Working principle description of the wireless passive EM transduction pressure sensor

The development of a new passive wireless pressure sensor, based on an electromagnetic transduction approach, is reported. The sensing element is a flexible high resistivity silicon membrane located above a coplanar quarter-wavelength resonator. The comprehensive coverage of the physical bases is be...

Full description

Saved in:
Bibliographic Details
Published inEuropean physical journal. Applied physics Vol. 56; no. 1; pp. 13702 - 13707
Main Authors Jatlaoui, M.M., Chebila, F., Pons, P., Aubert, H.
Format Journal Article
LanguageEnglish
Published Les Ulis EDP Sciences 01.10.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of a new passive wireless pressure sensor, based on an electromagnetic transduction approach, is reported. The sensing element is a flexible high resistivity silicon membrane located above a coplanar quarter-wavelength resonator. The comprehensive coverage of the physical bases is beyond the scope of this paper. For the remote extraction of the applied pressure value, the passive pressure sensor is connected to a broadband horn antenna via a coaxial delay line. When interrogated by a frequency modulated continuous wave radar, the level of the backscattered signal changes versus the pressure applied to the proof body. Through this interrogation principle, the sensor provides load impedance that is reflected back to the radar reader: the measured dynamic is about 0.8 dBm/bar. This completely passive and wireless pressure telemetry micro-sensor has been designed, fabricated and characterized, thereby eliminating the need for contact, signal processing circuits, and power supplies needed by conventional active sensors.
AbstractList The development of a new passive wireless pressure sensor, based on the Electromagnetic transduction, is reported. The sensing element is a flexible high resistivity silicon membrane located above a coplanar resonator. The comprehensive coverage of the physical bases is beyond the scope of this paper. For the remote extraction of the applied pressure value, the passive pressure sensor is connected to a broadband horn antenna via a coaxial delay line. When interrogated by a Frequency Modulated Continuous Wave Radar, the level of the backscattered signal changes in response to applied pressure. The measured dynamic is about 0.8 dBm/Bar. This completely passive and wireless pressure telemetry micro-sensor has been designed, fabricated and characterized, thereby eliminating the need for contact, signal processing circuits, and power supplies to be contained within conventional sensors.
The development of a new passive wireless pressure sensor, based on an electromagnetic transduction approach, is reported. The sensing element is a flexible high resistivity silicon membrane located above a coplanar quarter-wavelength resonator. The comprehensive coverage of the physical bases is beyond the scope of this paper. For the remote extraction of the applied pressure value, the passive pressure sensor is connected to a broadband horn antenna via a coaxial delay line. When interrogated by a frequency modulated continuous wave radar, the level of the backscattered signal changes versus the pressure applied to the proof body. Through this interrogation principle, the sensor provides load impedance that is reflected back to the radar reader: the measured dynamic is about 0.8 dBm/bar. This completely passive and wireless pressure telemetry micro-sensor has been designed, fabricated and characterized, thereby eliminating the need for contact, signal processing circuits, and power supplies needed by conventional active sensors.
The development of a new passive wireless pressure sensor, based on an electromagnetic transduction approach, is reported. The sensing element is a flexible high resistivity silicon membrane located above a coplanar quarter-wavelength resonator. The comprehensive coverage of the physical bases is beyond the scope of this paper. For the remote extraction of the applied pressure value, the passive pressure sensor is connected to a broadband horn antenna via a coaxial delay line. When interrogated by a frequency modulated continuous wave radar, the level of the backscattered signal changes versus the pressure applied to the proof body. Through this interrogation principle, the sensor provides load impedance that is reflected back to the radar reader: the measured dynamic is about 0.8 dBm/bar. This completely passive and wireless pressure telemetry micro-sensor has been designed, fabricated and characterized, thereby eliminating the need for contact, signal processing circuits, and power supplies needed by conventional active sensors. [PUBLICATION ABSTRACT]
Author Chebila, F.
Jatlaoui, M.M.
Pons, P.
Aubert, H.
Author_xml – sequence: 1
  givenname: M.M.
  surname: Jatlaoui
  fullname: Jatlaoui, M.M.
  email: mjatlaou@laas.fr
  organization: CNRS-LAAS, 7 avenue du Colonel Roche, 31077 Toulouse, France
– sequence: 2
  givenname: F.
  surname: Chebila
  fullname: Chebila, F.
  organization: CNRS-LAAS, 7 avenue du Colonel Roche, 31077 Toulouse, France
– sequence: 3
  givenname: P.
  surname: Pons
  fullname: Pons, P.
  organization: CNRS-LAAS, 7 avenue du Colonel Roche, 31077 Toulouse, France
– sequence: 4
  givenname: H.
  surname: Aubert
  fullname: Aubert, H.
  organization: CNRS-LAAS, 7 avenue du Colonel Roche, 31077 Toulouse, France
BackLink https://hal.science/hal-00629017$$DView record in HAL
BookMark eNpFkM9PwjAUxxujiYDePTbePExeu64rR0JQTKZeJHBryvYmBVxnO1D_ewcYPL1fn_fNe98uOa9chYTcMLhnkLA-1itT9zkwxgA4hzPSYVzJCCCB81Mu-CXphrACACZV0iHTmfNrW73T2tsqt_UGaYEh97ZurKuoK2mzRPplPW4wBFqbEOwO6fiZNt5UodjmB6727XTrkQasgvNX5KI0m4DXf7FHpg_jt9Ekyl4fn0bDLMpjJZooLaRYGMMKZSTnyAxyBoUqBcbJYgAylSgUK4UsFqVIOXBVMJNzFG3JpYrjHrk76i7NRrcffBj_o52xejLM9L4HIPkAWLpjLXt7ZGvvPrcYGr1yW1-15-kBKClApHtBOEK5dyF4LE-qDPTeZ33wWf_73K5ExxUbGvw-8cavtUzjNNEKZjqdzUeDefai5_EvW0GCXQ
CitedBy_id crossref_primary_10_1017_S1759078721000362
crossref_primary_10_1016_j_snb_2020_127907
crossref_primary_10_1109_MMM_2015_2465711
crossref_primary_10_3390_s21175912
crossref_primary_10_1007_s12243_013_0376_5
crossref_primary_10_3390_s19061263
crossref_primary_10_3390_mi12040459
crossref_primary_10_3390_mi9010011
crossref_primary_10_3390_mi13071035
crossref_primary_10_1109_JSEN_2023_3320197
crossref_primary_10_1016_j_proeng_2012_09_433
Cites_doi 10.1142/p355
10.1002/0470040882
10.1109/58.726455
10.1109/22.223744
10.1109/22.588594
10.1109/EUMC.2007.4405297
10.1109/MWSYM.2008.4633274
10.1109/22.899037
10.1109/JSEN.2002.803743
10.1109/SENSOR.2009.5285739
10.1109/58.827416
10.1016/S0924-4247(01)00626-4
ContentType Journal Article
Copyright EDP Sciences, 2011
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: EDP Sciences, 2011
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID BSCLL
AAYXX
CITATION
7U5
8FD
L7M
1XC
VOOES
DOI 10.1051/epjap/2011100220
DatabaseName Istex
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1286-0050
ExternalDocumentID oai_HAL_hal_00629017v1
2528097691
10_1051_epjap_2011100220
ark_67375_80W_7WXC9XLN_X
Genre Feature
GroupedDBID -E.
.4S
.DC
.FH
0E1
0R~
123
4.4
5VS
74X
74Y
7~V
8FE
8FG
AAOTM
ABGRX
ABJNI
ABKKG
ABUBZ
ABZDU
ACACO
ACBIF
ACGFS
ACIMK
ACQPF
ACZCS
AEMTW
AFKRA
AFUTZ
AI.
AJPFC
ALMA_UNASSIGNED_HOLDINGS
ARABE
ARAPS
ARCSS
AZPVJ
BENPR
BSCLL
C0O
CHEAL
DC4
EBS
EJD
HCIFZ
HG-
HST
HZ~
I.6
IL9
I~P
J36
J38
J3A
L98
M-V
O9-
P62
RCA
RED
RR0
S6-
TUS
VH1
WQ3
WXU
WXY
ZE2
AAYXX
CITATION
7U5
8FD
L7M
1XC
VOOES
ID FETCH-LOGICAL-c384t-7d64baa1d8a622e1ae210d8f4e35b90676e481f46dbf472028d1ac2e4bf426833
ISSN 1286-0042
IngestDate Tue Oct 15 15:37:05 EDT 2024
Thu Oct 10 19:31:19 EDT 2024
Fri Aug 23 01:40:06 EDT 2024
Wed Jan 17 04:59:58 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Physical Sciences
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c384t-7d64baa1d8a622e1ae210d8f4e35b90676e481f46dbf472028d1ac2e4bf426833
Notes PII:S1286004211102207
istex:2E332D273848CF9F5A819BA5B95EFF2A44058AB0
publisher-ID:ap100220
ark:/67375/80W-7WXC9XLN-X
ORCID 0000-0002-6113-0648
0000-0002-7989-3272
OpenAccessLink https://hal.science/hal-00629017
PQID 908640473
PQPubID 616449
PageCount 6
ParticipantIDs hal_primary_oai_HAL_hal_00629017v1
proquest_journals_908640473
crossref_primary_10_1051_epjap_2011100220
istex_primary_ark_67375_80W_7WXC9XLN_X
PublicationCentury 2000
PublicationDate 2011-10-01
PublicationDateYYYYMMDD 2011-10-01
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Les Ulis
PublicationPlace_xml – name: Les Ulis
PublicationTitle European physical journal. Applied physics
PublicationYear 2011
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References R2
R7
Sternhagen (R6) 2002; 2
R8
R9
R10
Schimetta (R5) 2000; 48
R11
Reindl (R3) 1998; 45
Aubert (R12) 1993; MTT-41
Bouzidi (R13) 1997; MTT-45
R14
Blasquez (R15) 2001; 93
R16
Pohl (R4) 2000; 47
R1
References_xml – ident: R14
– ident: R2
  doi: 10.1142/p355
– ident: R11
  doi: 10.1002/0470040882
– volume: 45
  start-page: 1281
  year: 1998
  ident: R3
  publication-title: IEEE Trans. Ultrason. Ferroelec. Freq. Control
  doi: 10.1109/58.726455
  contributor:
    fullname: Reindl
– volume: MTT-41
  start-page: 450
  year: 1993
  ident: R12
  publication-title: IEEE Trans. Microwave Theory Tech.
  doi: 10.1109/22.223744
  contributor:
    fullname: Aubert
– volume: MTT-45
  start-page: 869
  year: 1997
  ident: R13
  publication-title: IEEE Trans. Microwave Theory Tech.
  doi: 10.1109/22.588594
  contributor:
    fullname: Bouzidi
– ident: R7
  doi: 10.1109/EUMC.2007.4405297
– ident: R8
  doi: 10.1109/MWSYM.2008.4633274
– volume: 48
  start-page: 2730
  year: 2000
  ident: R5
  publication-title: IEEE Trans. Microwave Theory Tech.
  doi: 10.1109/22.899037
  contributor:
    fullname: Schimetta
– volume: 2
  start-page: 301
  year: 2002
  ident: R6
  publication-title: IEEE Sensors J.
  doi: 10.1109/JSEN.2002.803743
  contributor:
    fullname: Sternhagen
– ident: R1
– ident: R10
– ident: R16
  doi: 10.1109/SENSOR.2009.5285739
– volume: 47
  start-page: 317
  year: 2000
  ident: R4
  publication-title: IEEE Trans. Ultrason. Ferroelec. Freq. Control
  doi: 10.1109/58.827416
  contributor:
    fullname: Pohl
– volume: 93
  start-page: 44
  year: 2001
  ident: R15
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/S0924-4247(01)00626-4
  contributor:
    fullname: Blasquez
– ident: R9
SSID ssj0001685
Score 2.0898812
Snippet The development of a new passive wireless pressure sensor, based on an electromagnetic transduction approach, is reported. The sensing element is a flexible...
The development of a new passive wireless pressure sensor, based on the Electromagnetic transduction, is reported. The sensing element is a flexible high...
SourceID hal
proquest
crossref
istex
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 13702
SubjectTerms Engineering Sciences
Micro and nanotechnologies
Microelectronics
Title Working principle description of the wireless passive EM transduction pressure sensor
URI https://api.istex.fr/ark:/67375/80W-7WXC9XLN-X/fulltext.pdf
https://www.proquest.com/docview/908640473
https://hal.science/hal-00629017
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEF_qHYI-iJ6K9VQWEUFK7rKbzWbzWM7WIm3tQ8vlbdkkG_woTeiHiP7zziabj3KHqC8h3Q3NMvPLzOzsfCD0xs28MPOocmIllMN4xh0hMuKoxAuV8UKGxGQjz-Z8smIfIz_q9X51s0v28UXy89a8kv_hKowBX02W7D9wtvlTGIB74C9cgcNw_SseW0_3oKg95oNUt2LAnv6bYsRrI88KsJNNnNBoZhpDbHZpVTh2UIbCmnOEHWxp8-2tvvqiZqdd10VjvlYzbSCi2q9VfihjBGaDTvSAjr-s1VEo8SKvbPgmw2x4iG0G0aTrjLDRcK0zYvR-UcukjqsRVCB3jHSodE53rCo6W0viqsR4F3E3BDzIEMPq4qsqTC4LLMHUkKVuq87qI_z5JzleTadyOYqWx7Ol9qY-FS7YYqbywSkNQt_Eg4rxh0aNE172c20Wb8-4YQGX5esv25cf2TR3PpuI2lPzkf64oeBLq2X5ED2w2w08rLDzCPX05gzd7xShPEN3FxUHH6OVxRNu8IQ7eMJ5hgFPuMYTtnjCoxnu4gnXeMIVnp6g1Xi0vJo4tu2Gk3iC7Z0g5SxWiqRCcUo1UZoSNxUZ054fh2DdcM0EyRhP44wFFAzUlKiEagY_KRee9xSdbPKNfoZwQlMSZK5pUapNR-gw8JUAYnNXp4nibh-9qwkni6q6iiyjInwiSyLLlsh99Boo2zxmyqJPhlNpxkwiMNi1wXfSR29LwjePqe03E7oY-FK41zK4jq7CaDqXUR-d15yR9svZyRD298xlgff8j7Pn6F6L_RfoZL896Jdgmu7jVyWEfgO_xY71
link.rule.ids 230,315,786,790,891,27955,27956,33406
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Working+principle+description+of+the+wireless+passive+EM+transduction+pressure+sensor&rft.jtitle=European+physical+journal.+Applied+physics&rft.au=Jatlaoui%2C+M+M&rft.au=Chebila%2C+F&rft.au=Pons%2C+P&rft.au=Aubert%2C+H&rft.date=2011-10-01&rft.pub=EDP+Sciences&rft.issn=1286-0042&rft.eissn=1286-0050&rft.volume=56&rft.issue=1&rft_id=info:doi/10.1051%2Fepjap%2F2011100220&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2528097691
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1286-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1286-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1286-0042&client=summon