Mitophagy-mediated adipose inflammation contributes to type 2 diabetes with hepatic insulin resistance

White adipose tissues (WAT) play crucial roles in maintaining whole-body energy homeostasis, and their dysfunction can contribute to hepatic insulin resistance and type 2 diabetes mellitus (T2DM). However, the mechanisms underlying these alterations remain unknown. By analyzing the transcriptome lan...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of experimental medicine Vol. 218; no. 3
Main Authors He, Feng, Huang, Yanrui, Song, Zhi, Zhou, Huanjiao Jenny, Zhang, Haifeng, Perry, Rachel J., Shulman, Gerald I., Min, Wang
Format Journal Article
LanguageEnglish
Published United States Rockefeller University Press 01.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract White adipose tissues (WAT) play crucial roles in maintaining whole-body energy homeostasis, and their dysfunction can contribute to hepatic insulin resistance and type 2 diabetes mellitus (T2DM). However, the mechanisms underlying these alterations remain unknown. By analyzing the transcriptome landscape in human adipocytes based on available RNA-seq datasets from lean, obese, and T2DM patients, we reveal elevated mitochondrial reactive oxygen species (ROS) pathway and NF-κB signaling with altered fatty acid metabolism in T2DM adipocytes. Mice with adipose-specific deletion of mitochondrial redox Trx2 develop hyperglycemia, hepatic insulin resistance, and hepatic steatosis. Trx2-deficient WAT exhibited excessive mitophagy, increased inflammation, and lipolysis. Mechanistically, mitophagy was induced through increasing ROS generation and NF-κB–dependent accumulation of autophagy receptor p62/SQSTM1, which recruits damaged mitochondria with polyubiquitin chains. Importantly, administration of ROS scavenger or NF-κB inhibitor ameliorates glucose and lipid metabolic disorders and T2DM progression in mice. Taken together, this study reveals a previously unrecognized mechanism linking mitophagy-mediated adipose inflammation to T2DM with hepatic insulin resistance.
AbstractList Adipose-specific deletion of mitochondrial redox Trx2 induces excessive mitophagy in white adipose tissue with increased inflammation and increased lipolysis, promoting hepatic glucose production and development of T2DM with hepatic steatosis. Administration of NF-κB inhibitor prevents adipose mitophagy and ameliorates T2DM progression. White adipose tissues (WAT) play crucial roles in maintaining whole-body energy homeostasis, and their dysfunction can contribute to hepatic insulin resistance and type 2 diabetes mellitus (T2DM). However, the mechanisms underlying these alterations remain unknown. By analyzing the transcriptome landscape in human adipocytes based on available RNA-seq datasets from lean, obese, and T2DM patients, we reveal elevated mitochondrial reactive oxygen species (ROS) pathway and NF-κB signaling with altered fatty acid metabolism in T2DM adipocytes. Mice with adipose-specific deletion of mitochondrial redox Trx2 develop hyperglycemia, hepatic insulin resistance, and hepatic steatosis. Trx2 -deficient WAT exhibited excessive mitophagy, increased inflammation, and lipolysis. Mechanistically, mitophagy was induced through increasing ROS generation and NF-κB–dependent accumulation of autophagy receptor p62/SQSTM1, which recruits damaged mitochondria with polyubiquitin chains. Importantly, administration of ROS scavenger or NF-κB inhibitor ameliorates glucose and lipid metabolic disorders and T2DM progression in mice. Taken together, this study reveals a previously unrecognized mechanism linking mitophagy-mediated adipose inflammation to T2DM with hepatic insulin resistance.
White adipose tissues (WAT) play crucial roles in maintaining whole-body energy homeostasis, and their dysfunction can contribute to hepatic insulin resistance and type 2 diabetes mellitus (T2DM). However, the mechanisms underlying these alterations remain unknown. By analyzing the transcriptome landscape in human adipocytes based on available RNA-seq datasets from lean, obese, and T2DM patients, we reveal elevated mitochondrial reactive oxygen species (ROS) pathway and NF-κB signaling with altered fatty acid metabolism in T2DM adipocytes. Mice with adipose-specific deletion of mitochondrial redox Trx2 develop hyperglycemia, hepatic insulin resistance, and hepatic steatosis. Trx2-deficient WAT exhibited excessive mitophagy, increased inflammation, and lipolysis. Mechanistically, mitophagy was induced through increasing ROS generation and NF-κB-dependent accumulation of autophagy receptor p62/SQSTM1, which recruits damaged mitochondria with polyubiquitin chains. Importantly, administration of ROS scavenger or NF-κB inhibitor ameliorates glucose and lipid metabolic disorders and T2DM progression in mice. Taken together, this study reveals a previously unrecognized mechanism linking mitophagy-mediated adipose inflammation to T2DM with hepatic insulin resistance.
White adipose tissues (WAT) play crucial roles in maintaining whole-body energy homeostasis, and their dysfunction can contribute to hepatic insulin resistance and type 2 diabetes mellitus (T2DM). However, the mechanisms underlying these alterations remain unknown. By analyzing the transcriptome landscape in human adipocytes based on available RNA-seq datasets from lean, obese, and T2DM patients, we reveal elevated mitochondrial reactive oxygen species (ROS) pathway and NF-κB signaling with altered fatty acid metabolism in T2DM adipocytes. Mice with adipose-specific deletion of mitochondrial redox Trx2 develop hyperglycemia, hepatic insulin resistance, and hepatic steatosis. Trx2-deficient WAT exhibited excessive mitophagy, increased inflammation, and lipolysis. Mechanistically, mitophagy was induced through increasing ROS generation and NF-κB-dependent accumulation of autophagy receptor p62/SQSTM1, which recruits damaged mitochondria with polyubiquitin chains. Importantly, administration of ROS scavenger or NF-κB inhibitor ameliorates glucose and lipid metabolic disorders and T2DM progression in mice. Taken together, this study reveals a previously unrecognized mechanism linking mitophagy-mediated adipose inflammation to T2DM with hepatic insulin resistance.White adipose tissues (WAT) play crucial roles in maintaining whole-body energy homeostasis, and their dysfunction can contribute to hepatic insulin resistance and type 2 diabetes mellitus (T2DM). However, the mechanisms underlying these alterations remain unknown. By analyzing the transcriptome landscape in human adipocytes based on available RNA-seq datasets from lean, obese, and T2DM patients, we reveal elevated mitochondrial reactive oxygen species (ROS) pathway and NF-κB signaling with altered fatty acid metabolism in T2DM adipocytes. Mice with adipose-specific deletion of mitochondrial redox Trx2 develop hyperglycemia, hepatic insulin resistance, and hepatic steatosis. Trx2-deficient WAT exhibited excessive mitophagy, increased inflammation, and lipolysis. Mechanistically, mitophagy was induced through increasing ROS generation and NF-κB-dependent accumulation of autophagy receptor p62/SQSTM1, which recruits damaged mitochondria with polyubiquitin chains. Importantly, administration of ROS scavenger or NF-κB inhibitor ameliorates glucose and lipid metabolic disorders and T2DM progression in mice. Taken together, this study reveals a previously unrecognized mechanism linking mitophagy-mediated adipose inflammation to T2DM with hepatic insulin resistance.
Author Zhang, Haifeng
Shulman, Gerald I.
Min, Wang
Perry, Rachel J.
Zhou, Huanjiao Jenny
He, Feng
Song, Zhi
Huang, Yanrui
AuthorAffiliation 3 Department of Internal Medicine, Yale School of Medicine, New Haven, CT
1 Department of Pathology, Yale School of Medicine, New Haven, CT
2 Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT
AuthorAffiliation_xml – name: 3 Department of Internal Medicine, Yale School of Medicine, New Haven, CT
– name: 2 Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT
– name: 1 Department of Pathology, Yale School of Medicine, New Haven, CT
Author_xml – sequence: 1
  givenname: Feng
  orcidid: 0000-0003-3207-1295
  surname: He
  fullname: He, Feng
– sequence: 2
  givenname: Yanrui
  orcidid: 0000-0001-5147-1302
  surname: Huang
  fullname: Huang, Yanrui
– sequence: 3
  givenname: Zhi
  orcidid: 0000-0003-3742-0570
  surname: Song
  fullname: Song, Zhi
– sequence: 4
  givenname: Huanjiao Jenny
  orcidid: 0000-0003-3071-9473
  surname: Zhou
  fullname: Zhou, Huanjiao Jenny
– sequence: 5
  givenname: Haifeng
  orcidid: 0000-0001-9141-7458
  surname: Zhang
  fullname: Zhang, Haifeng
– sequence: 6
  givenname: Rachel J.
  orcidid: 0000-0003-0748-8064
  surname: Perry
  fullname: Perry, Rachel J.
– sequence: 7
  givenname: Gerald I.
  orcidid: 0000-0003-1529-5668
  surname: Shulman
  fullname: Shulman, Gerald I.
– sequence: 8
  givenname: Wang
  orcidid: 0000-0002-2479-6096
  surname: Min
  fullname: Min, Wang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33315085$$D View this record in MEDLINE/PubMed
BookMark eNptkUtP3DAUha0KVAboruvKyy4a8Dv2BqlCfSCB2MDacjw3jFFih9hpNf--nvJQi1hZsr9zzvW5h2gvpggIfaTkhBItTu9hPGGEESqoeodWVArSGMn1HloRwlhDCWkP0GHO96QyQqr36IBzTiXRcoX6q1DStHF322aEdXAF1titw5Qy4BD7wY2jKyFF7FMsc-iWAhmXhMt2AsxwVXSwu_odygZvYKqwr8K8DCHiGXLIxUUPx2i_d0OGD0_nEbr9_u3m_Gdzef3j4vzrZeO5FqXR2jAnSQ-94J2k3BmlveIKuO7atfS-d4ZrMG2rlZKSE2iJ6QQYpzrqwfAjdPboOy1d_Y-HOrQb7DSH0c1bm1yw_7_EsLF36ZdtDWsFZ9Xg85PBnB4WyMWOIXsYBhchLdky0dZWlRK7rE__Zr2EPJdbgS-PgJ9TzjP0Lwgldrc7W3dnn3dXcfYK96H8Lb9OGoa3RX8AKAufJg
CitedBy_id crossref_primary_10_1016_j_phrs_2022_106072
crossref_primary_10_3389_fnut_2022_1087826
crossref_primary_10_1016_j_ecoenv_2024_116954
crossref_primary_10_1038_s41598_025_92716_z
crossref_primary_10_1080_13813455_2024_2387693
crossref_primary_10_18632_aging_205192
crossref_primary_10_3390_ijms25031504
crossref_primary_10_3390_ijms22136733
crossref_primary_10_31083_j_fbl2812365
crossref_primary_10_3390_plants11131715
crossref_primary_10_1016_j_jhazmat_2023_131750
crossref_primary_10_1016_j_lfs_2022_121162
crossref_primary_10_3390_ijms241210409
crossref_primary_10_3389_fcell_2021_682947
crossref_primary_10_3390_cells12091223
crossref_primary_10_1016_j_biopha_2024_116807
crossref_primary_10_1111_jch_14650
crossref_primary_10_1016_j_mam_2021_100966
crossref_primary_10_3389_fmed_2025_1555077
crossref_primary_10_3390_toxins15030179
crossref_primary_10_3389_fcell_2025_1465092
crossref_primary_10_1111_bph_16103
crossref_primary_10_4049_jimmunol_2200601
crossref_primary_10_12677_ACM_2023_131123
crossref_primary_10_3390_ijms241813762
crossref_primary_10_18632_aging_205075
crossref_primary_10_1016_j_jgg_2022_01_006
crossref_primary_10_1152_ajpendo_00218_2022
crossref_primary_10_32604_biocell_2024_056272
crossref_primary_10_3389_fcvm_2022_917135
crossref_primary_10_1016_j_sjbs_2022_103434
crossref_primary_10_3389_fphar_2023_1149809
crossref_primary_10_1016_j_mtbio_2025_101685
crossref_primary_10_1016_j_phrs_2023_106820
crossref_primary_10_1515_biol_2022_0648
crossref_primary_10_1155_2024_2298306
crossref_primary_10_3164_jcbn_23_1
crossref_primary_10_1084_jem_20210252
crossref_primary_10_1142_S0192415X23500581
crossref_primary_10_1186_s12951_024_02478_5
crossref_primary_10_1016_j_phymed_2023_154943
crossref_primary_10_3389_fimmu_2025_1506500
crossref_primary_10_1016_j_biomaterials_2021_121183
crossref_primary_10_1016_j_ijbiomac_2024_134448
crossref_primary_10_3389_fendo_2022_869951
crossref_primary_10_3390_cells12060947
crossref_primary_10_2174_1871530323666230627121700
crossref_primary_10_1016_j_biopha_2024_116428
crossref_primary_10_3390_ijms232415753
crossref_primary_10_1016_j_csbj_2023_03_017
crossref_primary_10_3390_nu16223878
crossref_primary_10_1016_j_joca_2024_09_013
crossref_primary_10_1038_s41467_022_35262_w
crossref_primary_10_3390_biology12091166
crossref_primary_10_12677_ACM_2023_13102265
crossref_primary_10_3389_fphar_2023_1188829
crossref_primary_10_1016_j_foodres_2025_115940
crossref_primary_10_1002_fsn3_4266
crossref_primary_10_1111_obr_13724
crossref_primary_10_1016_j_heliyon_2024_e26791
crossref_primary_10_3389_fphar_2022_864088
crossref_primary_10_1002_oby_23805
crossref_primary_10_1016_j_cellsig_2024_111229
crossref_primary_10_1016_j_mcpro_2023_100508
crossref_primary_10_1002_1873_3468_14877
crossref_primary_10_1016_j_prmcm_2024_100471
crossref_primary_10_3390_nu13093015
crossref_primary_10_1016_j_ecoenv_2022_114075
crossref_primary_10_1016_j_jff_2022_105348
crossref_primary_10_1038_s41574_023_00898_1
crossref_primary_10_3390_diagnostics14111119
crossref_primary_10_3389_fonc_2021_638701
crossref_primary_10_3389_fphar_2023_1253572
crossref_primary_10_1111_1753_0407_13510
crossref_primary_10_1016_j_biopha_2024_116755
crossref_primary_10_1016_j_bioactmat_2024_11_023
crossref_primary_10_1089_ars_2022_0016
crossref_primary_10_1021_acs_jafc_4c05431
crossref_primary_10_1172_JCI148852
crossref_primary_10_3390_ijms24065999
crossref_primary_10_3390_nu14142782
crossref_primary_10_1007_s11010_023_04736_w
crossref_primary_10_1016_j_ecoenv_2021_113018
crossref_primary_10_3389_fcell_2021_699621
crossref_primary_10_1016_j_ijbiomac_2025_140776
crossref_primary_10_3168_jds_2023_23465
crossref_primary_10_1016_j_isci_2024_111519
crossref_primary_10_1080_14728222_2022_2049756
crossref_primary_10_1007_s10557_023_07477_6
crossref_primary_10_1016_j_jhepr_2022_100555
crossref_primary_10_4093_dmj_2023_0213
Cites_doi 10.1038/nm.3084
10.1161/CIRCULATIONAHA.114.012725
10.1016/j.cmet.2016.06.006
10.1038/emboj.2011.25
10.1074/jbc.M304854200
10.1126/science.1184003
10.1038/nri3423
10.1073/pnas.1032913100
10.1172/JCI25102
10.1128/MCB.24.21.9414-9423.2004
10.1128/MCB.25.5.1980-1988.2005
10.1016/j.cell.2015.01.012
10.1074/jbc.275.12.8456
10.1016/j.cmet.2010.03.012
10.1152/physrev.00063.2017
10.1096/fj.14-253971
10.1093/emboj/21.7.1695
10.1128/MCB.23.3.916-922.2003
10.1172/JCI44927
10.1016/j.cmet.2010.12.008
10.1016/j.cell.2015.12.057
10.1038/nm.3615
10.1016/j.tips.2012.03.010
10.1016/j.cmet.2014.12.009
10.1073/pnas.2536828100
10.1038/nature21363
10.1016/j.tem.2012.06.004
10.1038/ncomms9917
10.1016/j.cmet.2017.06.006
10.1210/er.2012-1053
10.1002/hep.26672
10.2337/diabetes.54.5.1392
10.1073/pnas.1423952112
10.4161/auto.6.8.13426
10.1038/ng.3714
10.1016/j.cmet.2017.08.002
10.1172/JCI30400
10.1242/jcs.098475
10.2337/db14-1937
10.1161/CIRCRESAHA.112.268946
10.1016/j.cmet.2015.05.021
10.1056/NEJMra1011035
10.1016/j.molcel.2012.01.008
10.1074/jbc.M111.284612
10.1038/nm1323
10.1038/nm1166
10.1152/ajprenal.00643.2013
10.1038/nrm2391
10.1038/nm.4169
10.1093/nar/20.15.3821
10.1038/cr.2010.178
10.1093/eurheartj/ehn387
10.1172/JCI21752
10.1083/jcb.201409063
10.1038/nature03711
10.1089/ars.2011.4322
10.1089/ars.2007.1586
10.1016/j.cmet.2012.10.016
10.1073/pnas.0906048106
10.1038/ncomms11365
10.1146/annurev.nutr.012809.104747
10.1074/jbc.M115.693523
10.1016/j.molcel.2011.07.039
10.1016/S0891-5849(00)00218-5
10.1210/er.2009-0027
10.1016/j.celrep.2018.10.040
10.1016/j.cell.2018.01.007
10.1038/nri2925
ContentType Journal Article
Copyright 2020 He et al.
2020 He et al. 2020
Copyright_xml – notice: 2020 He et al.
– notice: 2020 He et al. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1084/jem.20201416
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Adipose mitophagy contributes to T2DM
EISSN 1540-9538
ExternalDocumentID PMC7927432
33315085
10_1084_jem_20201416
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL109420
– fundername: NIDDK NIH HHS
  grantid: R01 DK114793
– fundername: NIDDK NIH HHS
  grantid: P30 DK034989
– fundername: NHLBI NIH HHS
  grantid: R01 HL115148
– fundername: NIDDK NIH HHS
  grantid: R01 DK113984
– fundername: NIDDK NIH HHS
  grantid: R01 DK116774
– fundername: NCATS NIH HHS
  grantid: UL1 TR001863
– fundername: NIDDK NIH HHS
  grantid: RC2 DK120534
– fundername: NIDDK NIH HHS
  grantid: P30 DK045735
– fundername: ;
  grantid: R01 HL109420; HL115148; R01 DK113984; R01 DK114793; R01 DK116774; P30 DK045735
– fundername: ;
  grantid: 19CDA34760284
GroupedDBID ---
-~X
18M
29K
2WC
36B
4.4
53G
5GY
5RE
5VS
AAYXX
ABOCM
ABZEH
ACGFO
ACNCT
ACPRK
ADBBV
AENEX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C45
CITATION
CS3
D-I
DIK
DU5
E3Z
EBS
EMB
F5P
F9R
GX1
H13
HYE
IH2
KQ8
L7B
N9A
O5R
O5S
OK1
P2P
P6G
R.V
RHI
SJN
TR2
TRP
UHB
W8F
WOQ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c384t-8892a50fef43b513a968c636e38b7d5ccfa938e9778665530e709b4e9a6b1ce93
ISSN 0022-1007
1540-9538
IngestDate Thu Aug 21 18:20:29 EDT 2025
Thu Jul 10 23:35:29 EDT 2025
Sun Jun 15 01:31:06 EDT 2025
Thu Apr 24 22:58:23 EDT 2025
Thu Jul 03 08:35:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License 2020 He et al.
This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c384t-8892a50fef43b513a968c636e38b7d5ccfa938e9778665530e709b4e9a6b1ce93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
F. He, Y. Huang, Z. Song, and H.J. Zhou contributed equally to this paper.
Disclosures: G. Shulman reported grants from NIH (R01 DK119668, R01 DK116774, R01 DK113984, R01 DK114793, RC2 DK120534, and P30 DK045735), Gilead Sciences, Inc., AstraZeneca, and Merck & Co., Inc.; non-financial support from Gilead Sciences, Inc., AstraZeneca, Merck & Co., Inc., Janssen Research & Development, and Novo Nordisk; and personal fees from Gilead Sciences, Inc., AstraZeneca, Merck & Co., Inc., Janssen Research & Development, Novo Nordisk, iMetabolic Biopharma Corp., Maze Therapeutics, Inc., Generian Pharmaceuticals, Ionis Pharmaceuticals, Inc., BridgeBio, Esperion, 89Bio, Inc., Nimbus Discovery, Inc., Staten Biotechnology, Longitude Capital, Celgene Corp., and Aegerion Pharmaceuticals during the conduct of the study. No other disclosures were reported.
ORCID 0000-0001-9141-7458
0000-0003-1529-5668
0000-0003-0748-8064
0000-0002-2479-6096
0000-0003-3742-0570
0000-0001-5147-1302
0000-0003-3207-1295
0000-0003-3071-9473
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7927432
PMID 33315085
PQID 2470026649
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7927432
proquest_miscellaneous_2470026649
pubmed_primary_33315085
crossref_primary_10_1084_jem_20201416
crossref_citationtrail_10_1084_jem_20201416
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of experimental medicine
PublicationTitleAlternate J Exp Med
PublicationYear 2021
Publisher Rockefeller University Press
Publisher_xml – name: Rockefeller University Press
References Zhou (2025060211562821100_bib68) 2016; 22
Nonn (2025060211562821100_bib39) 2003; 23
Petersen (2025060211562821100_bib45) 2018; 98
Cai (2025060211562821100_bib7) 2018; 25
Perry (2025060211562821100_bib44) 2015; 160
Vatner (2025060211562821100_bib56) 2015; 112
Jakupoglu (2025060211562821100_bib23) 2005; 25
Shao (2025060211562821100_bib50) 2015; 6
Oral (2025060211562821100_bib40) 2017; 26
Yoshioka (2025060211562821100_bib63) 2012; 122
Narendra (2025060211562821100_bib37) 2010; 6
Huang (2025060211562821100_bib22) 2015; 131
Mottillo (2025060211562821100_bib36) 2016; 24
Lotta (2025060211562821100_bib31) 2017; 49
Shulman (2025060211562821100_bib51) 2014; 371
Janssen-Heininger (2025060211562821100_bib24) 2000; 28
Moon (2025060211562821100_bib34) 2013; 34
Patti (2025060211562821100_bib42) 2010; 31
Heinonen (2025060211562821100_bib19) 2015; 64
Patil (2025060211562821100_bib41) 2014; 306
Kiechl (2025060211562821100_bib26) 2013; 19
He (2025060211562821100_bib18) 2003; 100
Formentini (2025060211562821100_bib14) 2012; 45
Zhong (2025060211562821100_bib67) 2016; 164
Donath (2025060211562821100_bib13) 2011; 11
Kim (2025060211562821100_bib27) 2000; 275
Smith (2025060211562821100_bib52) 2012; 33
Schroder (2025060211562821100_bib49) 2010; 327
Kondegowda (2025060211562821100_bib28) 2015; 22
Tanaka (2025060211562821100_bib54) 2002; 21
Zhao (2025060211562821100_bib66) 2018; 172
Keller (2025060211562821100_bib25) 2010; 30
Patti (2025060211562821100_bib43) 2003; 100
Rutkowski (2025060211562821100_bib46) 2015; 208
Matsumoto (2025060211562821100_bib32) 2011; 44
Chen (2025060211562821100_bib8) 2003; 278
Stanley (2025060211562821100_bib53) 2011; 286
Zhang (2025060211562821100_bib64) 2009; 106
Vernochet (2025060211562821100_bib58) 2014; 28
Matthews (2025060211562821100_bib33) 1992; 20
Wilson-Fritch (2025060211562821100_bib60) 2004; 114
Cypess (2025060211562821100_bib12) 2015; 21
Cai (2025060211562821100_bib6) 2005; 11
Lee (2025060211562821100_bib30) 2013; 18
Birkenfeld (2025060211562821100_bib4) 2014; 59
Galluzzi (2025060211562821100_bib15) 2012; 111
Yang (2025060211562821100_bib62) 2005; 436
Collins (2025060211562821100_bib10) 2016; 291
Yamamoto (2025060211562821100_bib61) 2008; 10
Samuel (2025060211562821100_bib48) 2007; 117
Baker (2025060211562821100_bib2) 2011; 13
Wellen (2025060211562821100_bib59) 2005; 115
Baixauli (2025060211562821100_bib1) 2011; 30
Kusminski (2025060211562821100_bib29) 2012; 23
Morgan (2025060211562821100_bib35) 2011; 21
Herrmann (2025060211562821100_bib20) 2005; 11
Vernochet (2025060211562821100_bib57) 2012; 16
Bi (2025060211562821100_bib3) 2014; 20
Hajer (2025060211562821100_bib17) 2008; 29
Hotamisligil (2025060211562821100_bib21) 2017; 542
Nathan (2025060211562821100_bib38) 2013; 13
Collins (2025060211562821100_bib9) 2012; 125
Tang (2025060211562821100_bib55) 2016; 7
Bogacka (2025060211562821100_bib5) 2005; 54
Conrad (2025060211562821100_bib11) 2004; 24
Guilherme (2025060211562821100_bib16) 2008; 9
Samuel (2025060211562821100_bib47) 2018; 27
Zhang (2025060211562821100_bib65) 2010; 11
40513072 - J Exp Med. 2025 Jul 7;222(7):e2020141606022025c. doi: 10.1084/jem.2020141606022025c.
References_xml – volume: 19
  start-page: 358
  year: 2013
  ident: 2025060211562821100_bib26
  article-title: Blockade of receptor activator of nuclear factor-kappaB (RANKL) signaling improves hepatic insulin resistance and prevents development of diabetes mellitus
  publication-title: Nat. Med.
  doi: 10.1038/nm.3084
– volume: 131
  start-page: 1082
  year: 2015
  ident: 2025060211562821100_bib22
  article-title: Thioredoxin-2 inhibits mitochondrial reactive oxygen species generation and apoptosis stress kinase-1 activity to maintain cardiac function
  publication-title: Circulation.
  doi: 10.1161/CIRCULATIONAHA.114.012725
– volume: 24
  start-page: 118
  year: 2016
  ident: 2025060211562821100_bib36
  article-title: Lack of Adipocyte AMPK Exacerbates Insulin Resistance and Hepatic Steatosis through Brown and Beige Adipose Tissue Function
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.06.006
– volume: 30
  start-page: 1238
  year: 2011
  ident: 2025060211562821100_bib1
  article-title: The mitochondrial fission factor dynamin-related protein 1 modulates T-cell receptor signalling at the immune synapse
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.25
– volume: 278
  start-page: 36027
  year: 2003
  ident: 2025060211562821100_bib8
  article-title: Production of reactive oxygen species by mitochondria: central role of complex III
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M304854200
– volume: 327
  start-page: 296
  year: 2010
  ident: 2025060211562821100_bib49
  article-title: The NLRP3 inflammasome: a sensor for metabolic danger?
  publication-title: Science.
  doi: 10.1126/science.1184003
– volume: 13
  start-page: 349
  year: 2013
  ident: 2025060211562821100_bib38
  article-title: Beyond oxidative stress: an immunologist’s guide to reactive oxygen species
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3423
– volume: 100
  start-page: 8466
  year: 2003
  ident: 2025060211562821100_bib43
  article-title: Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.1032913100
– volume: 115
  start-page: 1111
  year: 2005
  ident: 2025060211562821100_bib59
  article-title: Inflammation, stress, and diabetes
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI25102
– volume: 24
  start-page: 9414
  year: 2004
  ident: 2025060211562821100_bib11
  article-title: Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart development, and heart function
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.24.21.9414-9423.2004
– volume: 25
  start-page: 1980
  year: 2005
  ident: 2025060211562821100_bib23
  article-title: Cytoplasmic thioredoxin reductase is essential for embryogenesis but dispensable for cardiac development
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.25.5.1980-1988.2005
– volume: 160
  start-page: 745
  year: 2015
  ident: 2025060211562821100_bib44
  article-title: Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes
  publication-title: Cell.
  doi: 10.1016/j.cell.2015.01.012
– volume: 275
  start-page: 8456
  year: 2000
  ident: 2025060211562821100_bib27
  article-title: Mechanism of insulin resistance in A-ZIP/F-1 fatless mice
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.275.12.8456
– volume: 11
  start-page: 402
  year: 2010
  ident: 2025060211562821100_bib65
  article-title: Resistance to high-fat diet-induced obesity and insulin resistance in mice with very long-chain acyl-CoA dehydrogenase deficiency
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2010.03.012
– volume: 98
  start-page: 2133
  year: 2018
  ident: 2025060211562821100_bib45
  article-title: Mechanism of insulin action and insulin resistance
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00063.2017
– volume: 28
  start-page: 4408
  year: 2014
  ident: 2025060211562821100_bib58
  article-title: Adipose tissue mitochondrial dysfunction triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis, and cardiovascular complications
  publication-title: FASEB J.
  doi: 10.1096/fj.14-253971
– volume: 21
  start-page: 1695
  year: 2002
  ident: 2025060211562821100_bib54
  article-title: Thioredoxin-2 (TRX-2) is an essential gene regulating mitochondria-dependent apoptosis
  publication-title: EMBO J.
  doi: 10.1093/emboj/21.7.1695
– volume: 23
  start-page: 916
  year: 2003
  ident: 2025060211562821100_bib39
  article-title: The absence of mitochondrial thioredoxin 2 causes massive apoptosis, exencephaly, and early embryonic lethality in homozygous mice
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.23.3.916-922.2003
– volume: 122
  start-page: 267
  year: 2012
  ident: 2025060211562821100_bib63
  article-title: Deletion of thioredoxin-interacting protein in mice impairs mitochondrial function but protects the myocardium from ischemia-reperfusion injury
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI44927
– volume: 13
  start-page: 11
  year: 2011
  ident: 2025060211562821100_bib2
  article-title: NF-kappaB, inflammation, and metabolic disease
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2010.12.008
– volume: 164
  start-page: 896
  year: 2016
  ident: 2025060211562821100_bib67
  article-title: NF-kappaB Restricts Inflammasome Activation via Elimination of Damaged Mitochondria
  publication-title: Cell.
  doi: 10.1016/j.cell.2015.12.057
– volume: 20
  start-page: 911
  year: 2014
  ident: 2025060211562821100_bib3
  article-title: Inhibition of Notch signaling promotes browning of white adipose tissue and ameliorates obesity
  publication-title: Nat. Med.
  doi: 10.1038/nm.3615
– volume: 33
  start-page: 341
  year: 2012
  ident: 2025060211562821100_bib52
  article-title: Mitochondrial pharmacology
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2012.03.010
– volume: 21
  start-page: 33
  year: 2015
  ident: 2025060211562821100_bib12
  article-title: Activation of human brown adipose tissue by a beta3-adrenergic receptor agonist
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.12.009
– volume: 100
  start-page: 15712
  year: 2003
  ident: 2025060211562821100_bib18
  article-title: Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.2536828100
– volume: 542
  start-page: 177
  year: 2017
  ident: 2025060211562821100_bib21
  article-title: Inflammation, metaflammation and immunometabolic disorders
  publication-title: Nature.
  doi: 10.1038/nature21363
– volume: 23
  start-page: 435
  year: 2012
  ident: 2025060211562821100_bib29
  article-title: Mitochondrial dysfunction in white adipose tissue
  publication-title: Trends Endocrinol. Metab.
  doi: 10.1016/j.tem.2012.06.004
– volume: 6
  start-page: 8917
  year: 2015
  ident: 2025060211562821100_bib50
  article-title: SENP1-mediated NEMO deSUMOylation in adipocytes limits inflammatory responses and type-1 diabetes progression
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9917
– volume: 26
  start-page: 157
  year: 2017
  ident: 2025060211562821100_bib40
  article-title: Inhibition of IKKε and TBK1 Improves Glucose Control in a Subset of Patients with Type 2 Diabetes
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2017.06.006
– volume: 34
  start-page: 377
  year: 2013
  ident: 2025060211562821100_bib34
  article-title: Leptin’s role in lipodystrophic and nonlipodystrophic insulin-resistant and diabetic individuals
  publication-title: Endocr. Rev.
  doi: 10.1210/er.2012-1053
– volume: 59
  start-page: 713
  year: 2014
  ident: 2025060211562821100_bib4
  article-title: Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes
  publication-title: Hepatology.
  doi: 10.1002/hep.26672
– volume: 54
  start-page: 1392
  year: 2005
  ident: 2025060211562821100_bib5
  article-title: Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo
  publication-title: Diabetes.
  doi: 10.2337/diabetes.54.5.1392
– volume: 112
  start-page: 1143
  year: 2015
  ident: 2025060211562821100_bib56
  article-title: Insulin-independent regulation of hepatic triglyceride synthesis by fatty acids
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.1423952112
– volume: 6
  start-page: 1090
  year: 2010
  ident: 2025060211562821100_bib37
  article-title: p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both
  publication-title: Autophagy.
  doi: 10.4161/auto.6.8.13426
– volume: 49
  start-page: 17
  year: 2017
  ident: 2025060211562821100_bib31
  article-title: Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3714
– volume: 27
  start-page: 22
  year: 2018
  ident: 2025060211562821100_bib47
  article-title: Nonalcoholic Fatty Liver Disease as a Nexus of Metabolic and Hepatic Diseases
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2017.08.002
– volume: 117
  start-page: 739
  year: 2007
  ident: 2025060211562821100_bib48
  article-title: Inhibition of protein kinase Cepsilon prevents hepatic insulin resistance in nonalcoholic fatty liver disease
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI30400
– volume: 125
  start-page: 801
  year: 2012
  ident: 2025060211562821100_bib9
  article-title: Mitochondrial redox signalling at a glance
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.098475
– volume: 64
  start-page: 3135
  year: 2015
  ident: 2025060211562821100_bib19
  article-title: Impaired Mitochondrial Biogenesis in Adipose Tissue in Acquired Obesity
  publication-title: Diabetes.
  doi: 10.2337/db14-1937
– volume: 111
  start-page: 1198
  year: 2012
  ident: 2025060211562821100_bib15
  article-title: Mitochondrial control of cellular life, stress, and death
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.112.268946
– volume: 22
  start-page: 77
  year: 2015
  ident: 2025060211562821100_bib28
  article-title: Osteoprotegerin and Denosumab Stimulate Human Beta Cell Proliferation through Inhibition of the Receptor Activator of NF-kappaB Ligand Pathway
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.05.021
– volume: 371
  start-page: 1131
  year: 2014
  ident: 2025060211562821100_bib51
  article-title: Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1011035
– volume: 45
  start-page: 731
  year: 2012
  ident: 2025060211562821100_bib14
  article-title: The mitochondrial ATPase inhibitory factor 1 triggers a ROS-mediated retrograde prosurvival and proliferative response
  publication-title: Mol. Cell.
  doi: 10.1016/j.molcel.2012.01.008
– volume: 286
  start-page: 33669
  year: 2011
  ident: 2025060211562821100_bib53
  article-title: Thioredoxin reductase-2 is essential for keeping low levels of H(2)O(2) emission from isolated heart mitochondria
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.284612
– volume: 11
  start-page: 1322
  year: 2005
  ident: 2025060211562821100_bib20
  article-title: IKK mediates ischemia-induced neuronal death
  publication-title: Nat. Med.
  doi: 10.1038/nm1323
– volume: 11
  start-page: 183
  year: 2005
  ident: 2025060211562821100_bib6
  article-title: Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB
  publication-title: Nat. Med.
  doi: 10.1038/nm1166
– volume: 306
  start-page: F734
  year: 2014
  ident: 2025060211562821100_bib41
  article-title: Inactivation of renal mitochondrial respiratory complexes and manganese superoxide dismutase during sepsis: mitochondria-targeted antioxidant mitigates injury
  publication-title: Am. J. Physiol. Renal Physiol.
  doi: 10.1152/ajprenal.00643.2013
– volume: 9
  start-page: 367
  year: 2008
  ident: 2025060211562821100_bib16
  article-title: Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2391
– volume: 22
  start-page: 1033
  year: 2016
  ident: 2025060211562821100_bib68
  article-title: Endothelial exocytosis of angiopoietin-2 resulting from CCM3 deficiency contributes to cerebral cavernous malformation
  publication-title: Nat. Med.
  doi: 10.1038/nm.4169
– volume: 20
  start-page: 3821
  year: 1992
  ident: 2025060211562821100_bib33
  article-title: Thioredoxin regulates the DNA binding activity of NF-χB by reduction of a disulphid bond involving cysteine 62
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/20.15.3821
– volume: 21
  start-page: 103
  year: 2011
  ident: 2025060211562821100_bib35
  article-title: Crosstalk of reactive oxygen species and NF-kappaB signaling
  publication-title: Cell Res.
  doi: 10.1038/cr.2010.178
– volume: 29
  start-page: 2959
  year: 2008
  ident: 2025060211562821100_bib17
  article-title: Adipose tissue dysfunction in obesity, diabetes, and vascular diseases
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehn387
– volume: 114
  start-page: 1281
  year: 2004
  ident: 2025060211562821100_bib60
  article-title: Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI21752
– volume: 208
  start-page: 501
  year: 2015
  ident: 2025060211562821100_bib46
  article-title: The cell biology of fat expansion
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201409063
– volume: 436
  start-page: 356
  year: 2005
  ident: 2025060211562821100_bib62
  article-title: Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes
  publication-title: Nature.
  doi: 10.1038/nature03711
– volume: 18
  start-page: 1165
  year: 2013
  ident: 2025060211562821100_bib30
  article-title: Thioredoxin and Thioredoxin Target Proteins: From Molecular Mechanisms to Functional Significance
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2011.4322
– volume: 10
  start-page: 43
  year: 2008
  ident: 2025060211562821100_bib61
  article-title: Transgenic expression of antioxidant protein thioredoxin in pancreatic beta cells prevents progression of type 2 diabetes mellitus
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2007.1586
– volume: 16
  start-page: 765
  year: 2012
  ident: 2025060211562821100_bib57
  article-title: Adipose-specific deletion of TFAM increases mitochondrial oxidation and protects mice against obesity and insulin resistance
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2012.10.016
– volume: 106
  start-page: 19860
  year: 2009
  ident: 2025060211562821100_bib64
  article-title: Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.0906048106
– volume: 7
  start-page: 11365
  year: 2016
  ident: 2025060211562821100_bib55
  article-title: Adipose tissue mTORC2 regulates ChREBP-driven de novo lipogenesis and hepatic glucose metabolism
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11365
– volume: 30
  start-page: 341
  year: 2010
  ident: 2025060211562821100_bib25
  article-title: Physiological insights gained from gene expression analysis in obesity and diabetes
  publication-title: Annu. Rev. Nutr.
  doi: 10.1146/annurev.nutr.012809.104747
– volume: 291
  start-page: 6641
  year: 2016
  ident: 2025060211562821100_bib10
  article-title: Oxidative Stress Promotes Peroxiredoxin Hyperoxidation and Attenuates Pro-survival Signaling in Aging Chondrocytes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.693523
– volume: 44
  start-page: 279
  year: 2011
  ident: 2025060211562821100_bib32
  article-title: Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins
  publication-title: Mol. Cell.
  doi: 10.1016/j.molcel.2011.07.039
– volume: 28
  start-page: 1317
  year: 2000
  ident: 2025060211562821100_bib24
  article-title: Recent advances towards understanding redox mechanisms in the activation of nuclear factor kappaB
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/S0891-5849(00)00218-5
– volume: 31
  start-page: 364
  year: 2010
  ident: 2025060211562821100_bib42
  article-title: The role of mitochondria in the pathogenesis of type 2 diabetes
  publication-title: Endocr. Rev.
  doi: 10.1210/er.2009-0027
– volume: 25
  start-page: 1708
  year: 2018
  ident: 2025060211562821100_bib7
  article-title: Autophagy Ablation in Adipocytes Induces Insulin Resistance and Reveals Roles for Lipid Peroxide and Nrf2 Signaling in Adipose-Liver Crosstalk
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.10.040
– volume: 172
  start-page: 731
  year: 2018
  ident: 2025060211562821100_bib66
  article-title: TBK1 at the Crossroads of Inflammation and Energy Homeostasis in Adipose Tissue
  publication-title: Cell.
  doi: 10.1016/j.cell.2018.01.007
– volume: 11
  start-page: 98
  year: 2011
  ident: 2025060211562821100_bib13
  article-title: Type 2 diabetes as an inflammatory disease
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2925
– reference: 40513072 - J Exp Med. 2025 Jul 7;222(7):e2020141606022025c. doi: 10.1084/jem.2020141606022025c.
SSID ssj0014456
Score 2.617183
Snippet White adipose tissues (WAT) play crucial roles in maintaining whole-body energy homeostasis, and their dysfunction can contribute to hepatic insulin resistance...
Adipose-specific deletion of mitochondrial redox Trx2 induces excessive mitophagy in white adipose tissue with increased inflammation and increased lipolysis,...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Adipocytes - metabolism
Adipocytes - ultrastructure
Adipose Tissue - pathology
Animals
Diabetes Mellitus, Type 2 - pathology
Diet, High-Fat
Energy Metabolism
Fatty Liver - pathology
Gene Deletion
Gene Targeting
Gluconeogenesis
Homeostasis
Humans
Hyperglycemia - complications
Hyperglycemia - pathology
Inflammation - pathology
Insulin Resistance
Lipogenesis
Liver - pathology
Male
Metabolism
Mice
Mice, Inbred C57BL
Mice, Knockout
Mitochondria - metabolism
Mitochondria - ultrastructure
Mitophagy
NF-kappa B - metabolism
Oxidative Stress
Phenotype
Reactive Oxygen Species - metabolism
Sequestosome-1 Protein
Signal Transduction
Thioredoxins - metabolism
Title Mitophagy-mediated adipose inflammation contributes to type 2 diabetes with hepatic insulin resistance
URI https://www.ncbi.nlm.nih.gov/pubmed/33315085
https://www.proquest.com/docview/2470026649
https://pubmed.ncbi.nlm.nih.gov/PMC7927432
Volume 218
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWqRVrtBfFN-ZKR4IQCre269hGtgAqpiMOuVPYSOY5Ds4K0Ks1h-S38WGYcJ3FbkGAvVZU6TtX3OuOx38wQ8iLPMmms04nURici5yYxJrOJnWoGDk1yU2Du8PyTnJ2Lj4vJYjD4FamW6m322v78Y17JdVCFa4ArZsn-B7LdpHAB3gO-8AoIw-s_YTwvsSyA-XqV-AQQXDyavFyjBB2mB6ybvMRGj46NrZp6Dvvbrn4vdunWvnhrK06HMByXli0nLntWRWvYnf4A-8f0s0Y57IJv9NwJu9NfTLWpy253J8iCL5bdpYvlqvZeEe64LM3Kq3Cu4i0KFmm0grYJDFKB5xCbg_zH2DZDWIyajcYzBXMsRnjArGJ7zXqD3cbzB35gpAT6AYe1BhhqWWU8DFBcf_ec4JxjQfxJ7w07jeLn-SnyVXBw8DcYBCHYH-PDohMQQSTqewN33zukVcCj38QPPiHH7VN21z4HAc2-Ljda6JzdIjcDuvRtQ7fbZOCqO-R4HsC9S4pD1tHAOhqzjkaso9sVRdZRRlvWUWQdDayjgXW0Z909cv7-3dnpLAndOhLLldgmSmlmJqPCFYJnkzE3WioruXRcZdN8Ym1hNFdOY8FCic2q3HSkM-G0kdkYrAW_T46qVeUeEmrHOUQlrpBKcWFgqkLl2mWaFYJZ8M5D8qr9HVMbStljR5VvqZdUKJECAGkLwJC87EavmxIufxn3vIUkBRuLB2emcqv6R8rEFPcqpNBD8qCBqJupxXZIpjvgdQOwfvvuJ1W59HXcA70eXfvOx-Sk_7s9IUfbTe2ewhp5mz3zVP0NGlrE7Q
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitophagy-mediated+adipose+inflammation+contributes+to+type+2+diabetes+with+hepatic+insulin+resistance&rft.jtitle=The+Journal+of+experimental+medicine&rft.au=He%2C+Feng&rft.au=Huang%2C+Yanrui&rft.au=Song%2C+Zhi&rft.au=Zhou%2C+Huanjiao+Jenny&rft.date=2021-03-01&rft.pub=Rockefeller+University+Press&rft.issn=0022-1007&rft.eissn=1540-9538&rft.volume=218&rft.issue=3&rft_id=info:doi/10.1084%2Fjem.20201416&rft_id=info%3Apmid%2F33315085&rft.externalDocID=PMC7927432
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1007&client=summon