On the paradox of thermocapillary flow about a stationary bubble
When a stationary bubble is exposed to an external temperature gradient, Marangoni stresses at the bubble surface result in fluid motion. A straightforward attempt to calculate the influence of this thermocapillary flow upon the temperature distribution fails to provide a well-behaved solution [Bala...
Saved in:
Published in | Physics of fluids (1994) Vol. 18; no. 7; pp. 072101 - 072101-10 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Melville, NY
American Institute of Physics
01.07.2006
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | When a stationary bubble is exposed to an external temperature gradient, Marangoni stresses at the bubble surface result in fluid motion. A straightforward attempt to calculate the influence of this thermocapillary flow upon the temperature distribution fails to provide a well-behaved solution [Balasubramaniam and Subramanian, Phys. Fluids
16, 3131 (2004)]. This problem is revisited here using a regularization procedure which exploits the qualitative disparity in the long-range flow fields generated by a stationary bubble and a moving one. The regularization parameter is an (exponentially small) artificial bubble velocity, which reflects the inability of any asymptotic expansion to satisfy the condition of exact bubble equilibrium. The solution is obtained using asymptotic matching of two separate Reynolds-number expansions: an inner expansion, valid at the bubble neighborhood, and a remote outer expansion, valid far beyond the familiar Oseen region. This procedure provides a well-behaved solution, which is subsequently used to evaluate the convection-induced correction to the hydrodynamic force exerted on the bubble. The independence of that correction upon the artificial velocity confirms the adequacy of the regularization procedure to describe the stationary-bubble case. The ratio of the calculated force to that pertaining to the classical pure-conduction limit [Young, Goldstein, and Block, J. Fluid Mech.
6, 350 (1959)] is given by
1
−
Ma
∕
8
+
o
(
Ma
)
, where Ma is a radius-based Marangoni number. |
---|---|
AbstractList | When a stationary bubble is exposed to an external temperature gradient, Marangoni stresses at the bubble surface result in fluid motion. A straightforward attempt to calculate the influence of this thermocapillary flow upon the temperature distribution fails to provide a well-behaved solution [
Balasubramaniam
and
Subramanian
,
Phys. Fluids
16
,
3131
(
2004
)
]. This problem is revisited here using a regularization procedure which exploits the qualitative disparity in the long-range flow fields generated by a stationary bubble and a moving one. The regularization parameter is an (exponentially small) artificial bubble velocity, which reflects the inability of any asymptotic expansion to satisfy the condition of exact bubble equilibrium. The solution is obtained using asymptotic matching of two separate Reynolds-number expansions: an inner expansion, valid at the bubble neighborhood, and a remote outer expansion, valid far beyond the familiar Oseen region. This procedure provides a well-behaved solution, which is subsequently used to evaluate the convection-induced correction to the hydrodynamic force exerted on the bubble. The independence of that correction upon the artificial velocity confirms the adequacy of the regularization procedure to describe the stationary-bubble case. The ratio of the calculated force to that pertaining to the classical pure-conduction limit [
Young
,
Goldstein
, and
Block
,
J. Fluid Mech.
6
,
350
(
1959
)
] is given by
1
−
Ma
∕
8
+
o
(
Ma
)
, where Ma is a radius-based Marangoni number. When a stationary bubble is exposed to an external temperature gradient, Marangoni stresses at the bubble surface result in fluid motion. A straightforward attempt to calculate the influence of this thermocapillary flow upon the temperature distribution fails to provide a well-behaved solution [Balasubramaniam and Subramanian, Phys. Fluids 16, 3131 (2004)]. This problem is revisited here using a regularization procedure which exploits the qualitative disparity in the long-range flow fields generated by a stationary bubble and a moving one. The regularization parameter is an (exponentially small) artificial bubble velocity, which reflects the inability of any asymptotic expansion to satisfy the condition of exact bubble equilibrium. The solution is obtained using asymptotic matching of two separate Reynolds-number expansions: an inner expansion, valid at the bubble neighborhood, and a remote outer expansion, valid far beyond the familiar Oseen region. This procedure provides a well-behaved solution, which is subsequently used to evaluate the convection-induced correction to the hydrodynamic force exerted on the bubble. The independence of that correction upon the artificial velocity confirms the adequacy of the regularization procedure to describe the stationary-bubble case. The ratio of the calculated force to that pertaining to the classical pure-conduction limit [Young, Goldstein, and Block, J. Fluid Mech. 6, 350 (1959)] is given by 1 − Ma ∕ 8 + o ( Ma ) , where Ma is a radius-based Marangoni number. When a stationary bubble is exposed to an external temperature gradient, Marangoni stresses at the bubble surface result in fluid motion. A straightforward attempt to calculate the influence of this thermocapillary flow upon the temperature distribution fails to provide a well-behaved solution [Balasubramaniam and Subramanian, Phys. Fluids 16, 3131 (2004)]. This problem is revisited here using a regularization procedure which exploits the qualitative disparity in the long-range flow fields generated by a stationary bubble and a moving one. The regularization parameter is an (exponentially small) artificial bubble velocity, which reflects the inability of any asymptotic expansion to satisfy the condition of exact bubble equilibrium. The solution is obtained using asymptotic matching of two separate Reynolds-number expansions: an inner expansion, valid at the bubble neighborhood, and a remote outer expansion, valid far beyond the familiar Oseen region. This procedure provides a well-behaved solution, which is subsequently used to evaluate the convection-induced correction to the hydrodynamic force exerted on the bubble. The independence of that correction upon the artificial velocity confirms the adequacy of the regularization procedure to describe the stationary-bubble case. The ratio of the calculated force to that pertaining to the classical pure-conduction limit [Young, Goldstein, and Block, J. Fluid Mech. 6, 350 (1959)] is given by 1−Ma∕8+o(Ma), where Ma is a radius-based Marangoni number. |
Author | Shusser, Michael Yariv, Ehud |
Author_xml | – sequence: 1 givenname: Ehud surname: Yariv fullname: Yariv, Ehud organization: Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel – sequence: 2 givenname: Michael surname: Shusser fullname: Shusser, Michael organization: Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18046110$$DView record in Pascal Francis |
BookMark | eNp9kMlqwzAQhkVJoUnaQ99Alx5acKuRHUm-lJbQDQK55C60WNTFsYzkdHn7yjiQQ0lhYBa--Zl_ZmjS-rZC6BLILRCW38EtpSA44ydoCkSUGWeMTYaak4yxHM7QLMYPQkheUjZFD-sW9-8V7lRQ1n9j74Y2bL1RXd00Kvxg1_gvrLTf9Vjh2Ku-9u0w1zutm-ocnTrVxOpin-do8_y0Wb5mq_XL2_JxlZlcFH1WEpNbEGJhtaCldcCNJrxIQbWwApwlClLpitLoqiwopxU1whZcqwW3-Rxdj7Im-BhD5WQX6m06QwKRg3MJcu88sVcj26loVOOCak0dDwuCFAyAJO5-5KKpR1vHRdetTH-R-zdJ71KbBG6OCXz6cFiWnXX_wX8t_AIqeYtN |
CODEN | PHFLE6 |
CitedBy_id | crossref_primary_10_1017_jfm_2014_659 crossref_primary_10_1017_jfm_2018_493 crossref_primary_10_1063_1_4973663 crossref_primary_10_1063_1_5017481 crossref_primary_10_1103_PhysRevFluids_3_103602 crossref_primary_10_1017_jfm_2017_750 |
Cites_doi | 10.1063/1.1706630 10.1017/S0022112001005171 10.1002/aic.690270417 10.1017/S0022112057000105 10.1063/1.1768091 10.1063/1.1862212 10.1063/1.1862213 10.1016/S0273-1177(03)90243-2 10.1063/1.1862212 10.1017/S0022112059000684 10.1063/1.1862213 |
ContentType | Journal Article |
Copyright | American Institute of Physics 2006 American Institute of Physics 2006 INIST-CNRS |
Copyright_xml | – notice: American Institute of Physics – notice: 2006 American Institute of Physics – notice: 2006 INIST-CNRS |
DBID | IQODW AAYXX CITATION |
DOI | 10.1063/1.2218767 |
DatabaseName | Pascal-Francis CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1089-7666 |
EndPage | 072101-10 |
ExternalDocumentID | 10_1063_1_2218767 18046110 |
GrantInformation_xml | – fundername: UNSPECIFIED grantid: 2004355 |
GroupedDBID | -~X 0ZJ 1UP 2-P 29O 2WC 4.4 5VS 6TJ AAAAW AABDS AAEUA AAPUP AAYIH ABJNI ACBRY ACGFS ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFFNX AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS ATXIE AWQPM BPZLN CS3 DU5 EBS EJD ESX F5P FDOHQ FFFMQ HAM H~9 M6X M71 M73 NEUPN NPSNA O-B P2P RDFOP RIP RNS ROL RQS SC5 TN5 UCJ UQL WH7 XJT ~02 ABPTK AGIHO AQWKA IQODW UE8 AAYXX BDMKI CITATION |
ID | FETCH-LOGICAL-c384t-90c3d1885db829df17cb0740742b8d81fd0a12b8f49cbe94272e2c8d47ba57d3 |
ISSN | 1070-6631 |
IngestDate | Fri Aug 23 00:40:42 EDT 2024 Sun Oct 22 16:08:03 EDT 2023 Fri Jun 21 00:20:03 EDT 2024 Sun Jul 14 10:05:34 EDT 2019 Fri Jun 21 00:29:35 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Gas liquid interface Bubbles Asymptotic solution Marangoni effect Thermocapillarity Stokes flow |
Language | English |
License | 1070-6631/2006/18(7)/072101/10/$23.00 CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c384t-90c3d1885db829df17cb0740742b8d81fd0a12b8f49cbe94272e2c8d47ba57d3 |
PageCount | 10 |
ParticipantIDs | pascalfrancis_primary_18046110 scitation_primary_10_1063_1_2218767On_the_paradox_of_th scitation_primary_10_1063_1_2218767 crossref_primary_10_1063_1_2218767 |
PublicationCentury | 2000 |
PublicationDate | 2006-07-01 |
PublicationDateYYYYMMDD | 2006-07-01 |
PublicationDate_xml | – month: 07 year: 2006 text: 2006-07-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Melville, NY |
PublicationPlace_xml | – name: Melville, NY |
PublicationTitle | Physics of fluids (1994) |
PublicationYear | 2006 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Balasubramaniam, Subramanian (c8) 2004; 16 Balasubramaniam, Subramanian (c10) 2003; 32 Young, Goldstein, Block (c1) 1959; 6 Acrivos, Taylor (c4) 1962; 5 Subramanian (c2) 1981; 27 Balasubramaniam, Subramanian (c9) 2005; 17 Proudman, Pearson (c3) 1957; 2 Zhang, Subramanian, Balasubramaniam (c5) 2001; 448 Casimir (c14) 1948; B51 Yariv (c9) 2005; 17 Zhang, L.; Subramanian, R.; Balasubramaniam, R. 2001; 448 Subramanian, R. 1981; 27 Balasubramaniam, R.; Subramanian, R. 2003; 32 Casimir, H. 1948; B51 Young, N.; Goldstein, J.; Block, M. 1959; 6 Proudman, I.; Pearson, J. 1957; 2 Acrivos, A.; Taylor, T. 1962; 5 Balasubramaniam, R.; Subramanian, R. 2004; 16 Yariv, E.; Balasubramaniam, R.; Subramanian, R. 2005 2005; 17 17 2023062901591722800_c12 (2023062901591722800_c4) 1962; 5 (2023062901591722800_c10) 2003; 32 (2023062901591722800_c1) 1959; 6 (2023062901591722800_c15) 1996 (2023062901591722800_c2) 1981; 27 (2023062901591722800_c5) 2001; 448 (2023062901591722800_c9b) 2005; 17 (2023062901591722800_c14) 1948; B51 (2023062901591722800_c3) 1957; 2 (2023062901591722800_c9a) 2005; 17 (2023062901591722800_c13) 1965 (2023062901591722800_c8) 2004; 16 |
References_xml | – volume: 6 start-page: 350 issn: 0022-1120 year: 1959 ident: c1 article-title: The motion of bubbles in a vertical temperature gradient publication-title: J. Fluid Mech. contributor: fullname: Block – volume: 27 start-page: 646 issn: 0001-1541 year: 1981 ident: c2 article-title: Slow migration of a gas bubble in a thermal gradient publication-title: AIChE J. contributor: fullname: Subramanian – volume: 16 start-page: 3131 issn: 1070-6631 year: 2004 ident: c8 article-title: Thermocapillary convection due to a stationary bubble publication-title: Phys. Fluids contributor: fullname: Subramanian – volume: 32 start-page: 137 issn: 0273-1177 year: 2003 ident: c10 article-title: Thermocapillary convection in a spherical container due to a stationary bubble publication-title: Adv. Space Res. contributor: fullname: Subramanian – volume: B51 start-page: 793 year: 1948 ident: c14 article-title: On the attraction between two perfectly conducting plates publication-title: Proc. Con. Ned. Akad. Wetensch contributor: fullname: Casimir – volume: 17 start-page: 039102 issn: 1070-6631 year: 2005 ident: c9 article-title: Response to ‘Comment on “Thermocapillary convection due to a stationary bubble”’ publication-title: Phys. Fluids contributor: fullname: Subramanian – volume: 5 start-page: 387 issn: 0031-9171 year: 1962 ident: c4 article-title: Heat and mass transfer from single spheres in Stokes flow publication-title: Phys. Fluids contributor: fullname: Taylor – volume: 448 start-page: 197 issn: 0022-1120 year: 2001 ident: c5 article-title: Motion of a drop in a vertical temperature gradient at small Marangoni number—the critical role of inertia publication-title: J. Fluid Mech. contributor: fullname: Balasubramaniam – volume: 17 start-page: 039101 issn: 1070-6631 year: 2005 ident: c9 article-title: Comment on ‘Thermocapillary convection due to a stationary bubble’ publication-title: Phys. Fluids contributor: fullname: Yariv – volume: 2 start-page: 237 issn: 0022-1120 year: 1957 ident: c3 article-title: Expansions at small Reynolds number for the flow past a sphere and a circular cylinder publication-title: J. Fluid Mech. contributor: fullname: Pearson – volume: 5 start-page: 387 year: 1962 publication-title: Phys. Fluids doi: 10.1063/1.1706630 contributor: fullname: Acrivos, A.; Taylor, T. – volume: 448 start-page: 197 year: 2001 publication-title: J. Fluid Mech. doi: 10.1017/S0022112001005171 contributor: fullname: Zhang, L.; Subramanian, R.; Balasubramaniam, R. – volume: 6 start-page: 350 year: 1959 publication-title: J. Fluid Mech. contributor: fullname: Young, N.; Goldstein, J.; Block, M. – volume: 32 start-page: 137 year: 2003 publication-title: Adv. Space Res. contributor: fullname: Balasubramaniam, R.; Subramanian, R. – volume: 27 start-page: 646 year: 1981 publication-title: AIChE J. doi: 10.1002/aic.690270417 contributor: fullname: Subramanian, R. – volume: B51 start-page: 793 year: 1948 publication-title: Proc. Con. Ned. Akad. Wetensch contributor: fullname: Casimir, H. – volume: 2 start-page: 237 year: 1957 publication-title: J. Fluid Mech. doi: 10.1017/S0022112057000105 contributor: fullname: Proudman, I.; Pearson, J. – volume: 16 start-page: 3131 year: 2004 publication-title: Phys. Fluids doi: 10.1063/1.1768091 contributor: fullname: Balasubramaniam, R.; Subramanian, R. – volume: 17 17 start-page: 039101 039102 year: 2005 2005 publication-title: Phys. Fluids Phys. Fluids doi: 10.1063/1.1862212 10.1063/1.1862213 contributor: fullname: Yariv, E.; Balasubramaniam, R.; Subramanian, R. – volume: 32 start-page: 137 year: 2003 ident: 2023062901591722800_c10 article-title: Thermocapillary convection in a spherical container due to a stationary bubble publication-title: Adv. Space Res. doi: 10.1016/S0273-1177(03)90243-2 – volume: 17 start-page: 039101 year: 2005 ident: 2023062901591722800_c9a article-title: Comment on ‘Thermocapillary convection due to a stationary bubble’ publication-title: Phys. Fluids doi: 10.1063/1.1862212 – volume-title: Aeroelasticity year: 1996 ident: 2023062901591722800_c15 – volume: 2 start-page: 237 year: 1957 ident: 2023062901591722800_c3 article-title: Expansions at small Reynolds number for the flow past a sphere and a circular cylinder publication-title: J. Fluid Mech. doi: 10.1017/S0022112057000105 – volume: 5 start-page: 387 year: 1962 ident: 2023062901591722800_c4 article-title: Heat and mass transfer from single spheres in Stokes flow publication-title: Phys. Fluids doi: 10.1063/1.1706630 – volume: 6 start-page: 350 year: 1959 ident: 2023062901591722800_c1 article-title: The motion of bubbles in a vertical temperature gradient publication-title: J. Fluid Mech. doi: 10.1017/S0022112059000684 – volume: 17 start-page: 039102 year: 2005 ident: 2023062901591722800_c9b article-title: Response to ‘Comment on “Thermocapillary convection due to a stationary bubble”’ publication-title: Phys. Fluids doi: 10.1063/1.1862213 – volume: 16 start-page: 3131 year: 2004 ident: 2023062901591722800_c8 article-title: Thermocapillary convection due to a stationary bubble publication-title: Phys. Fluids doi: 10.1063/1.1768091 – volume: B51 start-page: 793 year: 1948 ident: 2023062901591722800_c14 article-title: On the attraction between two perfectly conducting plates publication-title: Proc. Con. Ned. Akad. Wetensch – volume: 448 start-page: 197 year: 2001 ident: 2023062901591722800_c5 article-title: Motion of a drop in a vertical temperature gradient at small Marangoni number—the critical role of inertia publication-title: J. Fluid Mech. doi: 10.1017/S0022112001005171 – volume-title: Low Reynolds Number Hydrodynamics year: 1965 ident: 2023062901591722800_c13 – start-page: 1964 volume-title: Perturbation Methods in Fluid Mechanics ident: 2023062901591722800_c12 – volume: 27 start-page: 646 year: 1981 ident: 2023062901591722800_c2 article-title: Slow migration of a gas bubble in a thermal gradient publication-title: AIChE J. doi: 10.1002/aic.690270417 |
SSID | ssj0003926 |
Score | 1.8961135 |
Snippet | When a stationary bubble is exposed to an external temperature gradient, Marangoni stresses at the bubble surface result in fluid motion. A straightforward... |
SourceID | crossref pascalfrancis scitation |
SourceType | Aggregation Database Index Database Publisher Enrichment Source |
StartPage | 072101 |
SubjectTerms | Drops and bubbles Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Hydrodynamic stability Nonhomogeneous flows Physics Surface-tension-driven instability |
Title | On the paradox of thermocapillary flow about a stationary bubble |
URI | http://dx.doi.org/10.1063/1.2218767 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgCDGEGIxNlMtkAW8oo4ldX95ACDQhbX3ppPEUxTdtUpdUXbMNfj3HlzbtNqHCS5QcxW51Pufk88nnY4Q-iAElogLmJiyVGbyPZaaIJJk1lBFjGVBun4c8PGIHx_THyeCk26whrC6ZqX39-851Jf-DKtgAV79K9h-QXXQKBjgHfOEICMNxLYyHUaPoy3eb5jp97p-ew-tp4jcTmv766MbNVRIfVz5tEDJ_YFetUuMVFVCQguog7HDj9szEEk5S0qVcwU-YWF-G6HnamkVu5rT1n_RvavCXMgl8nkmIwQ8e_wwYSDTZZBMy4yzujHI7YrZJ53srEAPz8TmB_QIoBGf8PnpQQCRgQVvZaXCAnLEoCo0_PC_9xMinRdMVwvBkUl3A2HVx05HH6BHwhOi7JVYweoaeJjqPv0RsnqN7tt5GW4na4xQ4L7bRw-TeF-jzsMaAEk6g4cbhG6BhDxoOoOEKd6DhCNoOGn3_Nvp6kKVtLDJNBJ1lsq-JyYUYGCUKaVzOtQLi5pMSShiRO9Ovcjh1VGplJS14YQstDOWqGnBDdtFG3dT2JcIF8S0VkxwmtpYCuasKBvNlrQWjzOkeejd3VTmJxUrKIDJgpMzL5M8e2ltxYnen8MX3834PvV949W_d8DXuGtYl-LBMLi0bB5d39n_ZTLtW5cS4V2v9i9dosxvJb9DGbNrat8ASZ2ovjLQ_xqxk2A |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | American Institute of Physics |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+paradox+of+thermocapillary+flow+about+a+stationary+bubble&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Yariv%2C+Ehud&rft.au=Shusser%2C+Michael&rft.date=2006-07-01&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=18&rft.issue=7&rft_id=info:doi/10.1063%2F1.2218767 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon |