Preparation and optical properties of worm-like gold nanorods
A type of worm-like nanorods was successfully synthesized through conventional gold nanorods reacting with Na 2S 2O 3 or Na 2S. The generated worm-like gold nanorods comprise shrunk nanorod cores and enwrapped shells. Therefore, a gold–gold sulfide core–shell structure is formed in the process, dist...
Saved in:
Published in | Journal of colloid and interface science Vol. 322; no. 1; pp. 136 - 142 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
San Diego, CA
Elsevier Inc
01.06.2008
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A type of worm-like nanorods was successfully synthesized through conventional gold nanorods reacting with Na
2S
2O
3 or Na
2S. The generated worm-like gold nanorods comprise shrunk nanorod cores and enwrapped shells. Therefore, a gold–gold sulfide core–shell structure is formed in the process, distinguishing from their original counterparts. The formation of the gold chalcogenide layers was confirmed by transmission electron microscopy and X-ray photoelectron spectroscopy. Experimental results showed that the thickness of the gold chalcogenide layers is controllable. Since the increase of shell thickness and decrease of gold nanorod core take place simultaneously, it allows one to tune the plasmon resonance of nanorods. Proper adjustment of reaction time, temperature, additives and other experimental conditions will produce worm-like gold nanorods demonstrating desired longitudinal plasmon wavelength (LPW) with narrow size distributions, only limited by properties of starting original gold nanorods. The approach presented herein is capable of selectively changing LPW of the gold nanorods. Additionally, the formed worm-like nanorods possess higher sensitive property in localized surface plasmon resonance than the original nanorods. Their special properties were characterized by spectroscopic methods such as Vis–NIR, fluorescence and resonance light scattering. These features imply that the gold nanorods have potential applications in biomolecular recognition study and biosensor fabrications.
Worm-like gold nanorods (b) can be produced from the as-synthesized nanorods (a) reacting with Na
2S
2O
3. An approach capable of continuously increasing longitudinal plasmon wavelength of new gold nanorods is developed. |
---|---|
AbstractList | A type of worm-like nanorods was successfully synthesized through conventional gold nanorods reacting with Na2S2O3 or Na2S. The generated worm-like gold nanorods comprise shrunk nanorod cores and enwrapped shells. Therefore, a gold-gold sulfide core-shell structure is formed in the process, distinguishing from their original counterparts. The formation of the gold chalcogenide layers was confirmed by transmission electron microscopy and X-ray photoelectron spectroscopy. Experimental results showed that the thickness of the gold chalcogenide layers is controllable. Since the increase of shell thickness and decrease of gold nanorod core take place simultaneously, it allows one to tune the plasmon resonance of nanorods. Proper adjustment of reaction time, temperature, additives and other experimental conditions will produce worm-like gold nanorods demonstrating desired longitudinal plasmon wavelength (LPW) with narrow size distributions, only limited by properties of starting original gold nanorods. The approach presented herein is capable of selectively changing LPW of the gold nanorods. Additionally, the formed worm-like nanorods possess higher sensitive property in localized surface plasmon resonance than the original nanorods. Their special properties were characterized by spectroscopic methods such as Vis-NIR, fluorescence and resonance light scattering. These features imply that the gold nanorods have potential applications in biomolecular recognition study and biosensor fabrications.A type of worm-like nanorods was successfully synthesized through conventional gold nanorods reacting with Na2S2O3 or Na2S. The generated worm-like gold nanorods comprise shrunk nanorod cores and enwrapped shells. Therefore, a gold-gold sulfide core-shell structure is formed in the process, distinguishing from their original counterparts. The formation of the gold chalcogenide layers was confirmed by transmission electron microscopy and X-ray photoelectron spectroscopy. Experimental results showed that the thickness of the gold chalcogenide layers is controllable. Since the increase of shell thickness and decrease of gold nanorod core take place simultaneously, it allows one to tune the plasmon resonance of nanorods. Proper adjustment of reaction time, temperature, additives and other experimental conditions will produce worm-like gold nanorods demonstrating desired longitudinal plasmon wavelength (LPW) with narrow size distributions, only limited by properties of starting original gold nanorods. The approach presented herein is capable of selectively changing LPW of the gold nanorods. Additionally, the formed worm-like nanorods possess higher sensitive property in localized surface plasmon resonance than the original nanorods. Their special properties were characterized by spectroscopic methods such as Vis-NIR, fluorescence and resonance light scattering. These features imply that the gold nanorods have potential applications in biomolecular recognition study and biosensor fabrications. A type of worm-like nanorods was successfully synthesized through conventional gold nanorods reacting with Na2S2O3 or Na2S. The generated worm-like gold nanorods comprise shrunk nanorod cores and enwrapped shells. Therefore, a gold-gold sulfide core-shell structure is formed in the process, distinguishing from their original counterparts. The formation of the gold chalcogenide layers was confirmed by transmission electron microscopy and X-ray photoelectron spectroscopy. Experimental results showed that the thickness of the gold chalcogenide layers is controllable. Since the increase of shell thickness and decrease of gold nanorod core take place simultaneously, it allows one to tune the plasmon resonance of nanorods. Proper adjustment of reaction time, temperature, additives and other experimental conditions will produce worm-like gold nanorods demonstrating desired longitudinal plasmon wavelength (LPW) with narrow size distributions, only limited by properties of starting original gold nanorods. The approach presented herein is capable of selectively changing LPW of the gold nanorods. Additionally, the formed worm-like nanorods possess higher sensitive property in localized surface plasmon resonance than the original nanorods. Their special properties were characterized by spectroscopic methods such as Vis-NIR, fluorescence and resonance light scattering. These features imply that the gold nanorods have potential applications in biomolecular recognition study and biosensor fabrications. A type of worm-like nanorods was successfully synthesized through conventional gold nanorods reacting with Na 2S 2O 3 or Na 2S. The generated worm-like gold nanorods comprise shrunk nanorod cores and enwrapped shells. Therefore, a gold–gold sulfide core–shell structure is formed in the process, distinguishing from their original counterparts. The formation of the gold chalcogenide layers was confirmed by transmission electron microscopy and X-ray photoelectron spectroscopy. Experimental results showed that the thickness of the gold chalcogenide layers is controllable. Since the increase of shell thickness and decrease of gold nanorod core take place simultaneously, it allows one to tune the plasmon resonance of nanorods. Proper adjustment of reaction time, temperature, additives and other experimental conditions will produce worm-like gold nanorods demonstrating desired longitudinal plasmon wavelength (LPW) with narrow size distributions, only limited by properties of starting original gold nanorods. The approach presented herein is capable of selectively changing LPW of the gold nanorods. Additionally, the formed worm-like nanorods possess higher sensitive property in localized surface plasmon resonance than the original nanorods. Their special properties were characterized by spectroscopic methods such as Vis–NIR, fluorescence and resonance light scattering. These features imply that the gold nanorods have potential applications in biomolecular recognition study and biosensor fabrications. Worm-like gold nanorods (b) can be produced from the as-synthesized nanorods (a) reacting with Na 2S 2O 3. An approach capable of continuously increasing longitudinal plasmon wavelength of new gold nanorods is developed. |
Author | Xia, Xiaodong Zeng, Yunlong Yu, Xianyong Huang, Haowen Chen, Zhong Yi, Pinggui He, Chaocai |
Author_xml | – sequence: 1 givenname: Haowen surname: Huang fullname: Huang, Haowen email: hhwn@iccas.ac.cn organization: School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, PR China – sequence: 2 givenname: Chaocai surname: He fullname: He, Chaocai organization: School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, PR China – sequence: 3 givenname: Yunlong surname: Zeng fullname: Zeng, Yunlong organization: School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, PR China – sequence: 4 givenname: Xiaodong surname: Xia fullname: Xia, Xiaodong organization: School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, PR China – sequence: 5 givenname: Xianyong surname: Yu fullname: Yu, Xianyong organization: School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, PR China – sequence: 6 givenname: Pinggui surname: Yi fullname: Yi, Pinggui organization: School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, PR China – sequence: 7 givenname: Zhong surname: Chen fullname: Chen, Zhong organization: State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, PR China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20362582$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18400232$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kT1vFDEQhi2UiFwCf4ACbQPdbsb2ftgSFCjiI1IkKKC2vLNj5GPPXuw9EP8-Pu5IQZHKhZ9nNPO-l-wsxECMveDQcOD99bbZos-NAFANyAagfcI2HHRXDxzkGdsACF7rQQ8X7DLnLQDnXaefsguu2vInxYa9_ZJoscmuPobKhqmKy-rRztWS4kJp9ZSr6KrfMe3q2f-g6nucpyrYEFOc8jN27uyc6fnpvWLfPrz_evOpvvv88fbm3V2NUrVrrWDAaUIlFerRAbX9qAC1FdD1Q2s5AjhNzrV8EIPraBydRUDBHWjiPcor9vo4t2z1c095NTufkebZBor7bHpdRoFsC_jyBO7HHU1mSX5n0x_z7-ACvDoBNpczXbKhZPjACZC96NSBU0cOU8w5kTPo178prcn62XAwhw7M1hw6MIcODEhTOiiq-E992OIx6c1RohLjL0_JZPQUkCafCFczRf-Yfg_tvZ9e |
CODEN | JCISA5 |
CitedBy_id | crossref_primary_10_1016_j_saa_2012_09_011 crossref_primary_10_1016_j_bios_2009_03_018 crossref_primary_10_1121_1_4979257 crossref_primary_10_1016_j_electacta_2012_04_097 crossref_primary_10_1016_j_ijpharm_2014_04_067 crossref_primary_10_1039_C8NR03026J crossref_primary_10_1007_s11468_008_9073_z crossref_primary_10_1016_j_cej_2011_03_104 crossref_primary_10_1016_j_bios_2008_10_013 crossref_primary_10_1016_S1872_2040_08_60152_8 crossref_primary_10_1088_1674_1056_23_8_087807 crossref_primary_10_1039_D0RA00579G crossref_primary_10_1016_j_talanta_2013_09_004 crossref_primary_10_1016_j_jphotochem_2023_115443 |
Cites_doi | 10.1016/j.ccr.2005.01.030 10.1021/jp0671502 10.1002/1521-4095(200109)13:18<1389::AID-ADMA1389>3.0.CO;2-F 10.1021/cm0506858 10.1073/pnas.0504892102 10.1002/adma.200390095 10.1007/s00216-001-1179-5 10.1021/jp035241i 10.1021/ja060447t 10.1021/jp052516g 10.1021/ja028110o 10.1016/j.colsurfa.2007.09.040 10.1021/jp971656q 10.1021/cm060293g 10.1021/jp0507288 10.1021/la062642r 10.1021/ac015657x 10.1039/b607106f 10.1021/jp0639086 10.1021/jp061269t 10.1021/jp963348i 10.1103/PhysRevLett.78.4217 |
ContentType | Journal Article |
Copyright | 2008 Elsevier Inc. 2008 INIST-CNRS |
Copyright_xml | – notice: 2008 Elsevier Inc. – notice: 2008 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.jcis.2008.03.004 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 142 |
ExternalDocumentID | 18400232 20362582 10_1016_j_jcis_2008_03_004 S0021979708002786 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXDB ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADFGL ADMUD AEBSH AEFWE AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q G8K GBLVA HLY HVGLF HZ~ H~9 IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A NDZJH NEJ O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SCC SCE SDF SDG SDP SES SEW SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ VH1 WH7 WUQ XFK XPP YQT ZGI ZMT ZU3 ZXP ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c384t-807cddc838c9bf0e46b80c9a205674a1c00f9eff41727f5ebbfac0c21f09e16c3 |
IEDL.DBID | AIKHN |
ISSN | 0021-9797 |
IngestDate | Fri Jul 11 06:59:55 EDT 2025 Thu Apr 03 07:04:31 EDT 2025 Mon Jul 21 09:15:40 EDT 2025 Tue Jul 01 01:17:45 EDT 2025 Thu Apr 24 23:03:25 EDT 2025 Fri Feb 23 02:22:18 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Longitudinal plasmon wavelength Worm-like gold nanorods Aspect ratio Localized surface plasmon resonance Gold Optical properties Preparation Transition metal Resonance Surface plasmon Wavelength |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c384t-807cddc838c9bf0e46b80c9a205674a1c00f9eff41727f5ebbfac0c21f09e16c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 18400232 |
PQID | 69205034 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_69205034 pubmed_primary_18400232 pascalfrancis_primary_20362582 crossref_citationtrail_10_1016_j_jcis_2008_03_004 crossref_primary_10_1016_j_jcis_2008_03_004 elsevier_sciencedirect_doi_10_1016_j_jcis_2008_03_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-06-01 |
PublicationDateYYYYMMDD | 2008-06-01 |
PublicationDate_xml | – month: 06 year: 2008 text: 2008-06-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | San Diego, CA |
PublicationPlace_xml | – name: San Diego, CA – name: United States |
PublicationTitle | Journal of colloid and interface science |
PublicationTitleAlternate | J Colloid Interface Sci |
PublicationYear | 2008 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Jana, Gearheart, Murphy (bib009) 2001; 13 Nath, Chilkoti (bib021) 2002; 74 Pérez-Juste, Pastoriza-Santos, Liz-Marzán, Mulvaney (bib001) 2005; 249 Grzelczak, Pérez-Juste, de Abajo, Liz-Marzán (bib016) 2007; 111 Pastoriza-Aantos, Pérez-Juste, Liz-Marzán (bib015) 2006; 18 Busbee, Obare, Murphy (bib007) 2003; 15 Yan, Yang, Wang (bib012) 2003; 107 Wang, Huff, Zweifel, He, Low, Wei, Cheng (bib004) 2005; 102 Yu, Chang, Lee, Wang (bib023) 1997; 101 van der Zande, Böhmer, Fokkink, Schönenberger (bib005) 1997; 101 Liu, Guyot-Sionnest (bib014) 2006; 17 Averitt, Sarkar, Halas (bib017) 1997; 78 Huang, He, Zeng, Xia, Yu (bib008) 2008; 317 Zweifel, Wei (bib018) 2005; 17 Sokolov, Follen, Aaron, Pavlova, Malpica, Lotan, Richards-Kortum (bib003) 2003; 63 Kou, Zhang, Tsung, Yeung, Shi, Stucky, Sun, Wang, Yan (bib013) 2006; 110 Tsung, Kou, Shi, Zhang, Yeung, Wang, Stucky (bib011) 2006; 128 Coille, Gauglitz, Hoebeke (bib022) 2002; 372 Huff, Hansen, Zhao, Cheng, Wei (bib020) 2007; 23 Kim, Song, Yang (bib006) 2002; 124 Brioude, Jiang, Pileni (bib002) 2005; 109 Rodríguez-Fernández, Pérez-Juste, Mulvaney, Liz-Marzán (bib010) 2005; 109 Gulati, Liao, Hafner (bib019) 2006; 110 Yu (10.1016/j.jcis.2008.03.004_bib023) 1997; 101 Gulati (10.1016/j.jcis.2008.03.004_bib019) 2006; 110 Brioude (10.1016/j.jcis.2008.03.004_bib002) 2005; 109 Rodríguez-Fernández (10.1016/j.jcis.2008.03.004_bib010) 2005; 109 Wang (10.1016/j.jcis.2008.03.004_bib004) 2005; 102 Averitt (10.1016/j.jcis.2008.03.004_bib017) 1997; 78 Grzelczak (10.1016/j.jcis.2008.03.004_bib016) 2007; 111 Zweifel (10.1016/j.jcis.2008.03.004_bib018) 2005; 17 Pérez-Juste (10.1016/j.jcis.2008.03.004_bib001) 2005; 249 Kim (10.1016/j.jcis.2008.03.004_bib006) 2002; 124 Coille (10.1016/j.jcis.2008.03.004_bib022) 2002; 372 van der Zande (10.1016/j.jcis.2008.03.004_bib005) 1997; 101 Yan (10.1016/j.jcis.2008.03.004_bib012) 2003; 107 Jana (10.1016/j.jcis.2008.03.004_bib009) 2001; 13 Kou (10.1016/j.jcis.2008.03.004_bib013) 2006; 110 Pastoriza-Aantos (10.1016/j.jcis.2008.03.004_bib015) 2006; 18 Nath (10.1016/j.jcis.2008.03.004_bib021) 2002; 74 Liu (10.1016/j.jcis.2008.03.004_bib014) 2006; 17 Sokolov (10.1016/j.jcis.2008.03.004_bib003) 2003; 63 Huang (10.1016/j.jcis.2008.03.004_bib008) 2008; 317 Tsung (10.1016/j.jcis.2008.03.004_bib011) 2006; 128 Huff (10.1016/j.jcis.2008.03.004_bib020) 2007; 23 Busbee (10.1016/j.jcis.2008.03.004_bib007) 2003; 15 |
References_xml | – volume: 23 start-page: 1596 year: 2007 ident: bib020 publication-title: Langmuir – volume: 372 start-page: 293 year: 2002 ident: bib022 publication-title: Anal. Bioanal. Chem. – volume: 17 start-page: 4256 year: 2005 ident: bib018 publication-title: Chem. Mater. – volume: 63 start-page: 1999 year: 2003 ident: bib003 publication-title: Cancer Res. – volume: 101 start-page: 6661 year: 1997 ident: bib023 publication-title: J. Phys. Chem. B – volume: 17 start-page: 3942 year: 2006 ident: bib014 publication-title: J. Mater. Chem. – volume: 18 start-page: 2465 year: 2006 ident: bib015 publication-title: Chem. Mater. – volume: 110 start-page: 22323 year: 2006 ident: bib019 publication-title: J. Phys. Chem. B – volume: 124 start-page: 14316 year: 2002 ident: bib006 publication-title: J. Am. Chem. Soc. – volume: 110 start-page: 16377 year: 2006 ident: bib013 publication-title: J. Phys. Chem. B – volume: 74 start-page: 504 year: 2002 ident: bib021 publication-title: Anal. Chem. – volume: 101 start-page: 852 year: 1997 ident: bib005 publication-title: J. Phys. Chem. B – volume: 249 start-page: 1870 year: 2005 ident: bib001 publication-title: Coord. Chem. Rev. – volume: 109 start-page: 13138 year: 2005 ident: bib002 publication-title: J. Phys. Chem. B – volume: 128 start-page: 5352 year: 2006 ident: bib011 publication-title: J. Am. Chem. Soc. – volume: 111 start-page: 6183 year: 2007 ident: bib016 publication-title: J. Phys. Chem. C – volume: 107 start-page: 9159 year: 2003 ident: bib012 publication-title: J. Phys. Chem. B – volume: 13 start-page: 1389 year: 2001 ident: bib009 publication-title: Adv. Mater. – volume: 109 start-page: 14257 year: 2005 ident: bib010 publication-title: J. Phys. Chem. B – volume: 317 start-page: 56 year: 2008 end-page: 61 ident: bib008 publication-title: Colloids Surf. A – volume: 102 start-page: 15752 year: 2005 ident: bib004 publication-title: Proc. Natl. Acad. Sci. USA – volume: 78 start-page: 4217 year: 1997 ident: bib017 publication-title: Phys. Rev. Lett. – volume: 15 start-page: 414 year: 2003 ident: bib007 publication-title: Adv. Mater. – volume: 249 start-page: 1870 year: 2005 ident: 10.1016/j.jcis.2008.03.004_bib001 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2005.01.030 – volume: 111 start-page: 6183 year: 2007 ident: 10.1016/j.jcis.2008.03.004_bib016 publication-title: J. Phys. Chem. C doi: 10.1021/jp0671502 – volume: 13 start-page: 1389 year: 2001 ident: 10.1016/j.jcis.2008.03.004_bib009 publication-title: Adv. Mater. doi: 10.1002/1521-4095(200109)13:18<1389::AID-ADMA1389>3.0.CO;2-F – volume: 17 start-page: 4256 year: 2005 ident: 10.1016/j.jcis.2008.03.004_bib018 publication-title: Chem. Mater. doi: 10.1021/cm0506858 – volume: 102 start-page: 15752 year: 2005 ident: 10.1016/j.jcis.2008.03.004_bib004 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0504892102 – volume: 15 start-page: 414 year: 2003 ident: 10.1016/j.jcis.2008.03.004_bib007 publication-title: Adv. Mater. doi: 10.1002/adma.200390095 – volume: 372 start-page: 293 year: 2002 ident: 10.1016/j.jcis.2008.03.004_bib022 publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-001-1179-5 – volume: 107 start-page: 9159 year: 2003 ident: 10.1016/j.jcis.2008.03.004_bib012 publication-title: J. Phys. Chem. B doi: 10.1021/jp035241i – volume: 128 start-page: 5352 year: 2006 ident: 10.1016/j.jcis.2008.03.004_bib011 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja060447t – volume: 109 start-page: 14257 year: 2005 ident: 10.1016/j.jcis.2008.03.004_bib010 publication-title: J. Phys. Chem. B doi: 10.1021/jp052516g – volume: 63 start-page: 1999 year: 2003 ident: 10.1016/j.jcis.2008.03.004_bib003 publication-title: Cancer Res. – volume: 124 start-page: 14316 year: 2002 ident: 10.1016/j.jcis.2008.03.004_bib006 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja028110o – volume: 317 start-page: 56 year: 2008 ident: 10.1016/j.jcis.2008.03.004_bib008 publication-title: Colloids Surf. A doi: 10.1016/j.colsurfa.2007.09.040 – volume: 101 start-page: 6661 year: 1997 ident: 10.1016/j.jcis.2008.03.004_bib023 publication-title: J. Phys. Chem. B doi: 10.1021/jp971656q – volume: 18 start-page: 2465 year: 2006 ident: 10.1016/j.jcis.2008.03.004_bib015 publication-title: Chem. Mater. doi: 10.1021/cm060293g – volume: 109 start-page: 13138 year: 2005 ident: 10.1016/j.jcis.2008.03.004_bib002 publication-title: J. Phys. Chem. B doi: 10.1021/jp0507288 – volume: 23 start-page: 1596 year: 2007 ident: 10.1016/j.jcis.2008.03.004_bib020 publication-title: Langmuir doi: 10.1021/la062642r – volume: 74 start-page: 504 year: 2002 ident: 10.1016/j.jcis.2008.03.004_bib021 publication-title: Anal. Chem. doi: 10.1021/ac015657x – volume: 17 start-page: 3942 year: 2006 ident: 10.1016/j.jcis.2008.03.004_bib014 publication-title: J. Mater. Chem. doi: 10.1039/b607106f – volume: 110 start-page: 16377 year: 2006 ident: 10.1016/j.jcis.2008.03.004_bib013 publication-title: J. Phys. Chem. B doi: 10.1021/jp0639086 – volume: 110 start-page: 22323 year: 2006 ident: 10.1016/j.jcis.2008.03.004_bib019 publication-title: J. Phys. Chem. B doi: 10.1021/jp061269t – volume: 101 start-page: 852 year: 1997 ident: 10.1016/j.jcis.2008.03.004_bib005 publication-title: J. Phys. Chem. B doi: 10.1021/jp963348i – volume: 78 start-page: 4217 year: 1997 ident: 10.1016/j.jcis.2008.03.004_bib017 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.78.4217 |
SSID | ssj0011559 |
Score | 1.9742604 |
Snippet | A type of worm-like nanorods was successfully synthesized through conventional gold nanorods reacting with Na
2S
2O
3 or Na
2S. The generated worm-like gold... A type of worm-like nanorods was successfully synthesized through conventional gold nanorods reacting with Na2S2O3 or Na2S. The generated worm-like gold... |
SourceID | proquest pubmed pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 136 |
SubjectTerms | Aspect ratio Biosensing Techniques - instrumentation Biosensing Techniques - methods Chemistry Colloidal state and disperse state Exact sciences and technology General and physical chemistry Gold - chemistry Localized surface plasmon resonance Longitudinal plasmon wavelength Microscopy, Electron, Transmission - methods Nanotubes - chemistry Nanotubes - ultrastructure Optics and Photonics Particle Size Spectrum Analysis - methods Surface physical chemistry Surface Plasmon Resonance - instrumentation Surface Plasmon Resonance - methods Surface Properties Thermodynamics Worm-like gold nanorods |
Title | Preparation and optical properties of worm-like gold nanorods |
URI | https://dx.doi.org/10.1016/j.jcis.2008.03.004 https://www.ncbi.nlm.nih.gov/pubmed/18400232 https://www.proquest.com/docview/69205034 |
Volume | 322 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0Be6AVQi0tdGm79YEbSkkc58MHDmjV1bZVUQ8gcYtsx66WrpJod1Fv_e3MrJ1tOcCBaxQn1sx4_DwzfgNwwoXRupaKyip0hAgc15zUJoodgmPDVWwNxTt-XObTa_HtJrvZgnF_F4bKKoPv9z597a3Dk7MgzbNuNqM7vrjaClmsMU9R5tsw4KnM0bQHF1-_Ty83yQTKvPlKjySiAeHujC_zujWzZSipJK5T8dj-tNepJUrN-XYXj-PR9b40eQX7AVCyCz_n17BlmwPYHfd93A7g5X-Ug2_g_OfCerrvtmGqqVnbraPZrKOo_ILoVVnr2B-EstF89tuyX-28Zo1qWvS0y7dwPflyNZ5GoYVCZNJSrIhq2NS1KdPSSO1iK3JdxkYqjrinECoxceykdU4QjnGZ1dopExueuFjaJDfpIew0bWPfAXOiSG2p8HzHpVAiUzpz6C1tYorMibQYQtILrjKBX5zaXMyrvpDstiJhh8aXaYXCHsLpZkzn2TWefDvr9VE9sJEK3f-T40YPlLf5FSVheVbyIXzqtVmhcihlohrb3i2rXHIizMFPHHkl_5smnowR7_DjZ07qPbzwpScU0PkAO6vFnf2I-GalR7D9-W8yClZ8DzFM-Mg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcigIISiPLo_WB24oNHGchw8c0Ipqgbbi0Eq9WbZjV1tWSbS7VW_8dmZiZ6GH9sA1chJrxjP-bH_-BuADF9aYRmqiVZgEETjGnDQ2ST2CY8t16iztd5yclrNz8f2iuNiC6XgXhmiVMfeHnD5k6_jkMFrzsJ_P6Y4vRlslqwHzVHX5AB4KDF-Kzk-_NzyPjM7dAs8jS6h5vDkTSF5Xdr6KhEpSOhV3zU5Per1Cm_lQ7OJuNDrMSkfP4GmEk-xL6PFz2HLtLuxMxypuu_D4H8HBF_D559IFse-uZbptWNcPe9mspz35JYmrss6zGwSyyWL-y7HLbtGwVrcd5tnVSzg_-no2nSWxgEJi81qsSWjYNo2t89pK41MnSlOnVmqOqKcSOrNp6qXzXhCK8YUzxmubWp75VLqstPkr2G671u0B86LKXa1xdcel0KLQpvBobJfZqvAiryaQjYZTNqqLU5GLhRppZFeKjB3LXuYKjT2Bj5t3-qCtcW_rYvSHujVCFCb_e9_bv-W8za_oCJYXNZ_AwehNhc6hAxPduu56pUrJSS4HP_E6OPlvN3FdjGiHv_nPTh3Azuzs5Fgdfzv98RYeBRIKbe28g-318tq9R6SzNvvDSP4DNjf5jA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation+and+optical+properties+of+worm-like+gold+nanorods&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Huang%2C+Haowen&rft.au=He%2C+Chaocai&rft.au=Zeng%2C+Yunlong&rft.au=Xia%2C+Xiaodong&rft.date=2008-06-01&rft.issn=0021-9797&rft.volume=322&rft.issue=1&rft.spage=136&rft_id=info:doi/10.1016%2Fj.jcis.2008.03.004&rft_id=info%3Apmid%2F18400232&rft.externalDocID=18400232 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |