3JQLAv9itB5KgVc4s856lQKKSHYD4TP02HqKz7M-sRp_sVE1Qr1uFHKItmHWJ98as--NsosfznvQwNIAksnvg-ThV5uVoknPA7eaiRYn7w0ALXfhO__PXB2-yTega49AWXZd2eK_LKSZ0cNvzgKX9_x_t6Qh93T8pYcANb6HTi66_R9xcU_pS-mbA |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+and+Functional+Basis+for+an+EBNA1+Hexameric+Ring+in+Epstein-Barr+Virus+Episome+Maintenance&rft.jtitle=Journal+of+virology&rft.au=Deakyne%2C+Julianna+S.&rft.au=Malecka%2C+Kimberly+A.&rft.au=Messick%2C+Troy+E.&rft.au=Lieberman%2C+Paul+M.&rft.date=2017-10-01&rft.issn=0022-538X&rft.eissn=1098-5514&rft.volume=91&rft.issue=19&rft_id=info:doi/10.1128%2FJVI.01046-17&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_JVI_01046_17 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon |