Prediction and validation of residual feed intake and dry matter intake in Danish lactating dairy cows using mid-infrared spectroscopy of milk
The present study explored the effectiveness of Fourier transform mid-infrared (FT-IR) spectral profiles as a predictor for dry matter intake (DMI) and residual feed intake (RFI). The partial least squares regression method was used to develop the prediction models. The models were validated using d...
Saved in:
Published in | Journal of dairy science Vol. 100; no. 1; pp. 253 - 264 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.01.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The present study explored the effectiveness of Fourier transform mid-infrared (FT-IR) spectral profiles as a predictor for dry matter intake (DMI) and residual feed intake (RFI). The partial least squares regression method was used to develop the prediction models. The models were validated using different external test sets, one randomly leaving out 20% of the records (validation A), the second randomly leaving out 20% of cows (validation B), and a third (for DMI prediction models) randomly leaving out one cow (validation C). The data included 1,044 records from 140 cows; 97 were Danish Holstein and 43 Danish Jersey. Results showed better accuracies for validation A compared with other validation methods. Milk yield (MY) contributed largely to DMI prediction; MY explained 59% of the variation and the validated model error root mean square error of prediction (RMSEP) was 2.24kg. The model was improved by adding live weight (LW) as an additional predictor trait, where the accuracy R2 increased from 0.59 to 0.72 and error RMSEP decreased from 2.24 to 1.83kg. When only the milk FT-IR spectral profile was used in DMI prediction, a lower prediction ability was obtained, with R2=0.30 and RMSEP=2.91kg. However, once the spectral information was added, along with MY and LW as predictors, model accuracy improved and R2 increased to 0.81 and RMSEP decreased to 1.49kg. Prediction accuracies of RFI changed throughout lactation. The RFI prediction model for the early-lactation stage was better compared with across lactation or mid- and late-lactation stages, with R2=0.46 and RMSEP=1.70. The most important spectral wavenumbers that contributed to DMI and RFI prediction models included fat, protein, and lactose peaks. Comparable prediction results were obtained when using infrared-predicted fat, protein, and lactose instead of full spectra, indicating that FT-IR spectral data do not add significant new information to improve DMI and RFI prediction models. Therefore, in practice, if full FT-IR spectral data are not stored, it is possible to achieve similar DMI or RFI prediction results based on standard milk control data. For DMI, the milk fat region was responsible for the major variation in milk spectra; for RFI, the major variation in milk spectra was within the milk protein region. |
---|---|
AbstractList | The present study explored the effectiveness of Fourier transform mid-infrared (FT-IR) spectral profiles as a predictor for dry matter intake (DMI) and residual feed intake (RFI). The partial least squares regression method was used to develop the prediction models. The models were validated using different external test sets, one randomly leaving out 20% of the records (validation A), the second randomly leaving out 20% of cows (validation B), and a third (for DMI prediction models) randomly leaving out one cow (validation C). The data included 1,044 records from 140 cows; 97 were Danish Holstein and 43 Danish Jersey. Results showed better accuracies for validation A compared with other validation methods. Milk yield (MY) contributed largely to DMI prediction; MY explained 59% of the variation and the validated model error root mean square error of prediction (RMSEP) was 2.24kg. The model was improved by adding live weight (LW) as an additional predictor trait, where the accuracy R
increased from 0.59 to 0.72 and error RMSEP decreased from 2.24 to 1.83kg. When only the milk FT-IR spectral profile was used in DMI prediction, a lower prediction ability was obtained, with R
=0.30 and RMSEP=2.91kg. However, once the spectral information was added, along with MY and LW as predictors, model accuracy improved and R
increased to 0.81 and RMSEP decreased to 1.49kg. Prediction accuracies of RFI changed throughout lactation. The RFI prediction model for the early-lactation stage was better compared with across lactation or mid- and late-lactation stages, with R
=0.46 and RMSEP=1.70. The most important spectral wavenumbers that contributed to DMI and RFI prediction models included fat, protein, and lactose peaks. Comparable prediction results were obtained when using infrared-predicted fat, protein, and lactose instead of full spectra, indicating that FT-IR spectral data do not add significant new information to improve DMI and RFI prediction models. Therefore, in practice, if full FT-IR spectral data are not stored, it is possible to achieve similar DMI or RFI prediction results based on standard milk control data. For DMI, the milk fat region was responsible for the major variation in milk spectra; for RFI, the major variation in milk spectra was within the milk protein region. The present study explored the effectiveness of Fourier transform mid-infrared (FT-IR) spectral profiles as a predictor for dry matter intake (DMI) and residual feed intake (RFI). The partial least squares regression method was used to develop the prediction models. The models were validated using different external test sets, one randomly leaving out 20% of the records (validation A), the second randomly leaving out 20% of cows (validation B), and a third (for DMI prediction models) randomly leaving out one cow (validation C). The data included 1,044 records from 140 cows; 97 were Danish Holstein and 43 Danish Jersey. Results showed better accuracies for validation A compared with other validation methods. Milk yield (MY) contributed largely to DMI prediction; MY explained 59% of the variation and the validated model error root mean square error of prediction (RMSEP) was 2.24kg. The model was improved by adding live weight (LW) as an additional predictor trait, where the accuracy R2 increased from 0.59 to 0.72 and error RMSEP decreased from 2.24 to 1.83kg. When only the milk FT-IR spectral profile was used in DMI prediction, a lower prediction ability was obtained, with R2=0.30 and RMSEP=2.91kg. However, once the spectral information was added, along with MY and LW as predictors, model accuracy improved and R2 increased to 0.81 and RMSEP decreased to 1.49kg. Prediction accuracies of RFI changed throughout lactation. The RFI prediction model for the early-lactation stage was better compared with across lactation or mid- and late-lactation stages, with R2=0.46 and RMSEP=1.70. The most important spectral wavenumbers that contributed to DMI and RFI prediction models included fat, protein, and lactose peaks. Comparable prediction results were obtained when using infrared-predicted fat, protein, and lactose instead of full spectra, indicating that FT-IR spectral data do not add significant new information to improve DMI and RFI prediction models. Therefore, in practice, if full FT-IR spectral data are not stored, it is possible to achieve similar DMI or RFI prediction results based on standard milk control data. For DMI, the milk fat region was responsible for the major variation in milk spectra; for RFI, the major variation in milk spectra was within the milk protein region. |
Author | Shetty, N. Løvendahl, P. Buitenhuis, A.J. Lund, M.S. |
Author_xml | – sequence: 1 givenname: N. surname: Shetty fullname: Shetty, N. email: nisha.shetty@mbg.au.dk – sequence: 2 givenname: P. surname: Løvendahl fullname: Løvendahl, P. – sequence: 3 givenname: M.S. surname: Lund fullname: Lund, M.S. – sequence: 4 givenname: A.J. surname: Buitenhuis fullname: Buitenhuis, A.J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27865487$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUFvFCEUx4mpsdvq1aPh6GVWYGZY5miqrSZN9NCeyQMeSjsDK8zU7JfoZy6723rzRN7Lj_-D9zsjJzFFJOQ9Z-uWS_XpzpW1YFw2nEs2vCIr3ou-afmgTsiKMSEa1jJxSs5KuaslF6x_Q07FRsm-U5sVefyZ0QU7hxQpREcfYAwODmXyNGMJboGRekRHQ5zhHg-Yyzs6wTxjfumGSL9ADOU3HcHONSH-og5C5Wz6W-hS9o0puCZEn6EOpWWLds6p2LTd7YdNYbx_S157GAu-ez7Pye3l15uLb831j6vvF5-vG9uqbm6U6ZjxTNlBAYDvQaoOuPKDEd1mABBSSMMH9M74DbOOGdsLrphh0hmnTHtOPh5ztzn9WbDMegrF4jhCxLQUzVUn-k4qLiq6PqK2vrVk9HqbwwR5pznTewe6OtB7B_rgoF748Jy9mAndP_xl6RVQRwDrDx8CZl1swGiriFxXol0K_8t-Aveyml8 |
CitedBy_id | crossref_primary_10_3390_ani11051316 crossref_primary_10_3168_jds_2018_16144 crossref_primary_10_3168_jds_2021_21579 crossref_primary_10_3168_jds_2023_24472 crossref_primary_10_3168_jds_2022_22113 crossref_primary_10_3390_ani12010015 crossref_primary_10_1186_s40104_022_00802_3 crossref_primary_10_3389_fvets_2023_1122953 crossref_primary_10_1080_1828051X_2024_2353226 crossref_primary_10_3390_ani13040763 crossref_primary_10_1016_j_ymeth_2020_07_012 crossref_primary_10_1017_S1751731118002276 crossref_primary_10_3168_jds_2017_13014 crossref_primary_10_1007_s11250_022_03275_8 crossref_primary_10_3390_ani11020343 crossref_primary_10_1139_cjas_2019_0193 crossref_primary_10_3168_jds_2023_23772 crossref_primary_10_3168_jds_2018_15109 crossref_primary_10_3389_fgene_2020_00923 crossref_primary_10_1016_j_livsci_2022_104871 crossref_primary_10_3390_ani10091654 crossref_primary_10_3168_jds_2021_21297 crossref_primary_10_3168_jds_2021_21650 crossref_primary_10_1017_S0022029923000171 crossref_primary_10_3168_jds_2020_20051 crossref_primary_10_1017_S1751731118001751 crossref_primary_10_1186_s40104_019_0406_x crossref_primary_10_3390_ani13101679 crossref_primary_10_3390_foods12040807 crossref_primary_10_3168_jds_2018_14464 crossref_primary_10_3168_jds_2021_20267 crossref_primary_10_3390_ani11010104 crossref_primary_10_3168_jds_2019_16454 crossref_primary_10_3168_jds_2021_21516 crossref_primary_10_3390_metabo9070151 crossref_primary_10_3390_foods10020450 crossref_primary_10_3168_jds_2017_13997 crossref_primary_10_3168_jds_2016_12252 crossref_primary_10_3168_jds_2018_15480 crossref_primary_10_1093_af_vfz003 crossref_primary_10_3390_ani13030509 crossref_primary_10_1093_jas_skab206 crossref_primary_10_1016_j_foodchem_2024_138355 crossref_primary_10_3168_jds_2019_16363 crossref_primary_10_1093_tas_txad118 crossref_primary_10_3390_ani13030374 crossref_primary_10_3168_jds_2017_13209 crossref_primary_10_3168_jds_2023_24438 crossref_primary_10_3168_jds_2024_24701 crossref_primary_10_1186_s40104_018_0258_9 crossref_primary_10_1007_s11250_023_03741_x |
Cites_doi | 10.3168/jds.2010-3965 10.3168/jds.2013-6799 10.1007/BFb0062108 10.1017/S1751731112000456 10.3168/jds.S0022-0302(94)76936-8 10.2527/jas.2010-3376 10.3168/jds.2009-2456 10.3168/jds.2009-2739 10.3168/jds.2012-5406 10.1017/S1751731113000888 10.1016/j.aca.2004.03.014 10.1021/ac60214a047 10.3168/jds.S0022-0302(81)82697-5 10.3168/jds.2011-4149 10.3168/jds.2011-4401 10.3168/jds.2014-8214 10.1002/cem.1310 10.2527/jas.2011-4528 10.1016/j.molstruc.2009.12.030 10.3168/jds.2013-7491 10.3168/jds.2010-3408 10.2527/jas.2012-5862 10.3168/jds.2010-3888 10.1002/cem.2582 |
ContentType | Journal Article |
Copyright | 2017 American Dairy Science Association Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2017 American Dairy Science Association – notice: Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.3168/jds.2016-11609 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1525-3198 |
EndPage | 264 |
ExternalDocumentID | 10_3168_jds_2016_11609 27865487 S0022030216308062 |
Genre | Randomized Controlled Trial Journal Article |
GroupedDBID | --- --K -~X .GJ 0R~ 0SF 186 18M 1B1 29K 2WC 36B 3V. 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 7X2 7X7 7XC 88E 8FE 8FG 8FH 8FI 8FJ 8FW 8R4 8R5 8VB AABVA AAEDT AAEDW AAFTH AAIAV AALRI AAQFI AAQXK AAWRB AAXUO ABCQX ABJCF ABJNI ABUWG ABVKL ACGFO ACGFS ACIWK ADBBV ADMUD ADPAM AEGXH AENEX AESVU AFKRA AFKWA AFRAH AFTJW AGZHU AHMBA AI. AIAGR AITUG AKVCP ALMA_UNASSIGNED_HOLDINGS ALXNB AMRAJ ASPBG ATCPS AVWKF AZFZN BELOY BENPR BGLVJ BHPHI BPHCQ BVXVI C1A CCPQU CS3 D-I DU5 E3Z EBS EBU EDH EJD EMB F5P FDB FEDTE FGOYB FYUFA GBLVA GROUPED_DOAJ GX1 HCIFZ HMCUK HVGLF HZ~ K1G L6V L7B M0K M1P M41 M7S N9A NCXOZ NHB O9- OK1 P2P PATMY PQQKQ PROAC PSQYO PTHSS PYCSY Q2X QII QWB R2- ROL RWL S0X SEL SES SSZ SV3 TAE TDS TWZ U5U UHB UKHRP VH1 WOQ XH2 XOL ZGI ZL0 ZXP ~KM AAHBH ADMHG ADVLN AFJKZ AKRWK ALIPV CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c384t-8b40bf08c98aaaf5a684a18f9b2479aa2626b19efdbf70cd0bc52180b06dbd8b3 |
IEDL.DBID | ABVKL |
ISSN | 0022-0302 |
IngestDate | Fri Oct 25 10:20:38 EDT 2024 Thu Sep 26 19:45:11 EDT 2024 Wed Oct 16 00:57:05 EDT 2024 Fri Feb 23 02:34:32 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | prediction dry matter intake spectroscopy validation residual feed intake |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c384t-8b40bf08c98aaaf5a684a18f9b2479aa2626b19efdbf70cd0bc52180b06dbd8b3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-News-1 ObjectType-Feature-3 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0022030216308062 |
PMID | 27865487 |
PQID | 1842546812 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1842546812 crossref_primary_10_3168_jds_2016_11609 pubmed_primary_27865487 elsevier_sciencedirect_doi_10_3168_jds_2016_11609 |
PublicationCentury | 2000 |
PublicationDate | January 2017 2017-Jan 2017-01-00 20170101 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: January 2017 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of dairy science |
PublicationTitleAlternate | J Dairy Sci |
PublicationYear | 2017 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Bonfatti, Di Martino, Carnier (bib0025) 2011; 94 Lowman, B. G., N. Scott, and S. Somerville. 1976. Condition scoring of cattle. Tech. Bull. 6:1–29. East of Scotland College of Agriculture, Edinburgh, UK. Soyeurt, Dehareng, Gengler, McParland, Wall, Berry, Coffey, Dardenne (bib0155) 2011; 94 Iñón, Garrigues, De La Guardia (bib0085) 2004; 513 Hutjens (bib0080) 2005 Andersen, Hansen, Andersen (bib0005) 2002 Belanche, Weisbjerg, Allison, Newbold, Moorby (bib0015) 2014; 97 Kristensen (bib0090) 1986 De Marchi, Toffanin, Cassandro, Penasa (bib0045) 2014; 97 Wieland, D. 2002. Understanding dry matter intake. BEEF Magazine. http://beefmagazine.com/mag/beef_understanding_dry_matter?page=1. Martens, Naes (bib0110) 1989 Rinnan, Andersson, Ridder, Engelsen (bib0130) 2014; 28 Lei, Zhou, Zhang, Chen, Sun, Noda (bib0095) 2010; 974 Berry, Crowley (bib0020) 2013; 91 Dufour (bib0055) 2009 Connor, Hutchison, Olson, Norman (bib0030) 2012; 90 Hoover, Miller (bib0070) 1991 Rutten, Bovenhuis, Hettinga, van Valenberg, van Arendonk (bib0140) 2009; 92 Vallimont, Dechow, Daubert, Dekleva, Blum, Barlieb, Liu, Varga, Heinrichs, Baumrucker (bib0160) 2011; 94 Waldo, Jorgensen (bib0165) 1981; 64 Basarab, Beauchemin, Baron, Ominski, Guan, Miller, Crowley (bib0010) 2013; 7 Løvendahl, Ridder, Friggens (bib0100) 2010; 93 Savitzky, Golay (bib0150) 1964; 36 Wold, Martens, Wold (bib0175) 1983 Esbensen (bib0060) 2000 McParland, Banos, McCarthy, Lewis, Coffey, O’Neill, O’Donovan, Wall, Berry (bib0115) 2012; 95 McParland, Lewis, Kennedy, Moore, McCarthy, O’Donovan, Butler, Pryce, Berry (bib0125) 2014; 97 . Dehareng, Delfosse, Froidmont, Soyeurt, Martin, Gengler, Vanlierde, Dardenne (bib0050) 2012; 6 Rinnan, Nørgaard, Van Den Berg (bib0135) 2009 Huntington, Leonard, Burns (bib0075) 2011; 89 Davies, Fearn (bib0040) 2006; 18 Esbensen, Geladi (bib0065) 2010; 24 Rutten, Bovenhuis, Heck, van Arendonk (bib0145) 2011; 94 Dado, Allen (bib0035) 1994; 77 McParland, S., G. Banos, E. Wall, M. P. Coffey, H. Soyeurt, R. F. Veerkamp, and D. P. Berry. 2011. The use of mid-infrared spectrometry to predict body energy status of Holstein cows. J. Dairy Sci. Sjaunja, Baevre, Junkkarinen, Pedersen, Setala (bib9155) 1990 10.3168/jds.2016-11609_bib0170 Soyeurt (10.3168/jds.2016-11609_bib0155) 2011; 94 Basarab (10.3168/jds.2016-11609_bib0010) 2013; 7 Kristensen (10.3168/jds.2016-11609_bib0090) 1986 McParland (10.3168/jds.2016-11609_bib0125) 2014; 97 Dufour (10.3168/jds.2016-11609_bib0055) 2009 Hutjens (10.3168/jds.2016-11609_bib0080) 2005 Hoover (10.3168/jds.2016-11609_bib0070) 1991 Belanche (10.3168/jds.2016-11609_bib0015) 2014; 97 Dehareng (10.3168/jds.2016-11609_bib0050) 2012; 6 Connor (10.3168/jds.2016-11609_bib0030) 2012; 90 Rutten (10.3168/jds.2016-11609_bib0145) 2011; 94 Rinnan (10.3168/jds.2016-11609_bib0130) 2014; 28 McParland (10.3168/jds.2016-11609_bib0115) 2012; 95 Esbensen (10.3168/jds.2016-11609_bib0065) 2010; 24 Wold (10.3168/jds.2016-11609_bib0175) 1983 Berry (10.3168/jds.2016-11609_bib0020) 2013; 91 Martens (10.3168/jds.2016-11609_bib0110) 1989 Davies (10.3168/jds.2016-11609_bib0040) 2006; 18 Andersen (10.3168/jds.2016-11609_bib0005) 2002 10.3168/jds.2016-11609_bib0120 Sjaunja (10.3168/jds.2016-11609_bib9155) 1990 Bonfatti (10.3168/jds.2016-11609_bib0025) 2011; 94 Rinnan (10.3168/jds.2016-11609_bib0135) 2009 Vallimont (10.3168/jds.2016-11609_bib0160) 2011; 94 De Marchi (10.3168/jds.2016-11609_bib0045) 2014; 97 10.3168/jds.2016-11609_bib0105 Dado (10.3168/jds.2016-11609_bib0035) 1994; 77 Lei (10.3168/jds.2016-11609_bib0095) 2010; 974 Løvendahl (10.3168/jds.2016-11609_bib0100) 2010; 93 Iñón (10.3168/jds.2016-11609_bib0085) 2004; 513 Huntington (10.3168/jds.2016-11609_bib0075) 2011; 89 Savitzky (10.3168/jds.2016-11609_bib0150) 1964; 36 Rutten (10.3168/jds.2016-11609_bib0140) 2009; 92 Esbensen (10.3168/jds.2016-11609_bib0060) 2000 Waldo (10.3168/jds.2016-11609_bib0165) 1981; 64 |
References_xml | – volume: 94 start-page: 5776 year: 2011 end-page: 5785 ident: bib0025 article-title: Effectiveness of mid-infrared spectroscopy for the prediction of detailed protein composition and contents of protein genetic variants of individual milk of Simmental cows publication-title: J. Dairy Sci. contributor: fullname: Carnier – volume: 77 start-page: 132 year: 1994 end-page: 144 ident: bib0035 article-title: Variation in and relationships among feeding, chewing and drinking variables for lactating dairy cows publication-title: J. Dairy Sci. contributor: fullname: Allen – volume: 7 start-page: 303 year: 2013 end-page: 315 ident: bib0010 article-title: Reducing GHG emissions through genetic improvement for feed efficiency: Effects on economically important traits and enteric methane production publication-title: Animal contributor: fullname: Crowley – start-page: 3 year: 2009 end-page: 27 ident: bib0055 article-title: Principles of infrared spectroscopy publication-title: Infrared Spectroscopy for Food Quality Analysis and Control contributor: fullname: Dufour – volume: 24 start-page: 168 year: 2010 end-page: 187 ident: bib0065 article-title: Principles of proper validation: Use and abuse of re-sampling for validation publication-title: J. Chemometr. contributor: fullname: Geladi – year: 1986 ident: bib0090 publication-title: Method for estimation of body condition of dairy cows. Report 615 contributor: fullname: Kristensen – start-page: 29 year: 2009 end-page: 50 ident: bib0135 article-title: Data Pre-processing publication-title: Infrared Spectroscopy for Food Quality Analysis and Control contributor: fullname: Van Den Berg – year: 2000 ident: bib0060 publication-title: Multivariate Data Analysis–In Practice contributor: fullname: Esbensen – volume: 93 start-page: 1998 year: 2010 end-page: 2006 ident: bib0100 article-title: Limits to prediction of energy balance from milk composition measures at individual cow level publication-title: J. Dairy Sci. contributor: fullname: Friggens – volume: 90 start-page: 1687 year: 2012 end-page: 1694 ident: bib0030 article-title: Triennial Lactation Symposium: Opportunities for improving milk production efficiency in dairy cattle publication-title: J. Anim. Sci. contributor: fullname: Norman – year: 1989 ident: bib0110 publication-title: Multivariate Calibration contributor: fullname: Naes – start-page: 286 year: 1983 end-page: 293 ident: bib0175 article-title: The multivariate calibration problem in chemistry solved by the PLS method publication-title: Proc. Conf. on Matrix Pencils, Lectures Notes in Mathematics contributor: fullname: Wold – volume: 95 start-page: 7225 year: 2012 end-page: 7235 ident: bib0115 article-title: Validation of mid-infrared spectrometry in milk for predicting body energy status in Holstein-Friesian cows publication-title: J. Dairy Sci. contributor: fullname: Berry – volume: 94 start-page: 1657 year: 2011 end-page: 1667 ident: bib0155 article-title: Mid-infrared prediction of bovine milk fatty acids across multiple breeds, production systems, and countries publication-title: J. Dairy Sci. contributor: fullname: Dardenne – start-page: 177 year: 2005 end-page: 182 ident: bib0080 article-title: Revisiting feed efficiency and its economic impact publication-title: Proc. Four-State Dairy Nutr. Mgmt. Conf. Midwest Plan Service contributor: fullname: Hutjens – volume: 97 start-page: 2361 year: 2014 end-page: 2375 ident: bib0015 article-title: Measurement of rumen dry matter and neutral detergent fiber degradability of feeds by Fourier-transform infrared spectroscopy publication-title: J. Dairy Sci. contributor: fullname: Moorby – volume: 94 start-page: 4183 year: 2011 end-page: 4188 ident: bib0145 article-title: Prediction of β-lactoglobulin genotypes based on milk Fourier transform infrared spectra publication-title: J. Dairy Sci. contributor: fullname: van Arendonk – volume: 97 start-page: 1171 year: 2014 end-page: 1186 ident: bib0045 article-title: Invited review: Mid-infrared spectroscopy as phenotyping tool for milk traits publication-title: J. Dairy Sci. contributor: fullname: Penasa – volume: 94 start-page: 2108 year: 2011 end-page: 2113 ident: bib0160 article-title: Short communication: Heritability of gross feed efficiency and associations with yield, intake, residual intake, body weight, and body condition score in 11 commercial Pennsylvania tie stalls publication-title: J. Dairy Sci. contributor: fullname: Baumrucker – volume: 92 start-page: 6202 year: 2009 end-page: 6209 ident: bib0140 article-title: Predicting bovine milk fat composition using infrared spectroscopy based on milk samples collected in winter and summer publication-title: J. Dairy Sci. contributor: fullname: van Arendonk – volume: 513 start-page: 401 year: 2004 end-page: 412 ident: bib0085 article-title: Nutritional parameters of commercially available milk samples by FTIR and chemometric techniques publication-title: Anal. Chim. Acta contributor: fullname: De La Guardia – volume: 64 start-page: 1207 year: 1981 end-page: 1229 ident: bib0165 article-title: Forages for high animal production: Nutritional factors and effects of conservation publication-title: J. Dairy Sci. contributor: fullname: Jorgensen – start-page: 156 year: 1990 end-page: 157 ident: bib9155 article-title: A Nordic proposal for an energy corrected milk (ECM) formula. (Performance recording of animals: state of the art 1990) publication-title: European Federation of Animal Science (EAAP) Publication 50 contributor: fullname: Setala – volume: 89 start-page: 1163 year: 2011 end-page: 1166 ident: bib0075 article-title: Technical note: Use of near-infrared reflectance spectroscopy to predict intake and digestibility in bulls and steers publication-title: J. Anim. Sci. contributor: fullname: Burns – start-page: 311 year: 1991 end-page: 325 ident: bib0070 article-title: Rumen digestive physiology and microbial ecology publication-title: The Veterinary Clinics of North America: Food Animal Practice contributor: fullname: Miller – volume: 91 start-page: 1594 year: 2013 end-page: 1613 ident: bib0020 article-title: Cell biology symposium: Genetics of feed efficiency in dairy and beef cattle publication-title: J. Anim. Sci. contributor: fullname: Crowley – start-page: 3672 year: 2002 end-page: 3682 ident: bib0005 article-title: Vibrational Spectroscopy in the Analysis of Dairy Products and Wine publication-title: Handbook of Vibrational Spectroscopy contributor: fullname: Andersen – volume: 18 start-page: 31 year: 2006 end-page: 32 ident: bib0040 article-title: Back to basics: Calibration statistics publication-title: Spectrosc. Eur. contributor: fullname: Fearn – volume: 6 start-page: 1694 year: 2012 end-page: 1701 ident: bib0050 article-title: Potential use of milk mid-infrared spectra to predict individual methane emission of dairy cows publication-title: Animal contributor: fullname: Dardenne – volume: 36 start-page: 1627 year: 1964 end-page: 1638 ident: bib0150 article-title: Smoothing and differentiation of data by simplified least squares procedures publication-title: Anal. Chem. contributor: fullname: Golay – volume: 28 start-page: 439 year: 2014 end-page: 447 ident: bib0130 article-title: Recursive weighted partial least squares (rPLS): An efficient variable selection method using PLS publication-title: J. Chemometr. contributor: fullname: Engelsen – volume: 974 start-page: 88 year: 2010 end-page: 93 ident: bib0095 article-title: Analysis of crystallized lactose in milk powder by Fourier-transform infrared spectroscopy combined with two-dimensional correlation infrared spectroscopy publication-title: J. Mol. Struct. contributor: fullname: Noda – volume: 97 start-page: 5863 year: 2014 end-page: 5871 ident: bib0125 article-title: Mid-infrared spectrometry of milk as a predictor of energy intake and efficiency in lactating dairy cows publication-title: J. Dairy Sci. contributor: fullname: Berry – ident: 10.3168/jds.2016-11609_bib0120 doi: 10.3168/jds.2010-3965 – year: 1986 ident: 10.3168/jds.2016-11609_bib0090 contributor: fullname: Kristensen – volume: 97 start-page: 1171 year: 2014 ident: 10.3168/jds.2016-11609_bib0045 article-title: Invited review: Mid-infrared spectroscopy as phenotyping tool for milk traits publication-title: J. Dairy Sci. doi: 10.3168/jds.2013-6799 contributor: fullname: De Marchi – start-page: 286 year: 1983 ident: 10.3168/jds.2016-11609_bib0175 article-title: The multivariate calibration problem in chemistry solved by the PLS method doi: 10.1007/BFb0062108 contributor: fullname: Wold – start-page: 311 year: 1991 ident: 10.3168/jds.2016-11609_bib0070 article-title: Rumen digestive physiology and microbial ecology contributor: fullname: Hoover – volume: 6 start-page: 1694 year: 2012 ident: 10.3168/jds.2016-11609_bib0050 article-title: Potential use of milk mid-infrared spectra to predict individual methane emission of dairy cows publication-title: Animal doi: 10.1017/S1751731112000456 contributor: fullname: Dehareng – start-page: 3672 year: 2002 ident: 10.3168/jds.2016-11609_bib0005 article-title: Vibrational Spectroscopy in the Analysis of Dairy Products and Wine contributor: fullname: Andersen – volume: 18 start-page: 31 year: 2006 ident: 10.3168/jds.2016-11609_bib0040 article-title: Back to basics: Calibration statistics publication-title: Spectrosc. Eur. contributor: fullname: Davies – start-page: 156 year: 1990 ident: 10.3168/jds.2016-11609_bib9155 article-title: A Nordic proposal for an energy corrected milk (ECM) formula. (Performance recording of animals: state of the art 1990) contributor: fullname: Sjaunja – volume: 77 start-page: 132 year: 1994 ident: 10.3168/jds.2016-11609_bib0035 article-title: Variation in and relationships among feeding, chewing and drinking variables for lactating dairy cows publication-title: J. Dairy Sci. doi: 10.3168/jds.S0022-0302(94)76936-8 contributor: fullname: Dado – year: 1989 ident: 10.3168/jds.2016-11609_bib0110 contributor: fullname: Martens – volume: 89 start-page: 1163 year: 2011 ident: 10.3168/jds.2016-11609_bib0075 article-title: Technical note: Use of near-infrared reflectance spectroscopy to predict intake and digestibility in bulls and steers publication-title: J. Anim. Sci. doi: 10.2527/jas.2010-3376 contributor: fullname: Huntington – volume: 92 start-page: 6202 year: 2009 ident: 10.3168/jds.2016-11609_bib0140 article-title: Predicting bovine milk fat composition using infrared spectroscopy based on milk samples collected in winter and summer publication-title: J. Dairy Sci. doi: 10.3168/jds.2009-2456 contributor: fullname: Rutten – volume: 93 start-page: 1998 year: 2010 ident: 10.3168/jds.2016-11609_bib0100 article-title: Limits to prediction of energy balance from milk composition measures at individual cow level publication-title: J. Dairy Sci. doi: 10.3168/jds.2009-2739 contributor: fullname: Løvendahl – volume: 95 start-page: 7225 year: 2012 ident: 10.3168/jds.2016-11609_bib0115 article-title: Validation of mid-infrared spectrometry in milk for predicting body energy status in Holstein-Friesian cows publication-title: J. Dairy Sci. doi: 10.3168/jds.2012-5406 contributor: fullname: McParland – volume: 7 start-page: 303 year: 2013 ident: 10.3168/jds.2016-11609_bib0010 article-title: Reducing GHG emissions through genetic improvement for feed efficiency: Effects on economically important traits and enteric methane production publication-title: Animal doi: 10.1017/S1751731113000888 contributor: fullname: Basarab – volume: 513 start-page: 401 year: 2004 ident: 10.3168/jds.2016-11609_bib0085 article-title: Nutritional parameters of commercially available milk samples by FTIR and chemometric techniques publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2004.03.014 contributor: fullname: Iñón – volume: 36 start-page: 1627 year: 1964 ident: 10.3168/jds.2016-11609_bib0150 article-title: Smoothing and differentiation of data by simplified least squares procedures publication-title: Anal. Chem. doi: 10.1021/ac60214a047 contributor: fullname: Savitzky – volume: 64 start-page: 1207 year: 1981 ident: 10.3168/jds.2016-11609_bib0165 article-title: Forages for high animal production: Nutritional factors and effects of conservation publication-title: J. Dairy Sci. doi: 10.3168/jds.S0022-0302(81)82697-5 contributor: fullname: Waldo – volume: 94 start-page: 4183 year: 2011 ident: 10.3168/jds.2016-11609_bib0145 article-title: Prediction of β-lactoglobulin genotypes based on milk Fourier transform infrared spectra publication-title: J. Dairy Sci. doi: 10.3168/jds.2011-4149 contributor: fullname: Rutten – volume: 94 start-page: 5776 year: 2011 ident: 10.3168/jds.2016-11609_bib0025 article-title: Effectiveness of mid-infrared spectroscopy for the prediction of detailed protein composition and contents of protein genetic variants of individual milk of Simmental cows publication-title: J. Dairy Sci. doi: 10.3168/jds.2011-4401 contributor: fullname: Bonfatti – volume: 97 start-page: 5863 year: 2014 ident: 10.3168/jds.2016-11609_bib0125 article-title: Mid-infrared spectrometry of milk as a predictor of energy intake and efficiency in lactating dairy cows publication-title: J. Dairy Sci. doi: 10.3168/jds.2014-8214 contributor: fullname: McParland – ident: 10.3168/jds.2016-11609_bib0170 – volume: 24 start-page: 168 year: 2010 ident: 10.3168/jds.2016-11609_bib0065 article-title: Principles of proper validation: Use and abuse of re-sampling for validation publication-title: J. Chemometr. doi: 10.1002/cem.1310 contributor: fullname: Esbensen – volume: 90 start-page: 1687 year: 2012 ident: 10.3168/jds.2016-11609_bib0030 article-title: Triennial Lactation Symposium: Opportunities for improving milk production efficiency in dairy cattle publication-title: J. Anim. Sci. doi: 10.2527/jas.2011-4528 contributor: fullname: Connor – volume: 974 start-page: 88 year: 2010 ident: 10.3168/jds.2016-11609_bib0095 article-title: Analysis of crystallized lactose in milk powder by Fourier-transform infrared spectroscopy combined with two-dimensional correlation infrared spectroscopy publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2009.12.030 contributor: fullname: Lei – year: 2000 ident: 10.3168/jds.2016-11609_bib0060 contributor: fullname: Esbensen – start-page: 177 year: 2005 ident: 10.3168/jds.2016-11609_bib0080 article-title: Revisiting feed efficiency and its economic impact contributor: fullname: Hutjens – ident: 10.3168/jds.2016-11609_bib0105 – volume: 97 start-page: 2361 year: 2014 ident: 10.3168/jds.2016-11609_bib0015 article-title: Measurement of rumen dry matter and neutral detergent fiber degradability of feeds by Fourier-transform infrared spectroscopy publication-title: J. Dairy Sci. doi: 10.3168/jds.2013-7491 contributor: fullname: Belanche – volume: 94 start-page: 1657 year: 2011 ident: 10.3168/jds.2016-11609_bib0155 article-title: Mid-infrared prediction of bovine milk fatty acids across multiple breeds, production systems, and countries publication-title: J. Dairy Sci. doi: 10.3168/jds.2010-3408 contributor: fullname: Soyeurt – volume: 91 start-page: 1594 year: 2013 ident: 10.3168/jds.2016-11609_bib0020 article-title: Cell biology symposium: Genetics of feed efficiency in dairy and beef cattle publication-title: J. Anim. Sci. doi: 10.2527/jas.2012-5862 contributor: fullname: Berry – volume: 94 start-page: 2108 year: 2011 ident: 10.3168/jds.2016-11609_bib0160 article-title: Short communication: Heritability of gross feed efficiency and associations with yield, intake, residual intake, body weight, and body condition score in 11 commercial Pennsylvania tie stalls publication-title: J. Dairy Sci. doi: 10.3168/jds.2010-3888 contributor: fullname: Vallimont – volume: 28 start-page: 439 year: 2014 ident: 10.3168/jds.2016-11609_bib0130 article-title: Recursive weighted partial least squares (rPLS): An efficient variable selection method using PLS publication-title: J. Chemometr. doi: 10.1002/cem.2582 contributor: fullname: Rinnan – start-page: 3 year: 2009 ident: 10.3168/jds.2016-11609_bib0055 article-title: Principles of infrared spectroscopy contributor: fullname: Dufour – start-page: 29 year: 2009 ident: 10.3168/jds.2016-11609_bib0135 article-title: Data Pre-processing contributor: fullname: Rinnan |
SSID | ssj0021205 |
Score | 2.4825063 |
Snippet | The present study explored the effectiveness of Fourier transform mid-infrared (FT-IR) spectral profiles as a predictor for dry matter intake (DMI) and... |
SourceID | proquest crossref pubmed elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 253 |
SubjectTerms | Animal Feed Animals Cattle dry matter intake Female Lactation Milk - chemistry Milk Proteins prediction residual feed intake Spectrophotometry, Infrared spectroscopy Spectroscopy, Fourier Transform Infrared validation |
Title | Prediction and validation of residual feed intake and dry matter intake in Danish lactating dairy cows using mid-infrared spectroscopy of milk |
URI | https://dx.doi.org/10.3168/jds.2016-11609 https://www.ncbi.nlm.nih.gov/pubmed/27865487 https://search.proquest.com/docview/1842546812 |
Volume | 100 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhubSHkr43aYoKhZ7EWrJWlo7bkBC6pZTStLkJvbx1krUX74aQP9Hf3Bk_AoXm0pNBSJbRNx59o3mIkPfRgFYEqsvyPCQmUx6YL4xnXpnCSaUw_ROjLb6os3P56WJ2sUOOx1wYDKscdH-v0zttPbRMh9WcrqsKc3yFABEVwCiA9qAe3hPAfkHY9-Yffyw-39tdXPSRjBi4jgP62o14Y9P0MmLJbq4Y5wpjEv-9Nz3EPbs96HSfPBnII5333_eU7KT6GXk8X7ZDAY30nPz-2qLrBZebujpSEKSqvzaJNiUF27pLvqIlbFq0qrfuKnXdYntHV12pzbG1qimmn29-0WsX0F9fL2l0FfQLze2GYrz8kq6qyEBEW4xip13SJhbHbNZ3ONmqur56Qc5PT74fn7HhzgUWci23THuZ-TLTwWjnXDlzSkvHdWm8kIVxToAB5LlJZfRlkYWY-QAEQGc-U9FH7fOXZLdu6vSaUINHVDF6B5xIchcAI3ifiGqWXOZKMyEfxtW26760hgWTBHGxgItFXGyHy4TwEQz7l3BY0PsPjnk3ombhj0E3iKtTc7OxHD2PEuuuTcirHs77-UWhFdpwB_8x4yF5JHDP785n3pDdbXuTjoCxbP3bQSLxufj2c_EHZi_s2A |
link.rule.ids | 315,783,787,27583,27938,27939,45677 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaq9gAcEG-Wp5GQOFkbO17HPi4V1UKXikOLerP8yhLaTVbZrVD_BL-ZmTwqIdEL18iOI3-TmW88DxPyPhrQikB1WZ6HxGTKA_OF8cwrUzipFJZ_YrbFiVqcyS_ns_M9cjjWwmBa5aD7e53eaevhyXTYzemmqrDGVwgQUQGMAmgP6uEDYAMFeGAH84_fj5c3fhcXfSYjJq7jhL53I97YNP0ZsWU3V4xzhTmJ_7ZNt3HPzgYdPSD3B_JI5_33PSR7qX5E7s1X7dBAIz0mv7-1GHrB7aaujhQEqeqvTaJNScG37oqvaAlGi1b1zl2kblhsr-m6a7U5Pq1qiuXn2x_00gWM19crGl0F40Lza0sxX35F11VkIKItZrHTrmgTm2M2m2tcbF1dXjwhZ0efTg8XbLhzgYVcyx3TXma-zHQw2jlXzpzS0nFdGi9kYZwT4AB5blIZfVlkIWY-AAHQmc9U9FH7_CnZr5s6PSfU4BFVjN4BJ5LcBcAI3ieimiWXudJMyIdxt-2mb61hwSVBXCzgYhEX2-EyIXwEw_4lHBb0_q1z3o2oWfhjMAzi6tRcbS3HyKPEvmsT8qyH82Z9UWiFPtyL_1jxLbmzOP26tMvPJ8cvyV2B9r87q3lF9nftVXoN7GXn3wzS-Qc4Pu4j |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+and+validation+of+residual+feed+intake+and+dry+matter+intake+in+Danish+lactating+dairy+cows+using+mid-infrared+spectroscopy+of+milk&rft.jtitle=Journal+of+dairy+science&rft.au=Shetty%2C+N.&rft.au=L%C3%B8vendahl%2C+P.&rft.au=Lund%2C+M.S.&rft.au=Buitenhuis%2C+A.J.&rft.date=2017-01-01&rft.issn=0022-0302&rft.volume=100&rft.issue=1&rft.spage=253&rft.epage=264&rft_id=info:doi/10.3168%2Fjds.2016-11609&rft.externalDBID=n%2Fa&rft.externalDocID=10_3168_jds_2016_11609 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0302&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0302&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0302&client=summon |