Emerging applications of biochar-based materials for energy storage and conversion
Global warming, environmental pollution, and an energy shortage in the current fossil fuel society may cause a severe ecological crisis. Storage and conversion of renewable, dispersive and non-perennial energy from the sun, wind, geothermal sources, water, or biomass could be a promising option to r...
Saved in:
Published in | Energy & environmental science Vol. 12; no. 6; pp. 1751 - 1779 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
01.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Global warming, environmental pollution, and an energy shortage in the current fossil fuel society may cause a severe ecological crisis. Storage and conversion of renewable, dispersive and non-perennial energy from the sun, wind, geothermal sources, water, or biomass could be a promising option to relieve this crisis. Carbon materials could be the most versatile platform materials applied in the field of modern energy storage and conversion. Conventional carbon materials produced from coal and petrochemical products are usually energy intensive or involve harsh synthetic conditions. It is highly desired to develop effective methods to produce carbon materials from renewable resources that have high performance and limited environmental impacts. In this regard, biochar, a bio-carbon with abundant surface functional groups and easily tuned porosity produced from biomass, may be a promising candidate as a sustainable carbon material. Recent studies have demonstrated that biochar-based materials show great application potential in energy storage and conversion because of their easily tuned surface chemistry and porosity. In this review, recent advances in the applications of biochar-based materials in various energy storage and conversion fields, including hydrogen storage and production, oxygen electrocatalysts, emerging fuel cell technology, supercapacitors, and lithium/sodium ion batteries, are summarized, highlighting the mechanisms and open questions in current energy applications. Finally, contemporary challenges and perspectives on how biochar-based materials will develop and, in particular, the fields in which the use of biochar-based materials could be expanded are discussed throughout the review. This review demonstrates significant potential for energy applications of biochar-based materials, and it is expected to inspire new discoveries to promote practical applications of biochar-based materials in more energy storage and conversion fields.
Biochar, a bio-carbon with abundant surface functional groups and easily tuned porosity produced from biomass, shows great application potential in energy storage and conversion. In this review, recent advances in the applications of biochar-based materials in various energy storage and conversion fields are summarized, highlighting the mechanisms and open questions in current energy applications. |
---|---|
AbstractList | Global warming, environmental pollution, and an energy shortage in the current fossil fuel society may cause a severe ecological crisis. Storage and conversion of renewable, dispersive and non-perennial energy from the sun, wind, geothermal sources, water, or biomass could be a promising option to relieve this crisis. Carbon materials could be the most versatile platform materials applied in the field of modern energy storage and conversion. Conventional carbon materials produced from coal and petrochemical products are usually energy intensive or involve harsh synthetic conditions. It is highly desired to develop effective methods to produce carbon materials from renewable resources that have high performance and limited environmental impacts. In this regard, biochar, a bio-carbon with abundant surface functional groups and easily tuned porosity produced from biomass, may be a promising candidate as a sustainable carbon material. Recent studies have demonstrated that biochar-based materials show great application potential in energy storage and conversion because of their easily tuned surface chemistry and porosity. In this review, recent advances in the applications of biochar-based materials in various energy storage and conversion fields, including hydrogen storage and production, oxygen electrocatalysts, emerging fuel cell technology, supercapacitors, and lithium/sodium ion batteries, are summarized, highlighting the mechanisms and open questions in current energy applications. Finally, contemporary challenges and perspectives on how biochar-based materials will develop and, in particular, the fields in which the use of biochar-based materials could be expanded are discussed throughout the review. This review demonstrates significant potential for energy applications of biochar-based materials, and it is expected to inspire new discoveries to promote practical applications of biochar-based materials in more energy storage and conversion fields. Global warming, environmental pollution, and an energy shortage in the current fossil fuel society may cause a severe ecological crisis. Storage and conversion of renewable, dispersive and non-perennial energy from the sun, wind, geothermal sources, water, or biomass could be a promising option to relieve this crisis. Carbon materials could be the most versatile platform materials applied in the field of modern energy storage and conversion. Conventional carbon materials produced from coal and petrochemical products are usually energy intensive or involve harsh synthetic conditions. It is highly desired to develop effective methods to produce carbon materials from renewable resources that have high performance and limited environmental impacts. In this regard, biochar, a bio-carbon with abundant surface functional groups and easily tuned porosity produced from biomass, may be a promising candidate as a sustainable carbon material. Recent studies have demonstrated that biochar-based materials show great application potential in energy storage and conversion because of their easily tuned surface chemistry and porosity. In this review, recent advances in the applications of biochar-based materials in various energy storage and conversion fields, including hydrogen storage and production, oxygen electrocatalysts, emerging fuel cell technology, supercapacitors, and lithium/sodium ion batteries, are summarized, highlighting the mechanisms and open questions in current energy applications. Finally, contemporary challenges and perspectives on how biochar-based materials will develop and, in particular, the fields in which the use of biochar-based materials could be expanded are discussed throughout the review. This review demonstrates significant potential for energy applications of biochar-based materials, and it is expected to inspire new discoveries to promote practical applications of biochar-based materials in more energy storage and conversion fields. Biochar, a bio-carbon with abundant surface functional groups and easily tuned porosity produced from biomass, shows great application potential in energy storage and conversion. In this review, recent advances in the applications of biochar-based materials in various energy storage and conversion fields are summarized, highlighting the mechanisms and open questions in current energy applications. |
Author | Yu, Han-Qing Jiang, Hong Liu, Wu-Jun |
AuthorAffiliation | Department of Applied Chemistry CAS Key Laboratory of Urban Pollutant Conversion University of Science & Technology of China |
AuthorAffiliation_xml | – name: Department of Applied Chemistry – name: University of Science & Technology of China – name: CAS Key Laboratory of Urban Pollutant Conversion |
Author_xml | – sequence: 1 givenname: Wu-Jun surname: Liu fullname: Liu, Wu-Jun – sequence: 2 givenname: Hong surname: Jiang fullname: Jiang, Hong – sequence: 3 givenname: Han-Qing surname: Yu fullname: Yu, Han-Qing |
BookMark | eNptkU1LAzEQhoMo2FYv3oWAN2E1H7ubzVHK-gEFQfS8TLKTmtJuarIV-u9dWz9APM0cnucdeGdMDrvQISFnnF1xJvW11YiMCVbiARlxVeRZoVh5-L2XWhyTcUoLxkrBlB6Rp3qFce67OYX1eukt9D50iQZHjQ_2FWJmIGFLV9Bj9LBM1IVIsRukLU19iDBHCl1LbejeMabBPiFHbgDx9GtOyMtt_Ty9z2aPdw_Tm1lmZZX3mQJnZGWMUqUsnGxBCiOx1aCV4ZV0snJOIWhtcsOtEbkrgTslDDBsc2XkhFzsc9cxvG0w9c0ibGI3nGyEkJppLgoxUJd7ysaQUkTXrKNfQdw2nDWfnTVTXde7zuoBZn9g6_tdJX0Ev_xfOd8rMdmf6N83yA-MBnuX |
CitedBy_id | crossref_primary_10_1016_j_jclepro_2020_123786 crossref_primary_10_1021_acssuschemeng_1c04089 crossref_primary_10_1039_D0SE00305K crossref_primary_10_1016_j_biortech_2021_126261 crossref_primary_10_1016_j_biortech_2019_122286 crossref_primary_10_1016_j_rser_2021_111451 crossref_primary_10_1016_j_fuel_2021_121632 crossref_primary_10_1016_j_cej_2025_159556 crossref_primary_10_1016_j_fuel_2021_122840 crossref_primary_10_1002_eom2_12434 crossref_primary_10_1016_j_energy_2022_123512 crossref_primary_10_1016_j_jcis_2024_01_141 crossref_primary_10_3390_agronomy13030803 crossref_primary_10_1016_j_surfcoat_2021_127034 crossref_primary_10_3934_matersci_2023022 crossref_primary_10_1016_j_jcis_2021_11_164 crossref_primary_10_1016_j_jenvman_2021_113340 crossref_primary_10_1039_D2SE00267A crossref_primary_10_1088_2053_1591_ada5c4 crossref_primary_10_1039_D3NJ01150J crossref_primary_10_1002_admt_202201390 crossref_primary_10_1016_j_jallcom_2022_166231 crossref_primary_10_1007_s10098_019_01790_1 crossref_primary_10_1016_j_electacta_2023_143257 crossref_primary_10_1039_D2GC04271A crossref_primary_10_26848_rbgf_v18_1_p456_470 crossref_primary_10_1016_j_jcou_2023_102590 crossref_primary_10_1016_j_jclepro_2024_143393 crossref_primary_10_1002_adfm_201910599 crossref_primary_10_1016_j_ijhydene_2023_12_083 crossref_primary_10_1016_j_jaap_2023_106207 crossref_primary_10_1016_j_est_2022_105687 crossref_primary_10_1002_bte2_20240055 crossref_primary_10_1016_j_jclepro_2020_124857 crossref_primary_10_1016_j_mtcomm_2022_105207 crossref_primary_10_1021_acs_est_0c01862 crossref_primary_10_1515_pac_2020_1011 crossref_primary_10_1016_j_jclepro_2024_142169 crossref_primary_10_1016_j_chemosphere_2021_130508 crossref_primary_10_1016_j_scitotenv_2020_144764 crossref_primary_10_1016_j_matlet_2022_131872 crossref_primary_10_34133_2020_8685436 crossref_primary_10_1016_j_chemosphere_2021_131961 crossref_primary_10_1016_j_susmat_2024_e00875 crossref_primary_10_1016_j_cej_2022_135407 crossref_primary_10_1016_j_diamond_2024_111921 crossref_primary_10_1016_j_electacta_2021_138469 crossref_primary_10_1016_j_mtchem_2025_102646 crossref_primary_10_1016_j_mtcomm_2024_110271 crossref_primary_10_1007_s10708_022_10807_0 crossref_primary_10_1016_j_ijhydene_2024_05_065 crossref_primary_10_1016_j_colsurfa_2022_128932 crossref_primary_10_1016_j_jiec_2024_07_043 crossref_primary_10_3390_molecules29010003 crossref_primary_10_1016_j_cej_2023_144705 crossref_primary_10_5004_dwt_2023_30090 crossref_primary_10_1039_D3EE02213G crossref_primary_10_1039_C9QI00962K crossref_primary_10_1016_j_wasman_2021_02_057 crossref_primary_10_1016_j_apcatb_2020_119390 crossref_primary_10_1007_s41101_024_00264_w crossref_primary_10_1016_j_apcatb_2023_123223 crossref_primary_10_1007_s41742_024_00605_6 crossref_primary_10_1021_acscatal_3c01773 crossref_primary_10_1016_j_jallcom_2021_160203 crossref_primary_10_1016_j_rser_2021_111371 crossref_primary_10_1007_s13399_021_01464_3 crossref_primary_10_1016_j_cej_2023_144817 crossref_primary_10_1016_j_cherd_2022_09_028 crossref_primary_10_1016_j_mtsust_2022_100209 crossref_primary_10_1016_j_rser_2021_111379 crossref_primary_10_1016_j_est_2023_109063 crossref_primary_10_1007_s10853_022_06891_9 crossref_primary_10_1002_cssc_202301005 crossref_primary_10_1016_j_joei_2024_101559 crossref_primary_10_1016_j_jallcom_2020_157398 crossref_primary_10_1016_j_pes_2024_100023 crossref_primary_10_1016_j_cej_2020_126136 crossref_primary_10_1007_s11664_021_09358_w crossref_primary_10_1016_j_jaap_2024_106433 crossref_primary_10_1039_D4SC05885B crossref_primary_10_1016_j_jcis_2020_08_101 crossref_primary_10_3390_polym14194171 crossref_primary_10_1021_acssuschemeng_9b06483 crossref_primary_10_1016_j_jenvman_2021_113382 crossref_primary_10_1016_j_flatc_2022_100467 crossref_primary_10_1016_j_rser_2021_111029 crossref_primary_10_1016_j_powtec_2024_119381 crossref_primary_10_1016_j_scitotenv_2024_174081 crossref_primary_10_1016_j_materresbull_2021_111262 crossref_primary_10_1016_j_matchemphys_2025_130651 crossref_primary_10_1016_j_scitotenv_2025_178615 crossref_primary_10_1016_j_matlet_2023_135188 crossref_primary_10_1021_acs_energyfuels_9b04505 crossref_primary_10_1002_wene_510 crossref_primary_10_1016_j_scitotenv_2021_151774 crossref_primary_10_1002_bte2_20240015 crossref_primary_10_1016_j_jece_2023_111263 crossref_primary_10_1021_acssuschemeng_2c02974 crossref_primary_10_1007_s10853_024_10272_9 crossref_primary_10_1007_s13399_023_04987_z crossref_primary_10_1007_s40145_022_0644_9 crossref_primary_10_1016_j_biortech_2022_127853 crossref_primary_10_1016_j_wen_2025_03_002 crossref_primary_10_1016_j_apsusc_2024_161126 crossref_primary_10_1016_j_rser_2024_114304 crossref_primary_10_1016_j_jenvman_2021_113128 crossref_primary_10_1016_j_envdev_2023_100819 crossref_primary_10_1016_j_jhazmat_2025_137879 crossref_primary_10_1016_j_envres_2020_110176 crossref_primary_10_1016_j_fuel_2023_127968 crossref_primary_10_1021_acs_energyfuels_0c00581 crossref_primary_10_5572_ajae_2022_117 crossref_primary_10_1002_adma_202307412 crossref_primary_10_1016_j_cej_2021_130956 crossref_primary_10_1016_j_jallcom_2022_166138 crossref_primary_10_1039_D2RA00978A crossref_primary_10_3390_nano14221799 crossref_primary_10_1039_D0QM01101K crossref_primary_10_1016_j_ijbiomac_2024_134159 crossref_primary_10_1080_19475411_2024_2408013 crossref_primary_10_1016_j_icheatmasstransfer_2024_107938 crossref_primary_10_1002_ente_202301436 crossref_primary_10_1016_j_est_2024_111215 crossref_primary_10_1016_j_apsusc_2021_150039 crossref_primary_10_1016_j_cclet_2024_110108 crossref_primary_10_1002_smtd_202001250 crossref_primary_10_1007_s43939_024_00161_y crossref_primary_10_1002_er_5181 crossref_primary_10_1016_j_carbon_2022_07_022 crossref_primary_10_1039_D3RA07694F crossref_primary_10_3390_molecules25143123 crossref_primary_10_1016_j_ceramint_2023_01_182 crossref_primary_10_1016_j_est_2023_110180 crossref_primary_10_1016_j_microc_2020_105506 crossref_primary_10_3390_app14178028 crossref_primary_10_1016_j_jclepro_2020_125449 crossref_primary_10_1021_acs_energyfuels_0c04042 crossref_primary_10_1016_j_jechem_2020_04_004 crossref_primary_10_1016_j_rser_2021_111173 crossref_primary_10_1007_s11164_019_04011_y crossref_primary_10_1021_acsestengg_1c00510 crossref_primary_10_1039_D3NJ04362B crossref_primary_10_1002_nano_202000140 crossref_primary_10_1016_j_biteb_2021_100812 crossref_primary_10_1515_gps_2022_0044 crossref_primary_10_1016_j_matlet_2021_131606 crossref_primary_10_1016_j_wasman_2022_10_030 crossref_primary_10_1016_j_jmrt_2024_06_033 crossref_primary_10_1039_C9TA11618D crossref_primary_10_1021_acsami_0c21956 crossref_primary_10_1007_s10853_025_10622_1 crossref_primary_10_1039_D4EE06106C crossref_primary_10_1039_D3GC00323J crossref_primary_10_1016_j_envpol_2024_123335 crossref_primary_10_1016_j_jiec_2022_06_034 crossref_primary_10_1016_j_cclet_2022_03_027 crossref_primary_10_3390_chemosensors10030117 crossref_primary_10_1016_j_jhazmat_2021_128080 crossref_primary_10_1039_D3TA01829F crossref_primary_10_2174_2213346106666191127120259 crossref_primary_10_1155_2022_8136302 crossref_primary_10_1007_s42773_022_00194_7 crossref_primary_10_1021_acssusresmgt_4c00221 crossref_primary_10_1016_j_watres_2020_116732 crossref_primary_10_1039_C9TA09124F crossref_primary_10_1039_D4TC04403G crossref_primary_10_1016_j_ijhydene_2023_12_248 crossref_primary_10_1039_D1NA00636C crossref_primary_10_1016_j_biteb_2023_101684 crossref_primary_10_1016_j_fuproc_2022_107538 crossref_primary_10_3390_pr9101835 crossref_primary_10_1016_j_scitotenv_2021_148688 crossref_primary_10_1002_eom2_12019 crossref_primary_10_1016_j_jechem_2021_04_060 crossref_primary_10_1039_D1GC00843A crossref_primary_10_1039_D3MA00045A crossref_primary_10_1002_anie_202316116 crossref_primary_10_1016_j_apsusc_2021_150981 crossref_primary_10_1016_j_jpowsour_2021_230727 crossref_primary_10_1016_j_biortech_2024_130557 crossref_primary_10_3390_en14237928 crossref_primary_10_1016_j_biteb_2024_101872 crossref_primary_10_1016_j_ijhydene_2023_05_167 crossref_primary_10_1016_j_rser_2021_112056 crossref_primary_10_1007_s42824_023_00097_3 crossref_primary_10_1039_D0NJ00499E crossref_primary_10_1002_ente_201900950 crossref_primary_10_1016_j_fuproc_2021_107119 crossref_primary_10_1016_j_jcis_2024_03_114 crossref_primary_10_1016_j_jece_2024_114553 crossref_primary_10_1016_j_fuproc_2021_107036 crossref_primary_10_1002_sus2_146 crossref_primary_10_1016_j_chemosphere_2021_130723 crossref_primary_10_1016_j_jece_2024_113581 crossref_primary_10_3390_nano12050866 crossref_primary_10_3390_fermentation10120644 crossref_primary_10_1016_j_elecom_2022_107310 crossref_primary_10_1016_j_jece_2021_105161 crossref_primary_10_1016_j_jechem_2021_10_038 crossref_primary_10_1016_j_scitotenv_2023_169608 crossref_primary_10_3390_coatings12070982 crossref_primary_10_1016_j_crsust_2023_100213 crossref_primary_10_1016_j_scitotenv_2020_140862 crossref_primary_10_1002_cjce_23771 crossref_primary_10_1016_j_jcou_2022_102327 crossref_primary_10_1016_j_colsurfa_2022_129400 crossref_primary_10_1016_j_carbon_2023_118105 crossref_primary_10_1016_j_xcrp_2021_100443 crossref_primary_10_1016_j_cej_2020_126897 crossref_primary_10_3390_catal14030185 crossref_primary_10_1016_j_ijhydene_2023_11_335 crossref_primary_10_1016_j_jhazmat_2020_122768 crossref_primary_10_1016_j_mseb_2022_116064 crossref_primary_10_1021_acs_energyfuels_2c04093 crossref_primary_10_1007_s42773_023_00229_7 crossref_primary_10_1039_D4GC01579G crossref_primary_10_1016_j_cej_2022_134743 crossref_primary_10_1021_acssuschemeng_0c00278 crossref_primary_10_1016_j_jhazmat_2022_128223 crossref_primary_10_1039_D2TA07795G crossref_primary_10_1016_j_jallcom_2025_179485 crossref_primary_10_1007_s13399_022_02932_0 crossref_primary_10_3390_c8040058 crossref_primary_10_1002_cssc_202202188 crossref_primary_10_1016_j_carbon_2020_12_029 crossref_primary_10_1016_j_carbon_2021_08_044 crossref_primary_10_1016_j_jclepro_2024_143853 crossref_primary_10_1016_j_esci_2024_100249 crossref_primary_10_1016_j_scitotenv_2021_146463 crossref_primary_10_1016_j_cej_2020_125119 crossref_primary_10_1038_s43586_024_00297_4 crossref_primary_10_1002_adsu_202100152 crossref_primary_10_1002_cphc_202400569 crossref_primary_10_1016_j_jcis_2022_09_121 crossref_primary_10_1016_j_chemosphere_2022_135567 crossref_primary_10_1021_acs_langmuir_4c00524 crossref_primary_10_1016_j_jelechem_2019_113753 crossref_primary_10_1007_s11581_022_04557_9 crossref_primary_10_1016_j_gee_2020_11_010 crossref_primary_10_1007_s11164_023_05199_w crossref_primary_10_1016_j_enconman_2025_119481 crossref_primary_10_1016_j_energy_2019_116431 crossref_primary_10_1016_j_est_2022_105801 crossref_primary_10_1016_j_biotechadv_2023_108181 crossref_primary_10_3389_fmats_2020_588399 crossref_primary_10_1039_D1TA09654K crossref_primary_10_1016_j_biteb_2021_100800 crossref_primary_10_1002_cssc_202300876 crossref_primary_10_1016_j_biortech_2020_124128 crossref_primary_10_1016_j_biortech_2021_125644 crossref_primary_10_1016_j_watres_2023_120999 crossref_primary_10_1002_smll_202404254 crossref_primary_10_1016_j_nexres_2025_100268 crossref_primary_10_1039_D2MH00879C crossref_primary_10_1007_s42247_023_00603_y crossref_primary_10_1016_j_electacta_2020_136452 crossref_primary_10_15541_jim20220093 crossref_primary_10_1016_j_jpowsour_2021_230886 crossref_primary_10_1016_j_ensm_2020_08_010 crossref_primary_10_1016_j_est_2021_103458 crossref_primary_10_1016_j_fuproc_2022_107215 crossref_primary_10_1016_j_ceramint_2023_05_180 crossref_primary_10_1088_2516_1083_ac8d44 crossref_primary_10_1016_j_scp_2025_101989 crossref_primary_10_1016_j_jallcom_2022_168088 crossref_primary_10_1016_j_apmate_2021_11_005 crossref_primary_10_1039_C9TC07032J crossref_primary_10_1039_D0NR07500K crossref_primary_10_1016_j_jece_2024_111915 crossref_primary_10_1016_j_ijhydene_2024_01_141 crossref_primary_10_1016_j_jclepro_2022_132131 crossref_primary_10_1016_j_apenergy_2020_115730 crossref_primary_10_1002_er_7508 crossref_primary_10_1016_j_electacta_2024_144161 crossref_primary_10_1016_j_jelechem_2020_114044 crossref_primary_10_1007_s13399_021_01396_y crossref_primary_10_1016_j_jclepro_2021_126645 crossref_primary_10_1016_j_ijhydene_2021_11_013 crossref_primary_10_1002_bbb_2280 crossref_primary_10_1002_ange_202316116 crossref_primary_10_1039_D0EN00486C crossref_primary_10_1016_j_jece_2021_106869 crossref_primary_10_1016_j_jenvman_2024_120041 crossref_primary_10_1039_D2GC00099G crossref_primary_10_1039_D1QM00255D crossref_primary_10_1016_j_est_2023_107115 crossref_primary_10_3390_en15051683 crossref_primary_10_1016_j_biteb_2022_101205 crossref_primary_10_1016_j_cej_2022_139686 crossref_primary_10_1016_j_jece_2023_109781 crossref_primary_10_1016_j_seppur_2020_117357 crossref_primary_10_1039_D0NR08628B crossref_primary_10_1016_j_biortech_2020_124338 crossref_primary_10_1016_j_energy_2022_126128 crossref_primary_10_1016_j_cclet_2023_108459 crossref_primary_10_1016_j_jelechem_2024_118423 crossref_primary_10_1016_j_biortech_2020_124100 crossref_primary_10_1016_j_diamond_2021_108488 crossref_primary_10_3390_polym13050676 crossref_primary_10_1016_j_clce_2025_100161 crossref_primary_10_1002_cey2_137 crossref_primary_10_1016_j_jenvman_2024_123586 crossref_primary_10_1039_D0NA00778A crossref_primary_10_1016_j_jelechem_2021_115616 crossref_primary_10_1016_j_jechem_2022_11_027 crossref_primary_10_1016_j_diamond_2021_108360 crossref_primary_10_1016_j_jece_2025_115477 crossref_primary_10_1021_acs_energyfuels_2c01201 crossref_primary_10_1002_cnl2_29 crossref_primary_10_1016_j_carbpol_2022_120353 crossref_primary_10_1016_j_rser_2020_110308 crossref_primary_10_1016_j_scitotenv_2021_148977 crossref_primary_10_1016_j_cej_2020_124856 crossref_primary_10_1002_adsu_201900149 crossref_primary_10_1016_j_jiec_2024_12_001 crossref_primary_10_1016_j_jallcom_2023_170322 crossref_primary_10_1080_00439339_2023_2239776 crossref_primary_10_1021_acsomega_0c03271 crossref_primary_10_1016_j_apsusc_2022_153765 crossref_primary_10_1016_j_apcatb_2022_121425 crossref_primary_10_1007_s42773_024_00412_4 crossref_primary_10_1016_j_cclet_2020_08_019 crossref_primary_10_1016_j_est_2023_108348 crossref_primary_10_1149_1945_7111_abf40f crossref_primary_10_1016_j_rser_2025_115458 crossref_primary_10_1007_s11356_023_28633_3 crossref_primary_10_1016_j_cej_2021_129017 crossref_primary_10_3390_pr9010087 crossref_primary_10_1016_j_jenvman_2024_121058 crossref_primary_10_1016_j_fuel_2021_120185 crossref_primary_10_1016_j_jelechem_2022_117071 crossref_primary_10_1016_j_electacta_2021_139299 crossref_primary_10_1016_j_ceramint_2022_09_312 crossref_primary_10_1016_j_ensm_2020_06_017 crossref_primary_10_2166_wst_2022_316 crossref_primary_10_1016_j_jpowsour_2023_233648 crossref_primary_10_1039_D0RA00558D crossref_primary_10_1016_j_chemosphere_2021_129904 crossref_primary_10_1016_j_renene_2024_120293 crossref_primary_10_1007_s43207_020_00023_2 crossref_primary_10_1016_j_cej_2021_130499 crossref_primary_10_1016_j_cej_2021_131225 crossref_primary_10_1016_j_jenvman_2024_123345 crossref_primary_10_1016_j_scitotenv_2022_153123 crossref_primary_10_3390_molecules27010328 crossref_primary_10_1016_j_jcomc_2021_100221 crossref_primary_10_5004_dwt_2023_29726 crossref_primary_10_32604_jrm_2022_018625 crossref_primary_10_1016_j_measurement_2021_109857 crossref_primary_10_3390_nano13162326 crossref_primary_10_1016_j_apsusc_2020_146265 crossref_primary_10_1016_j_icheatmasstransfer_2024_108213 crossref_primary_10_1002_cey2_207 crossref_primary_10_1016_j_cej_2021_129385 crossref_primary_10_1016_j_wasman_2023_03_032 crossref_primary_10_1007_s44274_024_00171_w crossref_primary_10_1016_j_jes_2020_03_012 crossref_primary_10_1039_D0NJ01228A crossref_primary_10_1007_s13399_022_03003_0 crossref_primary_10_1016_j_jaap_2021_105034 crossref_primary_10_1002_aenm_202003911 crossref_primary_10_1002_aenm_201903649 crossref_primary_10_1016_j_diamond_2024_111293 crossref_primary_10_1039_D4DT03410D crossref_primary_10_3390_agriculture13030512 crossref_primary_10_3390_ma16145022 crossref_primary_10_1016_j_rser_2021_111959 crossref_primary_10_1002_adfm_202404594 crossref_primary_10_1016_j_ensm_2019_09_020 crossref_primary_10_1002_er_6967 crossref_primary_10_1016_j_indcrop_2021_113475 crossref_primary_10_1016_j_jcis_2020_04_029 crossref_primary_10_1002_smll_202306970 crossref_primary_10_1039_D3MA00296A crossref_primary_10_1016_j_ijhydene_2024_02_196 crossref_primary_10_1016_j_indcrop_2025_120830 crossref_primary_10_1039_D0TA12624A crossref_primary_10_1007_s11837_023_05801_x crossref_primary_10_1039_D2TA09704D crossref_primary_10_1016_j_ijhydene_2022_06_252 crossref_primary_10_1002_adfm_202204714 crossref_primary_10_1016_j_chemosphere_2022_134526 crossref_primary_10_1016_S1872_5805_24_60833_4 crossref_primary_10_1021_acs_iecr_1c04355 crossref_primary_10_1016_j_applthermaleng_2024_125096 crossref_primary_10_3390_en14010009 crossref_primary_10_1016_j_energy_2020_119294 crossref_primary_10_1016_j_ijhydene_2024_01_039 crossref_primary_10_1002_aesr_202100018 crossref_primary_10_1016_j_ijhydene_2023_08_128 crossref_primary_10_1016_j_jpowsour_2020_228935 crossref_primary_10_1016_j_jhazmat_2021_127329 crossref_primary_10_1039_D1NA00342A crossref_primary_10_1515_revce_2019_0046 crossref_primary_10_1016_j_jaap_2024_106463 crossref_primary_10_1016_j_cej_2021_128887 crossref_primary_10_1007_s10163_021_01181_z crossref_primary_10_1007_s11240_022_02387_1 crossref_primary_10_1016_j_jaap_2023_106063 crossref_primary_10_1016_j_jaap_2023_106061 crossref_primary_10_1039_D0GC02246B crossref_primary_10_1016_j_ijhydene_2021_08_009 crossref_primary_10_1016_j_jece_2023_110039 crossref_primary_10_1016_j_cej_2024_156164 crossref_primary_10_2139_ssrn_4089832 crossref_primary_10_1016_j_cattod_2023_114080 crossref_primary_10_1016_j_jpowsour_2021_230178 crossref_primary_10_1007_s13399_022_02905_3 crossref_primary_10_1002_eem2_12214 crossref_primary_10_1016_j_mtnano_2021_100147 crossref_primary_10_1016_j_fuel_2024_134273 crossref_primary_10_1016_j_est_2023_107525 crossref_primary_10_1016_j_cej_2020_127395 crossref_primary_10_1016_j_biortech_2019_122453 crossref_primary_10_1016_j_rser_2024_114399 crossref_primary_10_1039_D1TA09078J crossref_primary_10_1016_j_jwpe_2024_106186 crossref_primary_10_1016_j_biortech_2020_123777 crossref_primary_10_1016_j_rser_2022_112413 crossref_primary_10_1016_j_fuel_2023_128306 crossref_primary_10_1016_j_jhazmat_2023_132494 crossref_primary_10_1002_celc_202201073 crossref_primary_10_1007_s13399_024_06356_w crossref_primary_10_1016_j_ese_2022_100167 crossref_primary_10_1016_j_jpowsour_2023_232923 crossref_primary_10_1016_j_scitotenv_2022_153956 crossref_primary_10_1016_j_pecs_2022_101040 crossref_primary_10_3390_waste1020022 crossref_primary_10_1021_acssensors_3c01659 crossref_primary_10_1039_D0NJ05112H crossref_primary_10_1007_s42114_024_01181_1 crossref_primary_10_1016_j_cogsc_2020_04_007 crossref_primary_10_1039_D1GC03072H crossref_primary_10_1002_tcr_202300234 crossref_primary_10_1016_j_ces_2021_116453 crossref_primary_10_1002_tcr_202300233 crossref_primary_10_3390_molecules28145381 crossref_primary_10_1016_j_cej_2021_129993 crossref_primary_10_1016_j_carbon_2021_03_059 crossref_primary_10_1016_j_energy_2021_120943 crossref_primary_10_1007_s44246_022_00031_3 crossref_primary_10_1016_j_biombioe_2024_107173 crossref_primary_10_3390_catal13101336 crossref_primary_10_1515_ijeeps_2023_0092 crossref_primary_10_1016_j_apsusc_2025_162722 crossref_primary_10_1016_j_jaap_2024_106370 crossref_primary_10_1016_j_jclepro_2021_129899 crossref_primary_10_1016_j_ijhydene_2022_09_121 crossref_primary_10_1016_j_cej_2019_123681 crossref_primary_10_1016_j_eti_2023_103271 crossref_primary_10_1016_j_jcis_2021_04_114 crossref_primary_10_1016_j_materresbull_2021_111282 crossref_primary_10_1149_1945_7111_ac03f4 crossref_primary_10_1016_j_resconrec_2021_105564 crossref_primary_10_1002_pol_20230541 crossref_primary_10_1016_j_diamond_2023_110381 crossref_primary_10_1016_j_est_2022_106598 crossref_primary_10_1016_j_mtcomm_2025_111790 crossref_primary_10_1016_j_mtchem_2024_102383 crossref_primary_10_1016_j_jcis_2021_03_116 crossref_primary_10_1002_batt_202100169 crossref_primary_10_1016_j_chemosphere_2023_140650 crossref_primary_10_1039_D1GC04746A crossref_primary_10_1007_s10853_023_08785_w crossref_primary_10_1007_s40820_020_00502_5 crossref_primary_10_1038_s43017_022_00306_8 crossref_primary_10_23939_chcht18_02_211 crossref_primary_10_1002_adfm_202011102 crossref_primary_10_1016_j_apcatb_2024_124643 crossref_primary_10_1016_j_jhazmat_2020_123041 crossref_primary_10_1039_D2TA03669J crossref_primary_10_1016_j_carbon_2020_01_045 crossref_primary_10_1016_j_jhazmat_2021_126547 crossref_primary_10_1002_adma_202001588 crossref_primary_10_20964_2019_12_30 crossref_primary_10_1039_D0CY00376J crossref_primary_10_1039_D1GC01872H crossref_primary_10_1016_j_rser_2021_111666 crossref_primary_10_1002_aenm_202204259 crossref_primary_10_3390_w14172734 crossref_primary_10_1016_j_biombioe_2021_106245 crossref_primary_10_1007_s41918_024_00223_y crossref_primary_10_1002_cnl2_117 crossref_primary_10_3390_batteries10060209 crossref_primary_10_1002_adfm_201905095 crossref_primary_10_1016_j_jece_2021_106942 crossref_primary_10_1016_j_scitotenv_2021_149160 crossref_primary_10_1016_j_jelechem_2021_115668 crossref_primary_10_1021_acsomega_3c06687 crossref_primary_10_1016_j_apcatb_2021_120977 crossref_primary_10_1016_j_jcis_2020_01_122 crossref_primary_10_1016_j_jallcom_2021_161479 crossref_primary_10_1007_s13399_021_02206_1 crossref_primary_10_1016_j_envres_2022_112793 crossref_primary_10_1016_j_fuel_2022_127125 crossref_primary_10_2139_ssrn_4126806 crossref_primary_10_1002_jccs_202100123 crossref_primary_10_1016_j_cej_2022_137468 crossref_primary_10_1016_j_scitotenv_2020_144204 crossref_primary_10_1002_smll_202311929 crossref_primary_10_1039_D1CY01542G crossref_primary_10_1039_D1SE01059J crossref_primary_10_1088_1361_6463_abfe80 crossref_primary_10_1016_j_est_2020_101403 crossref_primary_10_1016_j_est_2022_105008 crossref_primary_10_1002_er_8182 crossref_primary_10_1016_j_scitotenv_2023_161655 crossref_primary_10_1038_s41598_024_51350_x crossref_primary_10_1039_D0GC04307A crossref_primary_10_1016_j_carbon_2024_119087 crossref_primary_10_1016_j_psep_2024_04_066 crossref_primary_10_1016_j_desal_2024_117597 crossref_primary_10_1039_D2RA01647H |
Cites_doi | 10.1039/C3CS60130G 10.1016/j.biombioe.2007.01.012 10.1039/C6CS00639F 10.1021/acs.chemrev.5b00462 10.1021/cm702816x 10.1021/acs.chemrev.5b00195 10.1002/cssc.200900188 10.1021/nn502045y 10.1016/j.ijhydene.2015.09.054 10.1021/cr050197j 10.1039/C1CS15172J 10.1016/j.biortech.2010.01.088 10.1021/nn506394r 10.1016/j.nanoen.2015.07.008 10.1016/j.colsurfa.2015.10.046 10.1016/j.rser.2018.07.029 10.1039/C5CS00837A 10.1021/cr500519c 10.1016/j.ijhydene.2018.04.176 10.1016/j.carbon.2015.12.032 10.1002/adma.201201715 10.1016/j.electacta.2017.03.042 10.1021/ar300179v 10.1021/acs.langmuir.7b00589 10.1021/es301029g 10.1002/aenm.201802107 10.1021/am201330f 10.1021/ja305539r 10.1039/C4EE02531H 10.1021/es504184c 10.1016/j.electacta.2014.06.098 10.1039/C7TA04154C 10.1039/C4TA06620K 10.1021/es201792c 10.1002/adfm.200801236 10.1016/j.ijhydene.2014.05.134 10.1016/j.cattod.2006.09.012 10.1039/b807957a 10.1002/9780470483428.ch8 10.1016/j.oregeorev.2014.09.020 10.1016/j.ijhydene.2010.09.102 10.1016/j.carbon.2017.12.103 10.1021/acsnano.5b08040 10.1016/j.cej.2018.09.217 10.1038/s41467-017-01633-x 10.1016/j.carbon.2005.06.021 10.1021/cm901542w 10.1016/j.ijhydene.2013.07.061 10.1039/c3cs00009e 10.1016/j.joule.2017.08.008 10.1016/j.carbon.2010.02.025 10.1016/j.nanoen.2015.02.004 10.1007/s003390100788 10.1039/c2ee23599d 10.1039/C8RA02002G 10.1016/j.jphotochemrev.2016.04.002 10.1016/j.carbon.2015.09.091 10.1039/c3ee40596f 10.1039/C4EE00602J 10.1016/B978-0-444-59561-4.00025-5 10.1016/j.apcatb.2016.11.029 10.1016/j.ijhydene.2018.03.143 10.1021/jp021367o 10.1021/acssuschemeng.7b01585 10.1021/acsami.5b00448 10.1016/j.carbon.2018.09.048 10.1016/j.rser.2017.04.002 10.1016/j.jpowsour.2014.09.102 10.1039/c3ta10583k 10.1002/aenm.201601393 10.1016/j.electacta.2016.08.091 10.1115/1.4039318 10.1002/adma.201204692 10.1021/acsami.6b08719 10.1021/acs.chemrev.7b00115 10.1002/celc.201300071 10.1039/C4TA00501E 10.1002/aenm.201100019 10.1039/C4EE03869J 10.1038/ncomms1053 10.1039/C7GC01681F 10.1039/C4NR03057E 10.1039/C5RA13409A 10.1002/aenm.201501636 10.1016/0008-6223(92)90141-I 10.1016/j.carbon.2018.09.067 10.1021/acs.est.6b03051 10.1002/adfm.200801057 10.1016/S0378-7753(98)00038-X 10.1007/s12274-016-1283-7 10.1039/C8NR06109B 10.1016/j.nanoen.2015.08.004 10.1021/jacs.5b10917 10.1016/j.nanoen.2016.07.020 10.1149/1.1836129 10.1016/j.jpowsour.2017.12.054 10.1016/j.jpowsour.2013.09.108 10.1021/cr200274s 10.1016/j.colsurfa.2014.01.057 10.1016/S0008-6223(01)00182-8 10.1021/acsnano.7b01771 10.1021/jp061925p 10.1016/j.nanoen.2017.04.042 10.1021/cr900354u 10.1021/ef201694y 10.1002/er.3868 10.1016/j.biortech.2017.06.163 10.1021/acsenergylett.6b00657 10.1039/C7RA07231G 10.1039/C5NR00013K 10.1002/cssc.200800129 10.1016/j.jpowsour.2010.01.083 10.1021/cr900356p 10.1016/j.electacta.2015.04.094 10.1039/c3ee40847g 10.1021/acscatal.6b01478 10.1016/j.biortech.2014.01.058 10.1021/ie800891m 10.1016/j.nanoen.2014.11.065 10.1016/j.jpowsour.2014.07.180 10.1016/j.jpowsour.2017.05.011 10.1021/cr400072b 10.1021/acs.chemrev.5b00563 10.1038/ncomms11203 10.1039/c3ra41978a 10.1016/j.apsusc.2017.03.097 10.1039/c0jm00467g 10.1021/es405029y 10.1016/S0360-3199(01)00108-2 10.1016/j.jpowsour.2014.01.012 10.1016/B978-0-444-53199-5.00095-6 10.1016/j.biortech.2017.12.004 10.1021/acsami.6b02942 10.1021/nn404640c 10.1021/ef200161c 10.1016/j.carbon.2011.07.049 10.1016/j.biortech.2013.06.075 10.1039/C8SE00353J 10.1016/j.electacta.2014.05.101 10.1002/cssc.201800831 10.1021/acssuschemeng.7b03882 10.1039/C5GC02122G 10.1039/c3dt50379h 10.1021/cr500062v 10.1002/bbb.169 10.1038/srep20290 10.1016/j.jpowsour.2012.11.026 10.1002/bbb.254 10.1016/j.electacta.2016.02.083 10.1021/ja809265m 10.1021/acscatal.7b02718 10.1016/j.jpowsour.2010.01.048 10.1021/cr100060r 10.1021/acsami.7b10668 10.1021/ef900203h 10.3390/su8020169 10.1021/ar300094m 10.1016/j.jpowsour.2014.07.125 10.1021/acsami.6b11162 10.1039/C4CS00071D 10.1021/nl203806q 10.1016/j.biortech.2018.01.095 10.1016/j.carbon.2015.01.007 10.1016/j.jpowsour.2017.12.025 10.1016/j.biombioe.2009.09.012 10.1016/0892-6875(91)90078-A 10.1021/acsami.5b06274 10.1016/j.biortech.2007.09.052 10.1016/j.materresbull.2016.12.025 10.1002/celc.201402123 10.1021/nl803081j 10.1021/acssuschemeng.5b00926 10.1016/j.ijhydene.2013.08.090 10.1039/C5NR03828F 10.1016/j.electacta.2018.07.010 10.1126/science.1094982 10.1021/acsami.5b12772 10.1021/am406053s 10.1021/nn400731g 10.1016/j.biortech.2017.12.043 10.1016/j.ijhydene.2018.01.110 10.1039/C5TA00958H 10.1021/ja5129132 10.1039/c3ta12824e 10.1016/j.biortech.2018.07.076 10.1021/es5047765 10.1016/j.ijhydene.2014.04.176 10.1021/es034923g 10.1016/j.ijhydene.2017.06.171 10.1039/C4TA02068E 10.1039/C3EE43525C 10.1002/chem.201803153 10.1021/acsami.7b09310 10.1002/fuce.201500120 10.1016/j.micromeso.2012.03.004 10.1002/cplu.201500057 10.1016/j.bej.2018.10.012 10.1016/j.gee.2017.03.002 10.1039/C6TA02150F 10.1039/b807618a 10.1016/j.carbon.2009.12.001 10.1021/cr300367d 10.1016/j.apcatb.2014.09.016 10.1002/aenm.201401761 10.1016/j.jpowsour.2006.03.047 10.1039/C6NR08139H 10.1016/j.jpowsour.2008.09.070 10.1016/j.carbon.2006.02.011 10.1016/j.carbon.2014.12.001 10.1007/b136878 10.1039/c2jm00166g 10.1016/j.matchemphys.2008.09.010 10.1021/cr020731c 10.1038/nenergy.2016.132 10.1016/j.electacta.2015.12.002 10.1021/nn405893t 10.1021/acsami.6b10704 10.1039/C4CS00232F 10.1039/C1CS15060J 10.1002/adma.201601759 10.1016/j.cej.2010.06.031 10.1016/j.rser.2015.07.129 10.1016/j.jpowsour.2007.02.034 10.1039/b813846j 10.1039/C6RA28630E 10.1039/C6RA16703A 10.1002/anie.201409290 10.1016/j.jallcom.2017.05.062 10.1021/nn400566d 10.1002/adma.201204949 10.1039/C8TA07220E 10.1039/c3ee22325f 10.1021/acs.chemrev.6b00302 10.1016/j.elecom.2010.01.007 10.1002/aenm.201100548 10.1126/science.1158736 10.1002/9781118691281.ch16 10.1016/j.ijhydene.2009.04.051 10.1021/cr5003563 10.1126/science.1168049 10.1016/j.apenergy.2013.01.023 10.1016/j.ijhydene.2018.04.002 10.1016/j.biombioe.2016.05.036 10.1016/j.apcatb.2016.12.016 10.1039/C7TA05002J 10.1039/c2nr31557b 10.1021/acscatal.6b00553 10.1021/acsami.6b10301 10.1021/acs.energyfuels.7b03131 10.1002/anie.200805494 10.1016/j.jelechem.2018.11.010 10.1016/j.biortech.2017.08.198 10.1016/j.psep.2018.06.036 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
DOI | 10.1039/c9ee00206e |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1754-5706 |
EndPage | 1779 |
ExternalDocumentID | 10_1039_C9EE00206E c9ee00206e |
GroupedDBID | 0-7 0R 29G 4.4 5GY 70 705 7~J AAEMU AAGNR AAIWI AANOJ ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFRAH AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX CS3 EBS ECGLT EE0 EF- EJD GNO HZ H~N IPNFZ J3I JG M4U N9A O-G O9- P2P RCNCU RIG RPMJG RRC RSCEA SKA SLH TOV UCJ 0R~ 70~ AAJAE AARTK AAWGC AAXHV AAXPP AAYXX ABASK ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRZK AGEGJ AGRSR AHGCF AKBGW AKMSF ANUXI APEMP CITATION GGIMP H13 HZ~ RAOCF RVUXY 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
ID | FETCH-LOGICAL-c384t-7afb38bb77635f3da32b3ed9a97b183f38ff7ea99b4b1cb24f6a1f72ba0ed47b3 |
ISSN | 1754-5692 |
IngestDate | Mon Jun 30 11:35:04 EDT 2025 Tue Jul 01 01:45:43 EDT 2025 Thu Apr 24 23:08:03 EDT 2025 Sat Jan 08 11:09:31 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c384t-7afb38bb77635f3da32b3ed9a97b183f38ff7ea99b4b1cb24f6a1f72ba0ed47b3 |
Notes | Hong Jiang obtained his PhD degree in Applied Chemistry from USTC in 2004. From 1999, he joined USTC, and is presently an Associate Professor of applied chemistry. His recent research interests include biomass refinery, preparation of biomass-based carbonaceous materials, and functionalization of biomass materials. Wu-Jun Liu received his PhD degree from the University of Science & Technology of China (USTC) under the supervision of Prof. Han-Qing Yu in 2014. He is now an associate research fellow at USTC. His research field is green chemistry and energy, focusing on the sustainable conversion of biomass waste into value-added chemicals and biochar. To date, he has published more than 30 papers on this research topic in peer-reviewed international journals. Han-Qing Yu is currently a professor in the Department of Applied Chemistry, USTC. He received his PhD from Tongji University, China in 1994. After that, he worked as a Marie Curie postdoctoral fellow at the University of Newcastle upon Tyne in the UK, a research fellow at the Nanyang Technological University, and a research assistant professor at the Hong Kong University. He is now an editorial board member of eight international journals. His research interests include contaminant degradation and nanomaterials for environmental application. He has published more than 400 international peer-reviewed papers and 8 invited book chapters. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5247-6244 0000-0002-5696-1180 0000-0002-4261-7987 |
PQID | 2239091252 |
PQPubID | 2047494 |
PageCount | 29 |
ParticipantIDs | proquest_journals_2239091252 crossref_citationtrail_10_1039_C9EE00206E crossref_primary_10_1039_C9EE00206E rsc_primary_c9ee00206e |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190101 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 20190101 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Energy & environmental science |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Zhang (C9EE00206E-(cit135)/*[position()=1]) 2018; 266 Wang (C9EE00206E-(cit68)/*[position()=1]) 2017; 5 Liu (C9EE00206E-(cit83)/*[position()=1]) 2014; 48 Cheng (C9EE00206E-(cit217)/*[position()=1]) 2016; 8 Li (C9EE00206E-(cit13)/*[position()=1]) 2018; 8 Wang (C9EE00206E-(cit125)/*[position()=1]) 2008; 1 Zhu (C9EE00206E-(cit147)/*[position()=1]) 2016; 6 Li (C9EE00206E-(cit18)/*[position()=1]) 2015; 3 Reddy (C9EE00206E-(cit221)/*[position()=1]) 2009; 9 Hulicova-Jurcakova (C9EE00206E-(cit202)/*[position()=1]) 2009; 131 Manthiram (C9EE00206E-(cit228)/*[position()=1]) 2012; 46 Bai (C9EE00206E-(cit107)/*[position()=1]) 2016; 45 Hsieh (C9EE00206E-(cit194)/*[position()=1]) 2002; 40 Yang (C9EE00206E-(cit22)/*[position()=1]) 2012; 158 Roberts (C9EE00206E-(cit39)/*[position()=1]) 2014; 43 Miller (C9EE00206E-(cit192)/*[position()=1]) 2008; 321 Zhang (C9EE00206E-(cit191)/*[position()=1]) 2014; 48 Imran Jafri (C9EE00206E-(cit158)/*[position()=1]) 2010; 20 Zhou (C9EE00206E-(cit10)/*[position()=1]) 2015; 16 Cheng (C9EE00206E-(cit207)/*[position()=1]) 2017; 117 Wang (C9EE00206E-(cit66)/*[position()=1]) 2015; 40 Zhang (C9EE00206E-(cit229)/*[position()=1]) 2019; 141 Ma (C9EE00206E-(cit47)/*[position()=1]) 2011; 49 Zhao (C9EE00206E-(cit88)/*[position()=1]) 2017; 7 Biswal (C9EE00206E-(cit97)/*[position()=1]) 2013; 6 Roszak (C9EE00206E-(cit111)/*[position()=1]) 2016; 496 Qu (C9EE00206E-(cit6)/*[position()=1]) 2015; 84 Ding (C9EE00206E-(cit247)/*[position()=1]) 2013; 7 Hewitt (C9EE00206E-(cit261)/*[position()=1]) 2012; 12 Cui (C9EE00206E-(cit141)/*[position()=1]) 2015; 164 Zhu (C9EE00206E-(cit232)/*[position()=1]) 2019; 833 Huggins (C9EE00206E-(cit56)/*[position()=1]) 2016; 8 Marsh (C9EE00206E-(cit113)/*[position()=1]) 2006 Seo (C9EE00206E-(cit146)/*[position()=1]) 2016; 6 Li (C9EE00206E-(cit180)/*[position()=1]) 2010; 195 Kacprzak (C9EE00206E-(cit169)/*[position()=1]) 2014; 255 Gírio (C9EE00206E-(cit89)/*[position()=1]) 2010; 101 Balogun (C9EE00206E-(cit240)/*[position()=1]) 2016; 98 Garg (C9EE00206E-(cit50)/*[position()=1]) 2017; 7 Jang (C9EE00206E-(cit220)/*[position()=1]) 2012; 134 Li (C9EE00206E-(cit74)/*[position()=1]) 2018; 283 Li (C9EE00206E-(cit177)/*[position()=1]) 2009; 23 Jiang (C9EE00206E-(cit201)/*[position()=1]) 2014; 7 Fernando (C9EE00206E-(cit252)/*[position()=1]) 2015; 7 Loh (C9EE00206E-(cit256)/*[position()=1]) 2016; 138 Zhu (C9EE00206E-(cit54)/*[position()=1]) 2017; 9 Xin (C9EE00206E-(cit223)/*[position()=1]) 2012; 45 Kim (C9EE00206E-(cit260)/*[position()=1]) 2014; 8 Cheng (C9EE00206E-(cit124)/*[position()=1]) 2008; 1 Lewandowski (C9EE00206E-(cit131)/*[position()=1]) 2011 Gong (C9EE00206E-(cit93)/*[position()=1]) 2017; 19 Abioye (C9EE00206E-(cit104)/*[position()=1]) 2015; 52 Bar-On (C9EE00206E-(cit70)/*[position()=1]) 2018 Wakamatsu (C9EE00206E-(cit63)/*[position()=1]) 1991; 4 Lai (C9EE00206E-(cit142)/*[position()=1]) 2016; 8 Borghei (C9EE00206E-(cit152)/*[position()=1]) 2017 Wang (C9EE00206E-(cit210)/*[position()=1]) 2016; 188 Cai (C9EE00206E-(cit7)/*[position()=1]) 2018; 42 Yang (C9EE00206E-(cit41)/*[position()=1]) 2017; 33 Hong (C9EE00206E-(cit244)/*[position()=1]) 2014; 2 Zhang (C9EE00206E-(cit44)/*[position()=1]) 2018; 43 Wu (C9EE00206E-(cit46)/*[position()=1]) 2013; 7 Xiong (C9EE00206E-(cit103)/*[position()=1]) 2017; 246 Zhang (C9EE00206E-(cit133)/*[position()=1]) 2017; 245 Liu (C9EE00206E-(cit29)/*[position()=1]) 2015; 7 Yue (C9EE00206E-(cit48)/*[position()=1]) 2015; 80 Sophia Ayyappan (C9EE00206E-(cit79)/*[position()=1]) 2018; 251 Guo (C9EE00206E-(cit42)/*[position()=1]) 2015; 7 Zhang (C9EE00206E-(cit25)/*[position()=1]) 2013; 42 Sunyoto (C9EE00206E-(cit134)/*[position()=1]) 2018; 140 Lotfabad (C9EE00206E-(cit242)/*[position()=1]) 2014; 8 Briscoe (C9EE00206E-(cit257)/*[position()=1]) 2015; 54 Cheng (C9EE00206E-(cit120)/*[position()=1]) 2008; 20 Park (C9EE00206E-(cit137)/*[position()=1]) 2018; 254 Woolf (C9EE00206E-(cit82)/*[position()=1]) 2010; 1 Huggins (C9EE00206E-(cit186)/*[position()=1]) 2014; 157 Zhu (C9EE00206E-(cit26)/*[position()=1]) 2018; 129 Zakzeski (C9EE00206E-(cit92)/*[position()=1]) 2010; 110 Ahn (C9EE00206E-(cit181)/*[position()=1]) 2013; 105 Yuan (C9EE00206E-(cit188)/*[position()=1]) 2013; 144 Cao (C9EE00206E-(cit249)/*[position()=1]) 2016; 27 Zhang (C9EE00206E-(cit81)/*[position()=1]) 2017; 411 Liu (C9EE00206E-(cit184)/*[position()=1]) 2014; 43 Sevilla (C9EE00206E-(cit121)/*[position()=1]) 2014; 7 Gür (C9EE00206E-(cit170)/*[position()=1]) 2013; 113 Chen (C9EE00206E-(cit38)/*[position()=1]) 2017; 9 Wang (C9EE00206E-(cit185)/*[position()=1]) 2015; 49 Wang (C9EE00206E-(cit136)/*[position()=1]) 2018; 250 Bachman (C9EE00206E-(cit206)/*[position()=1]) 2016; 116 Zhang (C9EE00206E-(cit43)/*[position()=1]) 2011; 25 Yao (C9EE00206E-(cit241)/*[position()=1]) 2015; 17 Bhat (C9EE00206E-(cit11)/*[position()=1]) 2010; 48 Zhou (C9EE00206E-(cit161)/*[position()=1]) 2014; 248 Pan (C9EE00206E-(cit238)/*[position()=1]) 2013; 6 Akasaka (C9EE00206E-(cit4)/*[position()=1]) 2011; 36 Zhang (C9EE00206E-(cit40)/*[position()=1]) 2009; 38 Kubas (C9EE00206E-(cit109)/*[position()=1]) 2007; 107 Dhepe (C9EE00206E-(cit90)/*[position()=1]) 2008; 1 Quinn (C9EE00206E-(cit114)/*[position()=1]) 1992; 30 Zhang (C9EE00206E-(cit34)/*[position()=1]) 2017; 7 Choi (C9EE00206E-(cit259)/*[position()=1]) 2017; 11 Tian (C9EE00206E-(cit27)/*[position()=1]) 2015; 3 Xiang (C9EE00206E-(cit251)/*[position()=1]) 2012; 41 Yang (C9EE00206E-(cit157)/*[position()=1]) 2015; 137 Elleuch (C9EE00206E-(cit182)/*[position()=1]) 2013; 38 Dillon (C9EE00206E-(cit115)/*[position()=1]) 2001; 72 Tang (C9EE00206E-(cit231)/*[position()=1]) 2018 Brown (C9EE00206E-(cit96)/*[position()=1]) 2011; 5 Zhao (C9EE00206E-(cit64)/*[position()=1]) 2015; 65 Li (C9EE00206E-(cit176)/*[position()=1]) 2009; 186 Liu (C9EE00206E-(cit237)/*[position()=1]) 2017; 29 Sethia (C9EE00206E-(cit110)/*[position()=1]) 2016; 99 Chen (C9EE00206E-(cit153)/*[position()=1]) 2014; 7 Xia (C9EE00206E-(cit65)/*[position()=1]) 2018; 378 Rinaldi (C9EE00206E-(cit91)/*[position()=1]) 2009; 2 Gong (C9EE00206E-(cit151)/*[position()=1]) 2009; 323 Mysyk (C9EE00206E-(cit193)/*[position()=1]) 2010; 12 Wu (C9EE00206E-(cit73)/*[position()=1]) 2016; 8 Zhang (C9EE00206E-(cit108)/*[position()=1]) 2017; 1 Guo (C9EE00206E-(cit12)/*[position()=1]) 2015; 85 Titirici (C9EE00206E-(cit49)/*[position()=1]) 2015; 44 Liu (C9EE00206E-(cit187)/*[position()=1]) 2015; 273 Kim (C9EE00206E-(cit195)/*[position()=1]) 2006; 44 Gu (C9EE00206E-(cit224)/*[position()=1]) 2018 Back (C9EE00206E-(cit127)/*[position()=1]) 2006; 110 Rui (C9EE00206E-(cit209)/*[position()=1]) 2014; 6 Yan (C9EE00206E-(cit214)/*[position()=1]) 2017; 2 Karnan (C9EE00206E-(cit67)/*[position()=1]) 2016; 8 Dai (C9EE00206E-(cit35)/*[position()=1]) 2015; 115 Chen (C9EE00206E-(cit222)/*[position()=1]) 2012; 4 Zhou (C9EE00206E-(cit239)/*[position()=1]) 2014; 1 Borghei (C9EE00206E-(cit72)/*[position()=1]) 2017; 204 Ma (C9EE00206E-(cit215)/*[position()=1]) 2012; 22 Wang (C9EE00206E-(cit78)/*[position()=1]) 2013; 7 Guo (C9EE00206E-(cit62)/*[position()=1]) 2016; 8 Zhou (C9EE00206E-(cit212)/*[position()=1]) 2016; 18 Ru (C9EE00206E-(cit245)/*[position()=1]) 2016; 194 Raymundo-Piñero (C9EE00206E-(cit94)/*[position()=1]) 2009; 19 Wang (C9EE00206E-(cit218)/*[position()=1]) 2014; 6 Sun (C9EE00206E-(cit16)/*[position()=1]) 2010; 162 Wei (C9EE00206E-(cit246)/*[position()=1]) 2011; 1 Chingombe (C9EE00206E-(cit53)/*[position()=1]) 2005; 43 Li (C9EE00206E-(cit198)/*[position()=1]) 2012; 2 Hyland (C9EE00206E-(cit101)/*[position()=1]) 2014 Wang (C9EE00206E-(cit23)/*[position()=1]) 2013; 3 Li (C9EE00206E-(cit14)/*[position()=1]) 2018; 43 Wang (C9EE00206E-(cit150)/*[position()=1]) 2015; 115 Liu (C9EE00206E-(cit154)/*[position()=1]) 2015; 170 Wang (C9EE00206E-(cit163)/*[position()=1]) 2017; 205 Nishihara (C9EE00206E-(cit31)/*[position()=1]) 2012; 24 Gomez-Martin (C9EE00206E-(cit85)/*[position()=1]) 2018; 11 Blankenship II (C9EE00206E-(cit37)/*[position()=1]) 2017; 8 Yu (C9EE00206E-(cit167)/*[position()=1]) 2014; 270 Zhou (C9EE00206E-(cit75)/*[position()=1]) 2016; 6 Fang (C9EE00206E-(cit253)/*[position()=1]) 2017; 2 Tang (C9EE00206E-(cit243)/*[position()=1]) 2016; 6 Li (C9EE00206E-(cit174)/*[position()=1]) 2008; 47 Linares-Solano (C9EE00206E-(cit33)/*[position()=1]) 2008 Li (C9EE00206E-(cit51)/*[position()=1]) 2004; 304 Wan (C9EE00206E-(cit57)/*[position()=1]) 2016; 4 Liu (C9EE00206E-(cit55)/*[position()=1]) 2016; 4 Liu (C9EE00206E-(cit87)/*[position()=1]) 2016; 50 Costerton (C9EE00206E-(cit130)/*[position()=1]) 2007 Balach (C9EE00206E-(cit225)/*[position()=1]) 2018; 6 Pang (C9EE00206E-(cit236)/*[position()=1]) 2016; 1 Wang (C9EE00206E-(cit162)/*[position()=1]) 2011; 111 Chen (C9EE00206E-(cit258)/*[position()=1]) 2012; 4 Yao (C9EE00206E-(cit106)/*[position()=1]) 2015; 17 Lee (C9EE00206E-(cit200)/*[position()=1]) 2013; 227 Hagfeldt (C9EE00206E-(cit254)/*[position()=1]) 2010; 110 An (C9EE00206E-(cit19)/*[position()=1]) 2018; 32 Chen (C9EE00206E-(cit143)/*[position()=1]) 2013; 6 Qin (C9EE00206E-(cit234)/*[position()=1]) 2019; 141 Zhou (C9EE00206E-(cit30)/*[position()=1]) 2016; 91 Yun (C9EE00206E-(cit15)/*[position()=1]) 2013; 25 Yang (C9EE00206E-(cit138)/*[position()=1]) 2018; 95 Zhang (C9EE00206E-(cit145)/*[position()=1]) 2016; 8 Zhang (C9EE00206E-(cit80)/*[position()=1]) 2017; 7 Wang (C9EE00206E-(cit230)/*[position()=1]) 2019; 25 Mullen (C9EE00206E-(cit178)/*[position()=1]) 2010; 34 Shao (C9EE00206E-(cit149)/*[position()=1]) 2016; 116 Liu (C9EE00206E-(cit77)/*[position()=1]) 2015; 115 Saito (C9EE00206E-(cit52)/*[position()=1]) 2003; 107 Jang (C9EE00206E-(cit255)/*[position()=1]) 2016; 116 Long (C9EE00206E-(cit105)/*[position()=1]) 2017; 46 Gao (C9EE00206E-(cit156)/*[position()=1]) 2015; 12 Konsolakis (C9EE00206E-(cit24)/*[position()=1]) 2015; 5 Cao (C9EE00206E-(cit173)/*[position()=1]) 2007; 167 Md Khudzari (C9EE00206E-(cit69)/*[position()=1]) 2019; 141 Li (C9EE00206E-(cit179)/*[position()=1]) 2010; 195 Hou (C9EE00206E-(cit213)/*[position()=1]) 2015; 9 An (C9EE00206E-(cit144)/*[position()=1]) 2017; 6 Manyà (C9EE00206E-(cit99)/*[position()=1]) 2012; 46 Su (C9EE00206E-(cit36)/*[position()=1]) 2013; 113 Liu (C9EE00206E-(cit86)/*[position()=1]) 2014; 138 Huang (C9EE00206E-(cit204)/*[p |
References_xml | – issn: 2008 end-page: p 77-90 publication-title: Materials Innovations in an Emerging Hydrogen Economy doi: Linares-Solano Jordá-Beneyto Lozano-Castelló Suárez-García Cazorla-Amorós – issn: 2014 end-page: p 435-446 publication-title: Bioenergy Research: Advances and Applications doi: Hyland Sarmah – issn: 2006 publication-title: Activated carbon doi: Marsh Reinoso – issn: 2011 end-page: p 529-570 publication-title: Treatise on Water Science doi: Lewandowski Boltz – issn: 2013 end-page: p 371-391 publication-title: Graphene Chemistry doi: Li Chen – issn: 2007 publication-title: The biofilm primer doi: Costerton – volume: 43 start-page: 7718 year: 2014 ident: C9EE00206E-(cit184)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60130G – volume: 31 start-page: 426 year: 2007 ident: C9EE00206E-(cit1)/*[position()=1] publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2007.01.012 – volume: 46 start-page: 7176 year: 2017 ident: C9EE00206E-(cit105)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00639F – volume: 116 start-page: 3594 year: 2016 ident: C9EE00206E-(cit149)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00462 – start-page: 1703691 year: 2017 ident: C9EE00206E-(cit152)/*[position()=1] publication-title: Adv. Mater. – volume: 20 start-page: 1889 year: 2008 ident: C9EE00206E-(cit120)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm702816x – volume: 115 start-page: 12251 year: 2015 ident: C9EE00206E-(cit77)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00195 – volume-title: Activated carbon year: 2006 ident: C9EE00206E-(cit113)/*[position()=1] – volume: 2 start-page: 1096 year: 2009 ident: C9EE00206E-(cit91)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.200900188 – volume: 8 start-page: 7115 year: 2014 ident: C9EE00206E-(cit242)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn502045y – volume: 40 start-page: 16230 year: 2015 ident: C9EE00206E-(cit66)/*[position()=1] publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2015.09.054 – volume: 107 start-page: 4152 year: 2007 ident: C9EE00206E-(cit109)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr050197j – volume: 41 start-page: 782 year: 2012 ident: C9EE00206E-(cit251)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C1CS15172J – volume: 101 start-page: 4775 year: 2010 ident: C9EE00206E-(cit89)/*[position()=1] publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.01.088 – volume: 9 start-page: 2556 year: 2015 ident: C9EE00206E-(cit213)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn506394r – volume: 16 start-page: 357 year: 2015 ident: C9EE00206E-(cit10)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.07.008 – volume: 496 start-page: 69 year: 2016 ident: C9EE00206E-(cit111)/*[position()=1] publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2015.10.046 – volume: 95 start-page: 130 year: 2018 ident: C9EE00206E-(cit138)/*[position()=1] publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2018.07.029 – volume: 45 start-page: 2327 year: 2016 ident: C9EE00206E-(cit107)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00837A – volume: 115 start-page: 3433 year: 2015 ident: C9EE00206E-(cit150)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr500519c – volume: 43 start-page: 12358 year: 2018 ident: C9EE00206E-(cit14)/*[position()=1] publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.04.176 – volume: 99 start-page: 289 year: 2016 ident: C9EE00206E-(cit110)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2015.12.032 – volume: 24 start-page: 4473 year: 2012 ident: C9EE00206E-(cit31)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201201715 – volume: 232 start-page: 561 year: 2017 ident: C9EE00206E-(cit139)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.03.042 – volume: 46 start-page: 1125 year: 2012 ident: C9EE00206E-(cit228)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar300179v – volume: 33 start-page: 5140 year: 2017 ident: C9EE00206E-(cit41)/*[position()=1] publication-title: Langmuir doi: 10.1021/acs.langmuir.7b00589 – volume: 46 start-page: 7939 year: 2012 ident: C9EE00206E-(cit99)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es301029g – start-page: 1802107 year: 2018 ident: C9EE00206E-(cit226)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802107 – volume: 4 start-page: 81 year: 2012 ident: C9EE00206E-(cit258)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am201330f – volume: 134 start-page: 15010 year: 2012 ident: C9EE00206E-(cit220)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja305539r – volume: 7 start-page: 4095 year: 2014 ident: C9EE00206E-(cit153)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C4EE02531H – volume: 48 start-page: 13951 year: 2014 ident: C9EE00206E-(cit83)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es504184c – volume: 138 start-page: 353 year: 2014 ident: C9EE00206E-(cit86)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.06.098 – volume: 5 start-page: 15243 year: 2017 ident: C9EE00206E-(cit20)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA04154C – volume: 3 start-page: 5656 year: 2015 ident: C9EE00206E-(cit27)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA06620K – volume: 45 start-page: 9473 year: 2011 ident: C9EE00206E-(cit100)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es201792c – volume: 19 start-page: 438 year: 2009 ident: C9EE00206E-(cit199)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200801236 – volume: 39 start-page: 11661 year: 2014 ident: C9EE00206E-(cit118)/*[position()=1] publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2014.05.134 – volume: 120 start-page: 399 year: 2007 ident: C9EE00206E-(cit122)/*[position()=1] publication-title: Catal. Today doi: 10.1016/j.cattod.2006.09.012 – volume: 1 start-page: 268 year: 2008 ident: C9EE00206E-(cit125)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/b807957a – volume-title: Materials Innovations in an Emerging Hydrogen Economy year: 2008 ident: C9EE00206E-(cit33)/*[position()=1] doi: 10.1002/9780470483428.ch8 – volume: 65 start-page: 733 year: 2015 ident: C9EE00206E-(cit64)/*[position()=1] publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2014.09.020 – volume: 36 start-page: 580 year: 2011 ident: C9EE00206E-(cit4)/*[position()=1] publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.09.102 – volume: 129 start-page: 695 year: 2018 ident: C9EE00206E-(cit26)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2017.12.103 – volume: 10 start-page: 4364 year: 2016 ident: C9EE00206E-(cit155)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b08040 – volume: 358 start-page: 1002 year: 2019 ident: C9EE00206E-(cit84)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.09.217 – volume: 8 start-page: 1545 year: 2017 ident: C9EE00206E-(cit37)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-017-01633-x – volume: 43 start-page: 3132 year: 2005 ident: C9EE00206E-(cit53)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2005.06.021 – volume: 22 start-page: 832 year: 2010 ident: C9EE00206E-(cit159)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm901542w – volume: 38 start-page: 16605 year: 2013 ident: C9EE00206E-(cit182)/*[position()=1] publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2013.07.061 – volume: 42 start-page: 3127 year: 2013 ident: C9EE00206E-(cit25)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs00009e – volume: 1 start-page: 77 year: 2017 ident: C9EE00206E-(cit108)/*[position()=1] publication-title: Joule doi: 10.1016/j.joule.2017.08.008 – volume: 48 start-page: 2361 year: 2010 ident: C9EE00206E-(cit128)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2010.02.025 – volume: 12 start-page: 785 year: 2015 ident: C9EE00206E-(cit156)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.02.004 – volume: 72 start-page: 133 year: 2001 ident: C9EE00206E-(cit115)/*[position()=1] publication-title: Appl. Phys. A: Mater. Sci. Process. doi: 10.1007/s003390100788 – volume: 6 start-page: 871 year: 2013 ident: C9EE00206E-(cit216)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c2ee23599d – volume: 8 start-page: 12666 year: 2018 ident: C9EE00206E-(cit13)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C8RA02002G – volume: 27 start-page: 72 year: 2016 ident: C9EE00206E-(cit249)/*[position()=1] publication-title: J. Photochem. Photobiol., C doi: 10.1016/j.jphotochemrev.2016.04.002 – volume: 98 start-page: 162 year: 2016 ident: C9EE00206E-(cit240)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2015.09.091 – volume: 6 start-page: 1818 year: 2013 ident: C9EE00206E-(cit143)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c3ee40596f – volume: 7 start-page: 2670 year: 2014 ident: C9EE00206E-(cit201)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C4EE00602J – volume-title: Bioenergy Research: Advances and Applications year: 2014 ident: C9EE00206E-(cit101)/*[position()=1] doi: 10.1016/B978-0-444-59561-4.00025-5 – volume: 204 start-page: 394 year: 2017 ident: C9EE00206E-(cit72)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2016.11.029 – volume: 43 start-page: 8729 year: 2018 ident: C9EE00206E-(cit44)/*[position()=1] publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.03.143 – volume: 107 start-page: 931 year: 2003 ident: C9EE00206E-(cit52)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp021367o – volume: 5 start-page: 9766 year: 2017 ident: C9EE00206E-(cit61)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.7b01585 – volume: 7 start-page: 8363 year: 2015 ident: C9EE00206E-(cit252)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b00448 – volume: 141 start-page: 16 year: 2019 ident: C9EE00206E-(cit234)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2018.09.048 – volume: 77 start-page: 70 year: 2017 ident: C9EE00206E-(cit102)/*[position()=1] publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2017.04.002 – volume: 273 start-page: 1189 year: 2015 ident: C9EE00206E-(cit187)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.09.102 – volume: 1 start-page: 9365 year: 2013 ident: C9EE00206E-(cit112)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/c3ta10583k – volume: 7 start-page: 1601393 year: 2017 ident: C9EE00206E-(cit50)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601393 – volume: 215 start-page: 223 year: 2016 ident: C9EE00206E-(cit140)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.08.091 – volume: 140 start-page: 062204 year: 2018 ident: C9EE00206E-(cit134)/*[position()=1] publication-title: J. Energy Resour. Technol. doi: 10.1115/1.4039318 – volume: 25 start-page: 1993 year: 2013 ident: C9EE00206E-(cit15)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201204692 – volume: 8 start-page: 29408 year: 2016 ident: C9EE00206E-(cit165)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b08719 – volume: 117 start-page: 10403 year: 2017 ident: C9EE00206E-(cit207)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00115 – volume: 1 start-page: 83 year: 2014 ident: C9EE00206E-(cit239)/*[position()=1] publication-title: ChemElectroChem doi: 10.1002/celc.201300071 – volume: 2 start-page: 9684 year: 2014 ident: C9EE00206E-(cit3)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA00501E – volume: 1 start-page: 356 year: 2011 ident: C9EE00206E-(cit246)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201100019 – volume: 8 start-page: 1404 year: 2015 ident: C9EE00206E-(cit148)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C4EE03869J – volume: 1 start-page: 56 year: 2010 ident: C9EE00206E-(cit82)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms1053 – volume: 19 start-page: 4132 year: 2017 ident: C9EE00206E-(cit93)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C7GC01681F – volume: 6 start-page: 9889 year: 2014 ident: C9EE00206E-(cit209)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C4NR03057E – volume: 5 start-page: 73399 year: 2015 ident: C9EE00206E-(cit24)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C5RA13409A – volume: 6 start-page: 1501636 year: 2016 ident: C9EE00206E-(cit235)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501636 – volume: 30 start-page: 1097 year: 1992 ident: C9EE00206E-(cit114)/*[position()=1] publication-title: Carbon doi: 10.1016/0008-6223(92)90141-I – volume: 141 start-page: 400 year: 2019 ident: C9EE00206E-(cit229)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2018.09.067 – volume: 50 start-page: 12421 year: 2016 ident: C9EE00206E-(cit87)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b03051 – volume: 19 start-page: 1032 year: 2009 ident: C9EE00206E-(cit94)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200801057 – volume: 74 start-page: 99 year: 1998 ident: C9EE00206E-(cit196)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/S0378-7753(98)00038-X – volume: 10 start-page: 1 year: 2017 ident: C9EE00206E-(cit45)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-016-1283-7 – volume: 10 start-page: 22601 year: 2018 ident: C9EE00206E-(cit233)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C8NR06109B – volume: 17 start-page: 91 year: 2015 ident: C9EE00206E-(cit106)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.08.004 – volume: 138 start-page: 1095 year: 2016 ident: C9EE00206E-(cit256)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b10917 – volume: 27 start-page: 377 year: 2016 ident: C9EE00206E-(cit21)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.07.020 – volume: 152 start-page: A80 year: 2005 ident: C9EE00206E-(cit168)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.1836129 – volume: 378 start-page: 331 year: 2018 ident: C9EE00206E-(cit71)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.12.054 – volume: 248 start-page: 427 year: 2014 ident: C9EE00206E-(cit161)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.09.108 – volume: 112 start-page: 782 year: 2012 ident: C9EE00206E-(cit17)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr200274s – volume: 446 start-page: 127 year: 2014 ident: C9EE00206E-(cit203)/*[position()=1] publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2014.01.057 – volume: 40 start-page: 667 year: 2002 ident: C9EE00206E-(cit194)/*[position()=1] publication-title: Carbon doi: 10.1016/S0008-6223(01)00182-8 – volume: 11 start-page: 7608 year: 2017 ident: C9EE00206E-(cit259)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b01771 – volume: 110 start-page: 16225 year: 2006 ident: C9EE00206E-(cit127)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp061925p – volume: 36 start-page: 322 year: 2017 ident: C9EE00206E-(cit5)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.04.042 – volume: 110 start-page: 3552 year: 2010 ident: C9EE00206E-(cit92)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr900354u – volume: 26 start-page: 1471 year: 2012 ident: C9EE00206E-(cit171)/*[position()=1] publication-title: Energy Fuels doi: 10.1021/ef201694y – volume: 42 start-page: 1 year: 2018 ident: C9EE00206E-(cit7)/*[position()=1] publication-title: Int. J. Energy Res. doi: 10.1002/er.3868 – volume: 246 start-page: 254 year: 2017 ident: C9EE00206E-(cit103)/*[position()=1] publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.06.163 – volume: 2 start-page: 782 year: 2017 ident: C9EE00206E-(cit253)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.6b00657 – volume: 7 start-page: 41504 year: 2017 ident: C9EE00206E-(cit80)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C7RA07231G – volume: 7 start-page: 6136 year: 2015 ident: C9EE00206E-(cit29)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR00013K – volume: 1 start-page: 969 year: 2008 ident: C9EE00206E-(cit90)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.200800129 – volume: 195 start-page: 4660 year: 2010 ident: C9EE00206E-(cit180)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.01.083 – volume: 110 start-page: 6595 year: 2010 ident: C9EE00206E-(cit254)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr900356p – volume: 170 start-page: 234 year: 2015 ident: C9EE00206E-(cit154)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.04.094 – volume: 6 start-page: 2338 year: 2013 ident: C9EE00206E-(cit238)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c3ee40847g – volume: 6 start-page: 6191 year: 2016 ident: C9EE00206E-(cit147)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.6b01478 – volume: 157 start-page: 114 year: 2014 ident: C9EE00206E-(cit186)/*[position()=1] publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.01.058 – volume: 47 start-page: 9670 year: 2008 ident: C9EE00206E-(cit174)/*[position()=1] publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie800891m – volume: 12 start-page: 33 year: 2015 ident: C9EE00206E-(cit160)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.11.065 – volume: 272 start-page: 8 year: 2014 ident: C9EE00206E-(cit2)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.07.180 – volume: 358 start-page: 85 year: 2017 ident: C9EE00206E-(cit58)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.05.011 – volume: 113 start-page: 6179 year: 2013 ident: C9EE00206E-(cit170)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr400072b – volume: 116 start-page: 140 year: 2016 ident: C9EE00206E-(cit206)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00563 – volume: 7 start-page: 11203 year: 2016 ident: C9EE00206E-(cit8)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms11203 – volume: 3 start-page: 12039 year: 2013 ident: C9EE00206E-(cit23)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/c3ra41978a – volume: 411 start-page: 251 year: 2017 ident: C9EE00206E-(cit81)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.03.097 – volume: 20 start-page: 7114 year: 2010 ident: C9EE00206E-(cit158)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c0jm00467g – volume: 48 start-page: 2075 year: 2014 ident: C9EE00206E-(cit191)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es405029y – volume: 27 start-page: 203 year: 2002 ident: C9EE00206E-(cit116)/*[position()=1] publication-title: Int. J. Hydrogen Energy doi: 10.1016/S0360-3199(01)00108-2 – start-page: 1 year: 2018 ident: C9EE00206E-(cit231)/*[position()=1] publication-title: Electrochem. Energy Rev. – volume: 255 start-page: 179 year: 2014 ident: C9EE00206E-(cit169)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.01.012 – volume-title: Treatise on Water Science year: 2011 ident: C9EE00206E-(cit131)/*[position()=1] doi: 10.1016/B978-0-444-53199-5.00095-6 – volume: 250 start-page: 812 year: 2018 ident: C9EE00206E-(cit136)/*[position()=1] publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.12.004 – volume: 8 start-page: 15288 year: 2016 ident: C9EE00206E-(cit73)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b02942 – volume: 7 start-page: 11004 year: 2013 ident: C9EE00206E-(cit247)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn404640c – volume: 25 start-page: 2187 year: 2011 ident: C9EE00206E-(cit43)/*[position()=1] publication-title: Energy Fuels doi: 10.1021/ef200161c – volume: 49 start-page: 5292 year: 2011 ident: C9EE00206E-(cit47)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2011.07.049 – volume: 1 start-page: 268 year: 2008 ident: C9EE00206E-(cit123)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/b807957a – volume: 144 start-page: 115 year: 2013 ident: C9EE00206E-(cit188)/*[position()=1] publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.06.075 – volume: 2 start-page: 2358 year: 2018 ident: C9EE00206E-(cit76)/*[position()=1] publication-title: Sustainable Energy Fuels doi: 10.1039/C8SE00353J – volume: 137 start-page: 219 year: 2014 ident: C9EE00206E-(cit204)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.05.101 – volume: 11 start-page: 2776 year: 2018 ident: C9EE00206E-(cit85)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201800831 – volume: 6 start-page: 1446 year: 2017 ident: C9EE00206E-(cit144)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.7b03882 – volume: 18 start-page: 2078 year: 2016 ident: C9EE00206E-(cit212)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C5GC02122G – volume: 42 start-page: 9976 year: 2013 ident: C9EE00206E-(cit250)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/c3dt50379h – volume: 114 start-page: 11751 year: 2014 ident: C9EE00206E-(cit227)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr500062v – volume: 3 start-page: 547 year: 2009 ident: C9EE00206E-(cit95)/*[position()=1] publication-title: Biofuels, Bioprod. Biorefin. doi: 10.1002/bbb.169 – volume: 6 start-page: 20290 year: 2016 ident: C9EE00206E-(cit243)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep20290 – volume: 227 start-page: 300 year: 2013 ident: C9EE00206E-(cit200)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.11.026 – volume: 5 start-page: 54 year: 2011 ident: C9EE00206E-(cit96)/*[position()=1] publication-title: Biofuels, Bioprod. Biorefin. doi: 10.1002/bbb.254 – volume: 194 start-page: 10 year: 2016 ident: C9EE00206E-(cit245)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.02.083 – volume: 131 start-page: 5026 year: 2009 ident: C9EE00206E-(cit202)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809265m – volume: 7 start-page: 7855 year: 2017 ident: C9EE00206E-(cit34)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.7b02718 – volume: 195 start-page: 4051 year: 2010 ident: C9EE00206E-(cit179)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.01.048 – volume: 111 start-page: 7625 year: 2011 ident: C9EE00206E-(cit162)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr100060r – volume: 9 start-page: 32168 year: 2017 ident: C9EE00206E-(cit164)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b10668 – volume: 23 start-page: 3721 year: 2009 ident: C9EE00206E-(cit177)/*[position()=1] publication-title: Energy Fuels doi: 10.1021/ef900203h – volume: 8 start-page: 169 year: 2016 ident: C9EE00206E-(cit56)/*[position()=1] publication-title: Sustainability doi: 10.3390/su8020169 – volume: 45 start-page: 1759 year: 2012 ident: C9EE00206E-(cit223)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar300094m – volume: 270 start-page: 312 year: 2014 ident: C9EE00206E-(cit167)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.07.125 – volume: 8 start-page: 33626 year: 2016 ident: C9EE00206E-(cit62)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b11162 – volume: 43 start-page: 4341 year: 2014 ident: C9EE00206E-(cit39)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00071D – volume: 1 start-page: 268 year: 2008 ident: C9EE00206E-(cit126)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/b807957a – volume: 12 start-page: 1307 year: 2012 ident: C9EE00206E-(cit261)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl203806q – volume: 254 start-page: 300 year: 2018 ident: C9EE00206E-(cit137)/*[position()=1] publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.01.095 – volume: 85 start-page: 279 year: 2015 ident: C9EE00206E-(cit12)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2015.01.007 – volume: 378 start-page: 73 year: 2018 ident: C9EE00206E-(cit65)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.12.025 – volume: 34 start-page: 67 year: 2010 ident: C9EE00206E-(cit178)/*[position()=1] publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2009.09.012 – start-page: 1 year: 2018 ident: C9EE00206E-(cit224)/*[position()=1] publication-title: Electrochem. Energy Rev. – volume: 4 start-page: 975 year: 1991 ident: C9EE00206E-(cit63)/*[position()=1] publication-title: Miner. Eng. doi: 10.1016/0892-6875(91)90078-A – volume: 8 start-page: 3558 year: 2016 ident: C9EE00206E-(cit142)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b06274 – volume: 99 start-page: 4803 year: 2008 ident: C9EE00206E-(cit119)/*[position()=1] publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2007.09.052 – volume: 88 start-page: 234 year: 2017 ident: C9EE00206E-(cit211)/*[position()=1] publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2016.12.025 – volume: 1 start-page: 1859 year: 2014 ident: C9EE00206E-(cit190)/*[position()=1] publication-title: ChemElectroChem doi: 10.1002/celc.201402123 – volume: 9 start-page: 1002 year: 2009 ident: C9EE00206E-(cit221)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl803081j – volume: 4 start-page: 177 year: 2016 ident: C9EE00206E-(cit55)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.5b00926 – volume: 38 start-page: 16590 year: 2013 ident: C9EE00206E-(cit166)/*[position()=1] publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2013.08.090 – volume: 7 start-page: 15990 year: 2015 ident: C9EE00206E-(cit42)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR03828F – volume: 283 start-page: 780 year: 2018 ident: C9EE00206E-(cit74)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.07.010 – volume: 304 start-page: 276 year: 2004 ident: C9EE00206E-(cit51)/*[position()=1] publication-title: Science doi: 10.1126/science.1094982 – volume: 8 start-page: 7077 year: 2016 ident: C9EE00206E-(cit145)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b12772 – volume: 6 start-page: 7117 year: 2014 ident: C9EE00206E-(cit218)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am406053s – volume: 7 start-page: 5131 year: 2013 ident: C9EE00206E-(cit78)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn400731g – volume: 251 start-page: 165 year: 2018 ident: C9EE00206E-(cit79)/*[position()=1] publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.12.043 – volume: 43 start-page: 5077 year: 2018 ident: C9EE00206E-(cit28)/*[position()=1] publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.01.110 – volume: 3 start-page: 9658 year: 2015 ident: C9EE00206E-(cit18)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA00958H – volume: 137 start-page: 1436 year: 2015 ident: C9EE00206E-(cit157)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5129132 – volume: 1 start-page: 14023 year: 2013 ident: C9EE00206E-(cit219)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/c3ta12824e – volume: 266 start-page: 555 year: 2018 ident: C9EE00206E-(cit135)/*[position()=1] publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.07.076 – volume: 49 start-page: 3267 year: 2015 ident: C9EE00206E-(cit185)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es5047765 – volume: 39 start-page: 10128 year: 2014 ident: C9EE00206E-(cit59)/*[position()=1] publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2014.04.176 – volume: 38 start-page: 2281 year: 2004 ident: C9EE00206E-(cit183)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es034923g – volume: 42 start-page: 18865 year: 2017 ident: C9EE00206E-(cit132)/*[position()=1] publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.06.171 – volume: 2 start-page: 12733 year: 2014 ident: C9EE00206E-(cit244)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA02068E – volume: 7 start-page: 1250 year: 2014 ident: C9EE00206E-(cit121)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C3EE43525C – volume: 25 start-page: 3710 year: 2019 ident: C9EE00206E-(cit230)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201803153 – volume: 9 start-page: 33855 year: 2017 ident: C9EE00206E-(cit38)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b09310 – volume: 15 start-page: 855 year: 2015 ident: C9EE00206E-(cit189)/*[position()=1] publication-title: Fuel Cells doi: 10.1002/fuce.201500120 – volume: 158 start-page: 108 year: 2012 ident: C9EE00206E-(cit22)/*[position()=1] publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2012.03.004 – volume: 80 start-page: 1133 year: 2015 ident: C9EE00206E-(cit48)/*[position()=1] publication-title: ChemPlusChem doi: 10.1002/cplu.201500057 – volume: 141 start-page: 190 year: 2019 ident: C9EE00206E-(cit69)/*[position()=1] publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2018.10.012 – volume: 2 start-page: 84 year: 2017 ident: C9EE00206E-(cit214)/*[position()=1] publication-title: Green Energy Environ. doi: 10.1016/j.gee.2017.03.002 – volume: 4 start-page: 8602 year: 2016 ident: C9EE00206E-(cit57)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA02150F – volume: 17 start-page: 91 year: 2015 ident: C9EE00206E-(cit241)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.08.004 – volume: 1 start-page: 338 year: 2008 ident: C9EE00206E-(cit124)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/b807618a – volume: 48 start-page: 1331 year: 2010 ident: C9EE00206E-(cit11)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2009.12.001 – volume: 113 start-page: 5782 year: 2013 ident: C9EE00206E-(cit36)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr300367d – start-page: 201711842 year: 2018 ident: C9EE00206E-(cit70)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 164 start-page: 144 year: 2015 ident: C9EE00206E-(cit141)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2014.09.016 – volume: 5 start-page: 1401761 year: 2015 ident: C9EE00206E-(cit9)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201401761 – volume: 159 start-page: 781 year: 2006 ident: C9EE00206E-(cit117)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.03.047 – volume: 9 start-page: 1237 year: 2017 ident: C9EE00206E-(cit54)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C6NR08139H – volume: 186 start-page: 1 year: 2009 ident: C9EE00206E-(cit176)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2008.09.070 – volume: 44 start-page: 1592 year: 2006 ident: C9EE00206E-(cit195)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2006.02.011 – volume: 84 start-page: 399 year: 2015 ident: C9EE00206E-(cit6)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2014.12.001 – volume-title: The biofilm primer year: 2007 ident: C9EE00206E-(cit130)/*[position()=1] doi: 10.1007/b136878 – volume: 22 start-page: 8911 year: 2012 ident: C9EE00206E-(cit215)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c2jm00166g – volume: 114 start-page: 323 year: 2009 ident: C9EE00206E-(cit197)/*[position()=1] publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2008.09.010 – volume: 104 start-page: 4271 year: 2004 ident: C9EE00206E-(cit208)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr020731c – volume: 1 start-page: 16132 year: 2016 ident: C9EE00206E-(cit236)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/nenergy.2016.132 – volume: 188 start-page: 103 year: 2016 ident: C9EE00206E-(cit210)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.12.002 – volume: 8 start-page: 2377 year: 2014 ident: C9EE00206E-(cit260)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn405893t – volume: 8 start-page: 35191 year: 2016 ident: C9EE00206E-(cit67)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b10704 – volume: 44 start-page: 250 year: 2015 ident: C9EE00206E-(cit49)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00232F – volume: 41 start-page: 797 year: 2012 ident: C9EE00206E-(cit98)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C1CS15060J – volume: 29 start-page: 1601759 year: 2017 ident: C9EE00206E-(cit237)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201601759 – volume: 162 start-page: 883 year: 2010 ident: C9EE00206E-(cit16)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2010.06.031 – volume: 52 start-page: 1282 year: 2015 ident: C9EE00206E-(cit104)/*[position()=1] publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2015.07.129 – volume: 167 start-page: 250 year: 2007 ident: C9EE00206E-(cit173)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.02.034 – volume: 38 start-page: 2520 year: 2009 ident: C9EE00206E-(cit40)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/b813846j – volume: 7 start-page: 13904 year: 2017 ident: C9EE00206E-(cit88)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA28630E – volume: 6 start-page: 73292 year: 2016 ident: C9EE00206E-(cit75)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA16703A – volume: 54 start-page: 4463 year: 2015 ident: C9EE00206E-(cit257)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201409290 – volume: 716 start-page: 210 year: 2017 ident: C9EE00206E-(cit248)/*[position()=1] publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.05.062 – volume: 7 start-page: 3589 year: 2013 ident: C9EE00206E-(cit46)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn400566d – volume: 25 start-page: 4746 year: 2013 ident: C9EE00206E-(cit205)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201204949 – volume: 6 start-page: 23127 year: 2018 ident: C9EE00206E-(cit225)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA07220E – volume: 6 start-page: 1249 year: 2013 ident: C9EE00206E-(cit97)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c3ee22325f – volume: 116 start-page: 14982 year: 2016 ident: C9EE00206E-(cit255)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00302 – volume: 12 start-page: 414 year: 2010 ident: C9EE00206E-(cit193)/*[position()=1] publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2010.01.007 – volume: 2 start-page: 431 year: 2012 ident: C9EE00206E-(cit198)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201100548 – volume: 321 start-page: 651 year: 2008 ident: C9EE00206E-(cit192)/*[position()=1] publication-title: Science doi: 10.1126/science.1158736 – volume-title: Graphene Chemistry year: 2013 ident: C9EE00206E-(cit32)/*[position()=1] doi: 10.1002/9781118691281.ch16 – volume: 35 start-page: 2732 year: 2010 ident: C9EE00206E-(cit175)/*[position()=1] publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.04.051 – volume: 115 start-page: 4823 year: 2015 ident: C9EE00206E-(cit35)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr5003563 – volume: 323 start-page: 760 year: 2009 ident: C9EE00206E-(cit151)/*[position()=1] publication-title: Science doi: 10.1126/science.1168049 – volume: 105 start-page: 207 year: 2013 ident: C9EE00206E-(cit181)/*[position()=1] publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.01.023 – volume: 43 start-page: 9326 year: 2018 ident: C9EE00206E-(cit60)/*[position()=1] publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.04.002 – volume: 91 start-page: 250 year: 2016 ident: C9EE00206E-(cit30)/*[position()=1] publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2016.05.036 – volume: 205 start-page: 55 year: 2017 ident: C9EE00206E-(cit163)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2016.12.016 – volume: 5 start-page: 20170 year: 2017 ident: C9EE00206E-(cit68)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA05002J – volume: 4 start-page: 6800 year: 2012 ident: C9EE00206E-(cit222)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c2nr31557b – volume: 6 start-page: 4347 year: 2016 ident: C9EE00206E-(cit146)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.6b00553 – volume: 8 start-page: 27843 year: 2016 ident: C9EE00206E-(cit217)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b10301 – volume: 32 start-page: 4559 year: 2018 ident: C9EE00206E-(cit19)/*[position()=1] publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.7b03131 – volume: 48 start-page: 2899 year: 2009 ident: C9EE00206E-(cit129)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200805494 – volume: 833 start-page: 151 year: 2019 ident: C9EE00206E-(cit232)/*[position()=1] publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2018.11.010 – volume: 245 start-page: 98 year: 2017 ident: C9EE00206E-(cit133)/*[position()=1] publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.08.198 – volume: 118 start-page: 152 year: 2018 ident: C9EE00206E-(cit172)/*[position()=1] publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2018.06.036 |
SSID | ssj0062079 |
Score | 2.6905308 |
SecondaryResourceType | review_article |
Snippet | Global warming, environmental pollution, and an energy shortage in the current fossil fuel society may cause a severe ecological crisis. Storage and conversion... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1751 |
SubjectTerms | Batteries Biomass Carbon Charcoal Climate change Conversion Ecological effects Electrocatalysts Energy Energy shortages Energy storage Environmental impact Fossil fuels Fuel cells Fuel technology Functional groups Global warming Hydrogen storage Lithium Organic chemistry Petrochemicals Petrochemicals industry Porosity Production methods Renewable resources Sodium Surface chemistry Sustainable materials Sustainable yield Water pollution |
Title | Emerging applications of biochar-based materials for energy storage and conversion |
URI | https://www.proquest.com/docview/2239091252 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoe4FDVR4VLQVZggtCLknsteNjqRZWy0MCtaK3yI5taSWURe1uD_z6jl9JlvZQuEQry06yni8z47G_GYTeMCM4t60j1paWMOM0UbVVRBlPXKxZ6UIqpa_f-OyczS8mF8Nx28AuWenj9s-dvJL_kSq0gVw9S_YfJNvfFBrgN8gXriBhuN5Lxj6iFIoMjbehvfunF0tPpyLeRpl34JTGt4n5vSPbz5-K9Od1Iq-tu45xs41AfezosTGiw2US5YCIL4t1OKm3JvN1D7X5IgWiZ8tkG0P1r9CiOvI9W8wUcPAcpz7gEHWkmDAy4bGE3bEdtYmCbyjWagSgsZaE3uXI4pYi1pO5pc0L6pOhnsrp1Hu1fDrYrLxP_5cp6w8Yhq11Kpth7BbaqWAlAapw5-Tzh08_s7nmVRESMvb_KuewpfL9MHrTaxmWIluXuU5M8EfO9tBuWkjgk4iKx-iB7Z6gR6P0kk_Rj4wPPMYHXjq8gQ_c4wMDPnDEB074wIAPPODjGTr_OD07nZFUQ4O0tGYrIpTTtNZa-MSDjhpFK02tkUoKDdrc0do5YZWUmumy1RVzXJVOVFoV1jCh6T7a7padfY4w5QYWp7wFh46zVnIpSqU0V6wSyhSmOkBv8xw1bUow7-uc_GpuS-MAve77_o5pVe7sdZSnukmf3VUD_qwEJ7eawAP3Yfr78a20Noyzh_e6-wv0cID3EdpeXa7tS_AwV_pVwsgN9Xd7eA |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emerging+applications+of+biochar-based+materials+for+energy+storage+and+conversion&rft.jtitle=Energy+%26+environmental+science&rft.au=Liu%2C+Wu-Jun&rft.au=Jiang%2C+Hong&rft.au=Yu%2C+Han-Qing&rft.date=2019-01-01&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=12&rft.issue=6&rft.spage=1751&rft.epage=1779&rft_id=info:doi/10.1039%2FC9EE00206E&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C9EE00206E |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon |