The densification behavior of flash sintered BaTiO3
Herein, we report the densification behavior of a typical electric ceramic, barium titanate (BaTiO3), and highlight the role of oxygen vacancies in rapid densification of BaTiO3 during flash sintering. The activation energies of flash- and conventional-densification processes are compared to reveal...
Saved in:
Published in | Scripta materialia Vol. 186; pp. 362 - 365 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Herein, we report the densification behavior of a typical electric ceramic, barium titanate (BaTiO3), and highlight the role of oxygen vacancies in rapid densification of BaTiO3 during flash sintering. The activation energies of flash- and conventional-densification processes are compared to reveal that the initiation of flash sintering is triggered by the accumulation of generated oxygen vacancies under the electric field. Furthermore, the densification kinetics of BaTiO3 and X-ray photoelectron spectroscopy of flash-sintered BaTiO3 infer that the ultrafast densification during the flash-sintering stage is dominated by the migration of electric field-generated defects coupled with defect-annihilation by take-in oxygen from the environment.
[Display omitted] |
---|---|
AbstractList | Herein, we report the densification behavior of a typical electric ceramic, barium titanate (BaTiO3), and highlight the role of oxygen vacancies in rapid densification of BaTiO3 during flash sintering. The activation energies of flash- and conventional-densification processes are compared to reveal that the initiation of flash sintering is triggered by the accumulation of generated oxygen vacancies under the electric field. Furthermore, the densification kinetics of BaTiO3 and X-ray photoelectron spectroscopy of flash-sintered BaTiO3 infer that the ultrafast densification during the flash-sintering stage is dominated by the migration of electric field-generated defects coupled with defect-annihilation by take-in oxygen from the environment.
[Display omitted] |
Author | Cao, Yejie Ren, Ke Shao, Gang Huang, Sisi Wang, Yiguang |
Author_xml | – sequence: 1 givenname: Ke orcidid: 0000-0003-0225-5579 surname: Ren fullname: Ren, Ke organization: Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi′an, Shaanxi 710072, P. R. China – sequence: 2 givenname: Sisi surname: Huang fullname: Huang, Sisi organization: Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi′an, Shaanxi 710072, P. R. China – sequence: 3 givenname: Yejie surname: Cao fullname: Cao, Yejie organization: Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi′an, Shaanxi 710072, P. R. China – sequence: 4 givenname: Gang surname: Shao fullname: Shao, Gang organization: Henan Province Industrial Technology Research Institute of Resources and Materials, Zhengzhou University, Zhengzhou, 450001, China – sequence: 5 givenname: Yiguang surname: Wang fullname: Wang, Yiguang email: wangyiguang@bit.edu.cn organization: Institute of Advanced Structure Technology, Beijing Institute of Technology, Haidian District Beijing, 100081, P. R. China |
BookMark | eNqNkEFLAzEQhYNUsK3-h_0Du85sstvsRbBFrVDopZ5DNpnQlHa3JKHgv3fbCoIXPc0c5n3z3puwUdd3xFiGUCBg_bgrogn-mPRBp6KEEgqoCoDqho1RzspciqoeDTuvmrwWdXnHJjHuAKDGEseMb7aUWeqid97o5Psua2mrT74PWe8yt9dxm0XfJQpks7ne-DW_Z7dO7yM9fM8p-3h92SyW-Wr99r54XuWGS5HyBhwJ0txKiTNHKIaHgouZHaygq9FSKVFoDq00TdNadELwFo1uBQ45Kj5lT1euCX2MgZwyPl08pqD9XiGocwVqp34qUOcKFFQKLgD5C3AM_qDD53-k86uUhoAnT2E49NQZsj6QScr2_m_IFwgsfkY |
CitedBy_id | crossref_primary_10_1063_5_0142736 crossref_primary_10_1111_jace_19719 crossref_primary_10_1016_j_jallcom_2021_160124 crossref_primary_10_1016_j_saa_2024_124556 crossref_primary_10_1016_j_actamat_2024_120620 crossref_primary_10_1016_j_jeurceramsoc_2022_06_009 crossref_primary_10_1016_j_scriptamat_2021_113984 crossref_primary_10_1111_jace_18027 crossref_primary_10_1016_j_jeurceramsoc_2020_11_052 crossref_primary_10_1016_j_jeurceramsoc_2023_06_002 crossref_primary_10_1016_j_jeurceramsoc_2024_116982 crossref_primary_10_1016_j_jeurceramsoc_2024_116761 crossref_primary_10_1111_jace_17835 crossref_primary_10_1016_j_ceramint_2024_10_353 crossref_primary_10_1016_j_ceramint_2023_09_273 crossref_primary_10_1111_jace_18343 crossref_primary_10_1016_j_jpowsour_2024_235205 crossref_primary_10_1016_j_ceramint_2021_08_316 crossref_primary_10_1016_j_ceramint_2021_07_083 crossref_primary_10_1016_j_msea_2023_144631 crossref_primary_10_1002_adem_202300142 crossref_primary_10_1016_j_scriptamat_2020_06_040 crossref_primary_10_26599_JAC_2024_9220932 crossref_primary_10_1016_j_jeurceramsoc_2023_01_062 crossref_primary_10_26599_JAC_2023_9220816 crossref_primary_10_1080_23746149_2024_2438686 crossref_primary_10_15541_jim20220320 crossref_primary_10_1016_j_scriptamat_2025_116601 crossref_primary_10_1002_admt_202400697 crossref_primary_10_1016_j_jeurceramsoc_2023_12_046 crossref_primary_10_1016_j_jeurceramsoc_2023_04_007 crossref_primary_10_1016_j_scriptamat_2023_115511 crossref_primary_10_1111_ijac_14205 crossref_primary_10_1007_s40145_022_0591_5 crossref_primary_10_1016_j_ceramint_2024_12_543 crossref_primary_10_3390_ma15020416 crossref_primary_10_1016_j_scriptamat_2022_114628 crossref_primary_10_1016_j_ceramint_2024_10_044 crossref_primary_10_1016_j_jeurceramsoc_2020_11_025 crossref_primary_10_1016_j_actamat_2022_117704 crossref_primary_10_1016_j_ceramint_2022_02_231 crossref_primary_10_1111_jace_19269 crossref_primary_10_1016_j_jeurceramsoc_2022_05_053 crossref_primary_10_1016_j_ceramint_2023_10_081 crossref_primary_10_1039_D3TC02143B crossref_primary_10_3390_ma15030862 crossref_primary_10_1016_j_jeurceramsoc_2024_01_030 |
Cites_doi | 10.1016/j.actamat.2019.06.030 10.1111/jace.14178 10.1080/17436753.2016.1251051 10.1016/j.jeurceramsoc.2019.12.060 10.1016/j.jeurceramsoc.2016.02.014 10.1016/j.ceramint.2018.10.180 10.1016/j.jeurceramsoc.2018.11.032 10.1016/j.jeurceramsoc.2014.12.022 10.1016/j.jeurceramsoc.2014.04.043 10.1016/j.jeurceramsoc.2019.07.036 10.1016/j.jmst.2017.03.005 10.1016/j.jallcom.2018.02.308 10.1021/acs.jpcc.8b03322 10.1016/j.jeurceramsoc.2012.02.030 10.1021/cs500606g 10.1016/j.jeurceramsoc.2015.12.005 10.1016/j.jeurceramsoc.2014.02.042 10.1111/j.1551-2916.2011.04652.x 10.1103/PhysRevB.78.245320 10.1111/j.1151-2916.1965.tb16044.x 10.1088/1367-2630/aadd5a 10.1016/j.actamat.2007.07.054 10.1016/j.scriptamat.2017.11.042 10.1016/j.scriptamat.2018.04.047 10.1016/j.jpowsour.2010.10.036 10.1016/j.ceramint.2019.07.168 10.1016/j.actamat.2016.12.015 10.1016/j.apsusc.2006.02.035 10.3390/ma9040280 10.1111/jace.12972 10.1103/PhysRev.54.647 10.1016/j.jeurceramsoc.2019.04.023 10.1038/35004548 10.1016/j.jeurceramsoc.2018.04.003 10.1016/j.jeurceramsoc.2013.10.031 10.1111/j.1151-2916.1990.tb05175.x 10.1016/0272-8842(88)90006-5 10.1016/S0925-8388(00)00860-4 10.1111/j.1151-2916.1992.tb05549.x 10.1111/jace.13476 10.1016/j.jeurceramsoc.2017.01.033 10.1002/qua.10863 10.1063/1.4811362 10.7498/aps.66.217701 10.1016/j.jeurceramsoc.2011.07.004 10.1016/j.ceramint.2016.08.048 10.1016/j.scriptamat.2019.02.004 10.1016/j.jeurceramsoc.2013.04.023 10.1111/j.1551-2916.2010.04089.x |
ContentType | Journal Article |
Copyright | 2020 Acta Materialia Inc. |
Copyright_xml | – notice: 2020 Acta Materialia Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.scriptamat.2020.05.005 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-8456 |
EndPage | 365 |
ExternalDocumentID | 10_1016_j_scriptamat_2020_05_005 S1359646220302827 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD AEBSH AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SSM SSQ SSZ T5K T9H XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c384t-90fe4ea3d8817fe141214347d3591f61de2814a30b8c99bd1f443b1cab4102053 |
IEDL.DBID | .~1 |
ISSN | 1359-6462 |
IngestDate | Thu Apr 24 22:56:59 EDT 2025 Tue Jul 01 01:27:31 EDT 2025 Fri Feb 23 02:40:46 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Oxygen vacancies Defect annihilation Densification kinetics BaTiO3 Flash sintering |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c384t-90fe4ea3d8817fe141214347d3591f61de2814a30b8c99bd1f443b1cab4102053 |
ORCID | 0000-0003-0225-5579 |
PageCount | 4 |
ParticipantIDs | crossref_citationtrail_10_1016_j_scriptamat_2020_05_005 crossref_primary_10_1016_j_scriptamat_2020_05_005 elsevier_sciencedirect_doi_10_1016_j_scriptamat_2020_05_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2020 2020-09-00 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
PublicationDecade | 2020 |
PublicationTitle | Scripta materialia |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | B. Yoon, D. Yadav, S. Ghose, R. Raj, J. Am. Ceram. Soc. (2018) 1-10. J. Xia, K. Ren, W. Liu, Y. Wang, J. Eur. Ceram. Soc. 39 (2019) 3173-3179. J. Xia, K. Ren, Y. Wang, Scr. Mater. 165 (2019) 34-38. D. Liu, Y. Gao, J. Liu, K. Li, F. Liu, Y. Wang, J. Eur. Ceram. Soc. 36 (2016) 2051-2055. P. Wang, L. Yao, M. Wang, W. Wu, J. Alloy, Compd. 311 (2000) 53-56. M. Yu, S. Grasso, R. Mckinnon, T. Saunders, M.J. Reece, Adv. Appl. Ceram. 116 (2017) 24-60. H.U. Anderson, J. Am. Ceram. Soc. 48 (1965) 118-121. N.A. Merino, B.P. Barbero, P. Eloy, L.E. Cadus, Appl. Surf. Sci. 253 (2006) 1489-1493. H. Moriwake, Int. J. Quantum Chem. 99 (2004) 824. M. Imaeda, T. Mizoguchi, Y. Sato, H.S. Lee, S.D. Findlay, N. Shibata, T. Yamamoto, Y. Ikuhara, Phy. Rev. B 78 (2008) 245320. E.Z. Solvas, S. Bonill, P.R. Wilshaw, R.I. Todd, J. Eur. Ceram. Soc. 33 (2013) 2811-2816. C. Genuist, F.J.M. Haussonne, Ceram. Int. 14 (1988) 169-179. R. Raj, J. Eur. Ceram. Soc. 32 (2012) 2293-2301. Y. Yamashita, T. Kurachi, T. Tokunaga, H. Yoshida, T. Yamamoto, J. Eur. Ceram. Soc. 40 (2020) 2072-2076. Y. Gao, F. Liu, D. Liu, J. Liu, Y. Wang, L. An, J. Mater. Sci. Technol. 33 (2017) 897-900. J.J. Brown, Z. Ke, W. Geng, A.J. Page, J. Phys. Chem. C 122 (2018) 14590-14597. J.M. Lebrun, T.G. Morrissey, J.S.C. Francis, K.C. Seymour, W.M. Kriven, R. Raj, J. Am. Ceram. Soc. 98 (2015) 1493-1497. K. Ren, Q. Wang, L. Long, Y. Wang, J. Alloy, Compd. 747 (2018) 1073-1077. R. Raj, J. Am. Ceram. Soc. 99 (2016) 3226-3232. W. Ji, B. Parker, S. Falco, J.Y. Zhang, Z.Y. Fu, R.I. Todd, J. Eur. Ceram. Soc. 37 (2017) 2547-2551. J. Wang, R. Raj, J. Am. Ceram. Soc.73 (1990) 1172-1175. H. Yoshida, Y. Sasaki, Scr. Mater. 146 (2018) 173-177. J.J. Zhu, H.L. Li, L.Y. Zhong, P. Xiao, X.L. Xu, X.G. Yang, Z. Zhao, J.L. Li, Acs catal. 4 (2014) 2917-2940. R. Kirchheim, Acta. Mater. 175 (2019) 361-375. R. Raj, M. Cologna, J.S.C. Francis, J. Am. Ceram. Soc. 94 (2011) 1941-1965. Y. Zhang, J. Nie, J.M. Chan, J. Luo, Acta. Mater. 125 (2017) 465-475. M. Cologna, J.S.C. Francis, R. Raj, J. Eur. Ceram. Soc. 31 (2011) 2827-2837. 97 (2014) 1728-1735. K.S. Naik, V.M. Sglavo, R. Raj, J. Eur. Ceram. Soc. 34 (2014)2435-2442. Y. Lian, K. Ren, Q. Wang, S. Huang, W. Liu, Y. Wang, Ceram. Int. 45 (2019) 22388-93. J. Xia, K. Ren, Y. Wang, L. An, Scr. Mater. 153 (2018) 31-34. H.S. Lee, T. Mizoguchi, T. Yamamoto, S.J.L. Kang, Y. Ikuhara, Acta. Mater. 55(2017) 6535-6540. M. Cologna, B. Rashkova, R. Raj, J. Am. Ceram. Soc H. Yoshida, Y. Sakka, T. Yamamoto, J.M. Lebrun, R. Raj, J. Eur. Ceram. Soc, 34 (2014) 991-1000. K. Ren, J. Xia, Y. Wang, J. Eur. Ceram. Soc. 39 (2019) 1366-1373. E.K. Akdoğan, İ, Şavklıyıldız, H. Biçer, W. Paxton, F. Toksoy, Z. Zhong, T. Tsakalakos, J. Appl. Phys. 113 (2013) 233503. R.I. Todd, E.Z. Solvas, R.S. Bonilla, T. Sneddon, P.R. Wilshaw, J. Eur. Ceram. Soc. 35 (2015) 1865-1877. M. Jongmanns, R. Raj, D.E. Wolf, New. J. Phys. 20 (2018) 093013. A.L.G. Prette, M. Cologna, V.M. Sglavo, R. Raj, J. Power. Sources. 196 (2011) 2061-2065. K.S. Naik, V.M. Sglavo, R. Raj, J. Eur. Ceram. Soc. 34 (2014) 4063-4067. J. Frenkel, Phys Rev.54 (1938) 647–648. D. Liu, Y. Gao, J. Liu, Y. Wang, L. An, Ceram. Int. 42 (2016) 17442-17446. P. Li, Y.T. Xu, acta physica sinica, 66 (2017) 217701. R. Chaim, Materials. 9 (2016)19-21. 93 (2010) 3556-3559. J. Xia, K. Ren, Y. Wang. Ceram. Int. 45 (2019) 2509-15. I.W. Chen, X. H. Wang, Nature. 404 (2000)168. J.D. Hansen, R.P. Rusin, M.H. Teng, D.L. Johnson, J. Am. Ceram. Soc.75 (1992):1129-1135. L.B. Caliman, R. Bouchet, D. Gouvea, P. Soudant, M.C. Steil, J. Eur. Ceram. Soc, 36 (2016) 1253-1260. C. Schmerbauch, J.G. Julian, R. Röder, C. Ronning, O. Guillon, J. Am. Ceram. Soc M. Biesuz, T. Saunders, S. Grasso, G. Speranza, G.D. Soraru, R. Campostrini, V.M. Sglavo, M.J. Reece, J. Eur. Ceram. Soc. 39 (2019) 4644-4672. H. Charalambous, S.K. Jha, K.H. Christian, R.T. Lay, T. Tsakalakos, J. Eur. Ceram. Soc. 38 (2018) 3689-3693. 10.1016/j.scriptamat.2020.05.005_bib0021 10.1016/j.scriptamat.2020.05.005_bib0020 10.1016/j.scriptamat.2020.05.005_bib0023 10.1016/j.scriptamat.2020.05.005_bib0022 10.1016/j.scriptamat.2020.05.005_bib0025 10.1016/j.scriptamat.2020.05.005_bib0024 10.1016/j.scriptamat.2020.05.005_bib0027 10.1016/j.scriptamat.2020.05.005_bib0026 10.1016/j.scriptamat.2020.05.005_bib0029 10.1016/j.scriptamat.2020.05.005_bib0028 10.1016/j.scriptamat.2020.05.005_bib0030 10.1016/j.scriptamat.2020.05.005_bib0032 10.1016/j.scriptamat.2020.05.005_bib0031 10.1016/j.scriptamat.2020.05.005_bib0034 10.1016/j.scriptamat.2020.05.005_bib0033 10.1016/j.scriptamat.2020.05.005_bib0036 10.1016/j.scriptamat.2020.05.005_bib0035 10.1016/j.scriptamat.2020.05.005_bib0038 10.1016/j.scriptamat.2020.05.005_bib0037 10.1016/j.scriptamat.2020.05.005_bib0039 10.1016/j.scriptamat.2020.05.005_bib0041 10.1016/j.scriptamat.2020.05.005_bib0040 10.1016/j.scriptamat.2020.05.005_bib0043 10.1016/j.scriptamat.2020.05.005_bib0042 10.1016/j.scriptamat.2020.05.005_bib0001 10.1016/j.scriptamat.2020.05.005_bib0045 10.1016/j.scriptamat.2020.05.005_bib0044 10.1016/j.scriptamat.2020.05.005_bib0003 10.1016/j.scriptamat.2020.05.005_bib0047 10.1016/j.scriptamat.2020.05.005_bib0002 10.1016/j.scriptamat.2020.05.005_bib0046 10.1016/j.scriptamat.2020.05.005_bib0005 10.1016/j.scriptamat.2020.05.005_bib0049 10.1016/j.scriptamat.2020.05.005_bib0004 10.1016/j.scriptamat.2020.05.005_bib0048 10.1016/j.scriptamat.2020.05.005_bib0007 10.1016/j.scriptamat.2020.05.005_bib0006 10.1016/j.scriptamat.2020.05.005_bib0009 10.1016/j.scriptamat.2020.05.005_bib0008 10.1016/j.scriptamat.2020.05.005_bib0050 10.1016/j.scriptamat.2020.05.005_bib0010 10.1016/j.scriptamat.2020.05.005_bib0012 10.1016/j.scriptamat.2020.05.005_bib0011 10.1016/j.scriptamat.2020.05.005_bib0014 10.1016/j.scriptamat.2020.05.005_bib0013 10.1016/j.scriptamat.2020.05.005_bib0016 10.1016/j.scriptamat.2020.05.005_bib0015 10.1016/j.scriptamat.2020.05.005_bib0018 10.1016/j.scriptamat.2020.05.005_bib0017 10.1016/j.scriptamat.2020.05.005_bib0019 |
References_xml | – reference: K.S. Naik, V.M. Sglavo, R. Raj, J. Eur. Ceram. Soc. 34 (2014) 4063-4067. – reference: J. Frenkel, Phys Rev.54 (1938) 647–648. – reference: H. Moriwake, Int. J. Quantum Chem. 99 (2004) 824. – reference: R.I. Todd, E.Z. Solvas, R.S. Bonilla, T. Sneddon, P.R. Wilshaw, J. Eur. Ceram. Soc. 35 (2015) 1865-1877. – reference: J. Wang, R. Raj, J. Am. Ceram. Soc.73 (1990) 1172-1175. – reference: J. Xia, K. Ren, W. Liu, Y. Wang, J. Eur. Ceram. Soc. 39 (2019) 3173-3179. – reference: M. Biesuz, T. Saunders, S. Grasso, G. Speranza, G.D. Soraru, R. Campostrini, V.M. Sglavo, M.J. Reece, J. Eur. Ceram. Soc. 39 (2019) 4644-4672. – reference: K. Ren, J. Xia, Y. Wang, J. Eur. Ceram. Soc. 39 (2019) 1366-1373. – reference: R. Raj, J. Am. Ceram. Soc. 99 (2016) 3226-3232. – reference: K.S. Naik, V.M. Sglavo, R. Raj, J. Eur. Ceram. Soc. 34 (2014)2435-2442. – reference: Y. Lian, K. Ren, Q. Wang, S. Huang, W. Liu, Y. Wang, Ceram. Int. 45 (2019) 22388-93. – reference: R. Raj, M. Cologna, J.S.C. Francis, J. Am. Ceram. Soc. 94 (2011) 1941-1965. – reference: J.M. Lebrun, T.G. Morrissey, J.S.C. Francis, K.C. Seymour, W.M. Kriven, R. Raj, J. Am. Ceram. Soc. 98 (2015) 1493-1497. – reference: A.L.G. Prette, M. Cologna, V.M. Sglavo, R. Raj, J. Power. Sources. 196 (2011) 2061-2065. – reference: K. Ren, Q. Wang, L. Long, Y. Wang, J. Alloy, Compd. 747 (2018) 1073-1077. – reference: L.B. Caliman, R. Bouchet, D. Gouvea, P. Soudant, M.C. Steil, J. Eur. Ceram. Soc, 36 (2016) 1253-1260. – reference: J.D. Hansen, R.P. Rusin, M.H. Teng, D.L. Johnson, J. Am. Ceram. Soc.75 (1992):1129-1135. – reference: P. Wang, L. Yao, M. Wang, W. Wu, J. Alloy, Compd. 311 (2000) 53-56. – reference: N.A. Merino, B.P. Barbero, P. Eloy, L.E. Cadus, Appl. Surf. Sci. 253 (2006) 1489-1493. – reference: H.U. Anderson, J. Am. Ceram. Soc. 48 (1965) 118-121. – reference: I.W. Chen, X. H. Wang, Nature. 404 (2000)168. – reference: M. Yu, S. Grasso, R. Mckinnon, T. Saunders, M.J. Reece, Adv. Appl. Ceram. 116 (2017) 24-60. – reference: 93 (2010) 3556-3559. – reference: W. Ji, B. Parker, S. Falco, J.Y. Zhang, Z.Y. Fu, R.I. Todd, J. Eur. Ceram. Soc. 37 (2017) 2547-2551. – reference: C. Schmerbauch, J.G. Julian, R. Röder, C. Ronning, O. Guillon, J. Am. Ceram. Soc – reference: H. Yoshida, Y. Sasaki, Scr. Mater. 146 (2018) 173-177. – reference: D. Liu, Y. Gao, J. Liu, Y. Wang, L. An, Ceram. Int. 42 (2016) 17442-17446. – reference: D. Liu, Y. Gao, J. Liu, K. Li, F. Liu, Y. Wang, J. Eur. Ceram. Soc. 36 (2016) 2051-2055. – reference: R. Kirchheim, Acta. Mater. 175 (2019) 361-375. – reference: H.S. Lee, T. Mizoguchi, T. Yamamoto, S.J.L. Kang, Y. Ikuhara, Acta. Mater. 55(2017) 6535-6540. – reference: J. Xia, K. Ren, Y. Wang, L. An, Scr. Mater. 153 (2018) 31-34. – reference: M. Cologna, J.S.C. Francis, R. Raj, J. Eur. Ceram. Soc. 31 (2011) 2827-2837. – reference: P. Li, Y.T. Xu, acta physica sinica, 66 (2017) 217701. – reference: B. Yoon, D. Yadav, S. Ghose, R. Raj, J. Am. Ceram. Soc. (2018) 1-10. – reference: H. Charalambous, S.K. Jha, K.H. Christian, R.T. Lay, T. Tsakalakos, J. Eur. Ceram. Soc. 38 (2018) 3689-3693. – reference: R. Chaim, Materials. 9 (2016)19-21. – reference: J. Xia, K. Ren, Y. Wang. Ceram. Int. 45 (2019) 2509-15. – reference: E.K. Akdoğan, İ, Şavklıyıldız, H. Biçer, W. Paxton, F. Toksoy, Z. Zhong, T. Tsakalakos, J. Appl. Phys. 113 (2013) 233503. – reference: 97 (2014) 1728-1735. – reference: H. Yoshida, Y. Sakka, T. Yamamoto, J.M. Lebrun, R. Raj, J. Eur. Ceram. Soc, 34 (2014) 991-1000. – reference: Y. Zhang, J. Nie, J.M. Chan, J. Luo, Acta. Mater. 125 (2017) 465-475. – reference: M. Cologna, B. Rashkova, R. Raj, J. Am. Ceram. Soc – reference: J.J. Brown, Z. Ke, W. Geng, A.J. Page, J. Phys. Chem. C 122 (2018) 14590-14597. – reference: C. Genuist, F.J.M. Haussonne, Ceram. Int. 14 (1988) 169-179. – reference: J.J. Zhu, H.L. Li, L.Y. Zhong, P. Xiao, X.L. Xu, X.G. Yang, Z. Zhao, J.L. Li, Acs catal. 4 (2014) 2917-2940. – reference: Y. Gao, F. Liu, D. Liu, J. Liu, Y. Wang, L. An, J. Mater. Sci. Technol. 33 (2017) 897-900. – reference: E.Z. Solvas, S. Bonill, P.R. Wilshaw, R.I. Todd, J. Eur. Ceram. Soc. 33 (2013) 2811-2816. – reference: M. Imaeda, T. Mizoguchi, Y. Sato, H.S. Lee, S.D. Findlay, N. Shibata, T. Yamamoto, Y. Ikuhara, Phy. Rev. B 78 (2008) 245320. – reference: Y. Yamashita, T. Kurachi, T. Tokunaga, H. Yoshida, T. Yamamoto, J. Eur. Ceram. Soc. 40 (2020) 2072-2076. – reference: J. Xia, K. Ren, Y. Wang, Scr. Mater. 165 (2019) 34-38. – reference: M. Jongmanns, R. Raj, D.E. Wolf, New. J. Phys. 20 (2018) 093013. – reference: R. Raj, J. Eur. Ceram. Soc. 32 (2012) 2293-2301. – ident: 10.1016/j.scriptamat.2020.05.005_bib0019 doi: 10.1016/j.actamat.2019.06.030 – ident: 10.1016/j.scriptamat.2020.05.005_bib0028 doi: 10.1111/jace.14178 – ident: 10.1016/j.scriptamat.2020.05.005_bib0001 doi: 10.1080/17436753.2016.1251051 – ident: 10.1016/j.scriptamat.2020.05.005_bib0026 doi: 10.1016/j.jeurceramsoc.2019.12.060 – ident: 10.1016/j.scriptamat.2020.05.005_bib0008 doi: 10.1016/j.jeurceramsoc.2016.02.014 – ident: 10.1016/j.scriptamat.2020.05.005_bib0013 doi: 10.1016/j.ceramint.2018.10.180 – ident: 10.1016/j.scriptamat.2020.05.005_bib0023 doi: 10.1016/j.jeurceramsoc.2018.11.032 – ident: 10.1016/j.scriptamat.2020.05.005_bib0017 doi: 10.1016/j.jeurceramsoc.2014.12.022 – ident: 10.1016/j.scriptamat.2020.05.005_bib0010 – ident: 10.1016/j.scriptamat.2020.05.005_bib0030 doi: 10.1016/j.jeurceramsoc.2014.04.043 – ident: 10.1016/j.scriptamat.2020.05.005_bib0015 doi: 10.1016/j.jeurceramsoc.2019.07.036 – ident: 10.1016/j.scriptamat.2020.05.005_bib0018 doi: 10.1016/j.jmst.2017.03.005 – ident: 10.1016/j.scriptamat.2020.05.005_bib0021 doi: 10.1016/j.jallcom.2018.02.308 – ident: 10.1016/j.scriptamat.2020.05.005_bib0046 doi: 10.1021/acs.jpcc.8b03322 – ident: 10.1016/j.scriptamat.2020.05.005_bib0038 doi: 10.1016/j.jeurceramsoc.2012.02.030 – ident: 10.1016/j.scriptamat.2020.05.005_bib0049 doi: 10.1021/cs500606g – ident: 10.1016/j.scriptamat.2020.05.005_bib0003 doi: 10.1016/j.jeurceramsoc.2015.12.005 – ident: 10.1016/j.scriptamat.2020.05.005_bib0024 doi: 10.1016/j.jeurceramsoc.2014.02.042 – ident: 10.1016/j.scriptamat.2020.05.005_bib0031 doi: 10.1111/j.1551-2916.2011.04652.x – ident: 10.1016/j.scriptamat.2020.05.005_bib0042 doi: 10.1103/PhysRevB.78.245320 – ident: 10.1016/j.scriptamat.2020.05.005_bib0040 doi: 10.1111/j.1151-2916.1965.tb16044.x – ident: 10.1016/j.scriptamat.2020.05.005_bib0032 doi: 10.1088/1367-2630/aadd5a – ident: 10.1016/j.scriptamat.2020.05.005_bib0044 doi: 10.1016/j.actamat.2007.07.054 – ident: 10.1016/j.scriptamat.2020.05.005_bib0016 doi: 10.1016/j.scriptamat.2017.11.042 – ident: 10.1016/j.scriptamat.2020.05.005_bib0012 doi: 10.1016/j.scriptamat.2018.04.047 – ident: 10.1016/j.scriptamat.2020.05.005_bib0005 doi: 10.1016/j.jpowsour.2010.10.036 – ident: 10.1016/j.scriptamat.2020.05.005_bib0011 doi: 10.1016/j.ceramint.2019.07.168 – ident: 10.1016/j.scriptamat.2020.05.005_bib0020 doi: 10.1016/j.actamat.2016.12.015 – ident: 10.1016/j.scriptamat.2020.05.005_bib0048 doi: 10.1016/j.apsusc.2006.02.035 – ident: 10.1016/j.scriptamat.2020.05.005_bib0025 doi: 10.3390/ma9040280 – ident: 10.1016/j.scriptamat.2020.05.005_bib0004 doi: 10.1111/jace.12972 – ident: 10.1016/j.scriptamat.2020.05.005_bib0034 doi: 10.1103/PhysRev.54.647 – ident: 10.1016/j.scriptamat.2020.05.005_bib0050 doi: 10.1016/j.jeurceramsoc.2019.04.023 – ident: 10.1016/j.scriptamat.2020.05.005_bib0037 doi: 10.1038/35004548 – ident: 10.1016/j.scriptamat.2020.05.005_bib0022 doi: 10.1016/j.jeurceramsoc.2018.04.003 – ident: 10.1016/j.scriptamat.2020.05.005_bib0006 doi: 10.1016/j.jeurceramsoc.2013.10.031 – ident: 10.1016/j.scriptamat.2020.05.005_bib0035 doi: 10.1111/j.1151-2916.1990.tb05175.x – ident: 10.1016/j.scriptamat.2020.05.005_bib0041 doi: 10.1016/0272-8842(88)90006-5 – ident: 10.1016/j.scriptamat.2020.05.005_bib0047 doi: 10.1016/S0925-8388(00)00860-4 – ident: 10.1016/j.scriptamat.2020.05.005_bib0036 doi: 10.1111/j.1151-2916.1992.tb05549.x – ident: 10.1016/j.scriptamat.2020.05.005_bib0027 doi: 10.1111/jace.13476 – ident: 10.1016/j.scriptamat.2020.05.005_bib0039 doi: 10.1016/j.jeurceramsoc.2017.01.033 – ident: 10.1016/j.scriptamat.2020.05.005_bib0043 doi: 10.1002/qua.10863 – ident: 10.1016/j.scriptamat.2020.05.005_bib0029 doi: 10.1063/1.4811362 – ident: 10.1016/j.scriptamat.2020.05.005_bib0045 doi: 10.7498/aps.66.217701 – ident: 10.1016/j.scriptamat.2020.05.005_bib0033 doi: 10.1016/j.jeurceramsoc.2011.07.004 – ident: 10.1016/j.scriptamat.2020.05.005_bib0009 doi: 10.1016/j.ceramint.2016.08.048 – ident: 10.1016/j.scriptamat.2020.05.005_bib0014 doi: 10.1016/j.scriptamat.2019.02.004 – ident: 10.1016/j.scriptamat.2020.05.005_bib0007 doi: 10.1016/j.jeurceramsoc.2013.04.023 – ident: 10.1016/j.scriptamat.2020.05.005_bib0002 doi: 10.1111/j.1551-2916.2010.04089.x |
SSID | ssj0006121 |
Score | 2.5211039 |
Snippet | Herein, we report the densification behavior of a typical electric ceramic, barium titanate (BaTiO3), and highlight the role of oxygen vacancies in rapid... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 362 |
SubjectTerms | BaTiO3 Defect annihilation Densification kinetics Flash sintering Oxygen vacancies |
Title | The densification behavior of flash sintered BaTiO3 |
URI | https://dx.doi.org/10.1016/j.scriptamat.2020.05.005 |
Volume | 186 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA9jvuiD-InzY_TB17imubYpPs3hmIrzwQ32FpomwYlsY85X_3YvbeoUBAUfW3qkuVwuvwu_uyPknKPVFDwyNNQZp6CFohlYoFohGFHaRKZwF_r3w2QwhttJPGmQXp0L42iV3vdXPr301v5Nx2uzs5hOO4-Mx1kCSRShnWLg4DLKAVJn5Rfva5qHq5BVBl1xRt3Xns1TcbyqnZkjNsRIMQrLGp6ukd1PR9SXY6e_Q7Y9Xgy61S_tkoaZ7ZGtL1UE9wnHpQ60I6JbfwEX1Mn3wdwGFvHxU_Dq6kIsjQ6u8tH0gR-Qcf961BtQ3wuBFlzAimahNWByroVgqTUMcFrAIdU4L2YThloVDHIeKlFkmdLMAnDFilwBQgjcaYekOZvPzBEJtLYYhySZwEgGMADMheBJAUUIgGPlokXSevqy8IXCXb-KF1kzwp7lWnHSKU6GsUTFtQj7lFxUxTL-IHNZa1h-W3iJPv1X6eN_SZ-QTfdUUcZOSXO1fDNniDFWql0aUZtsdG_uBsMPRyjQfA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8MwDLVgOwAHxKf4Jgeu1ZrGbVNxAsS0MRgHhrRb1DaJGEJjGuP_46zpAAkJJK6trDaO47wXOc8AZ4KiphSRCUKdiQC1LIIMLQa6IDBSaBOZ0h3o3_WTziPeDOPhElzVd2FcWaXP_VVOn2dr_6TlvdmajEatBy7iLMEkiihOiTiky9B06lRxA5oX3V6nv0jITiRrzrviLHAGvqCnKvOqFmdO8JDIYhTOZTxdL7ufdqkvO097A9Y9ZGQX1V9twpIZb8HaFyHBbRA020y7WnTrz-BYff-evVpmCSI_sTcnDTE1ml3mg9G92IHH9vXgqhP4dghBKSTOgiy0Bk0utJQ8tYYjDQsFpprGxW3CybGSYy7CQpZZVmhuEUXBy7xAQhG02HahMX4dmz1gWluiIkkmicwgccBcSpGUWIaI9K1c7kNaD1-VXivctax4UXVR2LP6dJxyjlNhrMhx-8AXlpNKL-MPNue1h9W3uVeU1n-1PviX9SmsdAZ3t-q22-8dwqp7U1WQHUFjNn03xwQ5ZsWJD6kPfkrTLQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+densification+behavior+of+flash+sintered+BaTiO3&rft.jtitle=Scripta+materialia&rft.au=Ren%2C+Ke&rft.au=Huang%2C+Sisi&rft.au=Cao%2C+Yejie&rft.au=Shao%2C+Gang&rft.date=2020-09-01&rft.issn=1359-6462&rft.volume=186&rft.spage=362&rft.epage=365&rft_id=info:doi/10.1016%2Fj.scriptamat.2020.05.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_scriptamat_2020_05_005 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6462&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6462&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6462&client=summon |