Nanoconfined phase change materials for thermal energy applications

Phase change materials (PCMs) have been extensively characterized as constant temperature latent heat thermal energy storage (TES) materials. Nevertheless, the widespread utilization of PCMs is limited due to the flow of liquid PCMs during melting, phase separation, supercooling and low heat transfe...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental science Vol. 11; no. 6; pp. 1392 - 1424
Main Authors Aftab, Waseem, Huang, Xinyu, Wu, Wenhao, Liang, Zibin, Mahmood, Asif, Zou, Ruqiang
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 01.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Phase change materials (PCMs) have been extensively characterized as constant temperature latent heat thermal energy storage (TES) materials. Nevertheless, the widespread utilization of PCMs is limited due to the flow of liquid PCMs during melting, phase separation, supercooling and low heat transfer rate. In order to overcome these inherent problems and to improve thermo-physical properties, the confinement of PCMs at the nanoscale has been identified as a versatile strategy, which ensures the encapsulation of PCMs in much smaller nano-containers. Such strategies including core-shell, longitudinal, interfacial and porous confinement have been widely presented in recent years to efficiently encapsulate PCMs in nanospaces and are presenting attractive ways to enhance thermal performance. This review summarizes the recent advancement and critical issues of nanoconfinement technologies of PCMs from the point of view of material design. In addition, the potential applications of nanoconfined PCMs in diverse fields, including energy conversion and storage, thermal rectification and temperature controlled drug delivery systems, are presented in detail. Finally, the major drawbacks associated with nanoconfined PCMs and their prospective solutions are also provided. This review presents a summary of recent progress and strategies in fabricating nanoencapsulated PCMs for thermal energy applications.
AbstractList Phase change materials (PCMs) have been extensively characterized as constant temperature latent heat thermal energy storage (TES) materials. Nevertheless, the widespread utilization of PCMs is limited due to the flow of liquid PCMs during melting, phase separation, supercooling and low heat transfer rate. In order to overcome these inherent problems and to improve thermo-physical properties, the confinement of PCMs at the nanoscale has been identified as a versatile strategy, which ensures the encapsulation of PCMs in much smaller nano-containers. Such strategies including core–shell, longitudinal, interfacial and porous confinement have been widely presented in recent years to efficiently encapsulate PCMs in nanospaces and are presenting attractive ways to enhance thermal performance. This review summarizes the recent advancement and critical issues of nanoconfinement technologies of PCMs from the point of view of material design. In addition, the potential applications of nanoconfined PCMs in diverse fields, including energy conversion and storage, thermal rectification and temperature controlled drug delivery systems, are presented in detail. Finally, the major drawbacks associated with nanoconfined PCMs and their prospective solutions are also provided.
Phase change materials (PCMs) have been extensively characterized as constant temperature latent heat thermal energy storage (TES) materials. Nevertheless, the widespread utilization of PCMs is limited due to the flow of liquid PCMs during melting, phase separation, supercooling and low heat transfer rate. In order to overcome these inherent problems and to improve thermo-physical properties, the confinement of PCMs at the nanoscale has been identified as a versatile strategy, which ensures the encapsulation of PCMs in much smaller nano-containers. Such strategies including core-shell, longitudinal, interfacial and porous confinement have been widely presented in recent years to efficiently encapsulate PCMs in nanospaces and are presenting attractive ways to enhance thermal performance. This review summarizes the recent advancement and critical issues of nanoconfinement technologies of PCMs from the point of view of material design. In addition, the potential applications of nanoconfined PCMs in diverse fields, including energy conversion and storage, thermal rectification and temperature controlled drug delivery systems, are presented in detail. Finally, the major drawbacks associated with nanoconfined PCMs and their prospective solutions are also provided. This review presents a summary of recent progress and strategies in fabricating nanoencapsulated PCMs for thermal energy applications.
Author Aftab, Waseem
Mahmood, Asif
Zou, Ruqiang
Liang, Zibin
Wu, Wenhao
Huang, Xinyu
AuthorAffiliation Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials
College of Engineering
Peking University
Department of Materials Science and Engineering
AuthorAffiliation_xml – sequence: 0
  name: Department of Materials Science and Engineering
– sequence: 0
  name: Peking University
– sequence: 0
  name: Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials
– sequence: 0
  name: College of Engineering
Author_xml – sequence: 1
  givenname: Waseem
  surname: Aftab
  fullname: Aftab, Waseem
– sequence: 2
  givenname: Xinyu
  surname: Huang
  fullname: Huang, Xinyu
– sequence: 3
  givenname: Wenhao
  surname: Wu
  fullname: Wu, Wenhao
– sequence: 4
  givenname: Zibin
  surname: Liang
  fullname: Liang, Zibin
– sequence: 5
  givenname: Asif
  surname: Mahmood
  fullname: Mahmood, Asif
– sequence: 6
  givenname: Ruqiang
  surname: Zou
  fullname: Zou, Ruqiang
BookMark eNptkDtPwzAURi1UJNrCwo4UiQ0p4LfjEUXlpQoWmCPHvWlTpXaw3aH_ntDykBDTvcP5vnt1JmjkvAOEzgm-JpjpG6sAMBOFWh-hMVGC50JhOfrepaYnaBLjGmNJsdJjVD4b5613TetgkfUrEyGzK-OWkG1MgtCaLmaND1laQdiYLgMHYbnLTN93rTWp9S6eouNmwODsa07R293stXzI5y_3j-XtPLes4CkvNCesoA2jUjVMCloLwWgNhCjMFGVEMdA1bQRlGIATqzhXGiyXC6prUbApujz09sG_byGmau23wQ0nK4oFV5RzqQcKHygbfIwBmsq2af9oCqbtKoKrT1VVqWazvaqnIXL1J9KHdmPC7n_44gCHaH-4X-_sA05Nc44
CitedBy_id crossref_primary_10_1021_acs_chemrev_2c00572
crossref_primary_10_1039_D0SE00753F
crossref_primary_10_1016_j_solmat_2022_111718
crossref_primary_10_1002_smtd_202300139
crossref_primary_10_1007_s10570_022_04782_5
crossref_primary_10_1002_solr_202300447
crossref_primary_10_1016_j_carbpol_2021_118460
crossref_primary_10_1021_acsaem_4c00514
crossref_primary_10_1039_D1TB02503A
crossref_primary_10_1016_j_jcis_2020_08_014
crossref_primary_10_1016_j_pmatsci_2024_101380
crossref_primary_10_1021_acsami_2c00117
crossref_primary_10_1016_j_jobe_2025_111865
crossref_primary_10_1007_s10853_021_06239_9
crossref_primary_10_1016_j_mtcomm_2022_104011
crossref_primary_10_1039_D0TA05019A
crossref_primary_10_3390_pr10020239
crossref_primary_10_1021_acs_jpcc_1c00514
crossref_primary_10_1016_j_matt_2022_07_013
crossref_primary_10_1016_j_renene_2021_06_068
crossref_primary_10_1016_j_tca_2018_12_021
crossref_primary_10_1002_slct_201903969
crossref_primary_10_1016_j_est_2023_106824
crossref_primary_10_1016_j_cej_2020_126695
crossref_primary_10_1016_j_coco_2021_101048
crossref_primary_10_1021_acs_energyfuels_3c03973
crossref_primary_10_1021_acsami_0c15531
crossref_primary_10_1016_j_cej_2023_144720
crossref_primary_10_1016_j_electacta_2019_135551
crossref_primary_10_1016_j_smmf_2024_100044
crossref_primary_10_1016_j_compositesb_2020_108094
crossref_primary_10_1016_j_est_2024_114747
crossref_primary_10_1016_j_apenergy_2023_121462
crossref_primary_10_1039_C9RA10631F
crossref_primary_10_1002_ece2_70002
crossref_primary_10_1007_s12274_020_2921_7
crossref_primary_10_1016_j_mtnano_2022_100277
crossref_primary_10_1002_pen_26220
crossref_primary_10_1016_j_flatc_2021_100249
crossref_primary_10_1016_j_cej_2023_142650
crossref_primary_10_1016_j_est_2022_105685
crossref_primary_10_1016_j_est_2022_104594
crossref_primary_10_12677_MS_2022_127083
crossref_primary_10_1016_j_enbuild_2022_111993
crossref_primary_10_1016_j_icheatmasstransfer_2019_104284
crossref_primary_10_1021_acs_iecr_8b03093
crossref_primary_10_1039_D0EE01355B
crossref_primary_10_1016_j_apenergy_2019_05_021
crossref_primary_10_1021_acsnano_2c05067
crossref_primary_10_1016_j_ijrefrig_2021_06_008
crossref_primary_10_1039_C8CC05919E
crossref_primary_10_1002_smll_202105647
crossref_primary_10_1016_j_cej_2019_122500
crossref_primary_10_1016_j_solmat_2023_112186
crossref_primary_10_1016_j_cej_2022_135407
crossref_primary_10_1016_j_cej_2019_01_095
crossref_primary_10_1021_acsnano_9b03225
crossref_primary_10_1002_slct_202001558
crossref_primary_10_1016_j_cej_2023_142401
crossref_primary_10_1016_j_compositesb_2019_107545
crossref_primary_10_1016_j_isci_2020_101606
crossref_primary_10_1016_j_rser_2022_112912
crossref_primary_10_1016_j_nanoen_2018_09_007
crossref_primary_10_1002_smtd_202301458
crossref_primary_10_1007_s40843_021_1888_7
crossref_primary_10_1016_j_est_2022_104127
crossref_primary_10_1016_j_jclepro_2019_118952
crossref_primary_10_1021_acs_energyfuels_3c02737
crossref_primary_10_1002_app_52197
crossref_primary_10_1021_acsaem_8b01444
crossref_primary_10_1021_acsanm_9b00649
crossref_primary_10_1002_adma_202202457
crossref_primary_10_1021_acsami_1c14065
crossref_primary_10_1021_acsanm_3c02168
crossref_primary_10_1021_jacs_0c08777
crossref_primary_10_1016_j_micromeso_2020_110636
crossref_primary_10_1016_j_cej_2021_129942
crossref_primary_10_1016_j_est_2025_116175
crossref_primary_10_1039_D1RA04484B
crossref_primary_10_1088_1674_4926_45_2_022301
crossref_primary_10_1021_acsami_4c15958
crossref_primary_10_1039_D0NA01008A
crossref_primary_10_1016_j_jsamd_2024_100792
crossref_primary_10_1016_j_conbuildmat_2023_131068
crossref_primary_10_1007_s10973_024_13832_y
crossref_primary_10_1016_j_energy_2022_125505
crossref_primary_10_1080_1536383X_2022_2066654
crossref_primary_10_2139_ssrn_3999292
crossref_primary_10_1016_j_est_2020_101599
crossref_primary_10_1016_j_enbuild_2021_111437
crossref_primary_10_1016_j_est_2022_104432
crossref_primary_10_1016_j_est_2022_105760
crossref_primary_10_1021_acs_iecr_0c03175
crossref_primary_10_1016_j_est_2024_113747
crossref_primary_10_1016_j_cej_2024_158482
crossref_primary_10_1016_j_est_2024_111329
crossref_primary_10_1016_j_est_2024_112778
crossref_primary_10_1021_acsami_4c13999
crossref_primary_10_1186_s40580_023_00365_7
crossref_primary_10_1016_j_ijhydene_2022_01_241
crossref_primary_10_1016_j_jechem_2024_03_024
crossref_primary_10_1016_j_energy_2023_129637
crossref_primary_10_1016_j_cej_2023_147068
crossref_primary_10_3390_jcs7050193
crossref_primary_10_1016_j_mtchem_2024_102205
crossref_primary_10_1002_cssc_202100724
crossref_primary_10_1039_C9TA07629H
crossref_primary_10_1002_smll_202306170
crossref_primary_10_1016_j_est_2024_112423
crossref_primary_10_1016_j_solmat_2024_113369
crossref_primary_10_1016_j_cej_2022_136421
crossref_primary_10_1016_j_solmat_2024_113128
crossref_primary_10_1021_acsaem_0c02341
crossref_primary_10_1016_j_est_2024_111570
crossref_primary_10_1002_adfm_202408269
crossref_primary_10_1016_j_cej_2021_128992
crossref_primary_10_1016_j_est_2020_102223
crossref_primary_10_1016_j_compscitech_2020_108197
crossref_primary_10_1016_j_nanoen_2020_105454
crossref_primary_10_1016_j_micromeso_2020_110741
crossref_primary_10_1016_j_est_2022_104772
crossref_primary_10_1016_j_est_2022_105980
crossref_primary_10_1021_acsami_0c15146
crossref_primary_10_1016_j_ensm_2019_12_029
crossref_primary_10_1016_j_ensm_2018_10_014
crossref_primary_10_3390_inorganics12050126
crossref_primary_10_1016_j_nocx_2022_100108
crossref_primary_10_1021_acsnano_0c05931
crossref_primary_10_1039_C8RA09698H
crossref_primary_10_1016_j_cej_2024_154305
crossref_primary_10_1039_D2RA08134B
crossref_primary_10_1021_acsami_0c07405
crossref_primary_10_1002_smll_202302886
crossref_primary_10_2139_ssrn_4093888
crossref_primary_10_1002_adfm_202400038
crossref_primary_10_2139_ssrn_4093889
crossref_primary_10_1002_smll_202310252
crossref_primary_10_1039_D4RA03208J
crossref_primary_10_2139_ssrn_4048851
crossref_primary_10_1002_slct_202202930
crossref_primary_10_1016_j_tifs_2023_104167
crossref_primary_10_1016_j_apenergy_2019_114320
crossref_primary_10_1002_est2_289
crossref_primary_10_1016_j_jelechem_2020_113907
crossref_primary_10_1016_j_tifs_2024_104468
crossref_primary_10_1016_j_csite_2024_105636
crossref_primary_10_2139_ssrn_4150536
crossref_primary_10_1016_j_diamond_2023_110746
crossref_primary_10_3390_polym10080889
crossref_primary_10_1016_j_cej_2020_124586
crossref_primary_10_1016_j_ensm_2020_07_032
crossref_primary_10_1016_j_colsurfa_2019_124225
crossref_primary_10_1016_j_physleta_2019_04_050
crossref_primary_10_1016_j_solmat_2023_112224
crossref_primary_10_1002_er_5039
crossref_primary_10_1016_j_matdes_2022_111230
crossref_primary_10_1002_app_56937
crossref_primary_10_1021_acsami_9b18543
crossref_primary_10_1021_acssuschemeng_2c00189
crossref_primary_10_1039_C9NR10696K
crossref_primary_10_1016_j_egyr_2022_10_121
crossref_primary_10_3390_nano10081599
crossref_primary_10_1140_epjs_s11734_022_00587_6
crossref_primary_10_1021_acsami_4c09184
crossref_primary_10_1016_j_rser_2019_03_031
crossref_primary_10_1016_j_solmat_2024_112996
crossref_primary_10_1007_s10853_021_06153_0
crossref_primary_10_1007_s10570_021_04297_5
crossref_primary_10_1016_j_est_2020_101299
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121159
crossref_primary_10_1021_accountsmr_2c00251
crossref_primary_10_1016_j_watres_2025_123460
crossref_primary_10_1016_j_est_2022_105854
crossref_primary_10_1016_j_rser_2020_109712
crossref_primary_10_1021_acsami_8b17492
crossref_primary_10_1002_sus2_147
crossref_primary_10_1016_j_cej_2023_144417
crossref_primary_10_1016_j_est_2023_110214
crossref_primary_10_1016_j_heliyon_2024_e25800
crossref_primary_10_1016_j_xcrp_2020_100218
crossref_primary_10_1088_1361_6528_ab898b
crossref_primary_10_1016_j_nanoen_2021_106338
crossref_primary_10_1016_j_cej_2022_134851
crossref_primary_10_1021_acsnano_0c03706
crossref_primary_10_1016_j_eurpolymj_2020_110245
crossref_primary_10_1039_C9NA00430K
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126751
crossref_primary_10_1021_acs_chemrev_2c00407
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122436
crossref_primary_10_1016_j_solmat_2019_110122
crossref_primary_10_1140_epjp_i2018_12322_5
crossref_primary_10_1016_j_cej_2020_125330
crossref_primary_10_1002_advs_202207652
crossref_primary_10_1016_j_applthermaleng_2024_123612
crossref_primary_10_1039_C9TA13925G
crossref_primary_10_1039_D0TA05078D
crossref_primary_10_1039_D1CP00708D
crossref_primary_10_1016_j_mtsust_2023_100336
crossref_primary_10_1002_cnma_202200352
crossref_primary_10_1016_j_ccr_2024_216266
crossref_primary_10_1016_j_solmat_2024_113306
crossref_primary_10_1002_adfm_202108000
crossref_primary_10_1002_anie_201904549
crossref_primary_10_1016_j_indcrop_2024_119920
crossref_primary_10_1016_j_solmat_2022_112171
crossref_primary_10_1016_j_est_2023_107038
crossref_primary_10_3390_en17040933
crossref_primary_10_1016_j_enconman_2025_119490
crossref_primary_10_1016_j_est_2022_105954
crossref_primary_10_1126_sciadv_adr8445
crossref_primary_10_1016_j_cej_2024_150119
crossref_primary_10_1016_j_cej_2024_149009
crossref_primary_10_1016_j_jallcom_2019_05_205
crossref_primary_10_1016_j_solmat_2020_110644
crossref_primary_10_1016_j_cej_2021_131075
crossref_primary_10_1016_j_apsusc_2021_150549
crossref_primary_10_1002_admt_202200226
crossref_primary_10_1016_j_ceramint_2021_05_074
crossref_primary_10_1016_j_colsurfa_2023_130969
crossref_primary_10_1080_23312009_2020_1833476
crossref_primary_10_1016_j_matchemphys_2023_127501
crossref_primary_10_1021_acs_nanolett_3c02094
crossref_primary_10_1002_mren_202100049
crossref_primary_10_1039_D0TA07289C
crossref_primary_10_1016_j_compositesb_2020_108072
crossref_primary_10_1002_eom2_70004
crossref_primary_10_1016_j_carbon_2024_119639
crossref_primary_10_1002_er_6431
crossref_primary_10_1016_j_conbuildmat_2023_134037
crossref_primary_10_3390_polym16010100
crossref_primary_10_1016_j_coco_2024_102053
crossref_primary_10_1016_j_carbon_2019_04_005
crossref_primary_10_1016_j_jclepro_2022_133572
crossref_primary_10_1016_j_carbpol_2021_118745
crossref_primary_10_1088_2053_1591_ab2d0a
crossref_primary_10_1021_acsami_1c21080
crossref_primary_10_1002_adfm_201904228
crossref_primary_10_1016_j_enbuild_2020_110528
crossref_primary_10_1016_j_ensm_2021_07_019
crossref_primary_10_1016_j_carbpol_2023_121514
crossref_primary_10_1021_acs_jpcc_3c04869
crossref_primary_10_1016_j_cej_2022_138572
crossref_primary_10_1016_j_cej_2024_154147
crossref_primary_10_1021_acsami_1c01599
crossref_primary_10_1016_j_enconman_2020_113241
crossref_primary_10_1016_j_est_2021_102359
crossref_primary_10_1016_j_energy_2020_118055
crossref_primary_10_1016_j_cej_2021_128482
crossref_primary_10_1080_09506608_2022_2053774
crossref_primary_10_1016_j_solmat_2019_110165
crossref_primary_10_1016_j_cej_2018_09_013
crossref_primary_10_1016_j_ensm_2021_07_022
crossref_primary_10_1016_j_cej_2020_124711
crossref_primary_10_1016_j_energy_2020_119029
crossref_primary_10_1039_D4EE02350A
crossref_primary_10_1002_sus2_214
crossref_primary_10_3390_polym16233291
crossref_primary_10_1016_j_solmat_2024_112818
crossref_primary_10_1002_adfm_202414042
crossref_primary_10_1021_acsestengg_1c00007
crossref_primary_10_1016_j_solmat_2022_112019
crossref_primary_10_1016_j_compositesa_2021_106770
crossref_primary_10_1016_j_susmat_2024_e01157
crossref_primary_10_1021_acsami_8b09541
crossref_primary_10_1021_acsami_8b11611
crossref_primary_10_1021_acsnano_8b08913
crossref_primary_10_1016_j_polymer_2020_122824
crossref_primary_10_1021_acsami_9b16612
crossref_primary_10_1016_j_est_2021_103556
crossref_primary_10_1016_j_solmat_2018_11_042
crossref_primary_10_1007_s10973_024_13762_9
crossref_primary_10_3390_molecules25071504
crossref_primary_10_1016_j_renene_2021_02_028
crossref_primary_10_1016_j_jhazmat_2021_127147
crossref_primary_10_1002_adfm_202403059
crossref_primary_10_1016_j_ijft_2025_101116
crossref_primary_10_1016_j_colsurfa_2021_126905
crossref_primary_10_1016_j_jobe_2021_102247
crossref_primary_10_1016_j_solmat_2022_112025
crossref_primary_10_1007_s10973_021_11046_0
crossref_primary_10_1016_j_cej_2024_154006
crossref_primary_10_1016_j_ensm_2022_01_017
crossref_primary_10_1002_est2_533
crossref_primary_10_1002_adma_202402897
crossref_primary_10_1016_j_solener_2020_05_004
crossref_primary_10_1021_acs_iecr_2c00110
crossref_primary_10_1002_smll_202303315
crossref_primary_10_1016_j_ensm_2022_08_002
crossref_primary_10_1016_j_est_2021_103771
crossref_primary_10_1002_agt2_248
crossref_primary_10_1002_smll_202312134
crossref_primary_10_1021_acsanm_4c05113
crossref_primary_10_1016_j_eurpolymj_2023_112431
crossref_primary_10_1016_j_est_2024_110725
crossref_primary_10_1016_j_seta_2020_100865
crossref_primary_10_1016_j_renene_2021_01_114
crossref_primary_10_1016_j_est_2021_103415
crossref_primary_10_1016_j_applthermaleng_2024_125293
crossref_primary_10_1039_D0SE00718H
crossref_primary_10_1016_j_est_2021_102329
crossref_primary_10_1002_adfm_202200792
crossref_primary_10_1016_j_solener_2021_07_003
crossref_primary_10_1016_j_rser_2019_04_041
crossref_primary_10_1021_acs_iecr_3c02373
crossref_primary_10_1021_acs_iecr_3c02493
crossref_primary_10_1021_acsomega_3c09417
crossref_primary_10_1021_acs_chemrev_4c00276
crossref_primary_10_3390_nano13162313
crossref_primary_10_1021_acsami_1c14862
crossref_primary_10_1016_j_jlp_2024_105320
crossref_primary_10_1016_j_applthermaleng_2020_115560
crossref_primary_10_1007_s10853_024_10148_y
crossref_primary_10_1016_j_est_2024_114138
crossref_primary_10_1016_j_ensm_2019_11_019
crossref_primary_10_1016_j_jmst_2022_05_049
crossref_primary_10_1016_j_ceramint_2019_05_091
crossref_primary_10_1039_D1RA09167K
crossref_primary_10_1039_D3CC06063B
crossref_primary_10_3390_en15218271
crossref_primary_10_1016_j_est_2021_102420
crossref_primary_10_1016_j_matchemphys_2023_128457
crossref_primary_10_1016_j_colsurfa_2022_130594
crossref_primary_10_1016_j_matt_2021_10_002
crossref_primary_10_1016_j_jhazmat_2020_123695
crossref_primary_10_2174_0929867326666190215113522
crossref_primary_10_1016_j_colsurfa_2022_129249
crossref_primary_10_1021_acs_est_0c03775
crossref_primary_10_1016_j_cej_2024_153361
crossref_primary_10_1016_j_compositesa_2024_108331
crossref_primary_10_1016_j_solmat_2020_110956
crossref_primary_10_1039_D3MA00924F
crossref_primary_10_3390_polym11101616
crossref_primary_10_1002_er_4550
crossref_primary_10_1016_j_est_2022_104905
crossref_primary_10_1007_s42114_022_00481_8
crossref_primary_10_1016_j_ijbiomac_2020_01_173
crossref_primary_10_1016_j_cej_2019_123028
crossref_primary_10_1016_j_est_2021_103637
crossref_primary_10_1016_j_jclepro_2022_133031
crossref_primary_10_1021_acsami_9b19802
crossref_primary_10_1016_j_est_2021_103634
crossref_primary_10_1002_idm2_12234
crossref_primary_10_1016_j_matt_2024_01_012
crossref_primary_10_1016_j_solmat_2024_112948
crossref_primary_10_1016_j_compositesb_2023_110885
crossref_primary_10_1039_D1TB00843A
crossref_primary_10_1016_j_jechem_2022_08_001
crossref_primary_10_1002_smll_202305418
crossref_primary_10_1016_j_compscitech_2020_108402
crossref_primary_10_1016_j_rser_2023_113814
crossref_primary_10_1016_j_est_2023_108674
crossref_primary_10_1002_cey2_218
crossref_primary_10_1016_j_solmat_2018_12_018
crossref_primary_10_1016_j_renene_2021_04_078
crossref_primary_10_1021_acsami_9b17771
crossref_primary_10_1016_j_solmat_2020_110938
crossref_primary_10_4491_KSEE_2019_41_10_582
crossref_primary_10_3390_en16031498
crossref_primary_10_1038_s41598_020_71543_4
crossref_primary_10_1039_D0TA05904H
crossref_primary_10_1007_s11664_023_10542_3
crossref_primary_10_1039_D2SU00116K
crossref_primary_10_1016_j_nanoen_2022_107559
crossref_primary_10_3390_nano9040657
crossref_primary_10_1016_j_joule_2019_12_005
crossref_primary_10_1016_j_matlet_2021_129722
crossref_primary_10_6023_A23040150
crossref_primary_10_1016_j_apenergy_2019_02_045
crossref_primary_10_1016_j_bioadv_2023_213618
crossref_primary_10_1016_j_est_2023_108425
crossref_primary_10_1016_j_pmatsci_2020_100708
crossref_primary_10_1016_j_energy_2020_119294
crossref_primary_10_1039_C8MH01219A
crossref_primary_10_1016_j_optmat_2023_113812
crossref_primary_10_1016_j_rser_2022_112783
crossref_primary_10_1016_j_ensm_2025_104142
crossref_primary_10_1021_acsami_1c23303
crossref_primary_10_1021_acssuschemeng_8b03980
crossref_primary_10_1016_j_nanoms_2023_12_004
crossref_primary_10_3390_nano11030566
crossref_primary_10_1016_j_renene_2024_121724
crossref_primary_10_1016_j_cej_2020_127276
crossref_primary_10_1016_j_compscitech_2019_107895
crossref_primary_10_1016_j_solmat_2021_111392
crossref_primary_10_1016_j_solmat_2024_113173
crossref_primary_10_1016_j_est_2023_108615
crossref_primary_10_1021_acsomega_3c04311
crossref_primary_10_1016_j_jobe_2022_105198
crossref_primary_10_1016_j_csite_2022_102241
crossref_primary_10_1021_acsaem_8b01752
crossref_primary_10_1021_acs_langmuir_0c03286
crossref_primary_10_1016_j_enconman_2022_115948
crossref_primary_10_1016_j_ijbiomac_2025_139572
crossref_primary_10_1016_j_apenergy_2022_120482
crossref_primary_10_1016_j_cej_2019_122373
crossref_primary_10_1021_acsami_3c07360
crossref_primary_10_1021_acs_energyfuels_0c03739
crossref_primary_10_1016_j_rser_2023_113805
crossref_primary_10_1016_j_applthermaleng_2020_115512
crossref_primary_10_3390_ma17133241
crossref_primary_10_1016_j_cej_2021_129620
crossref_primary_10_1016_j_est_2023_107633
crossref_primary_10_1016_j_device_2023_100121
crossref_primary_10_1016_j_applthermaleng_2022_119546
crossref_primary_10_1016_j_compositesb_2022_110367
crossref_primary_10_1016_j_ijheatmasstransfer_2019_118699
crossref_primary_10_1016_j_jpowsour_2020_227820
crossref_primary_10_1016_j_jcis_2023_12_015
crossref_primary_10_1080_01411594_2019_1581885
crossref_primary_10_1016_j_solmat_2025_113448
crossref_primary_10_1002_advs_202405077
crossref_primary_10_1063_5_0046975
crossref_primary_10_1142_S2810922822300070
crossref_primary_10_1016_j_matdes_2020_109357
crossref_primary_10_1016_j_isci_2022_104226
crossref_primary_10_1016_j_carbpol_2022_120407
crossref_primary_10_1016_j_isci_2022_104584
crossref_primary_10_1016_j_xcrp_2023_101250
crossref_primary_10_1016_j_solmat_2024_113151
crossref_primary_10_1016_j_ctta_2025_100166
crossref_primary_10_1016_j_coche_2020_02_004
crossref_primary_10_1016_j_applthermaleng_2020_115531
crossref_primary_10_1016_j_nanoen_2021_105948
crossref_primary_10_1007_s42773_025_00425_7
crossref_primary_10_1016_j_apenergy_2022_120141
crossref_primary_10_1016_j_isci_2020_101208
crossref_primary_10_1016_j_est_2024_114367
crossref_primary_10_1016_j_est_2019_101134
crossref_primary_10_1002_cey2_665
crossref_primary_10_3390_polym15030703
crossref_primary_10_1039_D2NJ03485A
crossref_primary_10_1016_j_enss_2024_11_010
crossref_primary_10_1016_j_nanoen_2022_107383
crossref_primary_10_1016_j_ensm_2021_05_048
crossref_primary_10_1016_j_est_2022_106355
crossref_primary_10_1016_j_jcis_2021_03_111
crossref_primary_10_1002_admt_202300658
crossref_primary_10_1016_j_compositesb_2020_108500
crossref_primary_10_1016_j_applthermaleng_2019_114697
crossref_primary_10_1016_j_applthermaleng_2020_115960
crossref_primary_10_1016_j_solmat_2021_111236
crossref_primary_10_1002_htj_22019
crossref_primary_10_1007_s10973_019_08097_9
crossref_primary_10_1021_acs_energyfuels_9b04212
crossref_primary_10_1038_s41467_023_43772_4
crossref_primary_10_1016_j_foodp_2024_100039
crossref_primary_10_1039_D3RA05389J
crossref_primary_10_1016_j_joule_2022_04_018
crossref_primary_10_1016_j_est_2023_106994
crossref_primary_10_1002_advs_202001274
crossref_primary_10_1002_er_4838
crossref_primary_10_1039_D2CE00488G
crossref_primary_10_1016_j_compscitech_2019_107714
crossref_primary_10_1016_j_est_2022_106367
crossref_primary_10_1016_j_est_2022_106364
crossref_primary_10_1021_acs_langmuir_0c00811
crossref_primary_10_3390_nano14131077
crossref_primary_10_1016_j_cej_2024_154050
crossref_primary_10_1002_adma_202002559
crossref_primary_10_1016_j_solmat_2019_109925
crossref_primary_10_1016_j_tsep_2024_102675
crossref_primary_10_1016_j_est_2024_111278
crossref_primary_10_1016_j_est_2024_113454
crossref_primary_10_1002_smll_202006752
crossref_primary_10_1016_j_renene_2023_119044
crossref_primary_10_1016_j_mtnano_2022_100234
crossref_primary_10_1016_j_est_2023_106861
crossref_primary_10_1039_C8RA06536E
crossref_primary_10_1039_C9NR07273J
crossref_primary_10_1016_j_est_2023_109805
crossref_primary_10_1016_j_cej_2021_130789
crossref_primary_10_1016_j_est_2023_108959
crossref_primary_10_1016_j_rser_2023_114184
crossref_primary_10_1016_j_jclepro_2024_143177
crossref_primary_10_2139_ssrn_4124868
crossref_primary_10_1016_j_cej_2023_141923
crossref_primary_10_1016_j_ensm_2021_05_023
crossref_primary_10_1016_j_isci_2023_107946
crossref_primary_10_3390_pr11113219
crossref_primary_10_1016_j_solener_2022_05_004
crossref_primary_10_1002_ange_201904549
crossref_primary_10_1016_j_cej_2024_157313
crossref_primary_10_1016_j_est_2024_113465
crossref_primary_10_1002_adfm_202409884
crossref_primary_10_1016_j_solmat_2021_111013
crossref_primary_10_1016_j_est_2023_106650
crossref_primary_10_1016_j_tca_2022_179428
crossref_primary_10_2139_ssrn_4095586
crossref_primary_10_1039_D1EE00527H
crossref_primary_10_1016_j_compscitech_2021_109177
crossref_primary_10_1016_j_molliq_2022_119589
crossref_primary_10_1016_j_tca_2019_04_005
crossref_primary_10_1016_j_compositesa_2022_106898
crossref_primary_10_1007_s10973_019_08645_3
crossref_primary_10_1016_j_carbpol_2022_119583
crossref_primary_10_1021_acsnano_1c05693
crossref_primary_10_1016_j_cej_2022_135056
crossref_primary_10_1016_j_cej_2022_135054
crossref_primary_10_3390_nano11010204
crossref_primary_10_1007_s10973_024_13912_z
crossref_primary_10_1016_j_carbpol_2023_120734
crossref_primary_10_1016_j_cej_2021_128596
crossref_primary_10_1021_acsami_1c07160
crossref_primary_10_1016_j_matt_2020_05_016
crossref_primary_10_1016_j_cej_2021_133935
crossref_primary_10_1039_C9SE01272A
crossref_primary_10_1002_adfm_202412914
Cites_doi 10.1002/adma.200902986
10.1021/acs.macromol.6b01285
10.1002/anie.201004057
10.1016/j.solmat.2011.09.020
10.1016/j.cej.2017.01.045
10.1039/C7TB01253E
10.1021/acs.energyfuels.6b00929
10.1039/C7TA03432F
10.1016/j.nanoen.2016.02.058
10.1016/j.apenergy.2016.09.007
10.1021/jp202373b
10.1039/C4RA04225E
10.1016/j.carbon.2015.10.082
10.1021/nl0620839
10.1007/s10973-013-3311-0
10.1007/s10853-009-4146-8
10.1016/j.solener.2013.11.018
10.1039/C6TA06189C
10.1021/acs.jpcc.5b02608
10.1002/anie.201305006
10.1016/j.compscitech.2017.06.019
10.1039/C6TA08850C
10.1039/C6RA09558E
10.1016/j.ijheatmasstransfer.2012.11.032
10.1016/j.carbon.2013.06.077
10.1126/science.1220131
10.1016/j.nanoen.2017.03.010
10.1038/srep01908
10.1039/b925283e
10.1016/j.apenergy.2016.08.136
10.1039/C5NR01744K
10.1016/j.colsurfa.2014.03.005
10.1039/c0nr00585a
10.1021/ja804185s
10.1039/C7RA05204A
10.1021/acsami.7b13969
10.1007/s10973-017-6385-2
10.1039/C7TB01712J
10.1002/adma.200305136
10.1016/j.ijheatmasstransfer.2013.10.034
10.1126/science.1230444
10.1016/j.renene.2017.05.026
10.1007/s10973-016-6068-4
10.1021/acsami.7b08728
10.1016/j.tca.2013.04.028
10.1039/C3LC50949D
10.1016/j.carbon.2016.11.069
10.1021/nl401097d
10.1039/C4TA04605F
10.1016/j.tca.2013.07.027
10.1039/C4TA00839A
10.1016/j.applthermaleng.2015.12.051
10.1039/C4MH00193A
10.1039/c2jm35112a
10.1016/j.eurpolymj.2015.10.027
10.1002/adfm.201701136
10.1021/acs.iecr.5b01822
10.1002/polb.23223
10.1007/s10853-013-7169-0
10.4028/www.scientific.net/AMR.800.459
10.1039/C7CS00041C
10.1016/j.solener.2014.02.042
10.1039/C4TA05448B
10.1038/srep06246
10.1002/aenm.201702692
10.1016/j.enconman.2014.01.042
10.1016/j.solmat.2009.06.019
10.1021/acs.jpcc.5b06089
10.1038/nmat3001
10.1016/j.solmat.2013.09.035
10.1002/app.39302
10.1002/pc.22879
10.1002/app.38124
10.1021/acsami.5b07064
10.1002/aenm.201500921
10.1039/c2cp41988b
10.1016/j.energy.2013.09.012
10.1038/srep09117
10.1039/C6TA07587H
10.1016/j.renene.2013.05.020
10.1021/acsnano.6b01104
10.1016/j.applthermaleng.2016.09.129
10.1039/C6RA04059D
10.1016/j.solener.2012.01.003
10.1039/c3cp51875b
10.1016/j.solmat.2011.02.010
10.1039/C7TA02494K
10.1021/acs.jpcc.5b03728
10.1016/j.jmat.2015.07.002
10.1039/C6TA07144A
10.1039/C4TB01631A
10.1039/c1ee01405f
10.1021/jp109518k
10.1039/c3ra43936d
10.1016/j.solmat.2014.01.024
10.1038/srep12964
10.1007/s12221-017-7093-z
10.1016/S1359-4311(03)00107-8
10.1016/j.energy.2015.05.144
10.1016/j.apenergy.2011.11.018
10.1021/acssuschemeng.7b00321
10.1016/j.enconman.2015.04.002
10.1016/j.apenergy.2017.05.175
10.1039/C6NJ03034C
10.1002/adfm.201203728
10.1021/jp400770x
10.1021/acsnano.5b02917
10.1016/j.energy.2014.01.033
10.1021/nn400728t
10.1016/j.solmat.2012.07.024
10.1039/C3TB21229G
10.1016/j.enconman.2013.12.026
10.1002/adma.201703702
10.1016/j.apenergy.2015.01.022
10.1039/C4EE03051F
10.1063/1.5001072
10.1016/j.solmat.2017.04.009
10.1016/j.matlet.2017.02.075
10.1021/ic900416v
10.1016/j.solener.2013.08.021
10.1021/la070140n
10.1016/j.ijthermalsci.2010.12.004
10.1021/nn304310n
10.1016/j.tca.2015.08.022
10.1021/am100204b
10.1016/j.energy.2015.04.008
10.1080/17458080.2010.497950
10.1016/j.enconman.2016.04.049
10.1002/marc.201000185
10.1039/C7RA00964J
10.1016/j.applthermaleng.2016.11.111
10.1016/j.enconman.2013.07.060
10.1016/j.enconman.2014.05.092
10.1039/c3nr06810b
10.1039/c2ra21832a
10.1021/acsami.7b06970
10.1016/j.matdes.2016.03.084
10.1039/C6RA10736B
10.1039/C6TA07869A
10.1016/j.polymertesting.2017.09.005
10.1016/j.carbon.2013.09.053
10.1016/j.enconman.2015.08.048
10.1016/j.ijheatmasstransfer.2017.02.078
10.1016/j.icheatmasstransfer.2016.08.013
10.1007/s00289-011-0492-1
10.1021/acsnano.6b07126
10.1016/j.jpowsour.2004.09.033
10.1016/j.rser.2017.01.159
10.1038/ncomms1091
10.1039/C4RA16988C
10.1038/s41467-018-03029-x
10.1039/C4TA06735E
10.1016/j.rser.2013.12.017
10.1016/j.ijheatmasstransfer.2017.07.107
10.1016/j.applthermaleng.2015.08.084
10.1039/C6EE01043A
10.1016/j.apenergy.2012.05.022
10.1016/j.apenergy.2016.12.159
10.1016/j.renene.2013.05.041
10.1038/nclimate3045
10.1016/j.pmatsci.2014.03.005
10.1038/nenergy.2017.1
10.1038/srep13357
10.1016/j.rser.2007.10.005
10.1007/s12274-016-1333-1
10.1080/01411594.2015.1091937
10.1016/j.applthermaleng.2016.02.120
10.1021/ja808132u
10.1016/j.nanoen.2015.02.016
10.1016/S1359-4311(02)00192-8
10.1021/acs.iecr.5b01026
10.1038/srep08884
10.1039/C6RA05283E
10.1039/c2jm33289b
10.1016/j.solmat.2017.08.025
10.1016/j.rser.2011.07.019
10.1002/ejic.201601380
10.1016/j.rser.2013.12.033
10.1039/c2jm33316c
10.1021/la504424u
10.1021/acs.jpcc.5b06083
10.1002/smll.201402145
10.1021/jp111432j
10.1039/C3EE42573H
10.1039/c2ra20904g
10.1039/C6NR03921A
10.1016/j.solmat.2013.07.017
10.1016/j.rser.2009.10.015
10.1016/j.rser.2010.11.018
10.1039/C6TA01676F
10.1016/j.enconman.2017.05.037
10.1038/nmat4475
10.1016/j.renene.2017.02.083
10.1016/j.solmat.2013.01.046
10.1002/chem.201505035
10.1039/C6TA08454K
10.1039/c1sm05973d
10.1080/17458080.2016.1233582
10.1016/j.enconman.2003.09.015
10.1021/jacs.7b04872
10.1038/nature11475
10.1016/j.ijheatmasstransfer.2011.03.022
10.1016/j.cej.2009.06.019
10.1016/j.energy.2017.07.049
10.1002/chem.201500666
10.1021/ja200894u
10.1021/jp408478h
10.1002/mame.201600081
10.1016/j.enconman.2008.06.027
10.1016/j.eurpolymj.2012.01.016
10.1016/j.apenergy.2011.08.041
10.1016/j.nanoen.2015.11.001
10.1039/C7CP02445B
10.1002/smll.201403228
10.1039/C6TA09712J
10.1039/C5RA17152K
10.1002/anie.201305201
10.1016/j.solener.2013.11.021
10.1016/j.colsurfb.2015.07.061
10.1016/j.apenergy.2013.10.029
10.1016/j.rser.2017.04.001
10.1039/C6RA12890D
10.1021/ma201509d
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
DOI 10.1039/c7ee03587j
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1754-5706
EndPage 1424
ExternalDocumentID 10_1039_C7EE03587J
c7ee03587j
GroupedDBID -JG
0-7
0R~
29G
4.4
5GY
705
70~
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3I
M4U
N9A
O-G
O9-
P2P
RAOCF
RCNCU
RPMJG
RRC
RSCEA
RVUXY
SKA
SLH
TOV
UCJ
53G
AAYXX
ABIQK
ACRPL
ADNMO
AFRZK
AGQPQ
AHGXI
AKMSF
ALSGL
ANBJS
ANLMG
ASPBG
AVWKF
CAG
CITATION
COF
FEDTE
HVGLF
J3G
J3H
L-8
R56
ROL
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
ID FETCH-LOGICAL-c384t-8941382f3267f3652b5532be11703723173e9b2f5230ee41c74479ec46d29b583
ISSN 1754-5692
IngestDate Mon Jun 30 12:00:56 EDT 2025
Tue Jul 01 01:45:40 EDT 2025
Thu Apr 24 23:08:27 EDT 2025
Tue Dec 17 20:58:50 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c384t-8941382f3267f3652b5532be11703723173e9b2f5230ee41c74479ec46d29b583
Notes Huang Xinyu obtained his BSc in Materials Science and Engineering in 2013 from Peking University. He is currently a PhD candidate in Prof. Ruqiang Zou's group at Peking University. He has been working on phase change materials for thermal energy storage since 2012.
Ruqiang Zou is currently a Professor of Materials Science and Engineering at the College of Engineering, Peking University, P. R. China. He received his PhD from Kobe University and the National Institute of Advanced Industrial Science and Technology (AIST), Japan. He was awarded the JSPS Young Scientist award during his doctoral course in Japan. After graduating from Kobe University in 2008, he was awarded a Director's Postdoc Fellow at Los Alamos National Laboratory in the United States, the New-Star of Science and Technology in Beijing, the Excellent Young Scientist Foundation of NSFC, National Top-notch Young Professional of China, and Changjiang Scholar for Young Scientist. His research interests focus on the controllable preparation of nanoporous materials for green energy utilization. He proposed to construct hierarchically porous materials for single-molecule adsorption, and extended their potential applications to hydrogen storage, carbon capture, and energy storage materials. He has published more than 140 papers.
Waseem Aftab received his undergraduate degree in Applied Chemistry from Government College University, Faisalabad, in 2013 and his Master's degree in Physical Chemistry from Quaid-e-Azam University, Islamabad, Pakistan, in 2015. Currently, he is working in Professor Ruqiang Zou's group in the Department of Materials Science and Engineering at the College of Engineering, Peking University, as a PhD candidate. His research interests focus on Phase Change Materials for Thermal Energy Applications.
Zibin Liang is currently a PhD candidate under the supervision of Professor Ruqiang Zou at the College of Engineering, Peking University. His research interest is the synthesis of functional nanomaterials based on metal-organic frameworks for energy storage and conversion applications.
Wu Wenhao received his master's degree from Chongqing University and PhD Degree from Peking University. Currently he is working as a manufacturing Engineer at the Chinese Academy of Information and Communications Technology. His research interests focus on functional Phase Change Composites for Thermal Energy Storage.
Asif Mahmood received his BS and MS degrees in Chemistry and Materials and Surface Engineering from Government College University, Lahore and National University of Science and Technology, Pakistan, respectively. He completed his PhD in Professor Ruqiang Zou's group in the Department of Materials Science and Engineering at the College of Engineering, Peking University. Currently, he is working as a Research Fellow at South University of Sciences and Technology, China. His research interests include porous materials including metal-organic frameworks, carbon, metal/carbon hybrids and metal oxides for electrochemical applications such as supercapacitors, Li-ion batteries and fuel cells.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0456-4615
PQID 2054724469
PQPubID 2047494
PageCount 33
ParticipantIDs crossref_primary_10_1039_C7EE03587J
proquest_journals_2054724469
crossref_citationtrail_10_1039_C7EE03587J
rsc_primary_c7ee03587j
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180101
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 20180101
  day: 01
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Energy & environmental science
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Zhang (C7EE03587J-(cit39)/*[position()=1]) 2012; 86
Wu (C7EE03587J-(cit48)/*[position()=1]) 2011; 54
Konuklu (C7EE03587J-(cit56)/*[position()=1]) 2014; 80
Wang (C7EE03587J-(cit126)/*[position()=1]) 2016; 19
Li (C7EE03587J-(cit41)/*[position()=1]) 2014; 35
Zheng (C7EE03587J-(cit171)/*[position()=1]) 2017; 139
Choi (C7EE03587J-(cit214)/*[position()=1]) 2010; 49
Zhong (C7EE03587J-(cit139)/*[position()=1]) 2013; 113
Li (C7EE03587J-(cit157)/*[position()=1]) 2017; 128
Sinha-Ray (C7EE03587J-(cit84)/*[position()=1]) 2014; 14
Zhang (C7EE03587J-(cit202)/*[position()=1]) 2016; 77
Chen (C7EE03587J-(cit209)/*[position()=1]) 2015; 5
Lee (C7EE03587J-(cit162)/*[position()=1]) 2014; 68
McCann (C7EE03587J-(cit25)/*[position()=1]) 2006; 6
Zhang (C7EE03587J-(cit59)/*[position()=1]) 2013; 117
Shang (C7EE03587J-(cit141)/*[position()=1]) 2017; 111
Wang (C7EE03587J-(cit103)/*[position()=1]) 2012; 14
Wu (C7EE03587J-(cit69)/*[position()=1]) 2013; 58
Jeong (C7EE03587J-(cit87)/*[position()=1]) 2013; 63
Moon (C7EE03587J-(cit215)/*[position()=1]) 2011; 133
Zhang (C7EE03587J-(cit75)/*[position()=1]) 2016; 6
Wang (C7EE03587J-(cit195)/*[position()=1]) 2017; 9
Lai (C7EE03587J-(cit68)/*[position()=1]) 2016; 25
Wang (C7EE03587J-(cit82)/*[position()=1]) 2010; 31
Luo (C7EE03587J-(cit83)/*[position()=1]) 2013; 51
Sun (C7EE03587J-(cit73)/*[position()=1]) 2003; 15
de Cortazar (C7EE03587J-(cit37)/*[position()=1]) 2013; 127
Tang (C7EE03587J-(cit170)/*[position()=1]) 2016; 6
Sternberg (C7EE03587J-(cit1)/*[position()=1]) 2015; 8
Jamekhorshid (C7EE03587J-(cit26)/*[position()=1]) 2014; 31
Wang (C7EE03587J-(cit134)/*[position()=1]) 2013; 15
Fang (C7EE03587J-(cit45)/*[position()=1]) 2013; 76
Cao (C7EE03587J-(cit98)/*[position()=1]) 2017; 138
Zhang (C7EE03587J-(cit119)/*[position()=1]) 2016; 6
Kholmanov (C7EE03587J-(cit136)/*[position()=1]) 2015; 9
Zheng (C7EE03587J-(cit179)/*[position()=1]) 2017; 11
Pielichowska (C7EE03587J-(cit16)/*[position()=1]) 2014; 65
Chu (C7EE03587J-(cit5)/*[position()=1]) 2012; 488
Fan (C7EE03587J-(cit130)/*[position()=1]) 2017
Hou (C7EE03587J-(cit187)/*[position()=1]) 2017; 9
Agyenim (C7EE03587J-(cit17)/*[position()=1]) 2010; 14
Fang (C7EE03587J-(cit199)/*[position()=1]) 2017; 114
Qian (C7EE03587J-(cit121)/*[position()=1]) 2012; 107
Li (C7EE03587J-(cit107)/*[position()=1]) 2013; 3
Chen (C7EE03587J-(cit38)/*[position()=1]) 2012; 91
Tao (C7EE03587J-(cit152)/*[position()=1]) 2009; 131
Wood (C7EE03587J-(cit213)/*[position()=1]) 2011; 115
Wang (C7EE03587J-(cit210)/*[position()=1]) 2017; 19
De Castro (C7EE03587J-(cit28)/*[position()=1]) 2016; 22
Zhang (C7EE03587J-(cit173)/*[position()=1]) 2011; 115
Menberg (C7EE03587J-(cit4)/*[position()=1]) 2016; 9
Xia (C7EE03587J-(cit138)/*[position()=1]) 2017; 5
Tang (C7EE03587J-(cit94)/*[position()=1]) 2014; 4
Chen (C7EE03587J-(cit150)/*[position()=1]) 2012; 6
Park (C7EE03587J-(cit43)/*[position()=1]) 2014; 450
Nomura (C7EE03587J-(cit70)/*[position()=1]) 2015; 5
Tian (C7EE03587J-(cit216)/*[position()=1]) 2013; 7
Milián (C7EE03587J-(cit19)/*[position()=1]) 2017; 73
Zhou (C7EE03587J-(cit156)/*[position()=1]) 2017; 129
Wang (C7EE03587J-(cit180)/*[position()=1]) 2015; 7
Semnani Rahbar (C7EE03587J-(cit79)/*[position()=1]) 2016; 11
Huang (C7EE03587J-(cit165)/*[position()=1]) 2017; 108
Qi (C7EE03587J-(cit101)/*[position()=1]) 2014; 123
Park (C7EE03587J-(cit212)/*[position()=1]) 2016; 301
Chen (C7EE03587J-(cit198)/*[position()=1]) 2014; 79
Tabassum (C7EE03587J-(cit189)/*[position()=1]) 2015; 1
Mitran (C7EE03587J-(cit128)/*[position()=1]) 2015; 119
Mallow (C7EE03587J-(cit155)/*[position()=1]) 2012; 22
Cottrill (C7EE03587J-(cit211)/*[position()=1]) 2015; 5
Zhu (C7EE03587J-(cit227)/*[position()=1]) 2017
Wang (C7EE03587J-(cit40)/*[position()=1]) 2015; 5
Zhang (C7EE03587J-(cit132)/*[position()=1]) 2016; 101
Tumirah (C7EE03587J-(cit51)/*[position()=1]) 2014; 66
Li (C7EE03587J-(cit142)/*[position()=1]) 2016; 4
Chen (C7EE03587J-(cit223)/*[position()=1]) 2017; 5
Sinha-Ray (C7EE03587J-(cit175)/*[position()=1]) 2011; 7
Wang (C7EE03587J-(cit177)/*[position()=1]) 2014; 4
Sharma (C7EE03587J-(cit13)/*[position()=1]) 2009; 13
Fang (C7EE03587J-(cit46)/*[position()=1]) 2009; 153
Li (C7EE03587J-(cit182)/*[position()=1]) 2014; 2
Park (C7EE03587J-(cit31)/*[position()=1]) 2015; 31
Zhang (C7EE03587J-(cit201)/*[position()=1]) 2013; 60
Roberts (C7EE03587J-(cit205)/*[position()=1]) 2011; 50
Zhu (C7EE03587J-(cit53)/*[position()=1]) 2015; 105
Cao (C7EE03587J-(cit100)/*[position()=1]) 2017; 149
Tang (C7EE03587J-(cit147)/*[position()=1]) 2017; 146
Ling (C7EE03587J-(cit193)/*[position()=1]) 2014; 31
Huang (C7EE03587J-(cit125)/*[position()=1]) 2015; 3
Yang (C7EE03587J-(cit118)/*[position()=1]) 2012; 48
Wu (C7EE03587J-(cit63)/*[position()=1]) 2009; 48
Wu (C7EE03587J-(cit188)/*[position()=1]) 2017; 190
Li (C7EE03587J-(cit131)/*[position()=1]) 2017; 7
Qiu (C7EE03587J-(cit197)/*[position()=1]) 2017; 77
Zhang (C7EE03587J-(cit67)/*[position()=1]) 2010; 2
Lai (C7EE03587J-(cit10)/*[position()=1]) 2014; 6
Zhu (C7EE03587J-(cit65)/*[position()=1]) 2016; 119
Ye (C7EE03587J-(cit140)/*[position()=1]) 2015; 3
Fang (C7EE03587J-(cit154)/*[position()=1]) 2017; 195
He (C7EE03587J-(cit222)/*[position()=1]) 2016; 6
Liu (C7EE03587J-(cit135)/*[position()=1]) 2017; 167
Chen (C7EE03587J-(cit181)/*[position()=1]) 2015; 152
Duan (C7EE03587J-(cit160)/*[position()=1]) 2013; 115
Lee (C7EE03587J-(cit111)/*[position()=1]) 2011; 115
Wang (C7EE03587J-(cit35)/*[position()=1]) 2015; 54
Li (C7EE03587J-(cit114)/*[position()=1]) 2009; 45
Luan (C7EE03587J-(cit168)/*[position()=1]) 2016; 4
Liu (C7EE03587J-(cit225)/*[position()=1]) 2014; 2
Nie (C7EE03587J-(cit88)/*[position()=1]) 2015; 5
Li (C7EE03587J-(cit115)/*[position()=1]) 2012; 92
Luo (C7EE03587J-(cit174)/*[position()=1]) 2013; 51
Cabeza (C7EE03587J-(cit18)/*[position()=1]) 2003; 23
Rao (C7EE03587J-(cit66)/*[position()=1]) 2012; 100
Wehmeyer (C7EE03587J-(cit206)/*[position()=1]) 2017; 4
Barzin (C7EE03587J-(cit8)/*[position()=1]) 2015; 92
Li (C7EE03587J-(cit54)/*[position()=1]) 2011; 67
Li (C7EE03587J-(cit224)/*[position()=1]) 2015; 7
Zalba (C7EE03587J-(cit14)/*[position()=1]) 2003; 23
Kitao (C7EE03587J-(cit166)/*[position()=1]) 2017; 46
Bazilevsky (C7EE03587J-(cit86)/*[position()=1]) 2007; 23
Geng (C7EE03587J-(cit55)/*[position()=1]) 2016; 30
Zhang (C7EE03587J-(cit62)/*[position()=1]) 2011; 115
Graham (C7EE03587J-(cit33)/*[position()=1]) 2016; 4
Yoo (C7EE03587J-(cit29)/*[position()=1]) 2017; 9
Xu (C7EE03587J-(cit112)/*[position()=1]) 2011; 4
Tang (C7EE03587J-(cit116)/*[position()=1]) 2013; 97
Farid (C7EE03587J-(cit7)/*[position()=1]) 2004; 45
Fares (C7EE03587J-(cit2)/*[position()=1]) 2017; 2
Yang (C7EE03587J-(cit99)/*[position()=1]) 2018; 174
Liu (C7EE03587J-(cit97)/*[position()=1]) 2016; 4
Yang (C7EE03587J-(cit186)/*[position()=1]) 2017; 315
Wang (C7EE03587J-(cit92)/*[position()=1]) 2013; 23
Yang (C7EE03587J-(cit146)/*[position()=1]) 2016; 4
Li (C7EE03587J-(cit76)/*[position()=1]) 2017; 34
Zhang (C7EE03587J-(cit89)/*[position()=1]) 2012; 22
Cheng (C7EE03587J-(cit42)/*[position()=1]) 2013; 130
Liu (C7EE03587J-(cit151)/*[position()=1]) 2013; 13
Tahan Latibari (C7EE03587J-(cit57)/*[position()=1]) 2015; 85
Chen (C7EE03587J-(cit129)/*[position()=1]) 2017; 7
Pallecchi (C7EE03587J-(cit207)/*[position()=1]) 2015; 2
De Castro (C7EE03587J-(cit30)/*[position()=1]) 2015; 21
Sirohi (C7EE03587J-(cit80)/*[position()=1]) 2015; 5
Fang (C7EE03587J-(cit120)/*[position()=1]) 2011; 95
Fuensanta (C7EE03587J-(cit32)/*[position()=1]) 2013; 565
Fang (C7EE03587J-(cit44)/*[position()=1]) 2008; 49
Sarı (C7EE03587J-(cit34)/*[position()=1]) 2014; 86
Zhang (C7EE03587J-(cit108)/*[position()=1]) 2010; 12
Graham (C7EE03587J-(cit23)/*[position()=1]) 2017; 5
Andriamitantsoa (C7EE03587J-(cit169)/*[position()=1]) 2017; 41
Wang (C7EE03587J-(cit104)/*[position()=1]) 2016; 74
Aftab (C7EE03587J-(cit6)/*[position()=1]) 2017
Xiangfa (C7EE03587J-(cit123)/*[position()=1]) 2012; 7
Xu (C7EE03587J-(cit148)/*[position()=1]) 2017; 114
Chen (C7EE03587J-(cit81)/*[position()=1]) 2013; 60
Pan (C7EE03587J-(cit61)/*[position()=1]) 2012; 98
Uemura (C7EE03587J-(cit163)/*[position()=1]) 2015; 119
Gui (C7EE03587J-(cit149)/*[position()=1]) 2010; 22
Khateeb (C7EE03587J-(cit9)/*[position()=1]) 2005; 142
Tahan Latibari (C7EE03587J-(cit60)/*[position()=1]) 2013; 61
Kim (C7EE03587J-(cit220)/*[position()=1]) 2015; 135
Wang (C7EE03587J-(cit159)/*[position()=1]) 2014; 99
Huang (C7EE03587J-(cit24)/*[position()=1]) 2014; 2
Ho (C7EE03587J-(cit200)/*[position()=1]) 2014; 69
Uemura (C7EE03587J-(cit27)/*[position()=1]) 2010; 1
Meng (C7EE03587J-(cit95)/*[position()=1]) 2017
Zdraveva (C7EE03587J-(cit78)/*[position()=1]) 2015; 54
Tong (C7EE03587J-(cit85)/*[position()=1]) 2015; 89
Hyun (C7EE03587J-(cit226)/*[position()=1]) 2013; 52
Yang (C7EE03587J-(cit161)/*[position()=1]) 2014; 99
Liu (C7EE03587J-(cit22)/*[position()=1]) 2015; 13
Furukawa (C7EE03587J-(cit167)/*[position()=1]) 2013; 341
Hyun (C7EE03587J-(cit15)/*[position()=1]) 2014; 53
Liu (C7EE03587J-(cit203)/*[position()=1]) 2017; 115
Ji (C7EE03587J-(cit105)/*[position()=1]) 2014; 7
Barroso-Bujans (C7EE03587J-(cit113)/*[position()=1]) 2016; 49
Lee (C7EE03587J-(cit219)/*[position()=1]) 2014; 2
Deng (C7EE03587J-(cit172)/*[position()=1]) 2012; 336
He (C7EE03587J-(cit117)/*[position()=1]) 2014; 103
Li (C7EE03587J-(cit52)/*[position()=1]) 2016; 99
Isaacson (C7EE03587J-(cit110)/*[position()=1]) 2016; 15
Lee (C7EE03587J-(cit221)/*[position()=1]) 2015; 11
Huang (C7EE03587J-(cit21)/*[position()=1]) 2017; 5
Cottrill (C7EE03587J-(cit208)/*[position()=1]) 2018
Cabeza (C7EE03587J-(cit12)/*[position()=1]) 2011; 15
Yang (C7EE03587J-(cit144)/*[position()=1]) 2016; 4
Zhang (C7EE03587J-(cit122)/*[position()=1]) 2013; 570
Jurkowska (C7EE03587J-(cit196)/*[position()=1]) 2016; 98
Odunsi (C7EE03587J-(cit204)/*[position()=1]) 2016; 93
Liu (C7EE03587J-(cit71)/*[position()=1]) 2017; 5
Wang (C7EE03587J-(cit178)/*[position()=1]) 2012; 2
Merlin (C7EE03587J-(cit11)/*[position()=1]) 2016; 183
Zhao (C7EE03587J-(cit20)/*[position()=1]) 2011; 15
Qi (C7EE03587J-(cit145)/*[position()=1]) 2016; 10
Guo (C7EE03587J-(cit124)/*[position()=1]) 2013; 48
Wang (C7EE03587J-(cit102)/*[position()=1]) 2013; 800
Ghasemi Bahraseman (C7EE03587J-(cit158)/*[position()=1]) 2017; 109
Kongkhlan
References_xml – issn: 2017
  end-page: p 243-265
  publication-title: Thermal Transport in Carbon-Based Nanomaterials
  doi: Aftab Huang Zou
– volume: 22
  start-page: 617
  year: 2010
  ident: C7EE03587J-(cit149)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200902986
– volume: 49
  start-page: 5704
  year: 2016
  ident: C7EE03587J-(cit113)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.6b01285
– volume: 49
  start-page: 7904
  year: 2010
  ident: C7EE03587J-(cit214)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201004057
– volume: 98
  start-page: 66
  year: 2012
  ident: C7EE03587J-(cit61)/*[position()=1]
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2011.09.020
– volume: 315
  start-page: 481
  year: 2017
  ident: C7EE03587J-(cit186)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.01.045
– volume: 5
  start-page: 5464
  year: 2017
  ident: C7EE03587J-(cit217)/*[position()=1]
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C7TB01253E
– volume: 30
  start-page: 6153
  year: 2016
  ident: C7EE03587J-(cit55)/*[position()=1]
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.6b00929
– volume: 5
  start-page: 15191
  year: 2017
  ident: C7EE03587J-(cit138)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA03432F
– volume: 25
  start-page: 218
  year: 2016
  ident: C7EE03587J-(cit68)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.02.058
– volume: 183
  start-page: 491
  year: 2016
  ident: C7EE03587J-(cit11)/*[position()=1]
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.09.007
– volume: 115
  start-page: 20061
  year: 2011
  ident: C7EE03587J-(cit173)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp202373b
– volume: 4
  start-page: 36584
  year: 2014
  ident: C7EE03587J-(cit94)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C4RA04225E
– volume: 98
  start-page: 50
  year: 2016
  ident: C7EE03587J-(cit153)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.10.082
– volume: 6
  start-page: 2868
  year: 2006
  ident: C7EE03587J-(cit25)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl0620839
– volume: 115
  start-page: 111
  year: 2013
  ident: C7EE03587J-(cit160)/*[position()=1]
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-013-3311-0
– volume: 45
  start-page: 1672
  year: 2009
  ident: C7EE03587J-(cit114)/*[position()=1]
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-009-4146-8
– volume: 99
  start-page: 283
  year: 2014
  ident: C7EE03587J-(cit159)/*[position()=1]
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2013.11.018
– volume: 4
  start-page: 16906
  year: 2016
  ident: C7EE03587J-(cit33)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA06189C
– volume: 119
  start-page: 15177
  year: 2015
  ident: C7EE03587J-(cit128)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b02608
– volume: 52
  start-page: 10468
  year: 2013
  ident: C7EE03587J-(cit226)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201305006
– volume: 149
  start-page: 262
  year: 2017
  ident: C7EE03587J-(cit100)/*[position()=1]
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2017.06.019
– volume: 4
  start-page: 18134
  year: 2016
  ident: C7EE03587J-(cit97)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA08850C
– volume: 6
  start-page: 53400
  year: 2016
  ident: C7EE03587J-(cit75)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA09558E
– volume: 58
  start-page: 348
  year: 2013
  ident: C7EE03587J-(cit69)/*[position()=1]
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2012.11.032
– volume: 63
  start-page: 240
  year: 2013
  ident: C7EE03587J-(cit87)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.06.077
– volume: 336
  start-page: 1018
  year: 2012
  ident: C7EE03587J-(cit172)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1220131
– volume: 34
  start-page: 541
  year: 2017
  ident: C7EE03587J-(cit76)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.03.010
– volume: 3
  start-page: 1908
  year: 2013
  ident: C7EE03587J-(cit107)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep01908
– volume: 12
  start-page: 3571
  year: 2010
  ident: C7EE03587J-(cit108)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/b925283e
– volume: 182
  start-page: 409
  year: 2016
  ident: C7EE03587J-(cit77)/*[position()=1]
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.08.136
– volume: 7
  start-page: 9004
  year: 2015
  ident: C7EE03587J-(cit224)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR01744K
– volume: 450
  start-page: 46
  year: 2014
  ident: C7EE03587J-(cit43)/*[position()=1]
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2014.03.005
– volume: 2
  start-page: 2790
  year: 2010
  ident: C7EE03587J-(cit67)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c0nr00585a
– volume: 130
  start-page: 15460
  year: 2008
  ident: C7EE03587J-(cit74)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja804185s
– volume: 7
  start-page: 30142
  year: 2017
  ident: C7EE03587J-(cit131)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C7RA05204A
– volume: 9
  start-page: 41323
  year: 2017
  ident: C7EE03587J-(cit195)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b13969
– volume: 129
  start-page: 1639
  year: 2017
  ident: C7EE03587J-(cit156)/*[position()=1]
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-017-6385-2
– volume: 5
  start-page: 7051
  year: 2017
  ident: C7EE03587J-(cit223)/*[position()=1]
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C7TB01712J
– volume: 15
  start-page: 1929
  year: 2003
  ident: C7EE03587J-(cit73)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200305136
– volume: 69
  start-page: 276
  year: 2014
  ident: C7EE03587J-(cit200)/*[position()=1]
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2013.10.034
– volume: 341
  start-page: 1230444
  year: 2013
  ident: C7EE03587J-(cit167)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1230444
– volume: 112
  start-page: 113
  year: 2017
  ident: C7EE03587J-(cit106)/*[position()=1]
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2017.05.026
– volume: 128
  start-page: 1313
  year: 2017
  ident: C7EE03587J-(cit157)/*[position()=1]
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-016-6068-4
– volume: 9
  start-page: 26476
  year: 2017
  ident: C7EE03587J-(cit187)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b08728
– volume: 565
  start-page: 95
  year: 2013
  ident: C7EE03587J-(cit32)/*[position()=1]
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2013.04.028
– volume: 14
  start-page: 494
  year: 2014
  ident: C7EE03587J-(cit84)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/C3LC50949D
– volume: 114
  start-page: 334
  year: 2017
  ident: C7EE03587J-(cit148)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.11.069
– volume: 13
  start-page: 4028
  year: 2013
  ident: C7EE03587J-(cit151)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl401097d
– volume: 2
  start-page: 19963
  year: 2014
  ident: C7EE03587J-(cit24)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA04605F
– volume: 570
  start-page: 1
  year: 2013
  ident: C7EE03587J-(cit122)/*[position()=1]
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2013.07.027
– volume: 2
  start-page: 7759
  year: 2014
  ident: C7EE03587J-(cit182)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA00839A
– volume: 98
  start-page: 365
  year: 2016
  ident: C7EE03587J-(cit196)/*[position()=1]
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.12.051
– volume: 2
  start-page: 125
  year: 2015
  ident: C7EE03587J-(cit207)/*[position()=1]
  publication-title: Mater. Horiz.
  doi: 10.1039/C4MH00193A
– volume: 22
  start-page: 24469
  year: 2012
  ident: C7EE03587J-(cit155)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm35112a
– volume: 74
  start-page: 43
  year: 2016
  ident: C7EE03587J-(cit104)/*[position()=1]
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2015.10.027
– start-page: 1701136
  year: 2017
  ident: C7EE03587J-(cit95)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201701136
– volume: 54
  start-page: 8706
  year: 2015
  ident: C7EE03587J-(cit78)/*[position()=1]
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.5b01822
– volume: 51
  start-page: 376
  year: 2013
  ident: C7EE03587J-(cit174)/*[position()=1]
  publication-title: Polym. Sci., Ser. B
  doi: 10.1002/polb.23223
– volume: 48
  start-page: 3716
  year: 2013
  ident: C7EE03587J-(cit124)/*[position()=1]
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-013-7169-0
– volume: 800
  start-page: 459
  year: 2013
  ident: C7EE03587J-(cit102)/*[position()=1]
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.800.459
– volume: 46
  start-page: 3108
  year: 2017
  ident: C7EE03587J-(cit166)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00041C
– volume: 103
  start-page: 448
  year: 2014
  ident: C7EE03587J-(cit117)/*[position()=1]
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2014.02.042
– volume: 3
  start-page: 4018
  year: 2015
  ident: C7EE03587J-(cit140)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA05448B
– volume: 4
  start-page: 6246
  year: 2014
  ident: C7EE03587J-(cit177)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep06246
– start-page: 1702692
  year: 2018
  ident: C7EE03587J-(cit208)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702692
– volume: 80
  start-page: 382
  year: 2014
  ident: C7EE03587J-(cit56)/*[position()=1]
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2014.01.042
– volume: 93
  start-page: 1817
  year: 2009
  ident: C7EE03587J-(cit64)/*[position()=1]
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2009.06.019
– volume: 119
  start-page: 22787
  year: 2015
  ident: C7EE03587J-(cit96)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b06089
– volume: 10
  start-page: 424
  year: 2011
  ident: C7EE03587J-(cit137)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3001
– volume: 120
  start-page: 536
  year: 2014
  ident: C7EE03587J-(cit47)/*[position()=1]
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2013.09.035
– volume: 130
  start-page: 1879
  year: 2013
  ident: C7EE03587J-(cit42)/*[position()=1]
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.39302
– volume: 35
  start-page: 2154
  year: 2014
  ident: C7EE03587J-(cit41)/*[position()=1]
  publication-title: Polym. Compos.
  doi: 10.1002/pc.22879
– volume: 127
  start-page: 5059
  year: 2013
  ident: C7EE03587J-(cit37)/*[position()=1]
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.38124
– volume: 7
  start-page: 21602
  year: 2015
  ident: C7EE03587J-(cit180)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b07064
– volume: 5
  start-page: 1500921
  year: 2015
  ident: C7EE03587J-(cit211)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500921
– volume-title: Thermal Transport in Carbon-Based Nanomaterials
  year: 2017
  ident: C7EE03587J-(cit6)/*[position()=1]
– volume: 14
  start-page: 13233
  year: 2012
  ident: C7EE03587J-(cit103)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp41988b
– volume: 61
  start-page: 664
  year: 2013
  ident: C7EE03587J-(cit60)/*[position()=1]
  publication-title: Energy
  doi: 10.1016/j.energy.2013.09.012
– volume: 5
  start-page: 9117
  year: 2015
  ident: C7EE03587J-(cit70)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep09117
– volume: 4
  start-page: 17042
  year: 2016
  ident: C7EE03587J-(cit142)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA07587H
– volume: 60
  start-page: 222
  year: 2013
  ident: C7EE03587J-(cit81)/*[position()=1]
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2013.05.020
– volume: 10
  start-page: 4695
  year: 2016
  ident: C7EE03587J-(cit190)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b01104
– volume: 111
  start-page: 353
  year: 2017
  ident: C7EE03587J-(cit141)/*[position()=1]
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.09.129
– volume: 6
  start-page: 40106
  year: 2016
  ident: C7EE03587J-(cit170)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA04059D
– volume: 86
  start-page: 1149
  year: 2012
  ident: C7EE03587J-(cit39)/*[position()=1]
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2012.01.003
– volume: 15
  start-page: 14390
  year: 2013
  ident: C7EE03587J-(cit176)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp51875b
– volume: 95
  start-page: 1875
  year: 2011
  ident: C7EE03587J-(cit120)/*[position()=1]
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2011.02.010
– volume: 5
  start-page: 13683
  year: 2017
  ident: C7EE03587J-(cit23)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA02494K
– volume: 119
  start-page: 18697
  year: 2015
  ident: C7EE03587J-(cit127)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b03728
– volume: 1
  start-page: 229
  year: 2015
  ident: C7EE03587J-(cit189)/*[position()=1]
  publication-title: J. Materiomics
  doi: 10.1016/j.jmat.2015.07.002
– volume: 5
  start-page: 958
  year: 2017
  ident: C7EE03587J-(cit192)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA07144A
– volume: 2
  start-page: 8338
  year: 2014
  ident: C7EE03587J-(cit219)/*[position()=1]
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C4TB01631A
– volume: 4
  start-page: 3632
  year: 2011
  ident: C7EE03587J-(cit112)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee01405f
– volume: 115
  start-page: 8369
  year: 2011
  ident: C7EE03587J-(cit213)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp109518k
– volume: 3
  start-page: 22326
  year: 2013
  ident: C7EE03587J-(cit58)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/c3ra43936d
– volume: 123
  start-page: 171
  year: 2014
  ident: C7EE03587J-(cit101)/*[position()=1]
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2014.01.024
– volume: 5
  start-page: 12964
  year: 2015
  ident: C7EE03587J-(cit133)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep12964
– volume: 18
  start-page: 1171
  year: 2017
  ident: C7EE03587J-(cit91)/*[position()=1]
  publication-title: Fibers Polym.
  doi: 10.1007/s12221-017-7093-z
– volume: 23
  start-page: 1697
  year: 2003
  ident: C7EE03587J-(cit18)/*[position()=1]
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/S1359-4311(03)00107-8
– volume: 92
  start-page: 505
  year: 2015
  ident: C7EE03587J-(cit8)/*[position()=1]
  publication-title: Energy
  doi: 10.1016/j.energy.2015.05.144
– volume: 92
  start-page: 456
  year: 2012
  ident: C7EE03587J-(cit115)/*[position()=1]
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2011.11.018
– volume: 5
  start-page: 4906
  year: 2017
  ident: C7EE03587J-(cit71)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.7b00321
– volume: 98
  start-page: 314
  year: 2015
  ident: C7EE03587J-(cit93)/*[position()=1]
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2015.04.002
– volume: 202
  start-page: 323
  year: 2017
  ident: C7EE03587J-(cit194)/*[position()=1]
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.05.175
– volume: 41
  start-page: 1790
  year: 2017
  ident: C7EE03587J-(cit169)/*[position()=1]
  publication-title: New J. Chem.
  doi: 10.1039/C6NJ03034C
– volume: 23
  start-page: 4354
  year: 2013
  ident: C7EE03587J-(cit92)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201203728
– volume: 117
  start-page: 8909
  year: 2013
  ident: C7EE03587J-(cit183)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp400770x
– volume: 9
  start-page: 11699
  year: 2015
  ident: C7EE03587J-(cit136)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b02917
– volume: 66
  start-page: 881
  year: 2014
  ident: C7EE03587J-(cit51)/*[position()=1]
  publication-title: Energy
  doi: 10.1016/j.energy.2014.01.033
– volume: 7
  start-page: 4252
  year: 2013
  ident: C7EE03587J-(cit216)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn400728t
– volume: 107
  start-page: 13
  year: 2012
  ident: C7EE03587J-(cit121)/*[position()=1]
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2012.07.024
– volume: 2
  start-page: 59
  year: 2014
  ident: C7EE03587J-(cit225)/*[position()=1]
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C3TB21229G
– volume: 79
  start-page: 317
  year: 2014
  ident: C7EE03587J-(cit198)/*[position()=1]
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2013.12.026
– start-page: 1703702
  year: 2017
  ident: C7EE03587J-(cit227)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703702
– volume: 152
  start-page: 183
  year: 2015
  ident: C7EE03587J-(cit181)/*[position()=1]
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.01.022
– volume: 8
  start-page: 389
  year: 2015
  ident: C7EE03587J-(cit1)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE03051F
– volume: 4
  start-page: 041304
  year: 2017
  ident: C7EE03587J-(cit206)/*[position()=1]
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.5001072
– volume: 167
  start-page: 140
  year: 2017
  ident: C7EE03587J-(cit135)/*[position()=1]
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2017.04.009
– volume: 195
  start-page: 79
  year: 2017
  ident: C7EE03587J-(cit154)/*[position()=1]
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2017.02.075
– volume: 48
  start-page: 6044
  year: 2009
  ident: C7EE03587J-(cit63)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic900416v
– volume: 97
  start-page: 484
  year: 2013
  ident: C7EE03587J-(cit116)/*[position()=1]
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2013.08.021
– volume: 23
  start-page: 7451
  year: 2007
  ident: C7EE03587J-(cit86)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la070140n
– volume: 50
  start-page: 648
  year: 2011
  ident: C7EE03587J-(cit205)/*[position()=1]
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2010.12.004
– volume: 6
  start-page: 10884
  year: 2012
  ident: C7EE03587J-(cit150)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn304310n
– volume: 617
  start-page: 90
  year: 2015
  ident: C7EE03587J-(cit50)/*[position()=1]
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2015.08.022
– volume: 2
  start-page: 1685
  year: 2010
  ident: C7EE03587J-(cit49)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am100204b
– volume: 85
  start-page: 635
  year: 2015
  ident: C7EE03587J-(cit57)/*[position()=1]
  publication-title: Energy
  doi: 10.1016/j.energy.2015.04.008
– volume: 7
  start-page: 17
  year: 2012
  ident: C7EE03587J-(cit123)/*[position()=1]
  publication-title: J. Exp. Nanosci.
  doi: 10.1080/17458080.2010.497950
– volume: 119
  start-page: 151
  year: 2016
  ident: C7EE03587J-(cit65)/*[position()=1]
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2016.04.049
– volume: 31
  start-page: 1622
  year: 2010
  ident: C7EE03587J-(cit82)/*[position()=1]
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201000185
– volume: 7
  start-page: 15625
  year: 2017
  ident: C7EE03587J-(cit129)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C7RA00964J
– volume: 114
  start-page: 1256
  year: 2017
  ident: C7EE03587J-(cit199)/*[position()=1]
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.11.111
– volume: 76
  start-page: 430
  year: 2013
  ident: C7EE03587J-(cit45)/*[position()=1]
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2013.07.060
– volume: 86
  start-page: 614
  year: 2014
  ident: C7EE03587J-(cit34)/*[position()=1]
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2014.05.092
– volume: 6
  start-page: 4555
  year: 2014
  ident: C7EE03587J-(cit10)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c3nr06810b
– volume: 115
  start-page: 20061
  year: 2011
  ident: C7EE03587J-(cit62)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp202373b
– volume: 2
  start-page: 11372
  year: 2012
  ident: C7EE03587J-(cit178)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/c2ra21832a
– volume: 9
  start-page: 31763
  year: 2017
  ident: C7EE03587J-(cit29)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b06970
– volume: 99
  start-page: 225
  year: 2016
  ident: C7EE03587J-(cit52)/*[position()=1]
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.03.084
– volume: 6
  start-page: 65600
  year: 2016
  ident: C7EE03587J-(cit222)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA10736B
– volume: 4
  start-page: 18067
  year: 2016
  ident: C7EE03587J-(cit144)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA07869A
– volume: 63
  start-page: 494
  year: 2017
  ident: C7EE03587J-(cit90)/*[position()=1]
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2017.09.005
– volume: 68
  start-page: 67
  year: 2014
  ident: C7EE03587J-(cit162)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.09.053
– volume: 105
  start-page: 908
  year: 2015
  ident: C7EE03587J-(cit53)/*[position()=1]
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2015.08.048
– volume: 109
  start-page: 1052
  year: 2017
  ident: C7EE03587J-(cit158)/*[position()=1]
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2017.02.078
– volume: 77
  start-page: 140
  year: 2016
  ident: C7EE03587J-(cit202)/*[position()=1]
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2016.08.013
– volume: 67
  start-page: 541
  year: 2011
  ident: C7EE03587J-(cit54)/*[position()=1]
  publication-title: Polym. Bull.
  doi: 10.1007/s00289-011-0492-1
– volume: 11
  start-page: 721
  year: 2017
  ident: C7EE03587J-(cit179)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b07126
– volume: 142
  start-page: 345
  year: 2005
  ident: C7EE03587J-(cit9)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2004.09.033
– volume: 73
  start-page: 983
  year: 2017
  ident: C7EE03587J-(cit19)/*[position()=1]
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2017.01.159
– volume: 1
  start-page: 1
  year: 2010
  ident: C7EE03587J-(cit27)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1091
– volume: 5
  start-page: 34377
  year: 2015
  ident: C7EE03587J-(cit80)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C4RA16988C
– volume: 9
  start-page: 664
  year: 2018
  ident: C7EE03587J-(cit191)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03029-x
– volume: 3
  start-page: 1935
  year: 2015
  ident: C7EE03587J-(cit125)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA06735E
– volume: 31
  start-page: 427
  year: 2014
  ident: C7EE03587J-(cit193)/*[position()=1]
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2013.12.017
– volume: 115
  start-page: 737
  year: 2017
  ident: C7EE03587J-(cit203)/*[position()=1]
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2017.07.107
– volume: 93
  start-page: 1377
  year: 2016
  ident: C7EE03587J-(cit204)/*[position()=1]
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.08.084
– volume: 9
  start-page: 2720
  year: 2016
  ident: C7EE03587J-(cit4)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE01043A
– volume: 100
  start-page: 303
  year: 2012
  ident: C7EE03587J-(cit66)/*[position()=1]
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.05.022
– volume: 190
  start-page: 474
  year: 2017
  ident: C7EE03587J-(cit188)/*[position()=1]
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.12.159
– volume: 60
  start-page: 433
  year: 2013
  ident: C7EE03587J-(cit201)/*[position()=1]
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2013.05.041
– volume: 6
  start-page: 964
  year: 2016
  ident: C7EE03587J-(cit3)/*[position()=1]
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate3045
– volume: 65
  start-page: 67
  year: 2014
  ident: C7EE03587J-(cit16)/*[position()=1]
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2014.03.005
– volume: 2
  start-page: 17001
  year: 2017
  ident: C7EE03587J-(cit2)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.1
– volume: 5
  start-page: 13357
  year: 2015
  ident: C7EE03587J-(cit40)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep13357
– volume: 13
  start-page: 318
  year: 2009
  ident: C7EE03587J-(cit13)/*[position()=1]
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2007.10.005
– volume: 10
  start-page: 802
  year: 2016
  ident: C7EE03587J-(cit145)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-016-1333-1
– volume: 89
  start-page: 598
  year: 2015
  ident: C7EE03587J-(cit85)/*[position()=1]
  publication-title: Phase Transitions
  doi: 10.1080/01411594.2015.1091937
– volume: 101
  start-page: 217
  year: 2016
  ident: C7EE03587J-(cit132)/*[position()=1]
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.02.120
– volume: 131
  start-page: 904
  year: 2009
  ident: C7EE03587J-(cit152)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja808132u
– volume: 13
  start-page: 814
  year: 2015
  ident: C7EE03587J-(cit22)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.02.016
– volume: 23
  start-page: 251
  year: 2003
  ident: C7EE03587J-(cit14)/*[position()=1]
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/S1359-4311(02)00192-8
– volume: 54
  start-page: 9307
  year: 2015
  ident: C7EE03587J-(cit35)/*[position()=1]
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.5b01026
– volume: 5
  start-page: 8884
  year: 2015
  ident: C7EE03587J-(cit209)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep08884
– volume: 6
  start-page: 44807
  year: 2016
  ident: C7EE03587J-(cit164)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA05283E
– volume: 22
  start-page: 18145
  year: 2012
  ident: C7EE03587J-(cit184)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm33289b
– volume: 174
  start-page: 56
  year: 2018
  ident: C7EE03587J-(cit99)/*[position()=1]
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2017.08.025
– volume: 15
  start-page: 3813
  year: 2011
  ident: C7EE03587J-(cit20)/*[position()=1]
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2011.07.019
– start-page: 2138
  year: 2017
  ident: C7EE03587J-(cit130)/*[position()=1]
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201601380
– volume: 31
  start-page: 531
  year: 2014
  ident: C7EE03587J-(cit26)/*[position()=1]
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2013.12.033
– volume: 22
  start-page: 20166
  year: 2012
  ident: C7EE03587J-(cit89)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm33316c
– volume: 31
  start-page: 2649
  year: 2015
  ident: C7EE03587J-(cit31)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la504424u
– volume: 119
  start-page: 21504
  year: 2015
  ident: C7EE03587J-(cit163)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b06083
– volume: 11
  start-page: 2323
  year: 2015
  ident: C7EE03587J-(cit218)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201402145
– volume: 115
  start-page: 4738
  year: 2011
  ident: C7EE03587J-(cit111)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp111432j
– volume: 7
  start-page: 1185
  year: 2014
  ident: C7EE03587J-(cit105)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE42573H
– volume: 2
  start-page: 5964
  year: 2012
  ident: C7EE03587J-(cit185)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/c2ra20904g
– volume: 8
  start-page: 14600
  year: 2016
  ident: C7EE03587J-(cit143)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C6NR03921A
– volume: 118
  start-page: 48
  year: 2013
  ident: C7EE03587J-(cit109)/*[position()=1]
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2013.07.017
– volume: 14
  start-page: 615
  year: 2010
  ident: C7EE03587J-(cit17)/*[position()=1]
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2009.10.015
– volume: 15
  start-page: 1675
  year: 2011
  ident: C7EE03587J-(cit12)/*[position()=1]
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2010.11.018
– volume: 4
  start-page: 7641
  year: 2016
  ident: C7EE03587J-(cit168)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA01676F
– volume: 15
  start-page: 14390
  year: 2013
  ident: C7EE03587J-(cit134)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp51875b
– volume: 146
  start-page: 253
  year: 2017
  ident: C7EE03587J-(cit147)/*[position()=1]
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2017.05.037
– volume: 15
  start-page: 294
  year: 2016
  ident: C7EE03587J-(cit110)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4475
– volume: 108
  start-page: 244
  year: 2017
  ident: C7EE03587J-(cit165)/*[position()=1]
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2017.02.083
– volume: 113
  start-page: 195
  year: 2013
  ident: C7EE03587J-(cit139)/*[position()=1]
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2013.01.046
– volume: 22
  start-page: 4389
  year: 2016
  ident: C7EE03587J-(cit28)/*[position()=1]
  publication-title: Chemistry
  doi: 10.1002/chem.201505035
– volume: 4
  start-page: 18841
  year: 2016
  ident: C7EE03587J-(cit146)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA08454K
– volume: 7
  start-page: 8823
  year: 2011
  ident: C7EE03587J-(cit175)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/c1sm05973d
– volume: 11
  start-page: 1402
  year: 2016
  ident: C7EE03587J-(cit79)/*[position()=1]
  publication-title: J. Exp. Nanosci.
  doi: 10.1080/17458080.2016.1233582
– volume: 45
  start-page: 1597
  year: 2004
  ident: C7EE03587J-(cit7)/*[position()=1]
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2003.09.015
– volume: 139
  start-page: 10601
  year: 2017
  ident: C7EE03587J-(cit171)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b04872
– volume: 488
  start-page: 294
  year: 2012
  ident: C7EE03587J-(cit5)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature11475
– volume: 54
  start-page: 2715
  year: 2011
  ident: C7EE03587J-(cit48)/*[position()=1]
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2011.03.022
– volume: 153
  start-page: 217
  year: 2009
  ident: C7EE03587J-(cit46)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2009.06.019
– volume: 138
  start-page: 157
  year: 2017
  ident: C7EE03587J-(cit98)/*[position()=1]
  publication-title: Energy
  doi: 10.1016/j.energy.2017.07.049
– volume: 21
  start-page: 11174
  year: 2015
  ident: C7EE03587J-(cit30)/*[position()=1]
  publication-title: Chemistry
  doi: 10.1002/chem.201500666
– volume: 133
  start-page: 4762
  year: 2011
  ident: C7EE03587J-(cit215)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja200894u
– volume: 117
  start-page: 23412
  year: 2013
  ident: C7EE03587J-(cit59)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp408478h
– volume: 301
  start-page: 887
  year: 2016
  ident: C7EE03587J-(cit212)/*[position()=1]
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.201600081
– volume: 49
  start-page: 3704
  year: 2008
  ident: C7EE03587J-(cit44)/*[position()=1]
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2008.06.027
– volume: 48
  start-page: 803
  year: 2012
  ident: C7EE03587J-(cit118)/*[position()=1]
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2012.01.016
– volume: 91
  start-page: 7
  year: 2012
  ident: C7EE03587J-(cit38)/*[position()=1]
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2011.08.041
– volume: 19
  start-page: 78
  year: 2016
  ident: C7EE03587J-(cit126)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.11.001
– volume: 19
  start-page: 13172
  year: 2017
  ident: C7EE03587J-(cit210)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP02445B
– volume: 11
  start-page: 5315
  year: 2015
  ident: C7EE03587J-(cit221)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201403228
– volume: 5
  start-page: 7482
  year: 2017
  ident: C7EE03587J-(cit21)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA09712J
– volume: 51
  start-page: 376
  year: 2013
  ident: C7EE03587J-(cit83)/*[position()=1]
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
  doi: 10.1002/polb.23223
– volume: 5
  start-page: 92812
  year: 2015
  ident: C7EE03587J-(cit88)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C5RA17152K
– volume: 53
  start-page: 3780
  year: 2014
  ident: C7EE03587J-(cit15)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201305201
– volume: 99
  start-page: 259
  year: 2014
  ident: C7EE03587J-(cit161)/*[position()=1]
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2013.11.021
– volume: 135
  start-page: 324
  year: 2015
  ident: C7EE03587J-(cit220)/*[position()=1]
  publication-title: Colloids Surf., B
  doi: 10.1016/j.colsurfb.2015.07.061
– volume: 114
  start-page: 632
  year: 2014
  ident: C7EE03587J-(cit72)/*[position()=1]
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.10.029
– volume: 77
  start-page: 246
  year: 2017
  ident: C7EE03587J-(cit197)/*[position()=1]
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2017.04.001
– volume: 6
  start-page: 58740
  year: 2016
  ident: C7EE03587J-(cit119)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA12890D
– volume: 44
  start-page: 7405
  year: 2011
  ident: C7EE03587J-(cit36)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma201509d
SSID ssj0062079
Score 2.6786041
SecondaryResourceType review_article
Snippet Phase change materials (PCMs) have been extensively characterized as constant temperature latent heat thermal energy storage (TES) materials. Nevertheless, the...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1392
SubjectTerms Confinement
Containers
Drug delivery
Drug delivery systems
Encapsulation
Energy conversion
Energy storage
Heat transfer
Latent heat
Phase change materials
Phase separation
Physical properties
Supercooling
Temperature control
Thermal energy
Title Nanoconfined phase change materials for thermal energy applications
URI https://www.proquest.com/docview/2054724469
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbKcmkPFX2gUmhlqb1Uq9CNn8mRrhYQfZxArHqJ4sQRi1AW0eyh_HrGr8Tb7oH2YkVeO8l6voy_8XjGCH2UrEl1qUWiBNA3ltMyKQUUtfGZ8TyrS2aikb__EKcX7GzO54NH10aXdOqwut8YV_I_UoU6kKuJkv0HyfY3hQq4BvlCCRKG8lEyBtW4BHu2AaZYj2-vSrP13EYLjIGHuhcI2whB_96MtQv0i53Wayvz7mcDhij-LURNRuBoutK6cS7hiX7p1yLDrz3PF-3vVa_tV7albq_KZaj7tvAtfy6Uz_ztFx7SLFp4cLpScpZw4Y6yO9RRnZyINQWbRkCKtSWwTxLNvCbobqNWn1CTFHUqZzPATybPhrkr-Ov_mNL6jYbWxU7zYui7hbYJWBRkhLaPvn45uQzTtiATm5ix_1chly3NPw-919nLYJJs3YXzYiwvOd9Bz71BgY8cOl6gJ7p9iZ5FaSZfoWmME2xxgh1OcI8TDDjBHifY4QTHOHmNLo5n59PTxB-ekVQ0Y12S5cykl2yAnsuGCk4U55QobU4aohJYvaQ6V6QxXgGtWVpJxmSuKyZqkiue0V00apetfoOwNlF13Ph_VcUqASY1l1SWQARlpdI630OfwqAUlc8sbw44uSn-Hv499KFve-vyqWxsdRDGtvDf26-CgHUhgY0KeOAujHffv5Ja237Xbx919330dMDzARp1dyv9Dqhlp957UDwAMBB1cQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoconfined+phase+change+materials+for+thermal+energy+applications&rft.jtitle=Energy+%26+environmental+science&rft.au=Aftab%2C+Waseem&rft.au=Huang%2C+Xinyu&rft.au=Wu%2C+Wenhao&rft.au=Liang%2C+Zibin&rft.date=2018-01-01&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=11&rft.issue=6&rft.spage=1392&rft.epage=1424&rft_id=info:doi/10.1039%2FC7EE03587J&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C7EE03587J
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon