On the paradox of thermocapillary flow about a stationary bubble

When a stationary bubble is exposed to an external temperature gradient, Marangoni stresses at the bubble surface result in fluid motion. A straightforward attempt to calculate the influence of this thermocapillary flow upon the temperature distribution fails to provide a well-behaved solution [Bala...

Full description

Saved in:
Bibliographic Details
Published inPhysics of fluids (1994) Vol. 18; no. 7; pp. 072101 - 072101-10
Main Authors Yariv, Ehud, Shusser, Michael
Format Journal Article
LanguageEnglish
Published Melville, NY American Institute of Physics 01.07.2006
Subjects
Online AccessGet full text

Cover

Loading…
Abstract When a stationary bubble is exposed to an external temperature gradient, Marangoni stresses at the bubble surface result in fluid motion. A straightforward attempt to calculate the influence of this thermocapillary flow upon the temperature distribution fails to provide a well-behaved solution [Balasubramaniam and Subramanian, Phys. Fluids 16, 3131 (2004)]. This problem is revisited here using a regularization procedure which exploits the qualitative disparity in the long-range flow fields generated by a stationary bubble and a moving one. The regularization parameter is an (exponentially small) artificial bubble velocity, which reflects the inability of any asymptotic expansion to satisfy the condition of exact bubble equilibrium. The solution is obtained using asymptotic matching of two separate Reynolds-number expansions: an inner expansion, valid at the bubble neighborhood, and a remote outer expansion, valid far beyond the familiar Oseen region. This procedure provides a well-behaved solution, which is subsequently used to evaluate the convection-induced correction to the hydrodynamic force exerted on the bubble. The independence of that correction upon the artificial velocity confirms the adequacy of the regularization procedure to describe the stationary-bubble case. The ratio of the calculated force to that pertaining to the classical pure-conduction limit [Young, Goldstein, and Block, J. Fluid Mech. 6, 350 (1959)] is given by 1 − Ma ∕ 8 + o ( Ma ) , where Ma is a radius-based Marangoni number.
AbstractList When a stationary bubble is exposed to an external temperature gradient, Marangoni stresses at the bubble surface result in fluid motion. A straightforward attempt to calculate the influence of this thermocapillary flow upon the temperature distribution fails to provide a well-behaved solution [ Balasubramaniam and Subramanian , Phys. Fluids 16 , 3131 ( 2004 ) ]. This problem is revisited here using a regularization procedure which exploits the qualitative disparity in the long-range flow fields generated by a stationary bubble and a moving one. The regularization parameter is an (exponentially small) artificial bubble velocity, which reflects the inability of any asymptotic expansion to satisfy the condition of exact bubble equilibrium. The solution is obtained using asymptotic matching of two separate Reynolds-number expansions: an inner expansion, valid at the bubble neighborhood, and a remote outer expansion, valid far beyond the familiar Oseen region. This procedure provides a well-behaved solution, which is subsequently used to evaluate the convection-induced correction to the hydrodynamic force exerted on the bubble. The independence of that correction upon the artificial velocity confirms the adequacy of the regularization procedure to describe the stationary-bubble case. The ratio of the calculated force to that pertaining to the classical pure-conduction limit [ Young , Goldstein , and Block , J. Fluid Mech. 6 , 350 ( 1959 ) ] is given by 1 − Ma ∕ 8 + o ( Ma ) , where Ma is a radius-based Marangoni number.
When a stationary bubble is exposed to an external temperature gradient, Marangoni stresses at the bubble surface result in fluid motion. A straightforward attempt to calculate the influence of this thermocapillary flow upon the temperature distribution fails to provide a well-behaved solution [Balasubramaniam and Subramanian, Phys. Fluids 16, 3131 (2004)]. This problem is revisited here using a regularization procedure which exploits the qualitative disparity in the long-range flow fields generated by a stationary bubble and a moving one. The regularization parameter is an (exponentially small) artificial bubble velocity, which reflects the inability of any asymptotic expansion to satisfy the condition of exact bubble equilibrium. The solution is obtained using asymptotic matching of two separate Reynolds-number expansions: an inner expansion, valid at the bubble neighborhood, and a remote outer expansion, valid far beyond the familiar Oseen region. This procedure provides a well-behaved solution, which is subsequently used to evaluate the convection-induced correction to the hydrodynamic force exerted on the bubble. The independence of that correction upon the artificial velocity confirms the adequacy of the regularization procedure to describe the stationary-bubble case. The ratio of the calculated force to that pertaining to the classical pure-conduction limit [Young, Goldstein, and Block, J. Fluid Mech. 6, 350 (1959)] is given by 1 − Ma ∕ 8 + o ( Ma ) , where Ma is a radius-based Marangoni number.
When a stationary bubble is exposed to an external temperature gradient, Marangoni stresses at the bubble surface result in fluid motion. A straightforward attempt to calculate the influence of this thermocapillary flow upon the temperature distribution fails to provide a well-behaved solution [Balasubramaniam and Subramanian, Phys. Fluids 16, 3131 (2004)]. This problem is revisited here using a regularization procedure which exploits the qualitative disparity in the long-range flow fields generated by a stationary bubble and a moving one. The regularization parameter is an (exponentially small) artificial bubble velocity, which reflects the inability of any asymptotic expansion to satisfy the condition of exact bubble equilibrium. The solution is obtained using asymptotic matching of two separate Reynolds-number expansions: an inner expansion, valid at the bubble neighborhood, and a remote outer expansion, valid far beyond the familiar Oseen region. This procedure provides a well-behaved solution, which is subsequently used to evaluate the convection-induced correction to the hydrodynamic force exerted on the bubble. The independence of that correction upon the artificial velocity confirms the adequacy of the regularization procedure to describe the stationary-bubble case. The ratio of the calculated force to that pertaining to the classical pure-conduction limit [Young, Goldstein, and Block, J. Fluid Mech. 6, 350 (1959)] is given by 1−Ma∕8+o(Ma), where Ma is a radius-based Marangoni number.
Author Shusser, Michael
Yariv, Ehud
Author_xml – sequence: 1
  givenname: Ehud
  surname: Yariv
  fullname: Yariv, Ehud
  organization: Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
– sequence: 2
  givenname: Michael
  surname: Shusser
  fullname: Shusser, Michael
  organization: Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18046110$$DView record in Pascal Francis
BookMark eNp9kMlqwzAQhkVJoUnaQ99Alx5acKuRHUm-lJbQDQK55C60WNTFsYzkdHn7yjiQQ0lhYBa--Zl_ZmjS-rZC6BLILRCW38EtpSA44ydoCkSUGWeMTYaak4yxHM7QLMYPQkheUjZFD-sW9-8V7lRQ1n9j74Y2bL1RXd00Kvxg1_gvrLTf9Vjh2Ku-9u0w1zutm-ocnTrVxOpin-do8_y0Wb5mq_XL2_JxlZlcFH1WEpNbEGJhtaCldcCNJrxIQbWwApwlClLpitLoqiwopxU1whZcqwW3-Rxdj7Im-BhD5WQX6m06QwKRg3MJcu88sVcj26loVOOCak0dDwuCFAyAJO5-5KKpR1vHRdetTH-R-zdJ71KbBG6OCXz6cFiWnXX_wX8t_AIqeYtN
CODEN PHFLE6
CitedBy_id crossref_primary_10_1017_jfm_2014_659
crossref_primary_10_1017_jfm_2018_493
crossref_primary_10_1063_1_4973663
crossref_primary_10_1063_1_5017481
crossref_primary_10_1103_PhysRevFluids_3_103602
crossref_primary_10_1017_jfm_2017_750
Cites_doi 10.1063/1.1706630
10.1017/S0022112001005171
10.1002/aic.690270417
10.1017/S0022112057000105
10.1063/1.1768091
10.1063/1.1862212 10.1063/1.1862213
10.1016/S0273-1177(03)90243-2
10.1063/1.1862212
10.1017/S0022112059000684
10.1063/1.1862213
ContentType Journal Article
Copyright American Institute of Physics
2006 American Institute of Physics
2006 INIST-CNRS
Copyright_xml – notice: American Institute of Physics
– notice: 2006 American Institute of Physics
– notice: 2006 INIST-CNRS
DBID IQODW
AAYXX
CITATION
DOI 10.1063/1.2218767
DatabaseName Pascal-Francis
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1089-7666
EndPage 072101-10
ExternalDocumentID 10_1063_1_2218767
18046110
GrantInformation_xml – fundername: UNSPECIFIED
  grantid: 2004355
GroupedDBID -~X
0ZJ
1UP
2-P
29O
2WC
4.4
5VS
6TJ
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABJNI
ACBRY
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFFNX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BPZLN
CS3
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
H~9
M6X
M71
M73
NEUPN
NPSNA
O-B
P2P
RDFOP
RIP
RNS
ROL
RQS
SC5
TN5
UCJ
UQL
WH7
XJT
~02
ABPTK
AGIHO
AQWKA
IQODW
UE8
AAYXX
BDMKI
CITATION
ID FETCH-LOGICAL-c384t-90c3d1885db829df17cb0740742b8d81fd0a12b8f49cbe94272e2c8d47ba57d3
ISSN 1070-6631
IngestDate Fri Aug 23 00:40:42 EDT 2024
Sun Oct 22 16:08:03 EDT 2023
Fri Jun 21 00:20:03 EDT 2024
Sun Jul 14 10:05:34 EDT 2019
Fri Jun 21 00:29:35 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Gas liquid interface
Bubbles
Asymptotic solution
Marangoni effect
Thermocapillarity
Stokes flow
Language English
License 1070-6631/2006/18(7)/072101/10/$23.00
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c384t-90c3d1885db829df17cb0740742b8d81fd0a12b8f49cbe94272e2c8d47ba57d3
PageCount 10
ParticipantIDs pascalfrancis_primary_18046110
scitation_primary_10_1063_1_2218767On_the_paradox_of_th
scitation_primary_10_1063_1_2218767
crossref_primary_10_1063_1_2218767
PublicationCentury 2000
PublicationDate 2006-07-01
PublicationDateYYYYMMDD 2006-07-01
PublicationDate_xml – month: 07
  year: 2006
  text: 2006-07-01
  day: 01
PublicationDecade 2000
PublicationPlace Melville, NY
PublicationPlace_xml – name: Melville, NY
PublicationTitle Physics of fluids (1994)
PublicationYear 2006
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Balasubramaniam, Subramanian (c8) 2004; 16
Balasubramaniam, Subramanian (c10) 2003; 32
Young, Goldstein, Block (c1) 1959; 6
Acrivos, Taylor (c4) 1962; 5
Subramanian (c2) 1981; 27
Balasubramaniam, Subramanian (c9) 2005; 17
Proudman, Pearson (c3) 1957; 2
Zhang, Subramanian, Balasubramaniam (c5) 2001; 448
Casimir (c14) 1948; B51
Yariv (c9) 2005; 17
Zhang, L.; Subramanian, R.; Balasubramaniam, R. 2001; 448
Subramanian, R. 1981; 27
Balasubramaniam, R.; Subramanian, R. 2003; 32
Casimir, H. 1948; B51
Young, N.; Goldstein, J.; Block, M. 1959; 6
Proudman, I.; Pearson, J. 1957; 2
Acrivos, A.; Taylor, T. 1962; 5
Balasubramaniam, R.; Subramanian, R. 2004; 16
Yariv, E.; Balasubramaniam, R.; Subramanian, R. 2005 2005; 17 17
2023062901591722800_c12
(2023062901591722800_c4) 1962; 5
(2023062901591722800_c10) 2003; 32
(2023062901591722800_c1) 1959; 6
(2023062901591722800_c15) 1996
(2023062901591722800_c2) 1981; 27
(2023062901591722800_c5) 2001; 448
(2023062901591722800_c9b) 2005; 17
(2023062901591722800_c14) 1948; B51
(2023062901591722800_c3) 1957; 2
(2023062901591722800_c9a) 2005; 17
(2023062901591722800_c13) 1965
(2023062901591722800_c8) 2004; 16
References_xml – volume: 6
  start-page: 350
  issn: 0022-1120
  year: 1959
  ident: c1
  article-title: The motion of bubbles in a vertical temperature gradient
  publication-title: J. Fluid Mech.
  contributor:
    fullname: Block
– volume: 27
  start-page: 646
  issn: 0001-1541
  year: 1981
  ident: c2
  article-title: Slow migration of a gas bubble in a thermal gradient
  publication-title: AIChE J.
  contributor:
    fullname: Subramanian
– volume: 16
  start-page: 3131
  issn: 1070-6631
  year: 2004
  ident: c8
  article-title: Thermocapillary convection due to a stationary bubble
  publication-title: Phys. Fluids
  contributor:
    fullname: Subramanian
– volume: 32
  start-page: 137
  issn: 0273-1177
  year: 2003
  ident: c10
  article-title: Thermocapillary convection in a spherical container due to a stationary bubble
  publication-title: Adv. Space Res.
  contributor:
    fullname: Subramanian
– volume: B51
  start-page: 793
  year: 1948
  ident: c14
  article-title: On the attraction between two perfectly conducting plates
  publication-title: Proc. Con. Ned. Akad. Wetensch
  contributor:
    fullname: Casimir
– volume: 17
  start-page: 039102
  issn: 1070-6631
  year: 2005
  ident: c9
  article-title: Response to ‘Comment on “Thermocapillary convection due to a stationary bubble”’
  publication-title: Phys. Fluids
  contributor:
    fullname: Subramanian
– volume: 5
  start-page: 387
  issn: 0031-9171
  year: 1962
  ident: c4
  article-title: Heat and mass transfer from single spheres in Stokes flow
  publication-title: Phys. Fluids
  contributor:
    fullname: Taylor
– volume: 448
  start-page: 197
  issn: 0022-1120
  year: 2001
  ident: c5
  article-title: Motion of a drop in a vertical temperature gradient at small Marangoni number—the critical role of inertia
  publication-title: J. Fluid Mech.
  contributor:
    fullname: Balasubramaniam
– volume: 17
  start-page: 039101
  issn: 1070-6631
  year: 2005
  ident: c9
  article-title: Comment on ‘Thermocapillary convection due to a stationary bubble’
  publication-title: Phys. Fluids
  contributor:
    fullname: Yariv
– volume: 2
  start-page: 237
  issn: 0022-1120
  year: 1957
  ident: c3
  article-title: Expansions at small Reynolds number for the flow past a sphere and a circular cylinder
  publication-title: J. Fluid Mech.
  contributor:
    fullname: Pearson
– volume: 5
  start-page: 387
  year: 1962
  publication-title: Phys. Fluids
  doi: 10.1063/1.1706630
  contributor:
    fullname: Acrivos, A.; Taylor, T.
– volume: 448
  start-page: 197
  year: 2001
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112001005171
  contributor:
    fullname: Zhang, L.; Subramanian, R.; Balasubramaniam, R.
– volume: 6
  start-page: 350
  year: 1959
  publication-title: J. Fluid Mech.
  contributor:
    fullname: Young, N.; Goldstein, J.; Block, M.
– volume: 32
  start-page: 137
  year: 2003
  publication-title: Adv. Space Res.
  contributor:
    fullname: Balasubramaniam, R.; Subramanian, R.
– volume: 27
  start-page: 646
  year: 1981
  publication-title: AIChE J.
  doi: 10.1002/aic.690270417
  contributor:
    fullname: Subramanian, R.
– volume: B51
  start-page: 793
  year: 1948
  publication-title: Proc. Con. Ned. Akad. Wetensch
  contributor:
    fullname: Casimir, H.
– volume: 2
  start-page: 237
  year: 1957
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112057000105
  contributor:
    fullname: Proudman, I.; Pearson, J.
– volume: 16
  start-page: 3131
  year: 2004
  publication-title: Phys. Fluids
  doi: 10.1063/1.1768091
  contributor:
    fullname: Balasubramaniam, R.; Subramanian, R.
– volume: 17 17
  start-page: 039101 039102
  year: 2005 2005
  publication-title: Phys. Fluids Phys. Fluids
  doi: 10.1063/1.1862212 10.1063/1.1862213
  contributor:
    fullname: Yariv, E.; Balasubramaniam, R.; Subramanian, R.
– volume: 32
  start-page: 137
  year: 2003
  ident: 2023062901591722800_c10
  article-title: Thermocapillary convection in a spherical container due to a stationary bubble
  publication-title: Adv. Space Res.
  doi: 10.1016/S0273-1177(03)90243-2
– volume: 17
  start-page: 039101
  year: 2005
  ident: 2023062901591722800_c9a
  article-title: Comment on ‘Thermocapillary convection due to a stationary bubble’
  publication-title: Phys. Fluids
  doi: 10.1063/1.1862212
– volume-title: Aeroelasticity
  year: 1996
  ident: 2023062901591722800_c15
– volume: 2
  start-page: 237
  year: 1957
  ident: 2023062901591722800_c3
  article-title: Expansions at small Reynolds number for the flow past a sphere and a circular cylinder
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112057000105
– volume: 5
  start-page: 387
  year: 1962
  ident: 2023062901591722800_c4
  article-title: Heat and mass transfer from single spheres in Stokes flow
  publication-title: Phys. Fluids
  doi: 10.1063/1.1706630
– volume: 6
  start-page: 350
  year: 1959
  ident: 2023062901591722800_c1
  article-title: The motion of bubbles in a vertical temperature gradient
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112059000684
– volume: 17
  start-page: 039102
  year: 2005
  ident: 2023062901591722800_c9b
  article-title: Response to ‘Comment on “Thermocapillary convection due to a stationary bubble”’
  publication-title: Phys. Fluids
  doi: 10.1063/1.1862213
– volume: 16
  start-page: 3131
  year: 2004
  ident: 2023062901591722800_c8
  article-title: Thermocapillary convection due to a stationary bubble
  publication-title: Phys. Fluids
  doi: 10.1063/1.1768091
– volume: B51
  start-page: 793
  year: 1948
  ident: 2023062901591722800_c14
  article-title: On the attraction between two perfectly conducting plates
  publication-title: Proc. Con. Ned. Akad. Wetensch
– volume: 448
  start-page: 197
  year: 2001
  ident: 2023062901591722800_c5
  article-title: Motion of a drop in a vertical temperature gradient at small Marangoni number—the critical role of inertia
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112001005171
– volume-title: Low Reynolds Number Hydrodynamics
  year: 1965
  ident: 2023062901591722800_c13
– start-page: 1964
  volume-title: Perturbation Methods in Fluid Mechanics
  ident: 2023062901591722800_c12
– volume: 27
  start-page: 646
  year: 1981
  ident: 2023062901591722800_c2
  article-title: Slow migration of a gas bubble in a thermal gradient
  publication-title: AIChE J.
  doi: 10.1002/aic.690270417
SSID ssj0003926
Score 1.8961135
Snippet When a stationary bubble is exposed to an external temperature gradient, Marangoni stresses at the bubble surface result in fluid motion. A straightforward...
SourceID crossref
pascalfrancis
scitation
SourceType Aggregation Database
Index Database
Publisher
Enrichment Source
StartPage 072101
SubjectTerms Drops and bubbles
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Hydrodynamic stability
Nonhomogeneous flows
Physics
Surface-tension-driven instability
Title On the paradox of thermocapillary flow about a stationary bubble
URI http://dx.doi.org/10.1063/1.2218767
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgCDGEGIxNlMtkAW8oo4ldX95ACDQhbX3ppPEUxTdtUpdUXbMNfj3HlzbtNqHCS5QcxW51Pufk88nnY4Q-iAElogLmJiyVGbyPZaaIJJk1lBFjGVBun4c8PGIHx_THyeCk26whrC6ZqX39-851Jf-DKtgAV79K9h-QXXQKBjgHfOEICMNxLYyHUaPoy3eb5jp97p-ew-tp4jcTmv766MbNVRIfVz5tEDJ_YFetUuMVFVCQguog7HDj9szEEk5S0qVcwU-YWF-G6HnamkVu5rT1n_RvavCXMgl8nkmIwQ8e_wwYSDTZZBMy4yzujHI7YrZJ53srEAPz8TmB_QIoBGf8PnpQQCRgQVvZaXCAnLEoCo0_PC_9xMinRdMVwvBkUl3A2HVx05HH6BHwhOi7JVYweoaeJjqPv0RsnqN7tt5GW4na4xQ4L7bRw-TeF-jzsMaAEk6g4cbhG6BhDxoOoOEKd6DhCNoOGn3_Nvp6kKVtLDJNBJ1lsq-JyYUYGCUKaVzOtQLi5pMSShiRO9Ovcjh1VGplJS14YQstDOWqGnBDdtFG3dT2JcIF8S0VkxwmtpYCuasKBvNlrQWjzOkeejd3VTmJxUrKIDJgpMzL5M8e2ltxYnen8MX3834PvV949W_d8DXuGtYl-LBMLi0bB5d39n_ZTLtW5cS4V2v9i9dosxvJb9DGbNrat8ASZ2ovjLQ_xqxk2A
link.rule.ids 315,783,787,27936,27937
linkProvider American Institute of Physics
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+paradox+of+thermocapillary+flow+about+a+stationary+bubble&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Yariv%2C+Ehud&rft.au=Shusser%2C+Michael&rft.date=2006-07-01&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=18&rft.issue=7&rft_id=info:doi/10.1063%2F1.2218767
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon