The densification behavior of flash sintered BaTiO3

Herein, we report the densification behavior of a typical electric ceramic, barium titanate (BaTiO3), and highlight the role of oxygen vacancies in rapid densification of BaTiO3 during flash sintering. The activation energies of flash- and conventional-densification processes are compared to reveal...

Full description

Saved in:
Bibliographic Details
Published inScripta materialia Vol. 186; pp. 362 - 365
Main Authors Ren, Ke, Huang, Sisi, Cao, Yejie, Shao, Gang, Wang, Yiguang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Herein, we report the densification behavior of a typical electric ceramic, barium titanate (BaTiO3), and highlight the role of oxygen vacancies in rapid densification of BaTiO3 during flash sintering. The activation energies of flash- and conventional-densification processes are compared to reveal that the initiation of flash sintering is triggered by the accumulation of generated oxygen vacancies under the electric field. Furthermore, the densification kinetics of BaTiO3 and X-ray photoelectron spectroscopy of flash-sintered BaTiO3 infer that the ultrafast densification during the flash-sintering stage is dominated by the migration of electric field-generated defects coupled with defect-annihilation by take-in oxygen from the environment. [Display omitted]
AbstractList Herein, we report the densification behavior of a typical electric ceramic, barium titanate (BaTiO3), and highlight the role of oxygen vacancies in rapid densification of BaTiO3 during flash sintering. The activation energies of flash- and conventional-densification processes are compared to reveal that the initiation of flash sintering is triggered by the accumulation of generated oxygen vacancies under the electric field. Furthermore, the densification kinetics of BaTiO3 and X-ray photoelectron spectroscopy of flash-sintered BaTiO3 infer that the ultrafast densification during the flash-sintering stage is dominated by the migration of electric field-generated defects coupled with defect-annihilation by take-in oxygen from the environment. [Display omitted]
Author Cao, Yejie
Ren, Ke
Shao, Gang
Huang, Sisi
Wang, Yiguang
Author_xml – sequence: 1
  givenname: Ke
  orcidid: 0000-0003-0225-5579
  surname: Ren
  fullname: Ren, Ke
  organization: Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi′an, Shaanxi 710072, P. R. China
– sequence: 2
  givenname: Sisi
  surname: Huang
  fullname: Huang, Sisi
  organization: Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi′an, Shaanxi 710072, P. R. China
– sequence: 3
  givenname: Yejie
  surname: Cao
  fullname: Cao, Yejie
  organization: Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi′an, Shaanxi 710072, P. R. China
– sequence: 4
  givenname: Gang
  surname: Shao
  fullname: Shao, Gang
  organization: Henan Province Industrial Technology Research Institute of Resources and Materials, Zhengzhou University, Zhengzhou, 450001, China
– sequence: 5
  givenname: Yiguang
  surname: Wang
  fullname: Wang, Yiguang
  email: wangyiguang@bit.edu.cn
  organization: Institute of Advanced Structure Technology, Beijing Institute of Technology, Haidian District Beijing, 100081, P. R. China
BookMark eNqNkEFLAzEQhYNUsK3-h_0Du85sstvsRbBFrVDopZ5DNpnQlHa3JKHgv3fbCoIXPc0c5n3z3puwUdd3xFiGUCBg_bgrogn-mPRBp6KEEgqoCoDqho1RzspciqoeDTuvmrwWdXnHJjHuAKDGEseMb7aUWeqid97o5Psua2mrT74PWe8yt9dxm0XfJQpks7ne-DW_Z7dO7yM9fM8p-3h92SyW-Wr99r54XuWGS5HyBhwJ0txKiTNHKIaHgouZHaygq9FSKVFoDq00TdNadELwFo1uBQ45Kj5lT1euCX2MgZwyPl08pqD9XiGocwVqp34qUOcKFFQKLgD5C3AM_qDD53-k86uUhoAnT2E49NQZsj6QScr2_m_IFwgsfkY
CitedBy_id crossref_primary_10_1063_5_0142736
crossref_primary_10_1111_jace_19719
crossref_primary_10_1016_j_jallcom_2021_160124
crossref_primary_10_1016_j_saa_2024_124556
crossref_primary_10_1016_j_actamat_2024_120620
crossref_primary_10_1016_j_jeurceramsoc_2022_06_009
crossref_primary_10_1016_j_scriptamat_2021_113984
crossref_primary_10_1111_jace_18027
crossref_primary_10_1016_j_jeurceramsoc_2020_11_052
crossref_primary_10_1016_j_jeurceramsoc_2023_06_002
crossref_primary_10_1016_j_jeurceramsoc_2024_116982
crossref_primary_10_1016_j_jeurceramsoc_2024_116761
crossref_primary_10_1111_jace_17835
crossref_primary_10_1016_j_ceramint_2024_10_353
crossref_primary_10_1016_j_ceramint_2023_09_273
crossref_primary_10_1111_jace_18343
crossref_primary_10_1016_j_jpowsour_2024_235205
crossref_primary_10_1016_j_ceramint_2021_08_316
crossref_primary_10_1016_j_ceramint_2021_07_083
crossref_primary_10_1016_j_msea_2023_144631
crossref_primary_10_1002_adem_202300142
crossref_primary_10_1016_j_scriptamat_2020_06_040
crossref_primary_10_26599_JAC_2024_9220932
crossref_primary_10_1016_j_jeurceramsoc_2023_01_062
crossref_primary_10_26599_JAC_2023_9220816
crossref_primary_10_1080_23746149_2024_2438686
crossref_primary_10_15541_jim20220320
crossref_primary_10_1016_j_scriptamat_2025_116601
crossref_primary_10_1002_admt_202400697
crossref_primary_10_1016_j_jeurceramsoc_2023_12_046
crossref_primary_10_1016_j_jeurceramsoc_2023_04_007
crossref_primary_10_1016_j_scriptamat_2023_115511
crossref_primary_10_1111_ijac_14205
crossref_primary_10_1007_s40145_022_0591_5
crossref_primary_10_1016_j_ceramint_2024_12_543
crossref_primary_10_3390_ma15020416
crossref_primary_10_1016_j_scriptamat_2022_114628
crossref_primary_10_1016_j_ceramint_2024_10_044
crossref_primary_10_1016_j_jeurceramsoc_2020_11_025
crossref_primary_10_1016_j_actamat_2022_117704
crossref_primary_10_1016_j_ceramint_2022_02_231
crossref_primary_10_1111_jace_19269
crossref_primary_10_1016_j_jeurceramsoc_2022_05_053
crossref_primary_10_1016_j_ceramint_2023_10_081
crossref_primary_10_1039_D3TC02143B
crossref_primary_10_3390_ma15030862
crossref_primary_10_1016_j_jeurceramsoc_2024_01_030
Cites_doi 10.1016/j.actamat.2019.06.030
10.1111/jace.14178
10.1080/17436753.2016.1251051
10.1016/j.jeurceramsoc.2019.12.060
10.1016/j.jeurceramsoc.2016.02.014
10.1016/j.ceramint.2018.10.180
10.1016/j.jeurceramsoc.2018.11.032
10.1016/j.jeurceramsoc.2014.12.022
10.1016/j.jeurceramsoc.2014.04.043
10.1016/j.jeurceramsoc.2019.07.036
10.1016/j.jmst.2017.03.005
10.1016/j.jallcom.2018.02.308
10.1021/acs.jpcc.8b03322
10.1016/j.jeurceramsoc.2012.02.030
10.1021/cs500606g
10.1016/j.jeurceramsoc.2015.12.005
10.1016/j.jeurceramsoc.2014.02.042
10.1111/j.1551-2916.2011.04652.x
10.1103/PhysRevB.78.245320
10.1111/j.1151-2916.1965.tb16044.x
10.1088/1367-2630/aadd5a
10.1016/j.actamat.2007.07.054
10.1016/j.scriptamat.2017.11.042
10.1016/j.scriptamat.2018.04.047
10.1016/j.jpowsour.2010.10.036
10.1016/j.ceramint.2019.07.168
10.1016/j.actamat.2016.12.015
10.1016/j.apsusc.2006.02.035
10.3390/ma9040280
10.1111/jace.12972
10.1103/PhysRev.54.647
10.1016/j.jeurceramsoc.2019.04.023
10.1038/35004548
10.1016/j.jeurceramsoc.2018.04.003
10.1016/j.jeurceramsoc.2013.10.031
10.1111/j.1151-2916.1990.tb05175.x
10.1016/0272-8842(88)90006-5
10.1016/S0925-8388(00)00860-4
10.1111/j.1151-2916.1992.tb05549.x
10.1111/jace.13476
10.1016/j.jeurceramsoc.2017.01.033
10.1002/qua.10863
10.1063/1.4811362
10.7498/aps.66.217701
10.1016/j.jeurceramsoc.2011.07.004
10.1016/j.ceramint.2016.08.048
10.1016/j.scriptamat.2019.02.004
10.1016/j.jeurceramsoc.2013.04.023
10.1111/j.1551-2916.2010.04089.x
ContentType Journal Article
Copyright 2020 Acta Materialia Inc.
Copyright_xml – notice: 2020 Acta Materialia Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.scriptamat.2020.05.005
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-8456
EndPage 365
ExternalDocumentID 10_1016_j_scriptamat_2020_05_005
S1359646220302827
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
T9H
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c384t-90fe4ea3d8817fe141214347d3591f61de2814a30b8c99bd1f443b1cab4102053
IEDL.DBID .~1
ISSN 1359-6462
IngestDate Thu Apr 24 22:56:59 EDT 2025
Tue Jul 01 01:27:31 EDT 2025
Fri Feb 23 02:40:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Oxygen vacancies
Defect annihilation
Densification kinetics
BaTiO3
Flash sintering
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c384t-90fe4ea3d8817fe141214347d3591f61de2814a30b8c99bd1f443b1cab4102053
ORCID 0000-0003-0225-5579
PageCount 4
ParticipantIDs crossref_citationtrail_10_1016_j_scriptamat_2020_05_005
crossref_primary_10_1016_j_scriptamat_2020_05_005
elsevier_sciencedirect_doi_10_1016_j_scriptamat_2020_05_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2020
2020-09-00
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationTitle Scripta materialia
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References B. Yoon, D. Yadav, S. Ghose, R. Raj, J. Am. Ceram. Soc. (2018) 1-10.
J. Xia, K. Ren, W. Liu, Y. Wang, J. Eur. Ceram. Soc. 39 (2019) 3173-3179.
J. Xia, K. Ren, Y. Wang, Scr. Mater. 165 (2019) 34-38.
D. Liu, Y. Gao, J. Liu, K. Li, F. Liu, Y. Wang, J. Eur. Ceram. Soc. 36 (2016) 2051-2055.
P. Wang, L. Yao, M. Wang, W. Wu, J. Alloy, Compd. 311 (2000) 53-56.
M. Yu, S. Grasso, R. Mckinnon, T. Saunders, M.J. Reece, Adv. Appl. Ceram. 116 (2017) 24-60.
H.U. Anderson, J. Am. Ceram. Soc. 48 (1965) 118-121.
N.A. Merino, B.P. Barbero, P. Eloy, L.E. Cadus, Appl. Surf. Sci. 253 (2006) 1489-1493.
H. Moriwake, Int. J. Quantum Chem. 99 (2004) 824.
M. Imaeda, T. Mizoguchi, Y. Sato, H.S. Lee, S.D. Findlay, N. Shibata, T. Yamamoto, Y. Ikuhara, Phy. Rev. B 78 (2008) 245320.
E.Z. Solvas, S. Bonill, P.R. Wilshaw, R.I. Todd, J. Eur. Ceram. Soc. 33 (2013) 2811-2816.
C. Genuist, F.J.M. Haussonne, Ceram. Int. 14 (1988) 169-179.
R. Raj, J. Eur. Ceram. Soc. 32 (2012) 2293-2301.
Y. Yamashita, T. Kurachi, T. Tokunaga, H. Yoshida, T. Yamamoto, J. Eur. Ceram. Soc. 40 (2020) 2072-2076.
Y. Gao, F. Liu, D. Liu, J. Liu, Y. Wang, L. An, J. Mater. Sci. Technol. 33 (2017) 897-900.
J.J. Brown, Z. Ke, W. Geng, A.J. Page, J. Phys. Chem. C 122 (2018) 14590-14597.
J.M. Lebrun, T.G. Morrissey, J.S.C. Francis, K.C. Seymour, W.M. Kriven, R. Raj, J. Am. Ceram. Soc. 98 (2015) 1493-1497.
K. Ren, Q. Wang, L. Long, Y. Wang, J. Alloy, Compd. 747 (2018) 1073-1077.
R. Raj, J. Am. Ceram. Soc. 99 (2016) 3226-3232.
W. Ji, B. Parker, S. Falco, J.Y. Zhang, Z.Y. Fu, R.I. Todd, J. Eur. Ceram. Soc. 37 (2017) 2547-2551.
J. Wang, R. Raj, J. Am. Ceram. Soc.73 (1990) 1172-1175.
H. Yoshida, Y. Sasaki, Scr. Mater. 146 (2018) 173-177.
J.J. Zhu, H.L. Li, L.Y. Zhong, P. Xiao, X.L. Xu, X.G. Yang, Z. Zhao, J.L. Li, Acs catal. 4 (2014) 2917-2940.
R. Kirchheim, Acta. Mater. 175 (2019) 361-375.
R. Raj, M. Cologna, J.S.C. Francis, J. Am. Ceram. Soc. 94 (2011) 1941-1965.
Y. Zhang, J. Nie, J.M. Chan, J. Luo, Acta. Mater. 125 (2017) 465-475.
M. Cologna, J.S.C. Francis, R. Raj, J. Eur. Ceram. Soc. 31 (2011) 2827-2837.
97 (2014) 1728-1735.
K.S. Naik, V.M. Sglavo, R. Raj, J. Eur. Ceram. Soc. 34 (2014)2435-2442.
Y. Lian, K. Ren, Q. Wang, S. Huang, W. Liu, Y. Wang, Ceram. Int. 45 (2019) 22388-93.
J. Xia, K. Ren, Y. Wang, L. An, Scr. Mater. 153 (2018) 31-34.
H.S. Lee, T. Mizoguchi, T. Yamamoto, S.J.L. Kang, Y. Ikuhara, Acta. Mater. 55(2017) 6535-6540.
M. Cologna, B. Rashkova, R. Raj, J. Am. Ceram. Soc
H. Yoshida, Y. Sakka, T. Yamamoto, J.M. Lebrun, R. Raj, J. Eur. Ceram. Soc, 34 (2014) 991-1000.
K. Ren, J. Xia, Y. Wang, J. Eur. Ceram. Soc. 39 (2019) 1366-1373.
E.K. Akdoğan, İ, Şavklıyıldız, H. Biçer, W. Paxton, F. Toksoy, Z. Zhong, T. Tsakalakos, J. Appl. Phys. 113 (2013) 233503.
R.I. Todd, E.Z. Solvas, R.S. Bonilla, T. Sneddon, P.R. Wilshaw, J. Eur. Ceram. Soc. 35 (2015) 1865-1877.
M. Jongmanns, R. Raj, D.E. Wolf, New. J. Phys. 20 (2018) 093013.
A.L.G. Prette, M. Cologna, V.M. Sglavo, R. Raj, J. Power. Sources. 196 (2011) 2061-2065.
K.S. Naik, V.M. Sglavo, R. Raj, J. Eur. Ceram. Soc. 34 (2014) 4063-4067.
J. Frenkel, Phys Rev.54 (1938) 647–648.
D. Liu, Y. Gao, J. Liu, Y. Wang, L. An, Ceram. Int. 42 (2016) 17442-17446.
P. Li, Y.T. Xu, acta physica sinica, 66 (2017) 217701.
R. Chaim, Materials. 9 (2016)19-21.
93 (2010) 3556-3559.
J. Xia, K. Ren, Y. Wang. Ceram. Int. 45 (2019) 2509-15.
I.W. Chen, X. H. Wang, Nature. 404 (2000)168.
J.D. Hansen, R.P. Rusin, M.H. Teng, D.L. Johnson, J. Am. Ceram. Soc.75 (1992):1129-1135.
L.B. Caliman, R. Bouchet, D. Gouvea, P. Soudant, M.C. Steil, J. Eur. Ceram. Soc, 36 (2016) 1253-1260.
C. Schmerbauch, J.G. Julian, R. Röder, C. Ronning, O. Guillon, J. Am. Ceram. Soc
M. Biesuz, T. Saunders, S. Grasso, G. Speranza, G.D. Soraru, R. Campostrini, V.M. Sglavo, M.J. Reece, J. Eur. Ceram. Soc. 39 (2019) 4644-4672.
H. Charalambous, S.K. Jha, K.H. Christian, R.T. Lay, T. Tsakalakos, J. Eur. Ceram. Soc. 38 (2018) 3689-3693.
10.1016/j.scriptamat.2020.05.005_bib0021
10.1016/j.scriptamat.2020.05.005_bib0020
10.1016/j.scriptamat.2020.05.005_bib0023
10.1016/j.scriptamat.2020.05.005_bib0022
10.1016/j.scriptamat.2020.05.005_bib0025
10.1016/j.scriptamat.2020.05.005_bib0024
10.1016/j.scriptamat.2020.05.005_bib0027
10.1016/j.scriptamat.2020.05.005_bib0026
10.1016/j.scriptamat.2020.05.005_bib0029
10.1016/j.scriptamat.2020.05.005_bib0028
10.1016/j.scriptamat.2020.05.005_bib0030
10.1016/j.scriptamat.2020.05.005_bib0032
10.1016/j.scriptamat.2020.05.005_bib0031
10.1016/j.scriptamat.2020.05.005_bib0034
10.1016/j.scriptamat.2020.05.005_bib0033
10.1016/j.scriptamat.2020.05.005_bib0036
10.1016/j.scriptamat.2020.05.005_bib0035
10.1016/j.scriptamat.2020.05.005_bib0038
10.1016/j.scriptamat.2020.05.005_bib0037
10.1016/j.scriptamat.2020.05.005_bib0039
10.1016/j.scriptamat.2020.05.005_bib0041
10.1016/j.scriptamat.2020.05.005_bib0040
10.1016/j.scriptamat.2020.05.005_bib0043
10.1016/j.scriptamat.2020.05.005_bib0042
10.1016/j.scriptamat.2020.05.005_bib0001
10.1016/j.scriptamat.2020.05.005_bib0045
10.1016/j.scriptamat.2020.05.005_bib0044
10.1016/j.scriptamat.2020.05.005_bib0003
10.1016/j.scriptamat.2020.05.005_bib0047
10.1016/j.scriptamat.2020.05.005_bib0002
10.1016/j.scriptamat.2020.05.005_bib0046
10.1016/j.scriptamat.2020.05.005_bib0005
10.1016/j.scriptamat.2020.05.005_bib0049
10.1016/j.scriptamat.2020.05.005_bib0004
10.1016/j.scriptamat.2020.05.005_bib0048
10.1016/j.scriptamat.2020.05.005_bib0007
10.1016/j.scriptamat.2020.05.005_bib0006
10.1016/j.scriptamat.2020.05.005_bib0009
10.1016/j.scriptamat.2020.05.005_bib0008
10.1016/j.scriptamat.2020.05.005_bib0050
10.1016/j.scriptamat.2020.05.005_bib0010
10.1016/j.scriptamat.2020.05.005_bib0012
10.1016/j.scriptamat.2020.05.005_bib0011
10.1016/j.scriptamat.2020.05.005_bib0014
10.1016/j.scriptamat.2020.05.005_bib0013
10.1016/j.scriptamat.2020.05.005_bib0016
10.1016/j.scriptamat.2020.05.005_bib0015
10.1016/j.scriptamat.2020.05.005_bib0018
10.1016/j.scriptamat.2020.05.005_bib0017
10.1016/j.scriptamat.2020.05.005_bib0019
References_xml – reference: K.S. Naik, V.M. Sglavo, R. Raj, J. Eur. Ceram. Soc. 34 (2014) 4063-4067.
– reference: J. Frenkel, Phys Rev.54 (1938) 647–648.
– reference: H. Moriwake, Int. J. Quantum Chem. 99 (2004) 824.
– reference: R.I. Todd, E.Z. Solvas, R.S. Bonilla, T. Sneddon, P.R. Wilshaw, J. Eur. Ceram. Soc. 35 (2015) 1865-1877.
– reference: J. Wang, R. Raj, J. Am. Ceram. Soc.73 (1990) 1172-1175.
– reference: J. Xia, K. Ren, W. Liu, Y. Wang, J. Eur. Ceram. Soc. 39 (2019) 3173-3179.
– reference: M. Biesuz, T. Saunders, S. Grasso, G. Speranza, G.D. Soraru, R. Campostrini, V.M. Sglavo, M.J. Reece, J. Eur. Ceram. Soc. 39 (2019) 4644-4672.
– reference: K. Ren, J. Xia, Y. Wang, J. Eur. Ceram. Soc. 39 (2019) 1366-1373.
– reference: R. Raj, J. Am. Ceram. Soc. 99 (2016) 3226-3232.
– reference: K.S. Naik, V.M. Sglavo, R. Raj, J. Eur. Ceram. Soc. 34 (2014)2435-2442.
– reference: Y. Lian, K. Ren, Q. Wang, S. Huang, W. Liu, Y. Wang, Ceram. Int. 45 (2019) 22388-93.
– reference: R. Raj, M. Cologna, J.S.C. Francis, J. Am. Ceram. Soc. 94 (2011) 1941-1965.
– reference: J.M. Lebrun, T.G. Morrissey, J.S.C. Francis, K.C. Seymour, W.M. Kriven, R. Raj, J. Am. Ceram. Soc. 98 (2015) 1493-1497.
– reference: A.L.G. Prette, M. Cologna, V.M. Sglavo, R. Raj, J. Power. Sources. 196 (2011) 2061-2065.
– reference: K. Ren, Q. Wang, L. Long, Y. Wang, J. Alloy, Compd. 747 (2018) 1073-1077.
– reference: L.B. Caliman, R. Bouchet, D. Gouvea, P. Soudant, M.C. Steil, J. Eur. Ceram. Soc, 36 (2016) 1253-1260.
– reference: J.D. Hansen, R.P. Rusin, M.H. Teng, D.L. Johnson, J. Am. Ceram. Soc.75 (1992):1129-1135.
– reference: P. Wang, L. Yao, M. Wang, W. Wu, J. Alloy, Compd. 311 (2000) 53-56.
– reference: N.A. Merino, B.P. Barbero, P. Eloy, L.E. Cadus, Appl. Surf. Sci. 253 (2006) 1489-1493.
– reference: H.U. Anderson, J. Am. Ceram. Soc. 48 (1965) 118-121.
– reference: I.W. Chen, X. H. Wang, Nature. 404 (2000)168.
– reference: M. Yu, S. Grasso, R. Mckinnon, T. Saunders, M.J. Reece, Adv. Appl. Ceram. 116 (2017) 24-60.
– reference: 93 (2010) 3556-3559.
– reference: W. Ji, B. Parker, S. Falco, J.Y. Zhang, Z.Y. Fu, R.I. Todd, J. Eur. Ceram. Soc. 37 (2017) 2547-2551.
– reference: C. Schmerbauch, J.G. Julian, R. Röder, C. Ronning, O. Guillon, J. Am. Ceram. Soc
– reference: H. Yoshida, Y. Sasaki, Scr. Mater. 146 (2018) 173-177.
– reference: D. Liu, Y. Gao, J. Liu, Y. Wang, L. An, Ceram. Int. 42 (2016) 17442-17446.
– reference: D. Liu, Y. Gao, J. Liu, K. Li, F. Liu, Y. Wang, J. Eur. Ceram. Soc. 36 (2016) 2051-2055.
– reference: R. Kirchheim, Acta. Mater. 175 (2019) 361-375.
– reference: H.S. Lee, T. Mizoguchi, T. Yamamoto, S.J.L. Kang, Y. Ikuhara, Acta. Mater. 55(2017) 6535-6540.
– reference: J. Xia, K. Ren, Y. Wang, L. An, Scr. Mater. 153 (2018) 31-34.
– reference: M. Cologna, J.S.C. Francis, R. Raj, J. Eur. Ceram. Soc. 31 (2011) 2827-2837.
– reference: P. Li, Y.T. Xu, acta physica sinica, 66 (2017) 217701.
– reference: B. Yoon, D. Yadav, S. Ghose, R. Raj, J. Am. Ceram. Soc. (2018) 1-10.
– reference: H. Charalambous, S.K. Jha, K.H. Christian, R.T. Lay, T. Tsakalakos, J. Eur. Ceram. Soc. 38 (2018) 3689-3693.
– reference: R. Chaim, Materials. 9 (2016)19-21.
– reference: J. Xia, K. Ren, Y. Wang. Ceram. Int. 45 (2019) 2509-15.
– reference: E.K. Akdoğan, İ, Şavklıyıldız, H. Biçer, W. Paxton, F. Toksoy, Z. Zhong, T. Tsakalakos, J. Appl. Phys. 113 (2013) 233503.
– reference: 97 (2014) 1728-1735.
– reference: H. Yoshida, Y. Sakka, T. Yamamoto, J.M. Lebrun, R. Raj, J. Eur. Ceram. Soc, 34 (2014) 991-1000.
– reference: Y. Zhang, J. Nie, J.M. Chan, J. Luo, Acta. Mater. 125 (2017) 465-475.
– reference: M. Cologna, B. Rashkova, R. Raj, J. Am. Ceram. Soc
– reference: J.J. Brown, Z. Ke, W. Geng, A.J. Page, J. Phys. Chem. C 122 (2018) 14590-14597.
– reference: C. Genuist, F.J.M. Haussonne, Ceram. Int. 14 (1988) 169-179.
– reference: J.J. Zhu, H.L. Li, L.Y. Zhong, P. Xiao, X.L. Xu, X.G. Yang, Z. Zhao, J.L. Li, Acs catal. 4 (2014) 2917-2940.
– reference: Y. Gao, F. Liu, D. Liu, J. Liu, Y. Wang, L. An, J. Mater. Sci. Technol. 33 (2017) 897-900.
– reference: E.Z. Solvas, S. Bonill, P.R. Wilshaw, R.I. Todd, J. Eur. Ceram. Soc. 33 (2013) 2811-2816.
– reference: M. Imaeda, T. Mizoguchi, Y. Sato, H.S. Lee, S.D. Findlay, N. Shibata, T. Yamamoto, Y. Ikuhara, Phy. Rev. B 78 (2008) 245320.
– reference: Y. Yamashita, T. Kurachi, T. Tokunaga, H. Yoshida, T. Yamamoto, J. Eur. Ceram. Soc. 40 (2020) 2072-2076.
– reference: J. Xia, K. Ren, Y. Wang, Scr. Mater. 165 (2019) 34-38.
– reference: M. Jongmanns, R. Raj, D.E. Wolf, New. J. Phys. 20 (2018) 093013.
– reference: R. Raj, J. Eur. Ceram. Soc. 32 (2012) 2293-2301.
– ident: 10.1016/j.scriptamat.2020.05.005_bib0019
  doi: 10.1016/j.actamat.2019.06.030
– ident: 10.1016/j.scriptamat.2020.05.005_bib0028
  doi: 10.1111/jace.14178
– ident: 10.1016/j.scriptamat.2020.05.005_bib0001
  doi: 10.1080/17436753.2016.1251051
– ident: 10.1016/j.scriptamat.2020.05.005_bib0026
  doi: 10.1016/j.jeurceramsoc.2019.12.060
– ident: 10.1016/j.scriptamat.2020.05.005_bib0008
  doi: 10.1016/j.jeurceramsoc.2016.02.014
– ident: 10.1016/j.scriptamat.2020.05.005_bib0013
  doi: 10.1016/j.ceramint.2018.10.180
– ident: 10.1016/j.scriptamat.2020.05.005_bib0023
  doi: 10.1016/j.jeurceramsoc.2018.11.032
– ident: 10.1016/j.scriptamat.2020.05.005_bib0017
  doi: 10.1016/j.jeurceramsoc.2014.12.022
– ident: 10.1016/j.scriptamat.2020.05.005_bib0010
– ident: 10.1016/j.scriptamat.2020.05.005_bib0030
  doi: 10.1016/j.jeurceramsoc.2014.04.043
– ident: 10.1016/j.scriptamat.2020.05.005_bib0015
  doi: 10.1016/j.jeurceramsoc.2019.07.036
– ident: 10.1016/j.scriptamat.2020.05.005_bib0018
  doi: 10.1016/j.jmst.2017.03.005
– ident: 10.1016/j.scriptamat.2020.05.005_bib0021
  doi: 10.1016/j.jallcom.2018.02.308
– ident: 10.1016/j.scriptamat.2020.05.005_bib0046
  doi: 10.1021/acs.jpcc.8b03322
– ident: 10.1016/j.scriptamat.2020.05.005_bib0038
  doi: 10.1016/j.jeurceramsoc.2012.02.030
– ident: 10.1016/j.scriptamat.2020.05.005_bib0049
  doi: 10.1021/cs500606g
– ident: 10.1016/j.scriptamat.2020.05.005_bib0003
  doi: 10.1016/j.jeurceramsoc.2015.12.005
– ident: 10.1016/j.scriptamat.2020.05.005_bib0024
  doi: 10.1016/j.jeurceramsoc.2014.02.042
– ident: 10.1016/j.scriptamat.2020.05.005_bib0031
  doi: 10.1111/j.1551-2916.2011.04652.x
– ident: 10.1016/j.scriptamat.2020.05.005_bib0042
  doi: 10.1103/PhysRevB.78.245320
– ident: 10.1016/j.scriptamat.2020.05.005_bib0040
  doi: 10.1111/j.1151-2916.1965.tb16044.x
– ident: 10.1016/j.scriptamat.2020.05.005_bib0032
  doi: 10.1088/1367-2630/aadd5a
– ident: 10.1016/j.scriptamat.2020.05.005_bib0044
  doi: 10.1016/j.actamat.2007.07.054
– ident: 10.1016/j.scriptamat.2020.05.005_bib0016
  doi: 10.1016/j.scriptamat.2017.11.042
– ident: 10.1016/j.scriptamat.2020.05.005_bib0012
  doi: 10.1016/j.scriptamat.2018.04.047
– ident: 10.1016/j.scriptamat.2020.05.005_bib0005
  doi: 10.1016/j.jpowsour.2010.10.036
– ident: 10.1016/j.scriptamat.2020.05.005_bib0011
  doi: 10.1016/j.ceramint.2019.07.168
– ident: 10.1016/j.scriptamat.2020.05.005_bib0020
  doi: 10.1016/j.actamat.2016.12.015
– ident: 10.1016/j.scriptamat.2020.05.005_bib0048
  doi: 10.1016/j.apsusc.2006.02.035
– ident: 10.1016/j.scriptamat.2020.05.005_bib0025
  doi: 10.3390/ma9040280
– ident: 10.1016/j.scriptamat.2020.05.005_bib0004
  doi: 10.1111/jace.12972
– ident: 10.1016/j.scriptamat.2020.05.005_bib0034
  doi: 10.1103/PhysRev.54.647
– ident: 10.1016/j.scriptamat.2020.05.005_bib0050
  doi: 10.1016/j.jeurceramsoc.2019.04.023
– ident: 10.1016/j.scriptamat.2020.05.005_bib0037
  doi: 10.1038/35004548
– ident: 10.1016/j.scriptamat.2020.05.005_bib0022
  doi: 10.1016/j.jeurceramsoc.2018.04.003
– ident: 10.1016/j.scriptamat.2020.05.005_bib0006
  doi: 10.1016/j.jeurceramsoc.2013.10.031
– ident: 10.1016/j.scriptamat.2020.05.005_bib0035
  doi: 10.1111/j.1151-2916.1990.tb05175.x
– ident: 10.1016/j.scriptamat.2020.05.005_bib0041
  doi: 10.1016/0272-8842(88)90006-5
– ident: 10.1016/j.scriptamat.2020.05.005_bib0047
  doi: 10.1016/S0925-8388(00)00860-4
– ident: 10.1016/j.scriptamat.2020.05.005_bib0036
  doi: 10.1111/j.1151-2916.1992.tb05549.x
– ident: 10.1016/j.scriptamat.2020.05.005_bib0027
  doi: 10.1111/jace.13476
– ident: 10.1016/j.scriptamat.2020.05.005_bib0039
  doi: 10.1016/j.jeurceramsoc.2017.01.033
– ident: 10.1016/j.scriptamat.2020.05.005_bib0043
  doi: 10.1002/qua.10863
– ident: 10.1016/j.scriptamat.2020.05.005_bib0029
  doi: 10.1063/1.4811362
– ident: 10.1016/j.scriptamat.2020.05.005_bib0045
  doi: 10.7498/aps.66.217701
– ident: 10.1016/j.scriptamat.2020.05.005_bib0033
  doi: 10.1016/j.jeurceramsoc.2011.07.004
– ident: 10.1016/j.scriptamat.2020.05.005_bib0009
  doi: 10.1016/j.ceramint.2016.08.048
– ident: 10.1016/j.scriptamat.2020.05.005_bib0014
  doi: 10.1016/j.scriptamat.2019.02.004
– ident: 10.1016/j.scriptamat.2020.05.005_bib0007
  doi: 10.1016/j.jeurceramsoc.2013.04.023
– ident: 10.1016/j.scriptamat.2020.05.005_bib0002
  doi: 10.1111/j.1551-2916.2010.04089.x
SSID ssj0006121
Score 2.5211039
Snippet Herein, we report the densification behavior of a typical electric ceramic, barium titanate (BaTiO3), and highlight the role of oxygen vacancies in rapid...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 362
SubjectTerms BaTiO3
Defect annihilation
Densification kinetics
Flash sintering
Oxygen vacancies
Title The densification behavior of flash sintered BaTiO3
URI https://dx.doi.org/10.1016/j.scriptamat.2020.05.005
Volume 186
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA9jvuiD-InzY_TB17imubYpPs3hmIrzwQ32FpomwYlsY85X_3YvbeoUBAUfW3qkuVwuvwu_uyPknKPVFDwyNNQZp6CFohlYoFohGFHaRKZwF_r3w2QwhttJPGmQXp0L42iV3vdXPr301v5Nx2uzs5hOO4-Mx1kCSRShnWLg4DLKAVJn5Rfva5qHq5BVBl1xRt3Xns1TcbyqnZkjNsRIMQrLGp6ukd1PR9SXY6e_Q7Y9Xgy61S_tkoaZ7ZGtL1UE9wnHpQ60I6JbfwEX1Mn3wdwGFvHxU_Dq6kIsjQ6u8tH0gR-Qcf961BtQ3wuBFlzAimahNWByroVgqTUMcFrAIdU4L2YThloVDHIeKlFkmdLMAnDFilwBQgjcaYekOZvPzBEJtLYYhySZwEgGMADMheBJAUUIgGPlokXSevqy8IXCXb-KF1kzwp7lWnHSKU6GsUTFtQj7lFxUxTL-IHNZa1h-W3iJPv1X6eN_SZ-QTfdUUcZOSXO1fDNniDFWql0aUZtsdG_uBsMPRyjQfA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8MwDLVgOwAHxKf4Jgeu1ZrGbVNxAsS0MRgHhrRb1DaJGEJjGuP_46zpAAkJJK6trDaO47wXOc8AZ4KiphSRCUKdiQC1LIIMLQa6IDBSaBOZ0h3o3_WTziPeDOPhElzVd2FcWaXP_VVOn2dr_6TlvdmajEatBy7iLMEkiihOiTiky9B06lRxA5oX3V6nv0jITiRrzrviLHAGvqCnKvOqFmdO8JDIYhTOZTxdL7ufdqkvO097A9Y9ZGQX1V9twpIZb8HaFyHBbRA020y7WnTrz-BYff-evVpmCSI_sTcnDTE1ml3mg9G92IHH9vXgqhP4dghBKSTOgiy0Bk0utJQ8tYYjDQsFpprGxW3CybGSYy7CQpZZVmhuEUXBy7xAQhG02HahMX4dmz1gWluiIkkmicwgccBcSpGUWIaI9K1c7kNaD1-VXivctax4UXVR2LP6dJxyjlNhrMhx-8AXlpNKL-MPNue1h9W3uVeU1n-1PviX9SmsdAZ3t-q22-8dwqp7U1WQHUFjNn03xwQ5ZsWJD6kPfkrTLQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+densification+behavior+of+flash+sintered+BaTiO3&rft.jtitle=Scripta+materialia&rft.au=Ren%2C+Ke&rft.au=Huang%2C+Sisi&rft.au=Cao%2C+Yejie&rft.au=Shao%2C+Gang&rft.date=2020-09-01&rft.issn=1359-6462&rft.volume=186&rft.spage=362&rft.epage=365&rft_id=info:doi/10.1016%2Fj.scriptamat.2020.05.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_scriptamat_2020_05_005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6462&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6462&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6462&client=summon