The Improvement of Functional State of Brain Mitochondria with Astaxanthin in Rats after Heart Failure

The relationship between neurological damage and cardiovascular disease is often observed. This type of damage is both a cause and an effect of cardiovascular disease. Mitochondria are the key organelles of the cell and are primarily subject to oxidative stress. Mitochondrial dysfunctions are involv...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 24; no. 1; p. 31
Main Authors Baburina, Yulia, Krestinin, Roman, Fedorov, Dmitry, Odinokova, Irina, Pershina, Ekaterina, Sotnikova, Linda, Krestinina, Olga
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 20.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The relationship between neurological damage and cardiovascular disease is often observed. This type of damage is both a cause and an effect of cardiovascular disease. Mitochondria are the key organelles of the cell and are primarily subject to oxidative stress. Mitochondrial dysfunctions are involved in the etiology of various diseases. A decrease in the efficiency of the heart muscle can lead to impaired blood flow and decreased oxygen supply to the brain. Astaxanthin (AST), a marine-derived xanthophyll carotenoid, has multiple functions and its effects have been shown in both experimental and clinical studies. We investigated the effects of AST on the functional state of brain mitochondria in rats after heart failure. Isoproterenol (ISO) was used to cause heart failure. In the present study, we found that ISO impaired the functional state of rat brain mitochondria (RBM), while the administration of AST resulted in an improvement in mitochondrial efficiency. The respiratory control index (RCI) in RBM decreased with the use of ISO, while AST administration led to an increase in this parameter. Ca2+ retention capacity (CRC) decreased in RBM isolated from rat brain after ISO injection, and AST enhanced CRC in RBM after heart failure. The study of changes in the content of regulatory proteins such as adenine nucleotide translocase 1 and 2 (ANT1/2), voltage dependent anion channel (VDAC), and cyclophilin D (CyP-D) of mitochondrial permeability transition pore (mPTP) showed that ISO reduced their level, while AST restored the content of these proteins almost to the control value. In general, AST improves the functional state of mitochondria and can be considered as a prophylactic drug in various therapeutic approaches.
AbstractList The relationship between neurological damage and cardiovascular disease is often observed. This type of damage is both a cause and an effect of cardiovascular disease. Mitochondria are the key organelles of the cell and are primarily subject to oxidative stress. Mitochondrial dysfunctions are involved in the etiology of various diseases. A decrease in the efficiency of the heart muscle can lead to impaired blood flow and decreased oxygen supply to the brain. Astaxanthin (AST), a marine-derived xanthophyll carotenoid, has multiple functions and its effects have been shown in both experimental and clinical studies. We investigated the effects of AST on the functional state of brain mitochondria in rats after heart failure. Isoproterenol (ISO) was used to cause heart failure. In the present study, we found that ISO impaired the functional state of rat brain mitochondria (RBM), while the administration of AST resulted in an improvement in mitochondrial efficiency. The respiratory control index (RCI) in RBM decreased with the use of ISO, while AST administration led to an increase in this parameter. Ca retention capacity (CRC) decreased in RBM isolated from rat brain after ISO injection, and AST enhanced CRC in RBM after heart failure. The study of changes in the content of regulatory proteins such as adenine nucleotide translocase 1 and 2 (ANT1/2), voltage dependent anion channel (VDAC), and cyclophilin D (CyP-D) of mitochondrial permeability transition pore (mPTP) showed that ISO reduced their level, while AST restored the content of these proteins almost to the control value. In general, AST improves the functional state of mitochondria and can be considered as a prophylactic drug in various therapeutic approaches.
The relationship between neurological damage and cardiovascular disease is often observed. This type of damage is both a cause and an effect of cardiovascular disease. Mitochondria are the key organelles of the cell and are primarily subject to oxidative stress. Mitochondrial dysfunctions are involved in the etiology of various diseases. A decrease in the efficiency of the heart muscle can lead to impaired blood flow and decreased oxygen supply to the brain. Astaxanthin (AST), a marine-derived xanthophyll carotenoid, has multiple functions and its effects have been shown in both experimental and clinical studies. We investigated the effects of AST on the functional state of brain mitochondria in rats after heart failure. Isoproterenol (ISO) was used to cause heart failure. In the present study, we found that ISO impaired the functional state of rat brain mitochondria (RBM), while the administration of AST resulted in an improvement in mitochondrial efficiency. The respiratory control index (RCI) in RBM decreased with the use of ISO, while AST administration led to an increase in this parameter. Ca 2+ retention capacity (CRC) decreased in RBM isolated from rat brain after ISO injection, and AST enhanced CRC in RBM after heart failure. The study of changes in the content of regulatory proteins such as adenine nucleotide translocase 1 and 2 (ANT1/2), voltage dependent anion channel (VDAC), and cyclophilin D (CyP-D) of mitochondrial permeability transition pore (mPTP) showed that ISO reduced their level, while AST restored the content of these proteins almost to the control value. In general, AST improves the functional state of mitochondria and can be considered as a prophylactic drug in various therapeutic approaches.
The relationship between neurological damage and cardiovascular disease is often observed. This type of damage is both a cause and an effect of cardiovascular disease. Mitochondria are the key organelles of the cell and are primarily subject to oxidative stress. Mitochondrial dysfunctions are involved in the etiology of various diseases. A decrease in the efficiency of the heart muscle can lead to impaired blood flow and decreased oxygen supply to the brain. Astaxanthin (AST), a marine-derived xanthophyll carotenoid, has multiple functions and its effects have been shown in both experimental and clinical studies. We investigated the effects of AST on the functional state of brain mitochondria in rats after heart failure. Isoproterenol (ISO) was used to cause heart failure. In the present study, we found that ISO impaired the functional state of rat brain mitochondria (RBM), while the administration of AST resulted in an improvement in mitochondrial efficiency. The respiratory control index (RCI) in RBM decreased with the use of ISO, while AST administration led to an increase in this parameter. Ca2+ retention capacity (CRC) decreased in RBM isolated from rat brain after ISO injection, and AST enhanced CRC in RBM after heart failure. The study of changes in the content of regulatory proteins such as adenine nucleotide translocase 1 and 2 (ANT1/2), voltage dependent anion channel (VDAC), and cyclophilin D (CyP-D) of mitochondrial permeability transition pore (mPTP) showed that ISO reduced their level, while AST restored the content of these proteins almost to the control value. In general, AST improves the functional state of mitochondria and can be considered as a prophylactic drug in various therapeutic approaches.
The relationship between neurological damage and cardiovascular disease is often observed. This type of damage is both a cause and an effect of cardiovascular disease. Mitochondria are the key organelles of the cell and are primarily subject to oxidative stress. Mitochondrial dysfunctions are involved in the etiology of various diseases. A decrease in the efficiency of the heart muscle can lead to impaired blood flow and decreased oxygen supply to the brain. Astaxanthin (AST), a marine-derived xanthophyll carotenoid, has multiple functions and its effects have been shown in both experimental and clinical studies. We investigated the effects of AST on the functional state of brain mitochondria in rats after heart failure. Isoproterenol (ISO) was used to cause heart failure. In the present study, we found that ISO impaired the functional state of rat brain mitochondria (RBM), while the administration of AST resulted in an improvement in mitochondrial efficiency. The respiratory control index (RCI) in RBM decreased with the use of ISO, while AST administration led to an increase in this parameter. Ca2+ retention capacity (CRC) decreased in RBM isolated from rat brain after ISO injection, and AST enhanced CRC in RBM after heart failure. The study of changes in the content of regulatory proteins such as adenine nucleotide translocase 1 and 2 (ANT1/2), voltage dependent anion channel (VDAC), and cyclophilin D (CyP-D) of mitochondrial permeability transition pore (mPTP) showed that ISO reduced their level, while AST restored the content of these proteins almost to the control value. In general, AST improves the functional state of mitochondria and can be considered as a prophylactic drug in various therapeutic approaches.The relationship between neurological damage and cardiovascular disease is often observed. This type of damage is both a cause and an effect of cardiovascular disease. Mitochondria are the key organelles of the cell and are primarily subject to oxidative stress. Mitochondrial dysfunctions are involved in the etiology of various diseases. A decrease in the efficiency of the heart muscle can lead to impaired blood flow and decreased oxygen supply to the brain. Astaxanthin (AST), a marine-derived xanthophyll carotenoid, has multiple functions and its effects have been shown in both experimental and clinical studies. We investigated the effects of AST on the functional state of brain mitochondria in rats after heart failure. Isoproterenol (ISO) was used to cause heart failure. In the present study, we found that ISO impaired the functional state of rat brain mitochondria (RBM), while the administration of AST resulted in an improvement in mitochondrial efficiency. The respiratory control index (RCI) in RBM decreased with the use of ISO, while AST administration led to an increase in this parameter. Ca2+ retention capacity (CRC) decreased in RBM isolated from rat brain after ISO injection, and AST enhanced CRC in RBM after heart failure. The study of changes in the content of regulatory proteins such as adenine nucleotide translocase 1 and 2 (ANT1/2), voltage dependent anion channel (VDAC), and cyclophilin D (CyP-D) of mitochondrial permeability transition pore (mPTP) showed that ISO reduced their level, while AST restored the content of these proteins almost to the control value. In general, AST improves the functional state of mitochondria and can be considered as a prophylactic drug in various therapeutic approaches.
Author Krestinin, Roman
Baburina, Yulia
Krestinina, Olga
Pershina, Ekaterina
Sotnikova, Linda
Fedorov, Dmitry
Odinokova, Irina
AuthorAffiliation Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
AuthorAffiliation_xml – name: Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
Author_xml – sequence: 1
  givenname: Yulia
  surname: Baburina
  fullname: Baburina, Yulia
– sequence: 2
  givenname: Roman
  surname: Krestinin
  fullname: Krestinin, Roman
– sequence: 3
  givenname: Dmitry
  orcidid: 0000-0002-3314-4671
  surname: Fedorov
  fullname: Fedorov, Dmitry
– sequence: 4
  givenname: Irina
  orcidid: 0000-0002-6331-0191
  surname: Odinokova
  fullname: Odinokova, Irina
– sequence: 5
  givenname: Ekaterina
  surname: Pershina
  fullname: Pershina, Ekaterina
– sequence: 6
  givenname: Linda
  surname: Sotnikova
  fullname: Sotnikova, Linda
– sequence: 7
  givenname: Olga
  surname: Krestinina
  fullname: Krestinina, Olga
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36613474$$D View this record in MEDLINE/PubMed
BookMark eNptUV1LHTEQDcVSP-pbnyWPfejVfN1k90Ww0lsFi2D1OeRmJ93IbnJNsmr_fXPxg6sUBmaYOXMOc2YXbYUYAKEvlBxy3pIjfztmJgglhNMPaIcKxmaESLW1UW-j3ZxvCWGczdtPaJtLSblQYge56x7w-bhK8R5GCAVHhxdTsMXHYAb8u5gC6973ZHzAv3yJto-hS97gB196fJKLeTSh9HVa48qUjI0rkPAZmFTwwvhhSvAZfXRmyLD_nPfQzeLH9enZ7OLy5_npycXM8kaUWUs5J0y2c6WkUJ10Yg6iaxgIZjpFnXMNuPlyKVreSdU5a7kltmFiKa1zXPE9dPzEu5qWI3S2XpTMoFfJjyb91dF4_XYSfK__xHvdNmztTiX4-kyQ4t0EuejRZwvDYALEKWumJG0b2ihRoQebWq8iL-ZWAHsC2BRzTuC09dXP6myV9oOmRK8_qDc_WJe-vVt64f0v_B8M0J6w
CitedBy_id crossref_primary_10_1007_s11481_025_10188_4
crossref_primary_10_2174_0109298673316592240822102619
crossref_primary_10_1007_s12640_023_00655_2
crossref_primary_10_1134_S0006297924100122
crossref_primary_10_1134_S000635092470009X
Cites_doi 10.1161/CIRCULATIONAHA.109.886473
10.1152/ajpcell.00006.2009
10.1016/0166-2236(96)10049-7
10.1097/01.fjc.0000432861.55968.a6
10.1016/0005-2736(81)90537-X
10.1515/hsz-2014-0107
10.1152/physrev.00001.2015
10.3390/nu10091137
10.1111/j.1471-4159.2009.06089.x
10.1021/jo050101l
10.3389/fphar.2020.00352
10.1038/nmeth.2019
10.3390/ijms21093217
10.1111/j.1471-4159.2008.05308.x
10.3389/fcell.2015.00062
10.1024/0300-9831.77.1.3
10.1016/j.yjmcc.2009.02.021
10.1016/j.febslet.2004.03.071
10.1111/j.1471-4159.1990.tb04189.x
10.1016/j.cmet.2014.12.001
10.3390/antiox9030262
10.3390/biomedicines9121793
10.1016/j.neuint.2014.09.008
10.1016/j.neuint.2015.07.012
10.1016/j.jnutbio.2009.01.011
10.1371/journal.pone.0097096
10.1016/j.biopha.2016.11.067
10.1007/s11064-008-9865-8
10.1007/s10495-010-0455-2
10.1038/s41592-022-01663-4
10.1016/j.ceca.2006.11.004
10.3390/ijms221910806
10.1021/np050354+
10.3390/md12010128
10.1007/BF00968994
10.1016/S0300-9084(02)01368-8
10.1016/j.yjmcc.2012.12.004
10.3390/biomedicines8100437
10.1016/j.bbrc.2007.03.120
10.1038/nature03434
10.1080/10408690590957188
10.1016/j.jacc.2017.01.022
10.1186/s12974-014-0148-9
10.1007/s002530051413
10.3390/nu14010107
10.3390/md16080247
10.1016/j.bbabio.2006.03.017
10.1007/s10863-016-9672-x
10.3390/biom8040176
10.1152/physrev.00011.2010
10.1007/s11481-013-9490-4
10.1253/circj.CJ-13-0321
ContentType Journal Article
Copyright 2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.3390/ijms24010031
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
ExternalDocumentID PMC9820232
36613474
10_3390_ijms24010031
Genre Journal Article
GrantInformation_xml – fundername: Russian Foundation for Basic Research
  grantid: 20-04-00131
– fundername: Russian Academy of Sciences
  grantid: State assignment to the Institute of Theoretical and Experimental Biophysics, 075-00381-21-00
– fundername: Russian Foundation for Basic Research
  grantid: 20-015-00072
– fundername: framework of the state assignment
  grantid: 075-00381-21-00
– fundername: Russian Foundation for Basic Research
  grantid: 20-04-00131; 20-015-00072
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TR2
TUS
UKHRP
~8M
3V.
ABJCF
BBNVY
BHPHI
CGR
CUY
CVF
ECM
EIF
GROUPED_DOAJ
HCIFZ
KB.
M7P
M~E
NPM
PDBOC
7X8
PPXIY
5PM
PJZUB
ID FETCH-LOGICAL-c384t-91330269577647d6f45e4d82e42ad71fff8ef5bb493d67dfcc3c0c824b6cff373
IEDL.DBID M48
ISSN 1422-0067
IngestDate Thu Aug 21 18:38:11 EDT 2025
Fri Jul 11 10:37:57 EDT 2025
Wed Feb 19 02:25:18 EST 2025
Tue Jul 01 02:03:00 EDT 2025
Thu Apr 24 23:03:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords heart failure
astaxanthin (AST)
oxidative stress
rat brain mitochondria (RBM)
mitochondrial permeability transition pore (mPTP)
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c384t-91330269577647d6f45e4d82e42ad71fff8ef5bb493d67dfcc3c0c824b6cff373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3314-4671
0000-0002-6331-0191
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms24010031
PMID 36613474
PQID 2761981874
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9820232
proquest_miscellaneous_2761981874
pubmed_primary_36613474
crossref_citationtrail_10_3390_ijms24010031
crossref_primary_10_3390_ijms24010031
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221220
PublicationDateYYYYMMDD 2022-12-20
PublicationDate_xml – month: 12
  year: 2022
  text: 20221220
  day: 20
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle International journal of molecular sciences
PublicationTitleAlternate Int J Mol Sci
PublicationYear 2022
Publisher MDPI
Publisher_xml – name: MDPI
References Kettenmann (ref_30) 2011; 91
Menazza (ref_45) 2013; 56
Halestrap (ref_5) 2009; 46
Azarashvili (ref_12) 2009; 296
Gunter (ref_8) 2004; 567
ref_10
Galvita (ref_14) 2009; 109
Choi (ref_16) 2005; 70
Wolf (ref_23) 2010; 21
ref_18
ref_15
Margalith (ref_17) 1999; 51
Kwong (ref_38) 2015; 21
Novak (ref_22) 2015; 3
Liu (ref_20) 2007; 357
Goycoolea (ref_34) 2006; 46
Bernardi (ref_43) 2015; 95
De (ref_46) 2017; 7
ref_24
Bock (ref_2) 2010; 121
Baines (ref_9) 2005; 434
Stricker (ref_41) 2014; 395
ref_29
Azarashvili (ref_37) 2007; 42
ref_27
Yang (ref_40) 2014; 11
ref_26
Haase (ref_54) 2008; 105
Pachitariu (ref_50) 2022; 19
Ambati (ref_48) 2014; 12
Elrod (ref_44) 2013; 77
Ripple (ref_36) 2010; 15
Havakuk (ref_1) 2017; 69
Baburina (ref_52) 2014; 79
ref_35
Karppi (ref_21) 2007; 77
Hurst (ref_47) 2017; 49
Akila (ref_25) 2017; 85
ref_39
Crompton (ref_7) 2002; 84
Hussein (ref_19) 2006; 69
Eggen (ref_32) 2013; 8
Tsujimoto (ref_6) 2006; 1757
Reiser (ref_53) 1994; 19
Knowlton (ref_33) 2014; 63
ref_42
Dreiling (ref_11) 1981; 640
Kreutzberg (ref_31) 1996; 19
Sims (ref_51) 1990; 55
Krestinina (ref_28) 2015; 80
Baburina (ref_13) 2015; 90
Schindelin (ref_49) 2012; 9
Rezin (ref_3) 2009; 34
Li (ref_4) 2020; 11
References_xml – volume: 121
  start-page: 2592
  year: 2010
  ident: ref_2
  article-title: Cardiorenal syndrome: New perspectives
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.109.886473
– volume: 296
  start-page: C1428
  year: 2009
  ident: ref_12
  article-title: Ca2+-dependent permeability transition regulation in rat brain mitochondria by 2′,3′-cyclic nucleotides and 2′,3′-cyclic nucleotide 3′-phosphodiesterase
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00006.2009
– volume: 19
  start-page: 312
  year: 1996
  ident: ref_31
  article-title: Microglia: A sensor for pathological events in the CNS
  publication-title: Trends Neurosci.
  doi: 10.1016/0166-2236(96)10049-7
– volume: 63
  start-page: 196
  year: 2014
  ident: ref_33
  article-title: Heart failure and mitochondrial dysfunction: The role of mitochondrial fission/fusion abnormalities and new therapeutic strategies
  publication-title: J. Cardiovasc. Pharmacol.
  doi: 10.1097/01.fjc.0000432861.55968.a6
– volume: 640
  start-page: 114
  year: 1981
  ident: ref_11
  article-title: 2′,3′-Cyclic nucleotide 3′-phosphohydrolase in rat liver mitochondrial membranes
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2736(81)90537-X
– volume: 395
  start-page: 1321
  year: 2014
  ident: ref_41
  article-title: Functions of the neuron-specific protein ADAP1 (centaurin-alpha1) in neuronal differentiation and neurodegenerative diseases, with an overview of structural and biochemical properties of ADAP1
  publication-title: Biol. Chem.
  doi: 10.1515/hsz-2014-0107
– volume: 95
  start-page: 1111
  year: 2015
  ident: ref_43
  article-title: The Mitochondrial Permeability Transition Pore: Channel Formation by F-ATP Synthase, Integration in Signal Transduction, and Role in Pathophysiology
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00001.2015
– ident: ref_35
  doi: 10.3390/nu10091137
– volume: 109
  start-page: 1701
  year: 2009
  ident: ref_14
  article-title: The brain-specific protein, p42(IP4) (ADAP 1) is localized in mitochondria and involved in regulation of mitochondrial Ca2+
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.2009.06089.x
– volume: 70
  start-page: 3328
  year: 2005
  ident: ref_16
  article-title: Efficient syntheses of the keto-carotenoids canthaxanthin, astaxanthin, and astacene
  publication-title: J. Org. Chem.
  doi: 10.1021/jo050101l
– volume: 11
  start-page: 352
  year: 2020
  ident: ref_4
  article-title: Mitochondrial MPTP: A Novel Target of Ethnomedicine for Stroke Treatment by Apoptosis Inhibition
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2020.00352
– volume: 9
  start-page: 676
  year: 2012
  ident: ref_49
  article-title: Fiji: An open-source platform for biological-image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2019
– ident: ref_15
  doi: 10.3390/ijms21093217
– volume: 105
  start-page: 2237
  year: 2008
  ident: ref_54
  article-title: RanBPM, a novel interaction partner of the brain-specific protein p42IP4/centaurin alpha-1
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.2008.05308.x
– volume: 79
  start-page: 555
  year: 2014
  ident: ref_52
  article-title: Interaction of myelin basic protein and 2′,3′-cyclic nucleotide phosphodiesterase with mitochondria
  publication-title: Biochemistry
– volume: 3
  start-page: 62
  year: 2015
  ident: ref_22
  article-title: Mitochondrial dysfunction in inflammatory bowel disease
  publication-title: Front. Cell. Dev. Biol.
  doi: 10.3389/fcell.2015.00062
– volume: 77
  start-page: 3
  year: 2007
  ident: ref_21
  article-title: Effects of astaxanthin supplementation on lipid peroxidation
  publication-title: Int. J. Vitam. Nutr. Res.
  doi: 10.1024/0300-9831.77.1.3
– volume: 46
  start-page: 821
  year: 2009
  ident: ref_5
  article-title: What is the mitochondrial permeability transition pore?
  publication-title: J. Mol. Cell. Cardiol.
  doi: 10.1016/j.yjmcc.2009.02.021
– volume: 567
  start-page: 96
  year: 2004
  ident: ref_8
  article-title: Calcium and mitochondria
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2004.03.071
– volume: 55
  start-page: 698
  year: 1990
  ident: ref_51
  article-title: Rapid isolation of metabolically active mitochondria from rat brain and subregions using Percoll density gradient centrifugation
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.1990.tb04189.x
– volume: 21
  start-page: 206
  year: 2015
  ident: ref_38
  article-title: Physiological and pathological roles of the mitochondrial permeability transition pore in the heart
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.12.001
– ident: ref_39
  doi: 10.3390/antiox9030262
– ident: ref_26
  doi: 10.3390/biomedicines9121793
– volume: 80
  start-page: 41
  year: 2015
  ident: ref_28
  article-title: In aging, the vulnerability of rat brain mitochondria is enhanced due to reduced level of 2′,3′-cyclic nucleotide-3′-phosphodiesterase (CNP) and subsequently increased permeability transition in brain mitochondria in old animals
  publication-title: Neurochem. Int.
  doi: 10.1016/j.neuint.2014.09.008
– volume: 90
  start-page: 46
  year: 2015
  ident: ref_13
  article-title: Mitochondrial 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNP) interacts with mPTP modulators and functional complexes (I-V) coupled with release of apoptotic factors
  publication-title: Neurochem. Int.
  doi: 10.1016/j.neuint.2015.07.012
– volume: 21
  start-page: 381
  year: 2010
  ident: ref_23
  article-title: Astaxanthin protects mitochondrial redox state and functional integrity against oxidative stress
  publication-title: J. Nutr. Biochem.
  doi: 10.1016/j.jnutbio.2009.01.011
– ident: ref_27
  doi: 10.1371/journal.pone.0097096
– volume: 85
  start-page: 582
  year: 2017
  ident: ref_25
  article-title: Chlorogenic acid ameliorates isoproterenol-induced myocardial injury in rats by stabilizing mitochondrial and lysosomal enzymes
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2016.11.067
– volume: 34
  start-page: 1021
  year: 2009
  ident: ref_3
  article-title: Mitochondrial dysfunction and psychiatric disorders
  publication-title: Neurochem. Res.
  doi: 10.1007/s11064-008-9865-8
– volume: 15
  start-page: 563
  year: 2010
  ident: ref_36
  article-title: Cytochrome c is rapidly reduced in the cytosol after mitochondrial outer membrane permeabilization
  publication-title: Apoptosis
  doi: 10.1007/s10495-010-0455-2
– volume: 19
  start-page: 1634
  year: 2022
  ident: ref_50
  article-title: Cellpose 2.0: How to train your own model
  publication-title: Nat. Methods
  doi: 10.1038/s41592-022-01663-4
– volume: 42
  start-page: 27
  year: 2007
  ident: ref_37
  article-title: The peripheral-type benzodiazepine receptor is involved in control of Ca2+-induced permeability transition pore opening in rat brain mitochondria
  publication-title: Cell Calcium
  doi: 10.1016/j.ceca.2006.11.004
– ident: ref_42
  doi: 10.3390/ijms221910806
– volume: 69
  start-page: 443
  year: 2006
  ident: ref_19
  article-title: Astaxanthin, a carotenoid with potential in human health and nutrition
  publication-title: J. Nat. Prod.
  doi: 10.1021/np050354+
– volume: 12
  start-page: 128
  year: 2014
  ident: ref_48
  article-title: Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications—A review
  publication-title: Mar. Drugs
  doi: 10.3390/md12010128
– volume: 19
  start-page: 1479
  year: 1994
  ident: ref_53
  article-title: Generation of a monoclonal antibody against the myelin protein CNP (2′,3′-cyclic nucleotide 3′-phosphodiesterase) suitable for biochemical and for immunohistochemical investigations of CNP
  publication-title: Neurochem. Res.
  doi: 10.1007/BF00968994
– volume: 84
  start-page: 143
  year: 2002
  ident: ref_7
  article-title: Mitochondrial intermembrane junctional complexes and their involvement in cell death
  publication-title: Biochimie
  doi: 10.1016/S0300-9084(02)01368-8
– volume: 56
  start-page: 81
  year: 2013
  ident: ref_45
  article-title: CypD(-/-) hearts have altered levels of proteins involved in Krebs cycle, branch chain amino acid degradation and pyruvate metabolism
  publication-title: J. Mol. Cell. Cardiol.
  doi: 10.1016/j.yjmcc.2012.12.004
– ident: ref_29
  doi: 10.3390/biomedicines8100437
– volume: 357
  start-page: 187
  year: 2007
  ident: ref_20
  article-title: Cis astaxanthin and especially 9-cis astaxanthin exhibits a higher antioxidant activity in vitro compared to the all-trans isomer
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2007.03.120
– volume: 434
  start-page: 658
  year: 2005
  ident: ref_9
  article-title: Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death
  publication-title: Nature
  doi: 10.1038/nature03434
– volume: 46
  start-page: 185
  year: 2006
  ident: ref_34
  article-title: Astaxanthin: A review of its chemistry and applications
  publication-title: Crit. Rev. Food Sci. Nutr.
  doi: 10.1080/10408690590957188
– volume: 7
  start-page: 60
  year: 2017
  ident: ref_46
  article-title: The Mitochondrial Voltage-Dependent Anion Channel 1, Ca(2+) Transport, Apoptosis, and Their Regulation
  publication-title: Front. Oncol.
– volume: 69
  start-page: 1609
  year: 2017
  ident: ref_1
  article-title: Heart Failure-Induced Brain Injury
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2017.01.022
– volume: 11
  start-page: 148
  year: 2014
  ident: ref_40
  article-title: Expression of 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) and its roles in activated microglia in vivo and in vitro
  publication-title: J. Neuroinflamm.
  doi: 10.1186/s12974-014-0148-9
– volume: 51
  start-page: 431
  year: 1999
  ident: ref_17
  article-title: Production of ketocarotenoids by microalgae
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s002530051413
– ident: ref_18
  doi: 10.3390/nu14010107
– ident: ref_24
  doi: 10.3390/md16080247
– volume: 1757
  start-page: 1297
  year: 2006
  ident: ref_6
  article-title: Mitochondrial membrane permeability transition and cell death
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2006.03.017
– volume: 49
  start-page: 27
  year: 2017
  ident: ref_47
  article-title: Mitochondrial Ca(2+) and regulation of the permeability transition pore
  publication-title: J. Bioenerg. Biomembr.
  doi: 10.1007/s10863-016-9672-x
– ident: ref_10
  doi: 10.3390/biom8040176
– volume: 91
  start-page: 461
  year: 2011
  ident: ref_30
  article-title: Physiology of microglia
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00011.2010
– volume: 8
  start-page: 807
  year: 2013
  ident: ref_32
  article-title: Microglial phenotype and adaptation
  publication-title: J. Neuroimmune Pharmacol.
  doi: 10.1007/s11481-013-9490-4
– volume: 77
  start-page: 1111
  year: 2013
  ident: ref_44
  article-title: Physiologic functions of cyclophilin D and the mitochondrial permeability transition pore
  publication-title: Circ. J.
  doi: 10.1253/circj.CJ-13-0321
SSID ssj0023259
Score 2.3934293
Snippet The relationship between neurological damage and cardiovascular disease is often observed. This type of damage is both a cause and an effect of cardiovascular...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 31
SubjectTerms Animals
Brain - metabolism
Calcium - metabolism
Cardiovascular Diseases - metabolism
Heart Failure - drug therapy
Heart Failure - metabolism
Isoproterenol - pharmacology
Mitochondria - metabolism
Mitochondria, Heart - metabolism
Mitochondrial Membrane Transport Proteins - metabolism
Rats
Xanthophylls - metabolism
Xanthophylls - pharmacology
Xanthophylls - therapeutic use
Title The Improvement of Functional State of Brain Mitochondria with Astaxanthin in Rats after Heart Failure
URI https://www.ncbi.nlm.nih.gov/pubmed/36613474
https://www.proquest.com/docview/2761981874
https://pubmed.ncbi.nlm.nih.gov/PMC9820232
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3rS-QwEB98cOAXOd97p0sE75P0bJu0ST-IqFgXYUXkFvZbSdMEV7TruRX0v3em3V1cHyC0pTRpKTOZzCOT-QHsSSeSAk_P1ypHB8WPPJX4zrOJz61VgVP1_oruZdzpiYt-1J-DCdromICjT107wpPqPd79ff7_coQCf0geJ7rsB4Pb-xEqpoAG6Dwsok6ShGXQFdP1BDQbatg0Cnh4NEE3KfAf3p5VTh8szveJk280UfoTlscmJDtueL4Cc7ZchR8NqOTLGjjkPGtiBXXojw0dS1F7NUE_VluX9OyEwCFYFyUaiVAWOBAZBWXZMdqLz0jvG2zF41pXI1YjibMOSkXFUj2gVPZ16KVn_0473hhNwTNciYqW2Dk6XEkkZSxkETsRWVGo0IpQFzJwzinrojwXCS9iWThjuPGNCkUeG-e45BuwUA5LuwXM15GvE8uDwgRCKpForfMwN0rm2uF9C_YnZMzMuNQ4IV7cZehyENGzt0RvwZ9p74emxMYX_XYnHMlQBmhhQ5d2-DTKQorFKEIXbMFmw6HplzgaIFxQi5zh3bQD1deebSkHN3Wd7UQRtnz465v_9xuWQtobEYQ49WzDQvX4ZHfQYqnyNszLvsSrSs_bsHhydnl13SYdErXrYfoKoKzv8w
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Improvement+of+Functional+State+of+Brain+Mitochondria+with+Astaxanthin+in+Rats+after+Heart+Failure&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Baburina%2C+Yulia&rft.au=Krestinin%2C+Roman&rft.au=Fedorov%2C+Dmitry&rft.au=Odinokova%2C+Irina&rft.date=2022-12-20&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=24&rft.issue=1&rft.spage=31&rft_id=info:doi/10.3390%2Fijms24010031&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ijms24010031
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon