Nanoconfined phase change materials for thermal energy applications
Phase change materials (PCMs) have been extensively characterized as constant temperature latent heat thermal energy storage (TES) materials. Nevertheless, the widespread utilization of PCMs is limited due to the flow of liquid PCMs during melting, phase separation, supercooling and low heat transfe...
Saved in:
Published in | Energy & environmental science Vol. 11; no. 6; pp. 1392 - 1424 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
01.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Phase change materials (PCMs) have been extensively characterized as constant temperature latent heat thermal energy storage (TES) materials. Nevertheless, the widespread utilization of PCMs is limited due to the flow of liquid PCMs during melting, phase separation, supercooling and low heat transfer rate. In order to overcome these inherent problems and to improve thermo-physical properties, the confinement of PCMs at the nanoscale has been identified as a versatile strategy, which ensures the encapsulation of PCMs in much smaller nano-containers. Such strategies including core-shell, longitudinal, interfacial and porous confinement have been widely presented in recent years to efficiently encapsulate PCMs in nanospaces and are presenting attractive ways to enhance thermal performance. This review summarizes the recent advancement and critical issues of nanoconfinement technologies of PCMs from the point of view of material design. In addition, the potential applications of nanoconfined PCMs in diverse fields, including energy conversion and storage, thermal rectification and temperature controlled drug delivery systems, are presented in detail. Finally, the major drawbacks associated with nanoconfined PCMs and their prospective solutions are also provided.
This review presents a summary of recent progress and strategies in fabricating nanoencapsulated PCMs for thermal energy applications. |
---|---|
AbstractList | Phase change materials (PCMs) have been extensively characterized as constant temperature latent heat thermal energy storage (TES) materials. Nevertheless, the widespread utilization of PCMs is limited due to the flow of liquid PCMs during melting, phase separation, supercooling and low heat transfer rate. In order to overcome these inherent problems and to improve thermo-physical properties, the confinement of PCMs at the nanoscale has been identified as a versatile strategy, which ensures the encapsulation of PCMs in much smaller nano-containers. Such strategies including core–shell, longitudinal, interfacial and porous confinement have been widely presented in recent years to efficiently encapsulate PCMs in nanospaces and are presenting attractive ways to enhance thermal performance. This review summarizes the recent advancement and critical issues of nanoconfinement technologies of PCMs from the point of view of material design. In addition, the potential applications of nanoconfined PCMs in diverse fields, including energy conversion and storage, thermal rectification and temperature controlled drug delivery systems, are presented in detail. Finally, the major drawbacks associated with nanoconfined PCMs and their prospective solutions are also provided. Phase change materials (PCMs) have been extensively characterized as constant temperature latent heat thermal energy storage (TES) materials. Nevertheless, the widespread utilization of PCMs is limited due to the flow of liquid PCMs during melting, phase separation, supercooling and low heat transfer rate. In order to overcome these inherent problems and to improve thermo-physical properties, the confinement of PCMs at the nanoscale has been identified as a versatile strategy, which ensures the encapsulation of PCMs in much smaller nano-containers. Such strategies including core-shell, longitudinal, interfacial and porous confinement have been widely presented in recent years to efficiently encapsulate PCMs in nanospaces and are presenting attractive ways to enhance thermal performance. This review summarizes the recent advancement and critical issues of nanoconfinement technologies of PCMs from the point of view of material design. In addition, the potential applications of nanoconfined PCMs in diverse fields, including energy conversion and storage, thermal rectification and temperature controlled drug delivery systems, are presented in detail. Finally, the major drawbacks associated with nanoconfined PCMs and their prospective solutions are also provided. This review presents a summary of recent progress and strategies in fabricating nanoencapsulated PCMs for thermal energy applications. |
Author | Aftab, Waseem Mahmood, Asif Zou, Ruqiang Liang, Zibin Wu, Wenhao Huang, Xinyu |
AuthorAffiliation | Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials College of Engineering Peking University Department of Materials Science and Engineering |
AuthorAffiliation_xml | – sequence: 0 name: Department of Materials Science and Engineering – sequence: 0 name: Peking University – sequence: 0 name: Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials – sequence: 0 name: College of Engineering |
Author_xml | – sequence: 1 givenname: Waseem surname: Aftab fullname: Aftab, Waseem – sequence: 2 givenname: Xinyu surname: Huang fullname: Huang, Xinyu – sequence: 3 givenname: Wenhao surname: Wu fullname: Wu, Wenhao – sequence: 4 givenname: Zibin surname: Liang fullname: Liang, Zibin – sequence: 5 givenname: Asif surname: Mahmood fullname: Mahmood, Asif – sequence: 6 givenname: Ruqiang surname: Zou fullname: Zou, Ruqiang |
BookMark | eNptkDtPwzAURi1UJNrCwo4UiQ0p4LfjEUXlpQoWmCPHvWlTpXaw3aH_ntDykBDTvcP5vnt1JmjkvAOEzgm-JpjpG6sAMBOFWh-hMVGC50JhOfrepaYnaBLjGmNJsdJjVD4b5613TetgkfUrEyGzK-OWkG1MgtCaLmaND1laQdiYLgMHYbnLTN93rTWp9S6eouNmwODsa07R293stXzI5y_3j-XtPLes4CkvNCesoA2jUjVMCloLwWgNhCjMFGVEMdA1bQRlGIATqzhXGiyXC6prUbApujz09sG_byGmau23wQ0nK4oFV5RzqQcKHygbfIwBmsq2af9oCqbtKoKrT1VVqWazvaqnIXL1J9KHdmPC7n_44gCHaH-4X-_sA05Nc44 |
CitedBy_id | crossref_primary_10_1021_acs_chemrev_2c00572 crossref_primary_10_1039_D0SE00753F crossref_primary_10_1016_j_solmat_2022_111718 crossref_primary_10_1002_smtd_202300139 crossref_primary_10_1007_s10570_022_04782_5 crossref_primary_10_1002_solr_202300447 crossref_primary_10_1016_j_carbpol_2021_118460 crossref_primary_10_1021_acsaem_4c00514 crossref_primary_10_1039_D1TB02503A crossref_primary_10_1016_j_jcis_2020_08_014 crossref_primary_10_1016_j_pmatsci_2024_101380 crossref_primary_10_1021_acsami_2c00117 crossref_primary_10_1016_j_jobe_2025_111865 crossref_primary_10_1007_s10853_021_06239_9 crossref_primary_10_1016_j_mtcomm_2022_104011 crossref_primary_10_1039_D0TA05019A crossref_primary_10_3390_pr10020239 crossref_primary_10_1021_acs_jpcc_1c00514 crossref_primary_10_1016_j_matt_2022_07_013 crossref_primary_10_1016_j_renene_2021_06_068 crossref_primary_10_1016_j_tca_2018_12_021 crossref_primary_10_1002_slct_201903969 crossref_primary_10_1016_j_est_2023_106824 crossref_primary_10_1016_j_cej_2020_126695 crossref_primary_10_1016_j_coco_2021_101048 crossref_primary_10_1021_acs_energyfuels_3c03973 crossref_primary_10_1021_acsami_0c15531 crossref_primary_10_1016_j_cej_2023_144720 crossref_primary_10_1016_j_electacta_2019_135551 crossref_primary_10_1016_j_smmf_2024_100044 crossref_primary_10_1016_j_compositesb_2020_108094 crossref_primary_10_1016_j_est_2024_114747 crossref_primary_10_1016_j_apenergy_2023_121462 crossref_primary_10_1039_C9RA10631F crossref_primary_10_1002_ece2_70002 crossref_primary_10_1007_s12274_020_2921_7 crossref_primary_10_1016_j_mtnano_2022_100277 crossref_primary_10_1002_pen_26220 crossref_primary_10_1016_j_flatc_2021_100249 crossref_primary_10_1016_j_cej_2023_142650 crossref_primary_10_1016_j_est_2022_105685 crossref_primary_10_1016_j_est_2022_104594 crossref_primary_10_12677_MS_2022_127083 crossref_primary_10_1016_j_enbuild_2022_111993 crossref_primary_10_1016_j_icheatmasstransfer_2019_104284 crossref_primary_10_1021_acs_iecr_8b03093 crossref_primary_10_1039_D0EE01355B crossref_primary_10_1016_j_apenergy_2019_05_021 crossref_primary_10_1021_acsnano_2c05067 crossref_primary_10_1016_j_ijrefrig_2021_06_008 crossref_primary_10_1039_C8CC05919E crossref_primary_10_1002_smll_202105647 crossref_primary_10_1016_j_cej_2019_122500 crossref_primary_10_1016_j_solmat_2023_112186 crossref_primary_10_1016_j_cej_2022_135407 crossref_primary_10_1016_j_cej_2019_01_095 crossref_primary_10_1021_acsnano_9b03225 crossref_primary_10_1002_slct_202001558 crossref_primary_10_1016_j_cej_2023_142401 crossref_primary_10_1016_j_compositesb_2019_107545 crossref_primary_10_1016_j_isci_2020_101606 crossref_primary_10_1016_j_rser_2022_112912 crossref_primary_10_1016_j_nanoen_2018_09_007 crossref_primary_10_1002_smtd_202301458 crossref_primary_10_1007_s40843_021_1888_7 crossref_primary_10_1016_j_est_2022_104127 crossref_primary_10_1016_j_jclepro_2019_118952 crossref_primary_10_1021_acs_energyfuels_3c02737 crossref_primary_10_1002_app_52197 crossref_primary_10_1021_acsaem_8b01444 crossref_primary_10_1021_acsanm_9b00649 crossref_primary_10_1002_adma_202202457 crossref_primary_10_1021_acsami_1c14065 crossref_primary_10_1021_acsanm_3c02168 crossref_primary_10_1021_jacs_0c08777 crossref_primary_10_1016_j_micromeso_2020_110636 crossref_primary_10_1016_j_cej_2021_129942 crossref_primary_10_1016_j_est_2025_116175 crossref_primary_10_1039_D1RA04484B crossref_primary_10_1088_1674_4926_45_2_022301 crossref_primary_10_1021_acsami_4c15958 crossref_primary_10_1039_D0NA01008A crossref_primary_10_1016_j_jsamd_2024_100792 crossref_primary_10_1016_j_conbuildmat_2023_131068 crossref_primary_10_1007_s10973_024_13832_y crossref_primary_10_1016_j_energy_2022_125505 crossref_primary_10_1080_1536383X_2022_2066654 crossref_primary_10_2139_ssrn_3999292 crossref_primary_10_1016_j_est_2020_101599 crossref_primary_10_1016_j_enbuild_2021_111437 crossref_primary_10_1016_j_est_2022_104432 crossref_primary_10_1016_j_est_2022_105760 crossref_primary_10_1021_acs_iecr_0c03175 crossref_primary_10_1016_j_est_2024_113747 crossref_primary_10_1016_j_cej_2024_158482 crossref_primary_10_1016_j_est_2024_111329 crossref_primary_10_1016_j_est_2024_112778 crossref_primary_10_1021_acsami_4c13999 crossref_primary_10_1186_s40580_023_00365_7 crossref_primary_10_1016_j_ijhydene_2022_01_241 crossref_primary_10_1016_j_jechem_2024_03_024 crossref_primary_10_1016_j_energy_2023_129637 crossref_primary_10_1016_j_cej_2023_147068 crossref_primary_10_3390_jcs7050193 crossref_primary_10_1016_j_mtchem_2024_102205 crossref_primary_10_1002_cssc_202100724 crossref_primary_10_1039_C9TA07629H crossref_primary_10_1002_smll_202306170 crossref_primary_10_1016_j_est_2024_112423 crossref_primary_10_1016_j_solmat_2024_113369 crossref_primary_10_1016_j_cej_2022_136421 crossref_primary_10_1016_j_solmat_2024_113128 crossref_primary_10_1021_acsaem_0c02341 crossref_primary_10_1016_j_est_2024_111570 crossref_primary_10_1002_adfm_202408269 crossref_primary_10_1016_j_cej_2021_128992 crossref_primary_10_1016_j_est_2020_102223 crossref_primary_10_1016_j_compscitech_2020_108197 crossref_primary_10_1016_j_nanoen_2020_105454 crossref_primary_10_1016_j_micromeso_2020_110741 crossref_primary_10_1016_j_est_2022_104772 crossref_primary_10_1016_j_est_2022_105980 crossref_primary_10_1021_acsami_0c15146 crossref_primary_10_1016_j_ensm_2019_12_029 crossref_primary_10_1016_j_ensm_2018_10_014 crossref_primary_10_3390_inorganics12050126 crossref_primary_10_1016_j_nocx_2022_100108 crossref_primary_10_1021_acsnano_0c05931 crossref_primary_10_1039_C8RA09698H crossref_primary_10_1016_j_cej_2024_154305 crossref_primary_10_1039_D2RA08134B crossref_primary_10_1021_acsami_0c07405 crossref_primary_10_1002_smll_202302886 crossref_primary_10_2139_ssrn_4093888 crossref_primary_10_1002_adfm_202400038 crossref_primary_10_2139_ssrn_4093889 crossref_primary_10_1002_smll_202310252 crossref_primary_10_1039_D4RA03208J crossref_primary_10_2139_ssrn_4048851 crossref_primary_10_1002_slct_202202930 crossref_primary_10_1016_j_tifs_2023_104167 crossref_primary_10_1016_j_apenergy_2019_114320 crossref_primary_10_1002_est2_289 crossref_primary_10_1016_j_jelechem_2020_113907 crossref_primary_10_1016_j_tifs_2024_104468 crossref_primary_10_1016_j_csite_2024_105636 crossref_primary_10_2139_ssrn_4150536 crossref_primary_10_1016_j_diamond_2023_110746 crossref_primary_10_3390_polym10080889 crossref_primary_10_1016_j_cej_2020_124586 crossref_primary_10_1016_j_ensm_2020_07_032 crossref_primary_10_1016_j_colsurfa_2019_124225 crossref_primary_10_1016_j_physleta_2019_04_050 crossref_primary_10_1016_j_solmat_2023_112224 crossref_primary_10_1002_er_5039 crossref_primary_10_1016_j_matdes_2022_111230 crossref_primary_10_1002_app_56937 crossref_primary_10_1021_acsami_9b18543 crossref_primary_10_1021_acssuschemeng_2c00189 crossref_primary_10_1039_C9NR10696K crossref_primary_10_1016_j_egyr_2022_10_121 crossref_primary_10_3390_nano10081599 crossref_primary_10_1140_epjs_s11734_022_00587_6 crossref_primary_10_1021_acsami_4c09184 crossref_primary_10_1016_j_rser_2019_03_031 crossref_primary_10_1016_j_solmat_2024_112996 crossref_primary_10_1007_s10853_021_06153_0 crossref_primary_10_1007_s10570_021_04297_5 crossref_primary_10_1016_j_est_2020_101299 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121159 crossref_primary_10_1021_accountsmr_2c00251 crossref_primary_10_1016_j_watres_2025_123460 crossref_primary_10_1016_j_est_2022_105854 crossref_primary_10_1016_j_rser_2020_109712 crossref_primary_10_1021_acsami_8b17492 crossref_primary_10_1002_sus2_147 crossref_primary_10_1016_j_cej_2023_144417 crossref_primary_10_1016_j_est_2023_110214 crossref_primary_10_1016_j_heliyon_2024_e25800 crossref_primary_10_1016_j_xcrp_2020_100218 crossref_primary_10_1088_1361_6528_ab898b crossref_primary_10_1016_j_nanoen_2021_106338 crossref_primary_10_1016_j_cej_2022_134851 crossref_primary_10_1021_acsnano_0c03706 crossref_primary_10_1016_j_eurpolymj_2020_110245 crossref_primary_10_1039_C9NA00430K crossref_primary_10_1016_j_ijheatmasstransfer_2025_126751 crossref_primary_10_1021_acs_chemrev_2c00407 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122436 crossref_primary_10_1016_j_solmat_2019_110122 crossref_primary_10_1140_epjp_i2018_12322_5 crossref_primary_10_1016_j_cej_2020_125330 crossref_primary_10_1002_advs_202207652 crossref_primary_10_1016_j_applthermaleng_2024_123612 crossref_primary_10_1039_C9TA13925G crossref_primary_10_1039_D0TA05078D crossref_primary_10_1039_D1CP00708D crossref_primary_10_1016_j_mtsust_2023_100336 crossref_primary_10_1002_cnma_202200352 crossref_primary_10_1016_j_ccr_2024_216266 crossref_primary_10_1016_j_solmat_2024_113306 crossref_primary_10_1002_adfm_202108000 crossref_primary_10_1002_anie_201904549 crossref_primary_10_1016_j_indcrop_2024_119920 crossref_primary_10_1016_j_solmat_2022_112171 crossref_primary_10_1016_j_est_2023_107038 crossref_primary_10_3390_en17040933 crossref_primary_10_1016_j_enconman_2025_119490 crossref_primary_10_1016_j_est_2022_105954 crossref_primary_10_1126_sciadv_adr8445 crossref_primary_10_1016_j_cej_2024_150119 crossref_primary_10_1016_j_cej_2024_149009 crossref_primary_10_1016_j_jallcom_2019_05_205 crossref_primary_10_1016_j_solmat_2020_110644 crossref_primary_10_1016_j_cej_2021_131075 crossref_primary_10_1016_j_apsusc_2021_150549 crossref_primary_10_1002_admt_202200226 crossref_primary_10_1016_j_ceramint_2021_05_074 crossref_primary_10_1016_j_colsurfa_2023_130969 crossref_primary_10_1080_23312009_2020_1833476 crossref_primary_10_1016_j_matchemphys_2023_127501 crossref_primary_10_1021_acs_nanolett_3c02094 crossref_primary_10_1002_mren_202100049 crossref_primary_10_1039_D0TA07289C crossref_primary_10_1016_j_compositesb_2020_108072 crossref_primary_10_1002_eom2_70004 crossref_primary_10_1016_j_carbon_2024_119639 crossref_primary_10_1002_er_6431 crossref_primary_10_1016_j_conbuildmat_2023_134037 crossref_primary_10_3390_polym16010100 crossref_primary_10_1016_j_coco_2024_102053 crossref_primary_10_1016_j_carbon_2019_04_005 crossref_primary_10_1016_j_jclepro_2022_133572 crossref_primary_10_1016_j_carbpol_2021_118745 crossref_primary_10_1088_2053_1591_ab2d0a crossref_primary_10_1021_acsami_1c21080 crossref_primary_10_1002_adfm_201904228 crossref_primary_10_1016_j_enbuild_2020_110528 crossref_primary_10_1016_j_ensm_2021_07_019 crossref_primary_10_1016_j_carbpol_2023_121514 crossref_primary_10_1021_acs_jpcc_3c04869 crossref_primary_10_1016_j_cej_2022_138572 crossref_primary_10_1016_j_cej_2024_154147 crossref_primary_10_1021_acsami_1c01599 crossref_primary_10_1016_j_enconman_2020_113241 crossref_primary_10_1016_j_est_2021_102359 crossref_primary_10_1016_j_energy_2020_118055 crossref_primary_10_1016_j_cej_2021_128482 crossref_primary_10_1080_09506608_2022_2053774 crossref_primary_10_1016_j_solmat_2019_110165 crossref_primary_10_1016_j_cej_2018_09_013 crossref_primary_10_1016_j_ensm_2021_07_022 crossref_primary_10_1016_j_cej_2020_124711 crossref_primary_10_1016_j_energy_2020_119029 crossref_primary_10_1039_D4EE02350A crossref_primary_10_1002_sus2_214 crossref_primary_10_3390_polym16233291 crossref_primary_10_1016_j_solmat_2024_112818 crossref_primary_10_1002_adfm_202414042 crossref_primary_10_1021_acsestengg_1c00007 crossref_primary_10_1016_j_solmat_2022_112019 crossref_primary_10_1016_j_compositesa_2021_106770 crossref_primary_10_1016_j_susmat_2024_e01157 crossref_primary_10_1021_acsami_8b09541 crossref_primary_10_1021_acsami_8b11611 crossref_primary_10_1021_acsnano_8b08913 crossref_primary_10_1016_j_polymer_2020_122824 crossref_primary_10_1021_acsami_9b16612 crossref_primary_10_1016_j_est_2021_103556 crossref_primary_10_1016_j_solmat_2018_11_042 crossref_primary_10_1007_s10973_024_13762_9 crossref_primary_10_3390_molecules25071504 crossref_primary_10_1016_j_renene_2021_02_028 crossref_primary_10_1016_j_jhazmat_2021_127147 crossref_primary_10_1002_adfm_202403059 crossref_primary_10_1016_j_ijft_2025_101116 crossref_primary_10_1016_j_colsurfa_2021_126905 crossref_primary_10_1016_j_jobe_2021_102247 crossref_primary_10_1016_j_solmat_2022_112025 crossref_primary_10_1007_s10973_021_11046_0 crossref_primary_10_1016_j_cej_2024_154006 crossref_primary_10_1016_j_ensm_2022_01_017 crossref_primary_10_1002_est2_533 crossref_primary_10_1002_adma_202402897 crossref_primary_10_1016_j_solener_2020_05_004 crossref_primary_10_1021_acs_iecr_2c00110 crossref_primary_10_1002_smll_202303315 crossref_primary_10_1016_j_ensm_2022_08_002 crossref_primary_10_1016_j_est_2021_103771 crossref_primary_10_1002_agt2_248 crossref_primary_10_1002_smll_202312134 crossref_primary_10_1021_acsanm_4c05113 crossref_primary_10_1016_j_eurpolymj_2023_112431 crossref_primary_10_1016_j_est_2024_110725 crossref_primary_10_1016_j_seta_2020_100865 crossref_primary_10_1016_j_renene_2021_01_114 crossref_primary_10_1016_j_est_2021_103415 crossref_primary_10_1016_j_applthermaleng_2024_125293 crossref_primary_10_1039_D0SE00718H crossref_primary_10_1016_j_est_2021_102329 crossref_primary_10_1002_adfm_202200792 crossref_primary_10_1016_j_solener_2021_07_003 crossref_primary_10_1016_j_rser_2019_04_041 crossref_primary_10_1021_acs_iecr_3c02373 crossref_primary_10_1021_acs_iecr_3c02493 crossref_primary_10_1021_acsomega_3c09417 crossref_primary_10_1021_acs_chemrev_4c00276 crossref_primary_10_3390_nano13162313 crossref_primary_10_1021_acsami_1c14862 crossref_primary_10_1016_j_jlp_2024_105320 crossref_primary_10_1016_j_applthermaleng_2020_115560 crossref_primary_10_1007_s10853_024_10148_y crossref_primary_10_1016_j_est_2024_114138 crossref_primary_10_1016_j_ensm_2019_11_019 crossref_primary_10_1016_j_jmst_2022_05_049 crossref_primary_10_1016_j_ceramint_2019_05_091 crossref_primary_10_1039_D1RA09167K crossref_primary_10_1039_D3CC06063B crossref_primary_10_3390_en15218271 crossref_primary_10_1016_j_est_2021_102420 crossref_primary_10_1016_j_matchemphys_2023_128457 crossref_primary_10_1016_j_colsurfa_2022_130594 crossref_primary_10_1016_j_matt_2021_10_002 crossref_primary_10_1016_j_jhazmat_2020_123695 crossref_primary_10_2174_0929867326666190215113522 crossref_primary_10_1016_j_colsurfa_2022_129249 crossref_primary_10_1021_acs_est_0c03775 crossref_primary_10_1016_j_cej_2024_153361 crossref_primary_10_1016_j_compositesa_2024_108331 crossref_primary_10_1016_j_solmat_2020_110956 crossref_primary_10_1039_D3MA00924F crossref_primary_10_3390_polym11101616 crossref_primary_10_1002_er_4550 crossref_primary_10_1016_j_est_2022_104905 crossref_primary_10_1007_s42114_022_00481_8 crossref_primary_10_1016_j_ijbiomac_2020_01_173 crossref_primary_10_1016_j_cej_2019_123028 crossref_primary_10_1016_j_est_2021_103637 crossref_primary_10_1016_j_jclepro_2022_133031 crossref_primary_10_1021_acsami_9b19802 crossref_primary_10_1016_j_est_2021_103634 crossref_primary_10_1002_idm2_12234 crossref_primary_10_1016_j_matt_2024_01_012 crossref_primary_10_1016_j_solmat_2024_112948 crossref_primary_10_1016_j_compositesb_2023_110885 crossref_primary_10_1039_D1TB00843A crossref_primary_10_1016_j_jechem_2022_08_001 crossref_primary_10_1002_smll_202305418 crossref_primary_10_1016_j_compscitech_2020_108402 crossref_primary_10_1016_j_rser_2023_113814 crossref_primary_10_1016_j_est_2023_108674 crossref_primary_10_1002_cey2_218 crossref_primary_10_1016_j_solmat_2018_12_018 crossref_primary_10_1016_j_renene_2021_04_078 crossref_primary_10_1021_acsami_9b17771 crossref_primary_10_1016_j_solmat_2020_110938 crossref_primary_10_4491_KSEE_2019_41_10_582 crossref_primary_10_3390_en16031498 crossref_primary_10_1038_s41598_020_71543_4 crossref_primary_10_1039_D0TA05904H crossref_primary_10_1007_s11664_023_10542_3 crossref_primary_10_1039_D2SU00116K crossref_primary_10_1016_j_nanoen_2022_107559 crossref_primary_10_3390_nano9040657 crossref_primary_10_1016_j_joule_2019_12_005 crossref_primary_10_1016_j_matlet_2021_129722 crossref_primary_10_6023_A23040150 crossref_primary_10_1016_j_apenergy_2019_02_045 crossref_primary_10_1016_j_bioadv_2023_213618 crossref_primary_10_1016_j_est_2023_108425 crossref_primary_10_1016_j_pmatsci_2020_100708 crossref_primary_10_1016_j_energy_2020_119294 crossref_primary_10_1039_C8MH01219A crossref_primary_10_1016_j_optmat_2023_113812 crossref_primary_10_1016_j_rser_2022_112783 crossref_primary_10_1016_j_ensm_2025_104142 crossref_primary_10_1021_acsami_1c23303 crossref_primary_10_1021_acssuschemeng_8b03980 crossref_primary_10_1016_j_nanoms_2023_12_004 crossref_primary_10_3390_nano11030566 crossref_primary_10_1016_j_renene_2024_121724 crossref_primary_10_1016_j_cej_2020_127276 crossref_primary_10_1016_j_compscitech_2019_107895 crossref_primary_10_1016_j_solmat_2021_111392 crossref_primary_10_1016_j_solmat_2024_113173 crossref_primary_10_1016_j_est_2023_108615 crossref_primary_10_1021_acsomega_3c04311 crossref_primary_10_1016_j_jobe_2022_105198 crossref_primary_10_1016_j_csite_2022_102241 crossref_primary_10_1021_acsaem_8b01752 crossref_primary_10_1021_acs_langmuir_0c03286 crossref_primary_10_1016_j_enconman_2022_115948 crossref_primary_10_1016_j_ijbiomac_2025_139572 crossref_primary_10_1016_j_apenergy_2022_120482 crossref_primary_10_1016_j_cej_2019_122373 crossref_primary_10_1021_acsami_3c07360 crossref_primary_10_1021_acs_energyfuels_0c03739 crossref_primary_10_1016_j_rser_2023_113805 crossref_primary_10_1016_j_applthermaleng_2020_115512 crossref_primary_10_3390_ma17133241 crossref_primary_10_1016_j_cej_2021_129620 crossref_primary_10_1016_j_est_2023_107633 crossref_primary_10_1016_j_device_2023_100121 crossref_primary_10_1016_j_applthermaleng_2022_119546 crossref_primary_10_1016_j_compositesb_2022_110367 crossref_primary_10_1016_j_ijheatmasstransfer_2019_118699 crossref_primary_10_1016_j_jpowsour_2020_227820 crossref_primary_10_1016_j_jcis_2023_12_015 crossref_primary_10_1080_01411594_2019_1581885 crossref_primary_10_1016_j_solmat_2025_113448 crossref_primary_10_1002_advs_202405077 crossref_primary_10_1063_5_0046975 crossref_primary_10_1142_S2810922822300070 crossref_primary_10_1016_j_matdes_2020_109357 crossref_primary_10_1016_j_isci_2022_104226 crossref_primary_10_1016_j_carbpol_2022_120407 crossref_primary_10_1016_j_isci_2022_104584 crossref_primary_10_1016_j_xcrp_2023_101250 crossref_primary_10_1016_j_solmat_2024_113151 crossref_primary_10_1016_j_ctta_2025_100166 crossref_primary_10_1016_j_coche_2020_02_004 crossref_primary_10_1016_j_applthermaleng_2020_115531 crossref_primary_10_1016_j_nanoen_2021_105948 crossref_primary_10_1007_s42773_025_00425_7 crossref_primary_10_1016_j_apenergy_2022_120141 crossref_primary_10_1016_j_isci_2020_101208 crossref_primary_10_1016_j_est_2024_114367 crossref_primary_10_1016_j_est_2019_101134 crossref_primary_10_1002_cey2_665 crossref_primary_10_3390_polym15030703 crossref_primary_10_1039_D2NJ03485A crossref_primary_10_1016_j_enss_2024_11_010 crossref_primary_10_1016_j_nanoen_2022_107383 crossref_primary_10_1016_j_ensm_2021_05_048 crossref_primary_10_1016_j_est_2022_106355 crossref_primary_10_1016_j_jcis_2021_03_111 crossref_primary_10_1002_admt_202300658 crossref_primary_10_1016_j_compositesb_2020_108500 crossref_primary_10_1016_j_applthermaleng_2019_114697 crossref_primary_10_1016_j_applthermaleng_2020_115960 crossref_primary_10_1016_j_solmat_2021_111236 crossref_primary_10_1002_htj_22019 crossref_primary_10_1007_s10973_019_08097_9 crossref_primary_10_1021_acs_energyfuels_9b04212 crossref_primary_10_1038_s41467_023_43772_4 crossref_primary_10_1016_j_foodp_2024_100039 crossref_primary_10_1039_D3RA05389J crossref_primary_10_1016_j_joule_2022_04_018 crossref_primary_10_1016_j_est_2023_106994 crossref_primary_10_1002_advs_202001274 crossref_primary_10_1002_er_4838 crossref_primary_10_1039_D2CE00488G crossref_primary_10_1016_j_compscitech_2019_107714 crossref_primary_10_1016_j_est_2022_106367 crossref_primary_10_1016_j_est_2022_106364 crossref_primary_10_1021_acs_langmuir_0c00811 crossref_primary_10_3390_nano14131077 crossref_primary_10_1016_j_cej_2024_154050 crossref_primary_10_1002_adma_202002559 crossref_primary_10_1016_j_solmat_2019_109925 crossref_primary_10_1016_j_tsep_2024_102675 crossref_primary_10_1016_j_est_2024_111278 crossref_primary_10_1016_j_est_2024_113454 crossref_primary_10_1002_smll_202006752 crossref_primary_10_1016_j_renene_2023_119044 crossref_primary_10_1016_j_mtnano_2022_100234 crossref_primary_10_1016_j_est_2023_106861 crossref_primary_10_1039_C8RA06536E crossref_primary_10_1039_C9NR07273J crossref_primary_10_1016_j_est_2023_109805 crossref_primary_10_1016_j_cej_2021_130789 crossref_primary_10_1016_j_est_2023_108959 crossref_primary_10_1016_j_rser_2023_114184 crossref_primary_10_1016_j_jclepro_2024_143177 crossref_primary_10_2139_ssrn_4124868 crossref_primary_10_1016_j_cej_2023_141923 crossref_primary_10_1016_j_ensm_2021_05_023 crossref_primary_10_1016_j_isci_2023_107946 crossref_primary_10_3390_pr11113219 crossref_primary_10_1016_j_solener_2022_05_004 crossref_primary_10_1002_ange_201904549 crossref_primary_10_1016_j_cej_2024_157313 crossref_primary_10_1016_j_est_2024_113465 crossref_primary_10_1002_adfm_202409884 crossref_primary_10_1016_j_solmat_2021_111013 crossref_primary_10_1016_j_est_2023_106650 crossref_primary_10_1016_j_tca_2022_179428 crossref_primary_10_2139_ssrn_4095586 crossref_primary_10_1039_D1EE00527H crossref_primary_10_1016_j_compscitech_2021_109177 crossref_primary_10_1016_j_molliq_2022_119589 crossref_primary_10_1016_j_tca_2019_04_005 crossref_primary_10_1016_j_compositesa_2022_106898 crossref_primary_10_1007_s10973_019_08645_3 crossref_primary_10_1016_j_carbpol_2022_119583 crossref_primary_10_1021_acsnano_1c05693 crossref_primary_10_1016_j_cej_2022_135056 crossref_primary_10_1016_j_cej_2022_135054 crossref_primary_10_3390_nano11010204 crossref_primary_10_1007_s10973_024_13912_z crossref_primary_10_1016_j_carbpol_2023_120734 crossref_primary_10_1016_j_cej_2021_128596 crossref_primary_10_1021_acsami_1c07160 crossref_primary_10_1016_j_matt_2020_05_016 crossref_primary_10_1016_j_cej_2021_133935 crossref_primary_10_1039_C9SE01272A crossref_primary_10_1002_adfm_202412914 |
Cites_doi | 10.1002/adma.200902986 10.1021/acs.macromol.6b01285 10.1002/anie.201004057 10.1016/j.solmat.2011.09.020 10.1016/j.cej.2017.01.045 10.1039/C7TB01253E 10.1021/acs.energyfuels.6b00929 10.1039/C7TA03432F 10.1016/j.nanoen.2016.02.058 10.1016/j.apenergy.2016.09.007 10.1021/jp202373b 10.1039/C4RA04225E 10.1016/j.carbon.2015.10.082 10.1021/nl0620839 10.1007/s10973-013-3311-0 10.1007/s10853-009-4146-8 10.1016/j.solener.2013.11.018 10.1039/C6TA06189C 10.1021/acs.jpcc.5b02608 10.1002/anie.201305006 10.1016/j.compscitech.2017.06.019 10.1039/C6TA08850C 10.1039/C6RA09558E 10.1016/j.ijheatmasstransfer.2012.11.032 10.1016/j.carbon.2013.06.077 10.1126/science.1220131 10.1016/j.nanoen.2017.03.010 10.1038/srep01908 10.1039/b925283e 10.1016/j.apenergy.2016.08.136 10.1039/C5NR01744K 10.1016/j.colsurfa.2014.03.005 10.1039/c0nr00585a 10.1021/ja804185s 10.1039/C7RA05204A 10.1021/acsami.7b13969 10.1007/s10973-017-6385-2 10.1039/C7TB01712J 10.1002/adma.200305136 10.1016/j.ijheatmasstransfer.2013.10.034 10.1126/science.1230444 10.1016/j.renene.2017.05.026 10.1007/s10973-016-6068-4 10.1021/acsami.7b08728 10.1016/j.tca.2013.04.028 10.1039/C3LC50949D 10.1016/j.carbon.2016.11.069 10.1021/nl401097d 10.1039/C4TA04605F 10.1016/j.tca.2013.07.027 10.1039/C4TA00839A 10.1016/j.applthermaleng.2015.12.051 10.1039/C4MH00193A 10.1039/c2jm35112a 10.1016/j.eurpolymj.2015.10.027 10.1002/adfm.201701136 10.1021/acs.iecr.5b01822 10.1002/polb.23223 10.1007/s10853-013-7169-0 10.4028/www.scientific.net/AMR.800.459 10.1039/C7CS00041C 10.1016/j.solener.2014.02.042 10.1039/C4TA05448B 10.1038/srep06246 10.1002/aenm.201702692 10.1016/j.enconman.2014.01.042 10.1016/j.solmat.2009.06.019 10.1021/acs.jpcc.5b06089 10.1038/nmat3001 10.1016/j.solmat.2013.09.035 10.1002/app.39302 10.1002/pc.22879 10.1002/app.38124 10.1021/acsami.5b07064 10.1002/aenm.201500921 10.1039/c2cp41988b 10.1016/j.energy.2013.09.012 10.1038/srep09117 10.1039/C6TA07587H 10.1016/j.renene.2013.05.020 10.1021/acsnano.6b01104 10.1016/j.applthermaleng.2016.09.129 10.1039/C6RA04059D 10.1016/j.solener.2012.01.003 10.1039/c3cp51875b 10.1016/j.solmat.2011.02.010 10.1039/C7TA02494K 10.1021/acs.jpcc.5b03728 10.1016/j.jmat.2015.07.002 10.1039/C6TA07144A 10.1039/C4TB01631A 10.1039/c1ee01405f 10.1021/jp109518k 10.1039/c3ra43936d 10.1016/j.solmat.2014.01.024 10.1038/srep12964 10.1007/s12221-017-7093-z 10.1016/S1359-4311(03)00107-8 10.1016/j.energy.2015.05.144 10.1016/j.apenergy.2011.11.018 10.1021/acssuschemeng.7b00321 10.1016/j.enconman.2015.04.002 10.1016/j.apenergy.2017.05.175 10.1039/C6NJ03034C 10.1002/adfm.201203728 10.1021/jp400770x 10.1021/acsnano.5b02917 10.1016/j.energy.2014.01.033 10.1021/nn400728t 10.1016/j.solmat.2012.07.024 10.1039/C3TB21229G 10.1016/j.enconman.2013.12.026 10.1002/adma.201703702 10.1016/j.apenergy.2015.01.022 10.1039/C4EE03051F 10.1063/1.5001072 10.1016/j.solmat.2017.04.009 10.1016/j.matlet.2017.02.075 10.1021/ic900416v 10.1016/j.solener.2013.08.021 10.1021/la070140n 10.1016/j.ijthermalsci.2010.12.004 10.1021/nn304310n 10.1016/j.tca.2015.08.022 10.1021/am100204b 10.1016/j.energy.2015.04.008 10.1080/17458080.2010.497950 10.1016/j.enconman.2016.04.049 10.1002/marc.201000185 10.1039/C7RA00964J 10.1016/j.applthermaleng.2016.11.111 10.1016/j.enconman.2013.07.060 10.1016/j.enconman.2014.05.092 10.1039/c3nr06810b 10.1039/c2ra21832a 10.1021/acsami.7b06970 10.1016/j.matdes.2016.03.084 10.1039/C6RA10736B 10.1039/C6TA07869A 10.1016/j.polymertesting.2017.09.005 10.1016/j.carbon.2013.09.053 10.1016/j.enconman.2015.08.048 10.1016/j.ijheatmasstransfer.2017.02.078 10.1016/j.icheatmasstransfer.2016.08.013 10.1007/s00289-011-0492-1 10.1021/acsnano.6b07126 10.1016/j.jpowsour.2004.09.033 10.1016/j.rser.2017.01.159 10.1038/ncomms1091 10.1039/C4RA16988C 10.1038/s41467-018-03029-x 10.1039/C4TA06735E 10.1016/j.rser.2013.12.017 10.1016/j.ijheatmasstransfer.2017.07.107 10.1016/j.applthermaleng.2015.08.084 10.1039/C6EE01043A 10.1016/j.apenergy.2012.05.022 10.1016/j.apenergy.2016.12.159 10.1016/j.renene.2013.05.041 10.1038/nclimate3045 10.1016/j.pmatsci.2014.03.005 10.1038/nenergy.2017.1 10.1038/srep13357 10.1016/j.rser.2007.10.005 10.1007/s12274-016-1333-1 10.1080/01411594.2015.1091937 10.1016/j.applthermaleng.2016.02.120 10.1021/ja808132u 10.1016/j.nanoen.2015.02.016 10.1016/S1359-4311(02)00192-8 10.1021/acs.iecr.5b01026 10.1038/srep08884 10.1039/C6RA05283E 10.1039/c2jm33289b 10.1016/j.solmat.2017.08.025 10.1016/j.rser.2011.07.019 10.1002/ejic.201601380 10.1016/j.rser.2013.12.033 10.1039/c2jm33316c 10.1021/la504424u 10.1021/acs.jpcc.5b06083 10.1002/smll.201402145 10.1021/jp111432j 10.1039/C3EE42573H 10.1039/c2ra20904g 10.1039/C6NR03921A 10.1016/j.solmat.2013.07.017 10.1016/j.rser.2009.10.015 10.1016/j.rser.2010.11.018 10.1039/C6TA01676F 10.1016/j.enconman.2017.05.037 10.1038/nmat4475 10.1016/j.renene.2017.02.083 10.1016/j.solmat.2013.01.046 10.1002/chem.201505035 10.1039/C6TA08454K 10.1039/c1sm05973d 10.1080/17458080.2016.1233582 10.1016/j.enconman.2003.09.015 10.1021/jacs.7b04872 10.1038/nature11475 10.1016/j.ijheatmasstransfer.2011.03.022 10.1016/j.cej.2009.06.019 10.1016/j.energy.2017.07.049 10.1002/chem.201500666 10.1021/ja200894u 10.1021/jp408478h 10.1002/mame.201600081 10.1016/j.enconman.2008.06.027 10.1016/j.eurpolymj.2012.01.016 10.1016/j.apenergy.2011.08.041 10.1016/j.nanoen.2015.11.001 10.1039/C7CP02445B 10.1002/smll.201403228 10.1039/C6TA09712J 10.1039/C5RA17152K 10.1002/anie.201305201 10.1016/j.solener.2013.11.021 10.1016/j.colsurfb.2015.07.061 10.1016/j.apenergy.2013.10.029 10.1016/j.rser.2017.04.001 10.1039/C6RA12890D 10.1021/ma201509d |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2018 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2018 |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
DOI | 10.1039/c7ee03587j |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1754-5706 |
EndPage | 1424 |
ExternalDocumentID | 10_1039_C7EE03587J c7ee03587j |
GroupedDBID | -JG 0-7 0R~ 29G 4.4 5GY 705 70~ 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3I M4U N9A O-G O9- P2P RAOCF RCNCU RPMJG RRC RSCEA RVUXY SKA SLH TOV UCJ 53G AAYXX ABIQK ACRPL ADNMO AFRZK AGQPQ AHGXI AKMSF ALSGL ANBJS ANLMG ASPBG AVWKF CAG CITATION COF FEDTE HVGLF J3G J3H L-8 R56 ROL 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
ID | FETCH-LOGICAL-c384t-8941382f3267f3652b5532be11703723173e9b2f5230ee41c74479ec46d29b583 |
ISSN | 1754-5692 |
IngestDate | Mon Jun 30 12:00:56 EDT 2025 Tue Jul 01 01:45:40 EDT 2025 Thu Apr 24 23:08:27 EDT 2025 Tue Dec 17 20:58:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c384t-8941382f3267f3652b5532be11703723173e9b2f5230ee41c74479ec46d29b583 |
Notes | Huang Xinyu obtained his BSc in Materials Science and Engineering in 2013 from Peking University. He is currently a PhD candidate in Prof. Ruqiang Zou's group at Peking University. He has been working on phase change materials for thermal energy storage since 2012. Ruqiang Zou is currently a Professor of Materials Science and Engineering at the College of Engineering, Peking University, P. R. China. He received his PhD from Kobe University and the National Institute of Advanced Industrial Science and Technology (AIST), Japan. He was awarded the JSPS Young Scientist award during his doctoral course in Japan. After graduating from Kobe University in 2008, he was awarded a Director's Postdoc Fellow at Los Alamos National Laboratory in the United States, the New-Star of Science and Technology in Beijing, the Excellent Young Scientist Foundation of NSFC, National Top-notch Young Professional of China, and Changjiang Scholar for Young Scientist. His research interests focus on the controllable preparation of nanoporous materials for green energy utilization. He proposed to construct hierarchically porous materials for single-molecule adsorption, and extended their potential applications to hydrogen storage, carbon capture, and energy storage materials. He has published more than 140 papers. Waseem Aftab received his undergraduate degree in Applied Chemistry from Government College University, Faisalabad, in 2013 and his Master's degree in Physical Chemistry from Quaid-e-Azam University, Islamabad, Pakistan, in 2015. Currently, he is working in Professor Ruqiang Zou's group in the Department of Materials Science and Engineering at the College of Engineering, Peking University, as a PhD candidate. His research interests focus on Phase Change Materials for Thermal Energy Applications. Zibin Liang is currently a PhD candidate under the supervision of Professor Ruqiang Zou at the College of Engineering, Peking University. His research interest is the synthesis of functional nanomaterials based on metal-organic frameworks for energy storage and conversion applications. Wu Wenhao received his master's degree from Chongqing University and PhD Degree from Peking University. Currently he is working as a manufacturing Engineer at the Chinese Academy of Information and Communications Technology. His research interests focus on functional Phase Change Composites for Thermal Energy Storage. Asif Mahmood received his BS and MS degrees in Chemistry and Materials and Surface Engineering from Government College University, Lahore and National University of Science and Technology, Pakistan, respectively. He completed his PhD in Professor Ruqiang Zou's group in the Department of Materials Science and Engineering at the College of Engineering, Peking University. Currently, he is working as a Research Fellow at South University of Sciences and Technology, China. His research interests include porous materials including metal-organic frameworks, carbon, metal/carbon hybrids and metal oxides for electrochemical applications such as supercapacitors, Li-ion batteries and fuel cells. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0456-4615 |
PQID | 2054724469 |
PQPubID | 2047494 |
PageCount | 33 |
ParticipantIDs | crossref_primary_10_1039_C7EE03587J proquest_journals_2054724469 crossref_citationtrail_10_1039_C7EE03587J rsc_primary_c7ee03587j |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180101 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 20180101 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Energy & environmental science |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Zhang (C7EE03587J-(cit39)/*[position()=1]) 2012; 86 Wu (C7EE03587J-(cit48)/*[position()=1]) 2011; 54 Konuklu (C7EE03587J-(cit56)/*[position()=1]) 2014; 80 Wang (C7EE03587J-(cit126)/*[position()=1]) 2016; 19 Li (C7EE03587J-(cit41)/*[position()=1]) 2014; 35 Zheng (C7EE03587J-(cit171)/*[position()=1]) 2017; 139 Choi (C7EE03587J-(cit214)/*[position()=1]) 2010; 49 Zhong (C7EE03587J-(cit139)/*[position()=1]) 2013; 113 Li (C7EE03587J-(cit157)/*[position()=1]) 2017; 128 Sinha-Ray (C7EE03587J-(cit84)/*[position()=1]) 2014; 14 Zhang (C7EE03587J-(cit202)/*[position()=1]) 2016; 77 Chen (C7EE03587J-(cit209)/*[position()=1]) 2015; 5 Lee (C7EE03587J-(cit162)/*[position()=1]) 2014; 68 McCann (C7EE03587J-(cit25)/*[position()=1]) 2006; 6 Zhang (C7EE03587J-(cit59)/*[position()=1]) 2013; 117 Shang (C7EE03587J-(cit141)/*[position()=1]) 2017; 111 Wang (C7EE03587J-(cit103)/*[position()=1]) 2012; 14 Wu (C7EE03587J-(cit69)/*[position()=1]) 2013; 58 Jeong (C7EE03587J-(cit87)/*[position()=1]) 2013; 63 Moon (C7EE03587J-(cit215)/*[position()=1]) 2011; 133 Zhang (C7EE03587J-(cit75)/*[position()=1]) 2016; 6 Wang (C7EE03587J-(cit195)/*[position()=1]) 2017; 9 Lai (C7EE03587J-(cit68)/*[position()=1]) 2016; 25 Wang (C7EE03587J-(cit82)/*[position()=1]) 2010; 31 Luo (C7EE03587J-(cit83)/*[position()=1]) 2013; 51 Sun (C7EE03587J-(cit73)/*[position()=1]) 2003; 15 de Cortazar (C7EE03587J-(cit37)/*[position()=1]) 2013; 127 Tang (C7EE03587J-(cit170)/*[position()=1]) 2016; 6 Sternberg (C7EE03587J-(cit1)/*[position()=1]) 2015; 8 Jamekhorshid (C7EE03587J-(cit26)/*[position()=1]) 2014; 31 Wang (C7EE03587J-(cit134)/*[position()=1]) 2013; 15 Fang (C7EE03587J-(cit45)/*[position()=1]) 2013; 76 Cao (C7EE03587J-(cit98)/*[position()=1]) 2017; 138 Zhang (C7EE03587J-(cit119)/*[position()=1]) 2016; 6 Kholmanov (C7EE03587J-(cit136)/*[position()=1]) 2015; 9 Zheng (C7EE03587J-(cit179)/*[position()=1]) 2017; 11 Pielichowska (C7EE03587J-(cit16)/*[position()=1]) 2014; 65 Chu (C7EE03587J-(cit5)/*[position()=1]) 2012; 488 Fan (C7EE03587J-(cit130)/*[position()=1]) 2017 Hou (C7EE03587J-(cit187)/*[position()=1]) 2017; 9 Agyenim (C7EE03587J-(cit17)/*[position()=1]) 2010; 14 Fang (C7EE03587J-(cit199)/*[position()=1]) 2017; 114 Qian (C7EE03587J-(cit121)/*[position()=1]) 2012; 107 Li (C7EE03587J-(cit107)/*[position()=1]) 2013; 3 Chen (C7EE03587J-(cit38)/*[position()=1]) 2012; 91 Tao (C7EE03587J-(cit152)/*[position()=1]) 2009; 131 Wood (C7EE03587J-(cit213)/*[position()=1]) 2011; 115 Wang (C7EE03587J-(cit210)/*[position()=1]) 2017; 19 De Castro (C7EE03587J-(cit28)/*[position()=1]) 2016; 22 Zhang (C7EE03587J-(cit173)/*[position()=1]) 2011; 115 Menberg (C7EE03587J-(cit4)/*[position()=1]) 2016; 9 Xia (C7EE03587J-(cit138)/*[position()=1]) 2017; 5 Tang (C7EE03587J-(cit94)/*[position()=1]) 2014; 4 Chen (C7EE03587J-(cit150)/*[position()=1]) 2012; 6 Park (C7EE03587J-(cit43)/*[position()=1]) 2014; 450 Nomura (C7EE03587J-(cit70)/*[position()=1]) 2015; 5 Tian (C7EE03587J-(cit216)/*[position()=1]) 2013; 7 Milián (C7EE03587J-(cit19)/*[position()=1]) 2017; 73 Zhou (C7EE03587J-(cit156)/*[position()=1]) 2017; 129 Wang (C7EE03587J-(cit180)/*[position()=1]) 2015; 7 Semnani Rahbar (C7EE03587J-(cit79)/*[position()=1]) 2016; 11 Huang (C7EE03587J-(cit165)/*[position()=1]) 2017; 108 Qi (C7EE03587J-(cit101)/*[position()=1]) 2014; 123 Park (C7EE03587J-(cit212)/*[position()=1]) 2016; 301 Chen (C7EE03587J-(cit198)/*[position()=1]) 2014; 79 Tabassum (C7EE03587J-(cit189)/*[position()=1]) 2015; 1 Mitran (C7EE03587J-(cit128)/*[position()=1]) 2015; 119 Mallow (C7EE03587J-(cit155)/*[position()=1]) 2012; 22 Cottrill (C7EE03587J-(cit211)/*[position()=1]) 2015; 5 Zhu (C7EE03587J-(cit227)/*[position()=1]) 2017 Wang (C7EE03587J-(cit40)/*[position()=1]) 2015; 5 Zhang (C7EE03587J-(cit132)/*[position()=1]) 2016; 101 Tumirah (C7EE03587J-(cit51)/*[position()=1]) 2014; 66 Li (C7EE03587J-(cit142)/*[position()=1]) 2016; 4 Chen (C7EE03587J-(cit223)/*[position()=1]) 2017; 5 Sinha-Ray (C7EE03587J-(cit175)/*[position()=1]) 2011; 7 Wang (C7EE03587J-(cit177)/*[position()=1]) 2014; 4 Sharma (C7EE03587J-(cit13)/*[position()=1]) 2009; 13 Fang (C7EE03587J-(cit46)/*[position()=1]) 2009; 153 Li (C7EE03587J-(cit182)/*[position()=1]) 2014; 2 Park (C7EE03587J-(cit31)/*[position()=1]) 2015; 31 Zhang (C7EE03587J-(cit201)/*[position()=1]) 2013; 60 Roberts (C7EE03587J-(cit205)/*[position()=1]) 2011; 50 Zhu (C7EE03587J-(cit53)/*[position()=1]) 2015; 105 Cao (C7EE03587J-(cit100)/*[position()=1]) 2017; 149 Tang (C7EE03587J-(cit147)/*[position()=1]) 2017; 146 Ling (C7EE03587J-(cit193)/*[position()=1]) 2014; 31 Huang (C7EE03587J-(cit125)/*[position()=1]) 2015; 3 Yang (C7EE03587J-(cit118)/*[position()=1]) 2012; 48 Wu (C7EE03587J-(cit63)/*[position()=1]) 2009; 48 Wu (C7EE03587J-(cit188)/*[position()=1]) 2017; 190 Li (C7EE03587J-(cit131)/*[position()=1]) 2017; 7 Qiu (C7EE03587J-(cit197)/*[position()=1]) 2017; 77 Zhang (C7EE03587J-(cit67)/*[position()=1]) 2010; 2 Lai (C7EE03587J-(cit10)/*[position()=1]) 2014; 6 Zhu (C7EE03587J-(cit65)/*[position()=1]) 2016; 119 Ye (C7EE03587J-(cit140)/*[position()=1]) 2015; 3 Fang (C7EE03587J-(cit154)/*[position()=1]) 2017; 195 He (C7EE03587J-(cit222)/*[position()=1]) 2016; 6 Liu (C7EE03587J-(cit135)/*[position()=1]) 2017; 167 Chen (C7EE03587J-(cit181)/*[position()=1]) 2015; 152 Duan (C7EE03587J-(cit160)/*[position()=1]) 2013; 115 Lee (C7EE03587J-(cit111)/*[position()=1]) 2011; 115 Wang (C7EE03587J-(cit35)/*[position()=1]) 2015; 54 Li (C7EE03587J-(cit114)/*[position()=1]) 2009; 45 Luan (C7EE03587J-(cit168)/*[position()=1]) 2016; 4 Liu (C7EE03587J-(cit225)/*[position()=1]) 2014; 2 Nie (C7EE03587J-(cit88)/*[position()=1]) 2015; 5 Li (C7EE03587J-(cit115)/*[position()=1]) 2012; 92 Luo (C7EE03587J-(cit174)/*[position()=1]) 2013; 51 Cabeza (C7EE03587J-(cit18)/*[position()=1]) 2003; 23 Rao (C7EE03587J-(cit66)/*[position()=1]) 2012; 100 Wehmeyer (C7EE03587J-(cit206)/*[position()=1]) 2017; 4 Barzin (C7EE03587J-(cit8)/*[position()=1]) 2015; 92 Li (C7EE03587J-(cit54)/*[position()=1]) 2011; 67 Li (C7EE03587J-(cit224)/*[position()=1]) 2015; 7 Zalba (C7EE03587J-(cit14)/*[position()=1]) 2003; 23 Kitao (C7EE03587J-(cit166)/*[position()=1]) 2017; 46 Bazilevsky (C7EE03587J-(cit86)/*[position()=1]) 2007; 23 Geng (C7EE03587J-(cit55)/*[position()=1]) 2016; 30 Zhang (C7EE03587J-(cit62)/*[position()=1]) 2011; 115 Graham (C7EE03587J-(cit33)/*[position()=1]) 2016; 4 Yoo (C7EE03587J-(cit29)/*[position()=1]) 2017; 9 Xu (C7EE03587J-(cit112)/*[position()=1]) 2011; 4 Tang (C7EE03587J-(cit116)/*[position()=1]) 2013; 97 Farid (C7EE03587J-(cit7)/*[position()=1]) 2004; 45 Fares (C7EE03587J-(cit2)/*[position()=1]) 2017; 2 Yang (C7EE03587J-(cit99)/*[position()=1]) 2018; 174 Liu (C7EE03587J-(cit97)/*[position()=1]) 2016; 4 Yang (C7EE03587J-(cit186)/*[position()=1]) 2017; 315 Wang (C7EE03587J-(cit92)/*[position()=1]) 2013; 23 Yang (C7EE03587J-(cit146)/*[position()=1]) 2016; 4 Li (C7EE03587J-(cit76)/*[position()=1]) 2017; 34 Zhang (C7EE03587J-(cit89)/*[position()=1]) 2012; 22 Cheng (C7EE03587J-(cit42)/*[position()=1]) 2013; 130 Liu (C7EE03587J-(cit151)/*[position()=1]) 2013; 13 Tahan Latibari (C7EE03587J-(cit57)/*[position()=1]) 2015; 85 Chen (C7EE03587J-(cit129)/*[position()=1]) 2017; 7 Pallecchi (C7EE03587J-(cit207)/*[position()=1]) 2015; 2 De Castro (C7EE03587J-(cit30)/*[position()=1]) 2015; 21 Sirohi (C7EE03587J-(cit80)/*[position()=1]) 2015; 5 Fang (C7EE03587J-(cit120)/*[position()=1]) 2011; 95 Fuensanta (C7EE03587J-(cit32)/*[position()=1]) 2013; 565 Fang (C7EE03587J-(cit44)/*[position()=1]) 2008; 49 Sarı (C7EE03587J-(cit34)/*[position()=1]) 2014; 86 Zhang (C7EE03587J-(cit108)/*[position()=1]) 2010; 12 Graham (C7EE03587J-(cit23)/*[position()=1]) 2017; 5 Andriamitantsoa (C7EE03587J-(cit169)/*[position()=1]) 2017; 41 Wang (C7EE03587J-(cit104)/*[position()=1]) 2016; 74 Aftab (C7EE03587J-(cit6)/*[position()=1]) 2017 Xiangfa (C7EE03587J-(cit123)/*[position()=1]) 2012; 7 Xu (C7EE03587J-(cit148)/*[position()=1]) 2017; 114 Chen (C7EE03587J-(cit81)/*[position()=1]) 2013; 60 Pan (C7EE03587J-(cit61)/*[position()=1]) 2012; 98 Uemura (C7EE03587J-(cit163)/*[position()=1]) 2015; 119 Gui (C7EE03587J-(cit149)/*[position()=1]) 2010; 22 Khateeb (C7EE03587J-(cit9)/*[position()=1]) 2005; 142 Tahan Latibari (C7EE03587J-(cit60)/*[position()=1]) 2013; 61 Kim (C7EE03587J-(cit220)/*[position()=1]) 2015; 135 Wang (C7EE03587J-(cit159)/*[position()=1]) 2014; 99 Huang (C7EE03587J-(cit24)/*[position()=1]) 2014; 2 Ho (C7EE03587J-(cit200)/*[position()=1]) 2014; 69 Uemura (C7EE03587J-(cit27)/*[position()=1]) 2010; 1 Meng (C7EE03587J-(cit95)/*[position()=1]) 2017 Zdraveva (C7EE03587J-(cit78)/*[position()=1]) 2015; 54 Tong (C7EE03587J-(cit85)/*[position()=1]) 2015; 89 Hyun (C7EE03587J-(cit226)/*[position()=1]) 2013; 52 Yang (C7EE03587J-(cit161)/*[position()=1]) 2014; 99 Liu (C7EE03587J-(cit22)/*[position()=1]) 2015; 13 Furukawa (C7EE03587J-(cit167)/*[position()=1]) 2013; 341 Hyun (C7EE03587J-(cit15)/*[position()=1]) 2014; 53 Liu (C7EE03587J-(cit203)/*[position()=1]) 2017; 115 Ji (C7EE03587J-(cit105)/*[position()=1]) 2014; 7 Barroso-Bujans (C7EE03587J-(cit113)/*[position()=1]) 2016; 49 Lee (C7EE03587J-(cit219)/*[position()=1]) 2014; 2 Deng (C7EE03587J-(cit172)/*[position()=1]) 2012; 336 He (C7EE03587J-(cit117)/*[position()=1]) 2014; 103 Li (C7EE03587J-(cit52)/*[position()=1]) 2016; 99 Isaacson (C7EE03587J-(cit110)/*[position()=1]) 2016; 15 Lee (C7EE03587J-(cit221)/*[position()=1]) 2015; 11 Huang (C7EE03587J-(cit21)/*[position()=1]) 2017; 5 Cottrill (C7EE03587J-(cit208)/*[position()=1]) 2018 Cabeza (C7EE03587J-(cit12)/*[position()=1]) 2011; 15 Yang (C7EE03587J-(cit144)/*[position()=1]) 2016; 4 Zhang (C7EE03587J-(cit122)/*[position()=1]) 2013; 570 Jurkowska (C7EE03587J-(cit196)/*[position()=1]) 2016; 98 Odunsi (C7EE03587J-(cit204)/*[position()=1]) 2016; 93 Liu (C7EE03587J-(cit71)/*[position()=1]) 2017; 5 Wang (C7EE03587J-(cit178)/*[position()=1]) 2012; 2 Merlin (C7EE03587J-(cit11)/*[position()=1]) 2016; 183 Zhao (C7EE03587J-(cit20)/*[position()=1]) 2011; 15 Qi (C7EE03587J-(cit145)/*[position()=1]) 2016; 10 Guo (C7EE03587J-(cit124)/*[position()=1]) 2013; 48 Wang (C7EE03587J-(cit102)/*[position()=1]) 2013; 800 Ghasemi Bahraseman (C7EE03587J-(cit158)/*[position()=1]) 2017; 109 Kongkhlan |
References_xml | – issn: 2017 end-page: p 243-265 publication-title: Thermal Transport in Carbon-Based Nanomaterials doi: Aftab Huang Zou – volume: 22 start-page: 617 year: 2010 ident: C7EE03587J-(cit149)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200902986 – volume: 49 start-page: 5704 year: 2016 ident: C7EE03587J-(cit113)/*[position()=1] publication-title: Macromolecules doi: 10.1021/acs.macromol.6b01285 – volume: 49 start-page: 7904 year: 2010 ident: C7EE03587J-(cit214)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201004057 – volume: 98 start-page: 66 year: 2012 ident: C7EE03587J-(cit61)/*[position()=1] publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2011.09.020 – volume: 315 start-page: 481 year: 2017 ident: C7EE03587J-(cit186)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.01.045 – volume: 5 start-page: 5464 year: 2017 ident: C7EE03587J-(cit217)/*[position()=1] publication-title: J. Mater. Chem. B doi: 10.1039/C7TB01253E – volume: 30 start-page: 6153 year: 2016 ident: C7EE03587J-(cit55)/*[position()=1] publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.6b00929 – volume: 5 start-page: 15191 year: 2017 ident: C7EE03587J-(cit138)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA03432F – volume: 25 start-page: 218 year: 2016 ident: C7EE03587J-(cit68)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.02.058 – volume: 183 start-page: 491 year: 2016 ident: C7EE03587J-(cit11)/*[position()=1] publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.09.007 – volume: 115 start-page: 20061 year: 2011 ident: C7EE03587J-(cit173)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp202373b – volume: 4 start-page: 36584 year: 2014 ident: C7EE03587J-(cit94)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C4RA04225E – volume: 98 start-page: 50 year: 2016 ident: C7EE03587J-(cit153)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2015.10.082 – volume: 6 start-page: 2868 year: 2006 ident: C7EE03587J-(cit25)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl0620839 – volume: 115 start-page: 111 year: 2013 ident: C7EE03587J-(cit160)/*[position()=1] publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-013-3311-0 – volume: 45 start-page: 1672 year: 2009 ident: C7EE03587J-(cit114)/*[position()=1] publication-title: J. Mater. Sci. doi: 10.1007/s10853-009-4146-8 – volume: 99 start-page: 283 year: 2014 ident: C7EE03587J-(cit159)/*[position()=1] publication-title: Sol. Energy doi: 10.1016/j.solener.2013.11.018 – volume: 4 start-page: 16906 year: 2016 ident: C7EE03587J-(cit33)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA06189C – volume: 119 start-page: 15177 year: 2015 ident: C7EE03587J-(cit128)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b02608 – volume: 52 start-page: 10468 year: 2013 ident: C7EE03587J-(cit226)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201305006 – volume: 149 start-page: 262 year: 2017 ident: C7EE03587J-(cit100)/*[position()=1] publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2017.06.019 – volume: 4 start-page: 18134 year: 2016 ident: C7EE03587J-(cit97)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA08850C – volume: 6 start-page: 53400 year: 2016 ident: C7EE03587J-(cit75)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA09558E – volume: 58 start-page: 348 year: 2013 ident: C7EE03587J-(cit69)/*[position()=1] publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2012.11.032 – volume: 63 start-page: 240 year: 2013 ident: C7EE03587J-(cit87)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2013.06.077 – volume: 336 start-page: 1018 year: 2012 ident: C7EE03587J-(cit172)/*[position()=1] publication-title: Science doi: 10.1126/science.1220131 – volume: 34 start-page: 541 year: 2017 ident: C7EE03587J-(cit76)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.03.010 – volume: 3 start-page: 1908 year: 2013 ident: C7EE03587J-(cit107)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep01908 – volume: 12 start-page: 3571 year: 2010 ident: C7EE03587J-(cit108)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/b925283e – volume: 182 start-page: 409 year: 2016 ident: C7EE03587J-(cit77)/*[position()=1] publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.08.136 – volume: 7 start-page: 9004 year: 2015 ident: C7EE03587J-(cit224)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR01744K – volume: 450 start-page: 46 year: 2014 ident: C7EE03587J-(cit43)/*[position()=1] publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2014.03.005 – volume: 2 start-page: 2790 year: 2010 ident: C7EE03587J-(cit67)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c0nr00585a – volume: 130 start-page: 15460 year: 2008 ident: C7EE03587J-(cit74)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja804185s – volume: 7 start-page: 30142 year: 2017 ident: C7EE03587J-(cit131)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C7RA05204A – volume: 9 start-page: 41323 year: 2017 ident: C7EE03587J-(cit195)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b13969 – volume: 129 start-page: 1639 year: 2017 ident: C7EE03587J-(cit156)/*[position()=1] publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-017-6385-2 – volume: 5 start-page: 7051 year: 2017 ident: C7EE03587J-(cit223)/*[position()=1] publication-title: J. Mater. Chem. B doi: 10.1039/C7TB01712J – volume: 15 start-page: 1929 year: 2003 ident: C7EE03587J-(cit73)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200305136 – volume: 69 start-page: 276 year: 2014 ident: C7EE03587J-(cit200)/*[position()=1] publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2013.10.034 – volume: 341 start-page: 1230444 year: 2013 ident: C7EE03587J-(cit167)/*[position()=1] publication-title: Science doi: 10.1126/science.1230444 – volume: 112 start-page: 113 year: 2017 ident: C7EE03587J-(cit106)/*[position()=1] publication-title: Renewable Energy doi: 10.1016/j.renene.2017.05.026 – volume: 128 start-page: 1313 year: 2017 ident: C7EE03587J-(cit157)/*[position()=1] publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-016-6068-4 – volume: 9 start-page: 26476 year: 2017 ident: C7EE03587J-(cit187)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b08728 – volume: 565 start-page: 95 year: 2013 ident: C7EE03587J-(cit32)/*[position()=1] publication-title: Thermochim. Acta doi: 10.1016/j.tca.2013.04.028 – volume: 14 start-page: 494 year: 2014 ident: C7EE03587J-(cit84)/*[position()=1] publication-title: Lab Chip doi: 10.1039/C3LC50949D – volume: 114 start-page: 334 year: 2017 ident: C7EE03587J-(cit148)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2016.11.069 – volume: 13 start-page: 4028 year: 2013 ident: C7EE03587J-(cit151)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl401097d – volume: 2 start-page: 19963 year: 2014 ident: C7EE03587J-(cit24)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04605F – volume: 570 start-page: 1 year: 2013 ident: C7EE03587J-(cit122)/*[position()=1] publication-title: Thermochim. Acta doi: 10.1016/j.tca.2013.07.027 – volume: 2 start-page: 7759 year: 2014 ident: C7EE03587J-(cit182)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA00839A – volume: 98 start-page: 365 year: 2016 ident: C7EE03587J-(cit196)/*[position()=1] publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.12.051 – volume: 2 start-page: 125 year: 2015 ident: C7EE03587J-(cit207)/*[position()=1] publication-title: Mater. Horiz. doi: 10.1039/C4MH00193A – volume: 22 start-page: 24469 year: 2012 ident: C7EE03587J-(cit155)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c2jm35112a – volume: 74 start-page: 43 year: 2016 ident: C7EE03587J-(cit104)/*[position()=1] publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2015.10.027 – start-page: 1701136 year: 2017 ident: C7EE03587J-(cit95)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201701136 – volume: 54 start-page: 8706 year: 2015 ident: C7EE03587J-(cit78)/*[position()=1] publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.5b01822 – volume: 51 start-page: 376 year: 2013 ident: C7EE03587J-(cit174)/*[position()=1] publication-title: Polym. Sci., Ser. B doi: 10.1002/polb.23223 – volume: 48 start-page: 3716 year: 2013 ident: C7EE03587J-(cit124)/*[position()=1] publication-title: J. Mater. Sci. doi: 10.1007/s10853-013-7169-0 – volume: 800 start-page: 459 year: 2013 ident: C7EE03587J-(cit102)/*[position()=1] publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.800.459 – volume: 46 start-page: 3108 year: 2017 ident: C7EE03587J-(cit166)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00041C – volume: 103 start-page: 448 year: 2014 ident: C7EE03587J-(cit117)/*[position()=1] publication-title: Sol. Energy doi: 10.1016/j.solener.2014.02.042 – volume: 3 start-page: 4018 year: 2015 ident: C7EE03587J-(cit140)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA05448B – volume: 4 start-page: 6246 year: 2014 ident: C7EE03587J-(cit177)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep06246 – start-page: 1702692 year: 2018 ident: C7EE03587J-(cit208)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702692 – volume: 80 start-page: 382 year: 2014 ident: C7EE03587J-(cit56)/*[position()=1] publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2014.01.042 – volume: 93 start-page: 1817 year: 2009 ident: C7EE03587J-(cit64)/*[position()=1] publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2009.06.019 – volume: 119 start-page: 22787 year: 2015 ident: C7EE03587J-(cit96)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b06089 – volume: 10 start-page: 424 year: 2011 ident: C7EE03587J-(cit137)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3001 – volume: 120 start-page: 536 year: 2014 ident: C7EE03587J-(cit47)/*[position()=1] publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2013.09.035 – volume: 130 start-page: 1879 year: 2013 ident: C7EE03587J-(cit42)/*[position()=1] publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.39302 – volume: 35 start-page: 2154 year: 2014 ident: C7EE03587J-(cit41)/*[position()=1] publication-title: Polym. Compos. doi: 10.1002/pc.22879 – volume: 127 start-page: 5059 year: 2013 ident: C7EE03587J-(cit37)/*[position()=1] publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.38124 – volume: 7 start-page: 21602 year: 2015 ident: C7EE03587J-(cit180)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b07064 – volume: 5 start-page: 1500921 year: 2015 ident: C7EE03587J-(cit211)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201500921 – volume-title: Thermal Transport in Carbon-Based Nanomaterials year: 2017 ident: C7EE03587J-(cit6)/*[position()=1] – volume: 14 start-page: 13233 year: 2012 ident: C7EE03587J-(cit103)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp41988b – volume: 61 start-page: 664 year: 2013 ident: C7EE03587J-(cit60)/*[position()=1] publication-title: Energy doi: 10.1016/j.energy.2013.09.012 – volume: 5 start-page: 9117 year: 2015 ident: C7EE03587J-(cit70)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep09117 – volume: 4 start-page: 17042 year: 2016 ident: C7EE03587J-(cit142)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA07587H – volume: 60 start-page: 222 year: 2013 ident: C7EE03587J-(cit81)/*[position()=1] publication-title: Renewable Energy doi: 10.1016/j.renene.2013.05.020 – volume: 10 start-page: 4695 year: 2016 ident: C7EE03587J-(cit190)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.6b01104 – volume: 111 start-page: 353 year: 2017 ident: C7EE03587J-(cit141)/*[position()=1] publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.09.129 – volume: 6 start-page: 40106 year: 2016 ident: C7EE03587J-(cit170)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA04059D – volume: 86 start-page: 1149 year: 2012 ident: C7EE03587J-(cit39)/*[position()=1] publication-title: Sol. Energy doi: 10.1016/j.solener.2012.01.003 – volume: 15 start-page: 14390 year: 2013 ident: C7EE03587J-(cit176)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp51875b – volume: 95 start-page: 1875 year: 2011 ident: C7EE03587J-(cit120)/*[position()=1] publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2011.02.010 – volume: 5 start-page: 13683 year: 2017 ident: C7EE03587J-(cit23)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA02494K – volume: 119 start-page: 18697 year: 2015 ident: C7EE03587J-(cit127)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b03728 – volume: 1 start-page: 229 year: 2015 ident: C7EE03587J-(cit189)/*[position()=1] publication-title: J. Materiomics doi: 10.1016/j.jmat.2015.07.002 – volume: 5 start-page: 958 year: 2017 ident: C7EE03587J-(cit192)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA07144A – volume: 2 start-page: 8338 year: 2014 ident: C7EE03587J-(cit219)/*[position()=1] publication-title: J. Mater. Chem. B doi: 10.1039/C4TB01631A – volume: 4 start-page: 3632 year: 2011 ident: C7EE03587J-(cit112)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01405f – volume: 115 start-page: 8369 year: 2011 ident: C7EE03587J-(cit213)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp109518k – volume: 3 start-page: 22326 year: 2013 ident: C7EE03587J-(cit58)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/c3ra43936d – volume: 123 start-page: 171 year: 2014 ident: C7EE03587J-(cit101)/*[position()=1] publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2014.01.024 – volume: 5 start-page: 12964 year: 2015 ident: C7EE03587J-(cit133)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep12964 – volume: 18 start-page: 1171 year: 2017 ident: C7EE03587J-(cit91)/*[position()=1] publication-title: Fibers Polym. doi: 10.1007/s12221-017-7093-z – volume: 23 start-page: 1697 year: 2003 ident: C7EE03587J-(cit18)/*[position()=1] publication-title: Appl. Therm. Eng. doi: 10.1016/S1359-4311(03)00107-8 – volume: 92 start-page: 505 year: 2015 ident: C7EE03587J-(cit8)/*[position()=1] publication-title: Energy doi: 10.1016/j.energy.2015.05.144 – volume: 92 start-page: 456 year: 2012 ident: C7EE03587J-(cit115)/*[position()=1] publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.11.018 – volume: 5 start-page: 4906 year: 2017 ident: C7EE03587J-(cit71)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.7b00321 – volume: 98 start-page: 314 year: 2015 ident: C7EE03587J-(cit93)/*[position()=1] publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2015.04.002 – volume: 202 start-page: 323 year: 2017 ident: C7EE03587J-(cit194)/*[position()=1] publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.05.175 – volume: 41 start-page: 1790 year: 2017 ident: C7EE03587J-(cit169)/*[position()=1] publication-title: New J. Chem. doi: 10.1039/C6NJ03034C – volume: 23 start-page: 4354 year: 2013 ident: C7EE03587J-(cit92)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201203728 – volume: 117 start-page: 8909 year: 2013 ident: C7EE03587J-(cit183)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp400770x – volume: 9 start-page: 11699 year: 2015 ident: C7EE03587J-(cit136)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b02917 – volume: 66 start-page: 881 year: 2014 ident: C7EE03587J-(cit51)/*[position()=1] publication-title: Energy doi: 10.1016/j.energy.2014.01.033 – volume: 7 start-page: 4252 year: 2013 ident: C7EE03587J-(cit216)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn400728t – volume: 107 start-page: 13 year: 2012 ident: C7EE03587J-(cit121)/*[position()=1] publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2012.07.024 – volume: 2 start-page: 59 year: 2014 ident: C7EE03587J-(cit225)/*[position()=1] publication-title: J. Mater. Chem. B doi: 10.1039/C3TB21229G – volume: 79 start-page: 317 year: 2014 ident: C7EE03587J-(cit198)/*[position()=1] publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2013.12.026 – start-page: 1703702 year: 2017 ident: C7EE03587J-(cit227)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201703702 – volume: 152 start-page: 183 year: 2015 ident: C7EE03587J-(cit181)/*[position()=1] publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.01.022 – volume: 8 start-page: 389 year: 2015 ident: C7EE03587J-(cit1)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C4EE03051F – volume: 4 start-page: 041304 year: 2017 ident: C7EE03587J-(cit206)/*[position()=1] publication-title: Appl. Phys. Rev. doi: 10.1063/1.5001072 – volume: 167 start-page: 140 year: 2017 ident: C7EE03587J-(cit135)/*[position()=1] publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2017.04.009 – volume: 195 start-page: 79 year: 2017 ident: C7EE03587J-(cit154)/*[position()=1] publication-title: Mater. Lett. doi: 10.1016/j.matlet.2017.02.075 – volume: 48 start-page: 6044 year: 2009 ident: C7EE03587J-(cit63)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic900416v – volume: 97 start-page: 484 year: 2013 ident: C7EE03587J-(cit116)/*[position()=1] publication-title: Sol. Energy doi: 10.1016/j.solener.2013.08.021 – volume: 23 start-page: 7451 year: 2007 ident: C7EE03587J-(cit86)/*[position()=1] publication-title: Langmuir doi: 10.1021/la070140n – volume: 50 start-page: 648 year: 2011 ident: C7EE03587J-(cit205)/*[position()=1] publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2010.12.004 – volume: 6 start-page: 10884 year: 2012 ident: C7EE03587J-(cit150)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn304310n – volume: 617 start-page: 90 year: 2015 ident: C7EE03587J-(cit50)/*[position()=1] publication-title: Thermochim. Acta doi: 10.1016/j.tca.2015.08.022 – volume: 2 start-page: 1685 year: 2010 ident: C7EE03587J-(cit49)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am100204b – volume: 85 start-page: 635 year: 2015 ident: C7EE03587J-(cit57)/*[position()=1] publication-title: Energy doi: 10.1016/j.energy.2015.04.008 – volume: 7 start-page: 17 year: 2012 ident: C7EE03587J-(cit123)/*[position()=1] publication-title: J. Exp. Nanosci. doi: 10.1080/17458080.2010.497950 – volume: 119 start-page: 151 year: 2016 ident: C7EE03587J-(cit65)/*[position()=1] publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2016.04.049 – volume: 31 start-page: 1622 year: 2010 ident: C7EE03587J-(cit82)/*[position()=1] publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201000185 – volume: 7 start-page: 15625 year: 2017 ident: C7EE03587J-(cit129)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C7RA00964J – volume: 114 start-page: 1256 year: 2017 ident: C7EE03587J-(cit199)/*[position()=1] publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.11.111 – volume: 76 start-page: 430 year: 2013 ident: C7EE03587J-(cit45)/*[position()=1] publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2013.07.060 – volume: 86 start-page: 614 year: 2014 ident: C7EE03587J-(cit34)/*[position()=1] publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2014.05.092 – volume: 6 start-page: 4555 year: 2014 ident: C7EE03587J-(cit10)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c3nr06810b – volume: 115 start-page: 20061 year: 2011 ident: C7EE03587J-(cit62)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp202373b – volume: 2 start-page: 11372 year: 2012 ident: C7EE03587J-(cit178)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/c2ra21832a – volume: 9 start-page: 31763 year: 2017 ident: C7EE03587J-(cit29)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b06970 – volume: 99 start-page: 225 year: 2016 ident: C7EE03587J-(cit52)/*[position()=1] publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.03.084 – volume: 6 start-page: 65600 year: 2016 ident: C7EE03587J-(cit222)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA10736B – volume: 4 start-page: 18067 year: 2016 ident: C7EE03587J-(cit144)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA07869A – volume: 63 start-page: 494 year: 2017 ident: C7EE03587J-(cit90)/*[position()=1] publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2017.09.005 – volume: 68 start-page: 67 year: 2014 ident: C7EE03587J-(cit162)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2013.09.053 – volume: 105 start-page: 908 year: 2015 ident: C7EE03587J-(cit53)/*[position()=1] publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2015.08.048 – volume: 109 start-page: 1052 year: 2017 ident: C7EE03587J-(cit158)/*[position()=1] publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2017.02.078 – volume: 77 start-page: 140 year: 2016 ident: C7EE03587J-(cit202)/*[position()=1] publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2016.08.013 – volume: 67 start-page: 541 year: 2011 ident: C7EE03587J-(cit54)/*[position()=1] publication-title: Polym. Bull. doi: 10.1007/s00289-011-0492-1 – volume: 11 start-page: 721 year: 2017 ident: C7EE03587J-(cit179)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.6b07126 – volume: 142 start-page: 345 year: 2005 ident: C7EE03587J-(cit9)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2004.09.033 – volume: 73 start-page: 983 year: 2017 ident: C7EE03587J-(cit19)/*[position()=1] publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2017.01.159 – volume: 1 start-page: 1 year: 2010 ident: C7EE03587J-(cit27)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms1091 – volume: 5 start-page: 34377 year: 2015 ident: C7EE03587J-(cit80)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C4RA16988C – volume: 9 start-page: 664 year: 2018 ident: C7EE03587J-(cit191)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-03029-x – volume: 3 start-page: 1935 year: 2015 ident: C7EE03587J-(cit125)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA06735E – volume: 31 start-page: 427 year: 2014 ident: C7EE03587J-(cit193)/*[position()=1] publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2013.12.017 – volume: 115 start-page: 737 year: 2017 ident: C7EE03587J-(cit203)/*[position()=1] publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2017.07.107 – volume: 93 start-page: 1377 year: 2016 ident: C7EE03587J-(cit204)/*[position()=1] publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.08.084 – volume: 9 start-page: 2720 year: 2016 ident: C7EE03587J-(cit4)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C6EE01043A – volume: 100 start-page: 303 year: 2012 ident: C7EE03587J-(cit66)/*[position()=1] publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.05.022 – volume: 190 start-page: 474 year: 2017 ident: C7EE03587J-(cit188)/*[position()=1] publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.12.159 – volume: 60 start-page: 433 year: 2013 ident: C7EE03587J-(cit201)/*[position()=1] publication-title: Renewable Energy doi: 10.1016/j.renene.2013.05.041 – volume: 6 start-page: 964 year: 2016 ident: C7EE03587J-(cit3)/*[position()=1] publication-title: Nat. Clim. Change doi: 10.1038/nclimate3045 – volume: 65 start-page: 67 year: 2014 ident: C7EE03587J-(cit16)/*[position()=1] publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2014.03.005 – volume: 2 start-page: 17001 year: 2017 ident: C7EE03587J-(cit2)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/nenergy.2017.1 – volume: 5 start-page: 13357 year: 2015 ident: C7EE03587J-(cit40)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep13357 – volume: 13 start-page: 318 year: 2009 ident: C7EE03587J-(cit13)/*[position()=1] publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2007.10.005 – volume: 10 start-page: 802 year: 2016 ident: C7EE03587J-(cit145)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-016-1333-1 – volume: 89 start-page: 598 year: 2015 ident: C7EE03587J-(cit85)/*[position()=1] publication-title: Phase Transitions doi: 10.1080/01411594.2015.1091937 – volume: 101 start-page: 217 year: 2016 ident: C7EE03587J-(cit132)/*[position()=1] publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.02.120 – volume: 131 start-page: 904 year: 2009 ident: C7EE03587J-(cit152)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja808132u – volume: 13 start-page: 814 year: 2015 ident: C7EE03587J-(cit22)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.02.016 – volume: 23 start-page: 251 year: 2003 ident: C7EE03587J-(cit14)/*[position()=1] publication-title: Appl. Therm. Eng. doi: 10.1016/S1359-4311(02)00192-8 – volume: 54 start-page: 9307 year: 2015 ident: C7EE03587J-(cit35)/*[position()=1] publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.5b01026 – volume: 5 start-page: 8884 year: 2015 ident: C7EE03587J-(cit209)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep08884 – volume: 6 start-page: 44807 year: 2016 ident: C7EE03587J-(cit164)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA05283E – volume: 22 start-page: 18145 year: 2012 ident: C7EE03587J-(cit184)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c2jm33289b – volume: 174 start-page: 56 year: 2018 ident: C7EE03587J-(cit99)/*[position()=1] publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2017.08.025 – volume: 15 start-page: 3813 year: 2011 ident: C7EE03587J-(cit20)/*[position()=1] publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2011.07.019 – start-page: 2138 year: 2017 ident: C7EE03587J-(cit130)/*[position()=1] publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201601380 – volume: 31 start-page: 531 year: 2014 ident: C7EE03587J-(cit26)/*[position()=1] publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2013.12.033 – volume: 22 start-page: 20166 year: 2012 ident: C7EE03587J-(cit89)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c2jm33316c – volume: 31 start-page: 2649 year: 2015 ident: C7EE03587J-(cit31)/*[position()=1] publication-title: Langmuir doi: 10.1021/la504424u – volume: 119 start-page: 21504 year: 2015 ident: C7EE03587J-(cit163)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b06083 – volume: 11 start-page: 2323 year: 2015 ident: C7EE03587J-(cit218)/*[position()=1] publication-title: Small doi: 10.1002/smll.201402145 – volume: 115 start-page: 4738 year: 2011 ident: C7EE03587J-(cit111)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp111432j – volume: 7 start-page: 1185 year: 2014 ident: C7EE03587J-(cit105)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C3EE42573H – volume: 2 start-page: 5964 year: 2012 ident: C7EE03587J-(cit185)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/c2ra20904g – volume: 8 start-page: 14600 year: 2016 ident: C7EE03587J-(cit143)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C6NR03921A – volume: 118 start-page: 48 year: 2013 ident: C7EE03587J-(cit109)/*[position()=1] publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2013.07.017 – volume: 14 start-page: 615 year: 2010 ident: C7EE03587J-(cit17)/*[position()=1] publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2009.10.015 – volume: 15 start-page: 1675 year: 2011 ident: C7EE03587J-(cit12)/*[position()=1] publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2010.11.018 – volume: 4 start-page: 7641 year: 2016 ident: C7EE03587J-(cit168)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA01676F – volume: 15 start-page: 14390 year: 2013 ident: C7EE03587J-(cit134)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp51875b – volume: 146 start-page: 253 year: 2017 ident: C7EE03587J-(cit147)/*[position()=1] publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2017.05.037 – volume: 15 start-page: 294 year: 2016 ident: C7EE03587J-(cit110)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat4475 – volume: 108 start-page: 244 year: 2017 ident: C7EE03587J-(cit165)/*[position()=1] publication-title: Renewable Energy doi: 10.1016/j.renene.2017.02.083 – volume: 113 start-page: 195 year: 2013 ident: C7EE03587J-(cit139)/*[position()=1] publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2013.01.046 – volume: 22 start-page: 4389 year: 2016 ident: C7EE03587J-(cit28)/*[position()=1] publication-title: Chemistry doi: 10.1002/chem.201505035 – volume: 4 start-page: 18841 year: 2016 ident: C7EE03587J-(cit146)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA08454K – volume: 7 start-page: 8823 year: 2011 ident: C7EE03587J-(cit175)/*[position()=1] publication-title: Soft Matter doi: 10.1039/c1sm05973d – volume: 11 start-page: 1402 year: 2016 ident: C7EE03587J-(cit79)/*[position()=1] publication-title: J. Exp. Nanosci. doi: 10.1080/17458080.2016.1233582 – volume: 45 start-page: 1597 year: 2004 ident: C7EE03587J-(cit7)/*[position()=1] publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2003.09.015 – volume: 139 start-page: 10601 year: 2017 ident: C7EE03587J-(cit171)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b04872 – volume: 488 start-page: 294 year: 2012 ident: C7EE03587J-(cit5)/*[position()=1] publication-title: Nature doi: 10.1038/nature11475 – volume: 54 start-page: 2715 year: 2011 ident: C7EE03587J-(cit48)/*[position()=1] publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2011.03.022 – volume: 153 start-page: 217 year: 2009 ident: C7EE03587J-(cit46)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2009.06.019 – volume: 138 start-page: 157 year: 2017 ident: C7EE03587J-(cit98)/*[position()=1] publication-title: Energy doi: 10.1016/j.energy.2017.07.049 – volume: 21 start-page: 11174 year: 2015 ident: C7EE03587J-(cit30)/*[position()=1] publication-title: Chemistry doi: 10.1002/chem.201500666 – volume: 133 start-page: 4762 year: 2011 ident: C7EE03587J-(cit215)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja200894u – volume: 117 start-page: 23412 year: 2013 ident: C7EE03587J-(cit59)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp408478h – volume: 301 start-page: 887 year: 2016 ident: C7EE03587J-(cit212)/*[position()=1] publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.201600081 – volume: 49 start-page: 3704 year: 2008 ident: C7EE03587J-(cit44)/*[position()=1] publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2008.06.027 – volume: 48 start-page: 803 year: 2012 ident: C7EE03587J-(cit118)/*[position()=1] publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2012.01.016 – volume: 91 start-page: 7 year: 2012 ident: C7EE03587J-(cit38)/*[position()=1] publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.08.041 – volume: 19 start-page: 78 year: 2016 ident: C7EE03587J-(cit126)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.11.001 – volume: 19 start-page: 13172 year: 2017 ident: C7EE03587J-(cit210)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP02445B – volume: 11 start-page: 5315 year: 2015 ident: C7EE03587J-(cit221)/*[position()=1] publication-title: Small doi: 10.1002/smll.201403228 – volume: 5 start-page: 7482 year: 2017 ident: C7EE03587J-(cit21)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA09712J – volume: 51 start-page: 376 year: 2013 ident: C7EE03587J-(cit83)/*[position()=1] publication-title: J. Polym. Sci., Part B: Polym. Phys. doi: 10.1002/polb.23223 – volume: 5 start-page: 92812 year: 2015 ident: C7EE03587J-(cit88)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C5RA17152K – volume: 53 start-page: 3780 year: 2014 ident: C7EE03587J-(cit15)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201305201 – volume: 99 start-page: 259 year: 2014 ident: C7EE03587J-(cit161)/*[position()=1] publication-title: Sol. Energy doi: 10.1016/j.solener.2013.11.021 – volume: 135 start-page: 324 year: 2015 ident: C7EE03587J-(cit220)/*[position()=1] publication-title: Colloids Surf., B doi: 10.1016/j.colsurfb.2015.07.061 – volume: 114 start-page: 632 year: 2014 ident: C7EE03587J-(cit72)/*[position()=1] publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.10.029 – volume: 77 start-page: 246 year: 2017 ident: C7EE03587J-(cit197)/*[position()=1] publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2017.04.001 – volume: 6 start-page: 58740 year: 2016 ident: C7EE03587J-(cit119)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA12890D – volume: 44 start-page: 7405 year: 2011 ident: C7EE03587J-(cit36)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma201509d |
SSID | ssj0062079 |
Score | 2.6786041 |
SecondaryResourceType | review_article |
Snippet | Phase change materials (PCMs) have been extensively characterized as constant temperature latent heat thermal energy storage (TES) materials. Nevertheless, the... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1392 |
SubjectTerms | Confinement Containers Drug delivery Drug delivery systems Encapsulation Energy conversion Energy storage Heat transfer Latent heat Phase change materials Phase separation Physical properties Supercooling Temperature control Thermal energy |
Title | Nanoconfined phase change materials for thermal energy applications |
URI | https://www.proquest.com/docview/2054724469 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbKcmkPFX2gUmhlqb1Uq9CNn8mRrhYQfZxArHqJ4sQRi1AW0eyh_HrGr8Tb7oH2YkVeO8l6voy_8XjGCH2UrEl1qUWiBNA3ltMyKQUUtfGZ8TyrS2aikb__EKcX7GzO54NH10aXdOqwut8YV_I_UoU6kKuJkv0HyfY3hQq4BvlCCRKG8lEyBtW4BHu2AaZYj2-vSrP13EYLjIGHuhcI2whB_96MtQv0i53Wayvz7mcDhij-LURNRuBoutK6cS7hiX7p1yLDrz3PF-3vVa_tV7albq_KZaj7tvAtfy6Uz_ztFx7SLFp4cLpScpZw4Y6yO9RRnZyINQWbRkCKtSWwTxLNvCbobqNWn1CTFHUqZzPATybPhrkr-Ov_mNL6jYbWxU7zYui7hbYJWBRkhLaPvn45uQzTtiATm5ix_1chly3NPw-919nLYJJs3YXzYiwvOd9Bz71BgY8cOl6gJ7p9iZ5FaSZfoWmME2xxgh1OcI8TDDjBHifY4QTHOHmNLo5n59PTxB-ekVQ0Y12S5cykl2yAnsuGCk4U55QobU4aohJYvaQ6V6QxXgGtWVpJxmSuKyZqkiue0V00apetfoOwNlF13Ph_VcUqASY1l1SWQARlpdI630OfwqAUlc8sbw44uSn-Hv499KFve-vyqWxsdRDGtvDf26-CgHUhgY0KeOAujHffv5Ja237Xbx919330dMDzARp1dyv9Dqhlp957UDwAMBB1cQ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoconfined+phase+change+materials+for+thermal+energy+applications&rft.jtitle=Energy+%26+environmental+science&rft.au=Aftab%2C+Waseem&rft.au=Huang%2C+Xinyu&rft.au=Wu%2C+Wenhao&rft.au=Liang%2C+Zibin&rft.date=2018-01-01&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=11&rft.issue=6&rft.spage=1392&rft.epage=1424&rft_id=info:doi/10.1039%2FC7EE03587J&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C7EE03587J |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon |