A proton conductor showing an indication of single-ion magnet behavior based on a mononuclear Dy() complex

Crystalline molecular materials exhibiting both proton conduction and single-molecule magnet (SMM) behavior would offer great opportunities for applications in fuel cell, molecular spintronic, and high-density data storage technologies. However, such kinds of materials have rarely been reported. Her...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. C, Materials for optical and electronic devices Vol. 9; no. 2; pp. 481 - 488
Main Authors Zhu, Shui-Dong, Dong, Lu, Hu, Jun-Jie, Wen, He-Rui, Lu, Ying-Bing, Deng, Wei-Hua, Liu, Cai-Ming, Liu, Sui-Jun, Xu, Gang, Fu, Zhi-Hua
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Crystalline molecular materials exhibiting both proton conduction and single-molecule magnet (SMM) behavior would offer great opportunities for applications in fuel cell, molecular spintronic, and high-density data storage technologies. However, such kinds of materials have rarely been reported. Herein, the first example of a mononuclear proton-conductive Dy III -SMM, namely [Dy(H 2 bim) 2 (H 2 O) 2 (NO 3 ) 2 ](NO 3 ) ( 1 ) (H 2 bim = 2,2′-biimidazole), was synthesized and characterized. Complex 1 displays high proton conductivity ( σ ) of 1.16 × 10 −3 S cm −1 at 35 °C and 100% relative humidity (RH). The 1D H-bonding network, with 2,2′-biimidazole and coordinated water molecules acting as H-bonding donors and nitrate anions (NO 3 − ) acting as H-bonding acceptors, plays a dominant role in allowing this high conductivity. Magnetic studies indicated that complex 1 exhibits single-ion magnet behavior. Crystalline molecular materials exhibiting both proton conduction and single-molecule magnet (SMM) behavior would offer great opportunities for applications in fuel cell, molecular spintronic, and high-density data storage technologies.
AbstractList Crystalline molecular materials exhibiting both proton conduction and single-molecule magnet (SMM) behavior would offer great opportunities for applications in fuel cell, molecular spintronic, and high-density data storage technologies. However, such kinds of materials have rarely been reported. Herein, the first example of a mononuclear proton-conductive DyIII-SMM, namely [Dy(H2bim)2(H2O)2(NO3)2](NO3) (1) (H2bim = 2,2′-biimidazole), was synthesized and characterized. Complex 1 displays high proton conductivity (σ) of 1.16 × 10−3 S cm−1 at 35 °C and 100% relative humidity (RH). The 1D H-bonding network, with 2,2′-biimidazole and coordinated water molecules acting as H-bonding donors and nitrate anions (NO3−) acting as H-bonding acceptors, plays a dominant role in allowing this high conductivity. Magnetic studies indicated that complex 1 exhibits single-ion magnet behavior.
Crystalline molecular materials exhibiting both proton conduction and single-molecule magnet (SMM) behavior would offer great opportunities for applications in fuel cell, molecular spintronic, and high-density data storage technologies. However, such kinds of materials have rarely been reported. Herein, the first example of a mononuclear proton-conductive Dy III -SMM, namely [Dy(H 2 bim) 2 (H 2 O) 2 (NO 3 ) 2 ](NO 3 ) ( 1 ) (H 2 bim = 2,2′-biimidazole), was synthesized and characterized. Complex 1 displays high proton conductivity ( σ ) of 1.16 × 10 −3 S cm −1 at 35 °C and 100% relative humidity (RH). The 1D H-bonding network, with 2,2′-biimidazole and coordinated water molecules acting as H-bonding donors and nitrate anions (NO 3 − ) acting as H-bonding acceptors, plays a dominant role in allowing this high conductivity. Magnetic studies indicated that complex 1 exhibits single-ion magnet behavior. Crystalline molecular materials exhibiting both proton conduction and single-molecule magnet (SMM) behavior would offer great opportunities for applications in fuel cell, molecular spintronic, and high-density data storage technologies.
Crystalline molecular materials exhibiting both proton conduction and single-molecule magnet (SMM) behavior would offer great opportunities for applications in fuel cell, molecular spintronic, and high-density data storage technologies. However, such kinds of materials have rarely been reported. Herein, the first example of a mononuclear proton-conductive Dy III -SMM, namely [Dy(H 2 bim) 2 (H 2 O) 2 (NO 3 ) 2 ](NO 3 ) ( 1 ) (H 2 bim = 2,2′-biimidazole), was synthesized and characterized. Complex 1 displays high proton conductivity ( σ ) of 1.16 × 10 −3 S cm −1 at 35 °C and 100% relative humidity (RH). The 1D H-bonding network, with 2,2′-biimidazole and coordinated water molecules acting as H-bonding donors and nitrate anions (NO 3 − ) acting as H-bonding acceptors, plays a dominant role in allowing this high conductivity. Magnetic studies indicated that complex 1 exhibits single-ion magnet behavior.
Author Lu, Ying-Bing
Zhu, Shui-Dong
Deng, Wei-Hua
Fu, Zhi-Hua
Hu, Jun-Jie
Dong, Lu
Liu, Sui-Jun
Wen, He-Rui
Xu, Gang
Liu, Cai-Ming
AuthorAffiliation State Key Laboratory of Structural Chemistry
Chinese Academy of Sciences
Institute of Chemistry
Gannan Normal University
Jiangxi University of Science and Technology
Beijing National Laboratory for Molecular Sciences
Center for Molecular Science
Fujian Institute of Research on the Structure of Matter
School of Chemistry and Chemical Engineering
Key Laboratory of Organic Solids
AuthorAffiliation_xml – name: School of Chemistry and Chemical Engineering
– name: Beijing National Laboratory for Molecular Sciences
– name: Institute of Chemistry
– name: Gannan Normal University
– name: Chinese Academy of Sciences
– name: State Key Laboratory of Structural Chemistry
– name: Key Laboratory of Organic Solids
– name: Jiangxi University of Science and Technology
– name: Center for Molecular Science
– name: Fujian Institute of Research on the Structure of Matter
Author_xml – sequence: 1
  givenname: Shui-Dong
  surname: Zhu
  fullname: Zhu, Shui-Dong
– sequence: 2
  givenname: Lu
  surname: Dong
  fullname: Dong, Lu
– sequence: 3
  givenname: Jun-Jie
  surname: Hu
  fullname: Hu, Jun-Jie
– sequence: 4
  givenname: He-Rui
  surname: Wen
  fullname: Wen, He-Rui
– sequence: 5
  givenname: Ying-Bing
  surname: Lu
  fullname: Lu, Ying-Bing
– sequence: 6
  givenname: Wei-Hua
  surname: Deng
  fullname: Deng, Wei-Hua
– sequence: 7
  givenname: Cai-Ming
  surname: Liu
  fullname: Liu, Cai-Ming
– sequence: 8
  givenname: Sui-Jun
  surname: Liu
  fullname: Liu, Sui-Jun
– sequence: 9
  givenname: Gang
  surname: Xu
  fullname: Xu, Gang
– sequence: 10
  givenname: Zhi-Hua
  surname: Fu
  fullname: Fu, Zhi-Hua
BookMark eNptUcFOAyEQJaYm1tqLdxMSL2qyCgtl2WPTajVp4qWeN5SFlmYLFVi1fy9tTU2MXGaYee8x8zgHHeusAuASo3uMSPlQoygRpTlZnIBujgYoKwaEdo55zs5AP4QVSodjxlnZBash3HgXnYXS2bqV0XkYlu7T2AUUFhpbGymiSX2nYUjVRmW721osrIpwrpbiwyTOXARVw9QQcO3SXK1slPBwvL25TcrrTaO-LsCpFk1Q_Z_YA29Pj7PRczZ9nbyMhtNMEk5jxrmsKWVMFUKIgnIsFJNIK8V1XUgsS6KJ5pKLlEii2ZwOeKFKLKQilDNOeuD6oJsWe29ViNXKtd6mJ6ucFiUliBQ4oe4OKOldCF7pauPNWvhthVG1s7Mao9lob-ckgdEfsDRxb0v0wjT_U64OFB_kUfr3h8g3SuyEBg
CitedBy_id crossref_primary_10_1021_acs_inorgchem_2c01031
crossref_primary_10_1021_acs_inorgchem_2c00242
crossref_primary_10_1021_acs_inorgchem_3c01626
crossref_primary_10_1038_s41467_025_56541_2
crossref_primary_10_1039_D2NJ04435H
crossref_primary_10_1016_j_inoche_2023_111660
crossref_primary_10_1002_asia_202100670
crossref_primary_10_1039_D4QI00138A
crossref_primary_10_1039_D4DT02131B
crossref_primary_10_1039_D4TC04169K
crossref_primary_10_1039_D3CE01267K
crossref_primary_10_1021_acs_cgd_2c01243
crossref_primary_10_1246_bcsj_20230046
crossref_primary_10_1039_D1TC03920B
crossref_primary_10_1021_acs_inorgchem_5c00001
crossref_primary_10_1021_acs_inorgchem_4c01847
crossref_primary_10_1021_acs_inorgchem_4c04719
crossref_primary_10_1039_D3QI00634D
crossref_primary_10_3390_molecules28227506
crossref_primary_10_1021_acs_inorgchem_2c03785
crossref_primary_10_1002_masy_202200120
crossref_primary_10_1007_s11426_021_9976_7
crossref_primary_10_1021_acs_cgd_4c01378
crossref_primary_10_1002_chem_202401334
crossref_primary_10_1039_D4CE00501E
crossref_primary_10_1039_D3NJ02225K
crossref_primary_10_1016_j_jallcom_2024_174087
crossref_primary_10_1016_j_molstruc_2024_137874
crossref_primary_10_1039_D1QI01051D
crossref_primary_10_1002_cjoc_202300212
Cites_doi 10.1021/jacs.6b02702
10.1002/adma.201603381
10.1039/C8SC04475A
10.1021/jacs.8b13514
10.1021/acs.inorgchem.9b03105
10.1021/ja505916c
10.1126/sciadv.aaw4515
10.1016/j.ccr.2017.10.023
10.1002/anie.201802632
10.1002/ange.201410523
10.1038/s41557-020-0427-2
10.1021/ja206917z
10.1021/acs.inorgchem.9b02861
10.1016/j.matt.2019.12.018
10.1002/anie.201410523
10.1039/C9TA10286H
10.1021/ja103018m
10.1016/j.ccr.2017.03.015
10.1038/nature23447
10.1016/j.ccr.2016.12.017
10.1021/acs.cgd.9b00869
10.1021/acs.chemrev.9b00842
10.1039/c3sc50887k
10.1039/c3dt51785c
10.1002/adma.201907090
10.1039/c2cc16946k
10.1021/ja300122r
10.1021/jacs.9b04937
10.1002/adfm.201701465
10.1021/jacs.6b12374
10.1039/C5TA10521H
10.1021/acs.inorgchem.7b00057
10.1021/jacs.9b13461
10.1021/ja4089956
10.1021/acs.inorgchem.5b02432
10.1016/j.ccr.2015.07.004
10.1039/C9DT04480A
10.1002/anie.201804102
10.1021/jacs.9b12797
10.1002/chem.201802779
10.1021/acs.chemmater.6b05497
10.1021/ja207891y
10.1002/chem.201805177
10.1021/jacs.7b08690
10.1039/C9DT02331C
10.1021/ja309968u
10.1126/science.aav0652
10.1039/C8CC07468B
10.1039/C8CC08700H
10.1002/anie.201310509
10.1002/chem.201501500
10.1039/C7CC09212A
10.1021/acs.chemmater.8b02765
10.1016/j.chempr.2020.06.007
10.1021/jacs.6b12847
10.1021/jacs.9b13147
10.1021/ja100385f
10.1039/D0QI00632G
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1039/d0tc04423g
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2050-7534
EndPage 488
ExternalDocumentID 10_1039_D0TC04423G
d0tc04423g
GroupedDBID 0-7
0R
4.4
705
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABGFH
ABRYZ
ACGFS
ACLDK
ADMRA
ADSRN
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CKLOX
EBS
ECGLT
EE0
EF-
GNO
HZ
H~N
J3I
JG
O-G
O9-
R7C
RCNCU
RIG
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
0R~
AAJAE
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c384t-88cd4466e7aaa7481ae6c0fee8fd7c1c93f3f8c8a93fc3f6b4587e91ace348683
ISSN 2050-7526
IngestDate Sun Jun 29 12:25:45 EDT 2025
Tue Jul 01 04:26:22 EDT 2025
Thu Apr 24 23:01:52 EDT 2025
Sat Jan 08 03:52:06 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c384t-88cd4466e7aaa7481ae6c0fee8fd7c1c93f3f8c8a93fc3f6b4587e91ace348683
Notes 1
For ESI and crystallographic data in CIF or other electronic format see DOI
2024960
Electronic supplementary information (ESI) available: X-ray crystallographic data file in CIF format for
10.1039/d0tc04423g
with the CCDC
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6497-2955
0000-0001-7184-6693
0000-0002-7705-0634
0000-0001-8562-0724
PQID 2479430371
PQPubID 2047521
PageCount 8
ParticipantIDs proquest_journals_2479430371
crossref_primary_10_1039_D0TC04423G
crossref_citationtrail_10_1039_D0TC04423G
rsc_primary_d0tc04423g
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 20210101
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. C, Materials for optical and electronic devices
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Chand (D0TC04423G-(cit46)/*[position()=1]) 2019; 25
Wu (D0TC04423G-(cit47)/*[position()=1]) 2013; 4
Li (D0TC04423G-(cit12)/*[position()=1]) 2019; 7
Lu (D0TC04423G-(cit39)/*[position()=1]) 2016; 55
Ōkawa (D0TC04423G-(cit18)/*[position()=1]) 2013; 135
Elahi (D0TC04423G-(cit6)/*[position()=1]) 2018; 57
Lim (D0TC04423G-(cit11)/*[position()=1]) 2019; 10
Li (D0TC04423G-(cit8)/*[position()=1]) 2020; 6
Gumerova (D0TC04423G-(cit28)/*[position()=1]) 2020; 142
Long (D0TC04423G-(cit53)/*[position()=1]) 2015; 54
Goodwin (D0TC04423G-(cit29)/*[position()=1]) 2017; 548
Ye (D0TC04423G-(cit15)/*[position()=1]) 2020; 32
Da Cunha (D0TC04423G-(cit19)/*[position()=1]) 2013; 135
Pardo (D0TC04423G-(cit35)/*[position()=1]) 2011; 133
Anwar (D0TC04423G-(cit43)/*[position()=1]) 2019; 48
Pili (D0TC04423G-(cit44)/*[position()=1]) 2018; 30
Wang (D0TC04423G-(cit60)/*[position()=1]) 2019; 19
Hilgar (D0TC04423G-(cit20)/*[position()=1]) 2019; 141
Guo (D0TC04423G-(cit55)/*[position()=1]) 2010; 132
Ohkoshi (D0TC04423G-(cit34)/*[position()=1]) 2010; 132
Wang (D0TC04423G-(cit37)/*[position()=1]) 2020; 142
Liu (D0TC04423G-(cit54)/*[position()=1]) 2020; 7
Ōkawa (D0TC04423G-(cit33)/*[position()=1]) 2020; 59
Liu (D0TC04423G-(cit49)/*[position()=1]) 2018; 54
Zhong (D0TC04423G-(cit7)/*[position()=1]) 2017; 27
Wang (D0TC04423G-(cit24)/*[position()=1]) 2016; 306
Long (D0TC04423G-(cit31)/*[position()=1]) 2014; 53
Costes (D0TC04423G-(cit59)/*[position()=1]) 2015; 21
Long (D0TC04423G-(cit25)/*[position()=1]) 2015; 127
Zheng (D0TC04423G-(cit22)/*[position()=1]) 2019; 378
Latendresse (D0TC04423G-(cit52)/*[position()=1]) 2017; 139
Gass (D0TC04423G-(cit51)/*[position()=1]) 2012; 48
Su (D0TC04423G-(cit3)/*[position()=1]) 2020; 2
Shinde (D0TC04423G-(cit4)/*[position()=1]) 2016; 4
Jeletic (D0TC04423G-(cit61)/*[position()=1]) 2011; 133
Sadakiyo (D0TC04423G-(cit17)/*[position()=1]) 2012; 134
Li (D0TC04423G-(cit45)/*[position()=1]) 2017; 29
Wei (D0TC04423G-(cit14)/*[position()=1]) 2017; 139
Liu (D0TC04423G-(cit58)/*[position()=1]) 2020; 59
Pedersen (D0TC04423G-(cit26)/*[position()=1]) 2016; 138
Rousset (D0TC04423G-(cit42)/*[position()=1]) 2018; 24
Lim (D0TC04423G-(cit1)/*[position()=1]) 2020; 120
Harriman (D0TC04423G-(cit21)/*[position()=1]) 2017; 139
Hayashi (D0TC04423G-(cit9)/*[position()=1]) 2019; 141
Huang (D0TC04423G-(cit50)/*[position()=1]) 2018; 57
McAdams (D0TC04423G-(cit27)/*[position()=1]) 2017; 346
Liu (D0TC04423G-(cit57)/*[position()=1]) 2020; 49
Ma (D0TC04423G-(cit48)/*[position()=1]) 2020; 142
Qin (D0TC04423G-(cit36)/*[position()=1]) 2016; 28
Liu (D0TC04423G-(cit23)/*[position()=1]) 2016; 138
Bao (D0TC04423G-(cit10)/*[position()=1]) 2014; 136
Pointillart (D0TC04423G-(cit32)/*[position()=1]) 2017; 346
Liu (D0TC04423G-(cit56)/*[position()=1]) 2013; 42
Guo (D0TC04423G-(cit30)/*[position()=1]) 2018; 362
Cen (D0TC04423G-(cit38)/*[position()=1]) 2017; 56
Ohkoshi (D0TC04423G-(cit13)/*[position()=1]) 2020; 12
Yao (D0TC04423G-(cit2)/*[position()=1]) 2019; 5
Xia (D0TC04423G-(cit5)/*[position()=1]) 2018; 54
Xing (D0TC04423G-(cit16)/*[position()=1]) 2019; 55
References_xml – issn: 1994
  publication-title: SHELXTL Reference Manual, version 5
– issn: 2013
  publication-title: SHAPE, version 2.1
  doi: Llunell Casanova Cirera Alemany Alvarez
– volume: 138
  start-page: 5801
  year: 2016
  ident: D0TC04423G-(cit26)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b02702
– volume: 28
  start-page: 10772
  year: 2016
  ident: D0TC04423G-(cit36)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603381
– volume: 10
  start-page: 16
  year: 2019
  ident: D0TC04423G-(cit11)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC04475A
– volume: 141
  start-page: 1913
  year: 2019
  ident: D0TC04423G-(cit20)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b13514
– volume: 59
  start-page: 2308
  year: 2020
  ident: D0TC04423G-(cit58)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.9b03105
– volume: 136
  start-page: 9292
  year: 2014
  ident: D0TC04423G-(cit10)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja505916c
– volume: 5
  start-page: eaaw4515
  year: 2019
  ident: D0TC04423G-(cit2)/*[position()=1]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaw4515
– volume: 378
  start-page: 222
  year: 2019
  ident: D0TC04423G-(cit22)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2017.10.023
– volume: 57
  start-page: 6662
  year: 2018
  ident: D0TC04423G-(cit6)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201802632
– volume: 127
  start-page: 2264
  year: 2015
  ident: D0TC04423G-(cit25)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.201410523
– volume: 12
  start-page: 338
  year: 2020
  ident: D0TC04423G-(cit13)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-020-0427-2
– volume: 133
  start-page: 15328
  year: 2011
  ident: D0TC04423G-(cit35)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja206917z
– volume: 59
  start-page: 623
  year: 2020
  ident: D0TC04423G-(cit33)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.9b02861
– volume: 2
  start-page: 711
  year: 2020
  ident: D0TC04423G-(cit3)/*[position()=1]
  publication-title: Matter
  doi: 10.1016/j.matt.2019.12.018
– volume: 54
  start-page: 2236
  year: 2015
  ident: D0TC04423G-(cit53)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201410523
– volume: 7
  start-page: 25165
  year: 2019
  ident: D0TC04423G-(cit12)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA10286H
– volume: 132
  start-page: 8538
  year: 2010
  ident: D0TC04423G-(cit55)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja103018m
– volume: 346
  start-page: 216
  year: 2017
  ident: D0TC04423G-(cit27)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2017.03.015
– volume: 138
  start-page: 54413
  year: 2016
  ident: D0TC04423G-(cit23)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
– volume: 548
  start-page: 439
  year: 2017
  ident: D0TC04423G-(cit29)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature23447
– volume: 346
  start-page: 150
  year: 2017
  ident: D0TC04423G-(cit32)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2016.12.017
– volume: 19
  start-page: 5369
  year: 2019
  ident: D0TC04423G-(cit60)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.9b00869
– volume: 120
  start-page: 8416
  issue: 16
  year: 2020
  ident: D0TC04423G-(cit1)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00842
– volume: 4
  start-page: 3104
  year: 2013
  ident: D0TC04423G-(cit47)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/c3sc50887k
– volume: 42
  start-page: 14813
  year: 2013
  ident: D0TC04423G-(cit56)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/c3dt51785c
– volume: 32
  start-page: e1907090
  year: 2020
  ident: D0TC04423G-(cit15)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907090
– volume: 48
  start-page: 2089
  year: 2012
  ident: D0TC04423G-(cit51)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc16946k
– volume: 134
  start-page: 5472
  year: 2012
  ident: D0TC04423G-(cit17)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja300122r
– volume: 141
  start-page: 11686
  year: 2019
  ident: D0TC04423G-(cit9)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b04937
– volume: 27
  start-page: 1701465
  year: 2017
  ident: D0TC04423G-(cit7)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201701465
– volume: 139
  start-page: 1420
  year: 2017
  ident: D0TC04423G-(cit21)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12374
– volume: 4
  start-page: 2682
  year: 2016
  ident: D0TC04423G-(cit4)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA10521H
– volume: 56
  start-page: 3644
  year: 2017
  ident: D0TC04423G-(cit38)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.7b00057
– volume: 142
  start-page: 2682
  year: 2020
  ident: D0TC04423G-(cit48)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b13461
– volume: 135
  start-page: 16332
  year: 2013
  ident: D0TC04423G-(cit19)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4089956
– volume: 55
  start-page: 3738
  year: 2016
  ident: D0TC04423G-(cit39)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.5b02432
– volume: 306
  start-page: 195
  year: 2016
  ident: D0TC04423G-(cit24)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2015.07.004
– volume: 49
  start-page: 2121
  year: 2020
  ident: D0TC04423G-(cit57)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C9DT04480A
– volume: 57
  start-page: 8577
  year: 2018
  ident: D0TC04423G-(cit50)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201804102
– volume: 142
  start-page: 3336
  year: 2020
  ident: D0TC04423G-(cit28)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b12797
– volume: 24
  start-page: 14768
  year: 2018
  ident: D0TC04423G-(cit42)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201802779
– volume: 29
  start-page: 2321
  year: 2017
  ident: D0TC04423G-(cit45)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b05497
– volume: 133
  start-page: 19286
  year: 2011
  ident: D0TC04423G-(cit61)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja207891y
– volume: 25
  start-page: 1691
  year: 2019
  ident: D0TC04423G-(cit46)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201805177
– volume: 139
  start-page: 14877
  year: 2017
  ident: D0TC04423G-(cit52)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b08690
– volume: 48
  start-page: 14289
  year: 2019
  ident: D0TC04423G-(cit43)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C9DT02331C
– volume: 135
  start-page: 2256
  year: 2013
  ident: D0TC04423G-(cit18)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja309968u
– volume: 362
  start-page: 1400
  year: 2018
  ident: D0TC04423G-(cit30)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aav0652
– volume: 54
  start-page: 13379
  year: 2018
  ident: D0TC04423G-(cit49)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC07468B
– volume: 55
  start-page: 1241
  year: 2019
  ident: D0TC04423G-(cit16)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC08700H
– volume: 53
  start-page: 1
  year: 2014
  ident: D0TC04423G-(cit31)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201310509
– volume: 21
  start-page: 15785
  year: 2015
  ident: D0TC04423G-(cit59)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201501500
– volume: 54
  start-page: 4429
  year: 2018
  ident: D0TC04423G-(cit5)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC09212A
– volume: 30
  start-page: 7593
  year: 2018
  ident: D0TC04423G-(cit44)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b02765
– volume: 6
  start-page: 2272
  year: 2020
  ident: D0TC04423G-(cit8)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.06.007
– volume: 139
  start-page: 3505
  year: 2017
  ident: D0TC04423G-(cit14)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12847
– volume: 142
  start-page: 3970
  year: 2020
  ident: D0TC04423G-(cit37)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b13147
– volume: 132
  start-page: 6620
  year: 2010
  ident: D0TC04423G-(cit34)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja100385f
– volume: 7
  start-page: 3340
  year: 2020
  ident: D0TC04423G-(cit54)/*[position()=1]
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D0QI00632G
SSID ssj0000816869
Score 2.4210896
Snippet Crystalline molecular materials exhibiting both proton conduction and single-molecule magnet (SMM) behavior would offer great opportunities for applications in...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 481
SubjectTerms Conductivity
Conductors
Crystallography
Data storage
Donors (electronic)
Format
Fuel cells
Nuclear fuels
Proton conduction
Relative humidity
Water chemistry
Title A proton conductor showing an indication of single-ion magnet behavior based on a mononuclear Dy() complex
URI https://www.proquest.com/docview/2479430371
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELa6TUjwgGAwURjIEjwwRRlp4iTOY9V2lGkMCaWi4iVybGettLVTm4gf_x3_GWfHcQIMBLxEqeMkru-z73w534fQC1AhMmQBcX0Y1cpbFbm5oIUriBAiZ7kQOoHp2_NoOiOn83De633rRC1VZX7Mv964r-R_pAplIFe1S_YfJGsfCgVwDvKFI0gYjn8l46EKr1J5MWBRq_K2rjfOdrH-VO87dNTXaG4tQuUTuJSu-nXFLlaytDv0HaXJhPpqwBxo-nqlUhyzjTOG_qfL5VI5DnTkufz8G1MWrN767zq84Y87dkb1VqDmigpnXF-XNjlBh39HSD1dWWfPolq6Y8WB9HFR2YChqjb3jaJVMT_Vyj1dSmdq60yl-77S0QkfzAY3487wBz-5M2qnSROxqiNSTLvbidH3Qs-NQ9-k0O6WGceomdmTDoD9zixNapYYo_BJzSv4iy7xApWKVXgl9wgYnRetxmyiBM7fZSezs7MsnczTHbTnw0oFptq94SR9c2YdfZrZRFMr2nY3aXKD5FX7-B8No3a1s7NpqGi0yZPeQ3eNgPGwBt591JOrfXSnk8FyH93SEcR8-wBdDXENRmzBiA0YMVvhFox4XeAWjLgGI27AiDUYMVxguANGPP7yEqB4hA0QH6LZySQdTV3D5eHygJLSpYoki0SRjBljMQiAyYh7hZS0EDEf8CQogoJyyuCEB0WUk5DGMhkwLgNCIxocoF14p3yEcJxTCYqjkBFNSBjCkp-rVQjYtZKyWIR9dNR0ZMZNonvFt3KZ6YCLIMnGXjrSnf66j57butd1epcbax028sjM8N9mvuJmCFTGyz46ABnZ-1uRPv7zfU_Q7XYEHKLdclPJp2DilvkzA6Lvp8Ws9g
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+proton+conductor+showing+an+indication+of+single-ion+magnet+behavior+based+on+a+mononuclear+Dy%28iii%29+complex&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Shui-Dong+Zhu&rft.au=Lu%2C+Dong&rft.au=Jun-Jie+Hu&rft.au=He-Rui%2C+Wen&rft.date=2021-01-01&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=9&rft.issue=2&rft.spage=481&rft.epage=488&rft_id=info:doi/10.1039%2Fd0tc04423g&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon