Development of a multimodal machine-learning fusion model to non-invasively assess ileal Crohn’s disease endoscopic activity

•Multimodal Machine-Learning model for non-invasive assessment of ileal Crohn’s disease endoscopic activity.•Improved accuracy of non-invasive assessment of ileal Crohn’s disease endoscopic activity compared to current approaches.•Optimized set of radiological and biochemical features for machine-le...

Full description

Saved in:
Bibliographic Details
Published inComputer methods and programs in biomedicine Vol. 227; p. 107207
Main Authors Guez, Itai, Focht, Gili, Greer, Mary-Louise C., Cytter-Kuint, Ruth, Pratt, Li-Tal, Castro, Denise A., Turner, Dan, Griffiths, Anne M., Freiman, Moti
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2022
Subjects
Online AccessGet full text
ISSN0169-2607
1872-7565
1872-7565
DOI10.1016/j.cmpb.2022.107207

Cover

Loading…
Abstract •Multimodal Machine-Learning model for non-invasive assessment of ileal Crohn’s disease endoscopic activity.•Improved accuracy of non-invasive assessment of ileal Crohn’s disease endoscopic activity compared to current approaches.•Optimized set of radiological and biochemical features for machine-learning-based ileal Crohn’s disease endoscopic activity assessment. Background and Objective: Recurrent attentive non-invasive observation of intestinal inflammation is essential for the proper management of Crohn’s disease (CD). The goal of this study was to develop and evaluate a multi-modal machine-learning (ML) model to assess ileal CD endoscopic activity by integrating information from Magnetic Resonance Enterography (MRE) and biochemical biomarkers. Methods: We obtained MRE, biochemical and ileocolonoscopy data from the multi-center ImageKids study database. We developed an optimized multimodal fusion ML model to non-invasively assess terminal ileum (TI) endoscopic disease activity in CD from MRE data. We determined the most informative features for model development using a permutation feature importance technique. We assessed model performance in comparison to the clinically recommended linear-regression MRE model in an experimental setup that consisted of stratified 2-fold validation, repeated 50 times, with the ileocolonoscopy-based Simple Endoscopic Score for CD at the TI (TI SES-CD) as a reference. We used the predictions’ mean-squared-error (MSE) and the receiver operation characteristics (ROC) area under curve (AUC) for active disease classification (TI SEC-CD≥3) as performance metrics. Results: 121 subjects out of the 240 subjects in the ImageKids study cohort had all required information (Non-active CD: 62 [51%], active CD: 59 [49%]). Length of disease segment and normalized biochemical biomarkers were the most informative features. The optimized fusion model performed better than the clinically recommended model determined by both a better median test MSE distribution (7.73 vs. 8.8, Wilcoxon test, p<1e-5) and a better aggregated AUC over the folds (0.84 vs. 0.8, DeLong’s test, p<1e-9). Conclusions: Optimized ML models for ileal CD endoscopic activity assessment have the potential to enable accurate and non-invasive attentive observation of intestinal inflammation in CD patients. The presented model is available at https://tcml-bme.github.io/ML_SESCD.html.
AbstractList •Multimodal Machine-Learning model for non-invasive assessment of ileal Crohn’s disease endoscopic activity.•Improved accuracy of non-invasive assessment of ileal Crohn’s disease endoscopic activity compared to current approaches.•Optimized set of radiological and biochemical features for machine-learning-based ileal Crohn’s disease endoscopic activity assessment. Background and Objective: Recurrent attentive non-invasive observation of intestinal inflammation is essential for the proper management of Crohn’s disease (CD). The goal of this study was to develop and evaluate a multi-modal machine-learning (ML) model to assess ileal CD endoscopic activity by integrating information from Magnetic Resonance Enterography (MRE) and biochemical biomarkers. Methods: We obtained MRE, biochemical and ileocolonoscopy data from the multi-center ImageKids study database. We developed an optimized multimodal fusion ML model to non-invasively assess terminal ileum (TI) endoscopic disease activity in CD from MRE data. We determined the most informative features for model development using a permutation feature importance technique. We assessed model performance in comparison to the clinically recommended linear-regression MRE model in an experimental setup that consisted of stratified 2-fold validation, repeated 50 times, with the ileocolonoscopy-based Simple Endoscopic Score for CD at the TI (TI SES-CD) as a reference. We used the predictions’ mean-squared-error (MSE) and the receiver operation characteristics (ROC) area under curve (AUC) for active disease classification (TI SEC-CD≥3) as performance metrics. Results: 121 subjects out of the 240 subjects in the ImageKids study cohort had all required information (Non-active CD: 62 [51%], active CD: 59 [49%]). Length of disease segment and normalized biochemical biomarkers were the most informative features. The optimized fusion model performed better than the clinically recommended model determined by both a better median test MSE distribution (7.73 vs. 8.8, Wilcoxon test, p<1e-5) and a better aggregated AUC over the folds (0.84 vs. 0.8, DeLong’s test, p<1e-9). Conclusions: Optimized ML models for ileal CD endoscopic activity assessment have the potential to enable accurate and non-invasive attentive observation of intestinal inflammation in CD patients. The presented model is available at https://tcml-bme.github.io/ML_SESCD.html.
Recurrent attentive non-invasive observation of intestinal inflammation is essential for the proper management of Crohn's disease (CD). The goal of this study was to develop and evaluate a multi-modal machine-learning (ML) model to assess ileal CD endoscopic activity by integrating information from Magnetic Resonance Enterography (MRE) and biochemical biomarkers.BACKGROUND AND OBJECTIVERecurrent attentive non-invasive observation of intestinal inflammation is essential for the proper management of Crohn's disease (CD). The goal of this study was to develop and evaluate a multi-modal machine-learning (ML) model to assess ileal CD endoscopic activity by integrating information from Magnetic Resonance Enterography (MRE) and biochemical biomarkers.We obtained MRE, biochemical and ileocolonoscopy data from the multi-center ImageKids study database. We developed an optimized multimodal fusion ML model to non-invasively assess terminal ileum (TI) endoscopic disease activity in CD from MRE data. We determined the most informative features for model development using a permutation feature importance technique. We assessed model performance in comparison to the clinically recommended linear-regression MRE model in an experimental setup that consisted of stratified 2-fold validation, repeated 50 times, with the ileocolonoscopy-based Simple Endoscopic Score for CD at the TI (TI SES-CD) as a reference. We used the predictions' mean-squared-error (MSE) and the receiver operation characteristics (ROC) area under curve (AUC) for active disease classification (TI SEC-CD≥3) as performance metrics.METHODSWe obtained MRE, biochemical and ileocolonoscopy data from the multi-center ImageKids study database. We developed an optimized multimodal fusion ML model to non-invasively assess terminal ileum (TI) endoscopic disease activity in CD from MRE data. We determined the most informative features for model development using a permutation feature importance technique. We assessed model performance in comparison to the clinically recommended linear-regression MRE model in an experimental setup that consisted of stratified 2-fold validation, repeated 50 times, with the ileocolonoscopy-based Simple Endoscopic Score for CD at the TI (TI SES-CD) as a reference. We used the predictions' mean-squared-error (MSE) and the receiver operation characteristics (ROC) area under curve (AUC) for active disease classification (TI SEC-CD≥3) as performance metrics.121 subjects out of the 240 subjects in the ImageKids study cohort had all required information (Non-active CD: 62 [51%], active CD: 59 [49%]). Length of disease segment and normalized biochemical biomarkers were the most informative features. The optimized fusion model performed better than the clinically recommended model determined by both a better median test MSE distribution (7.73 vs. 8.8, Wilcoxon test, p<1e-5) and a better aggregated AUC over the folds (0.84 vs. 0.8, DeLong's test, p<1e-9).RESULTS121 subjects out of the 240 subjects in the ImageKids study cohort had all required information (Non-active CD: 62 [51%], active CD: 59 [49%]). Length of disease segment and normalized biochemical biomarkers were the most informative features. The optimized fusion model performed better than the clinically recommended model determined by both a better median test MSE distribution (7.73 vs. 8.8, Wilcoxon test, p<1e-5) and a better aggregated AUC over the folds (0.84 vs. 0.8, DeLong's test, p<1e-9).Optimized ML models for ileal CD endoscopic activity assessment have the potential to enable accurate and non-invasive attentive observation of intestinal inflammation in CD patients. The presented model is available at https://tcml-bme.github.io/ML_SESCD.html.CONCLUSIONSOptimized ML models for ileal CD endoscopic activity assessment have the potential to enable accurate and non-invasive attentive observation of intestinal inflammation in CD patients. The presented model is available at https://tcml-bme.github.io/ML_SESCD.html.
ArticleNumber 107207
Author Cytter-Kuint, Ruth
Guez, Itai
Pratt, Li-Tal
Greer, Mary-Louise C.
Focht, Gili
Castro, Denise A.
Turner, Dan
Freiman, Moti
Griffiths, Anne M.
Author_xml – sequence: 1
  givenname: Itai
  orcidid: 0000-0002-7536-8614
  surname: Guez
  fullname: Guez, Itai
  email: itaijj2@gmail.com
  organization: Faculty of Industrial Engineering, Technion - Israel Institute of Technology, Haifa, Israel
– sequence: 2
  givenname: Gili
  surname: Focht
  fullname: Focht, Gili
  organization: Shaare Zedek Medical Center, Jerusalem, Israel
– sequence: 3
  givenname: Mary-Louise C.
  surname: Greer
  fullname: Greer, Mary-Louise C.
  organization: Hospital for Sick Children, Toronto, Canada
– sequence: 4
  givenname: Ruth
  surname: Cytter-Kuint
  fullname: Cytter-Kuint, Ruth
  organization: Shaare Zedek Medical Center, Jerusalem, Israel
– sequence: 5
  givenname: Li-Tal
  surname: Pratt
  fullname: Pratt, Li-Tal
  organization: Kingston Health Sciences Centre, Queen’s University, Kingston, Canada
– sequence: 6
  givenname: Denise A.
  orcidid: 0000-0002-7300-6556
  surname: Castro
  fullname: Castro, Denise A.
  organization: Kingston Health Sciences Centre, Queen’s University, Kingston, Canada
– sequence: 7
  givenname: Dan
  orcidid: 0000-0001-5160-868X
  surname: Turner
  fullname: Turner, Dan
  organization: Shaare Zedek Medical Center, Jerusalem, Israel
– sequence: 8
  givenname: Anne M.
  orcidid: 0000-0001-8623-4665
  surname: Griffiths
  fullname: Griffiths, Anne M.
  organization: Hospital for Sick Children, Toronto, Canada
– sequence: 9
  givenname: Moti
  orcidid: 0000-0003-1083-1548
  surname: Freiman
  fullname: Freiman, Moti
  organization: Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
BookMark eNqFkM-O0zAQhyO0SHQXXoCTj1xSHCexE8QFlb_SSlzgbE0nE3aKYxfbrdQL4jV4PZ4EV-W0h-U00sz3jWZ-19WVD56q6nkj141s9MvdGpf9dq2kUqVhlDSPqlUzGFWbXvdX1apAY620NE-q65R2UkrV93pV_XxLR3Jhv5DPIswCxHJwmZcwgRML4B17qh1B9Oy_ifmQOHhRpuREDqJcUbM_QuKy5CQgJUpJcOGd2MRw5__8-p3ExIkgkSA_hYRhzygAMx85n55Wj2dwiZ79qzfV1_fvvmw-1refP3zavLmtsR26XButBmPQKNrOgwTErtMGGugas8V5hHEwM2hA1Uk0rdEzgBrGWWHb6IIM7U314rJ3H8OPA6VsF05IzoGncEhWmVZr3Y-qK-hwQTGGlCLNFjlDLn_nCOxsI-05cruz58jtOXJ7ibyo6p66j7xAPD0svb5IVP4_MkWbkMkjTRwJs50CP6y_uqejY88I7jud_if_BUA4s5Y
CitedBy_id crossref_primary_10_1097_MOG_0000000000000945
crossref_primary_10_1016_j_inffus_2023_102134
crossref_primary_10_1093_ibd_izae030
crossref_primary_10_1007_s12664_024_01531_3
crossref_primary_10_1016_j_cmpb_2024_108513
crossref_primary_10_1186_s13244_024_01703_x
crossref_primary_10_1111_1751_2980_13308
crossref_primary_10_3390_biomedicines12030475
crossref_primary_10_1016_j_ijmedinf_2024_105341
crossref_primary_10_1016_j_rcl_2024_11_005
crossref_primary_10_1007_s10278_024_01066_1
crossref_primary_10_1016_j_compbiomed_2023_107790
crossref_primary_10_1080_07853890_2023_2300670
Cites_doi 10.2307/2531595
10.1007/s00330-013-3010-z
10.1007/s00330-015-4036-1
10.5114/aoms.2014.43672
10.1097/MPG.0000000000002404
10.1038/s41746-020-00341-z
10.1016/j.bpg.2019.02.004
10.1016/j.cgh.2018.01.024
10.1038/ajg.2009.545
10.1093/ibd/izx040
10.1002/ibd.21551
10.1136/gutjnl-2018-317987
10.1016/S0016-5107(04)01878-4
10.1093/ecco-jcc/jjw120
10.3748/wjg.v19.i23.3596
10.1038/ajg.2015.233
10.1038/s41575-019-0102-5
10.3390/diagnostics10060367
10.3748/wjg.v22.i20.4794
10.1093/biomet/75.4.800
10.1007/s00261-020-02590-8
10.1136/gutjnl-2014-308973
10.1023/A:1010933404324
10.1053/j.gastro.2017.11.274
10.1148/radiol.2513081184
10.1016/S0140-6736(17)32448-0
10.1097/MIB.0000000000000131
10.1053/j.gastro.2022.07.048
10.1007/s00247-017-3790-4
10.1007/s00535-016-1253-6
10.1177/1756284818765956
10.1016/j.disamonth.2017.07.001
10.1038/nrgastro.2016.128
10.1016/j.cgh.2018.03.034
10.1053/j.gastro.2019.08.058
10.1136/gutjnl-2019-320065
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright © 2022 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright © 2022 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.cmpb.2022.107207
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
ExternalDocumentID 10_1016_j_cmpb_2022_107207
S0169260722005880
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
AACTN
AAIAV
ABLVK
ABTAH
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
RIG
AAYXX
AFCTW
AGRNS
CITATION
7X8
ID FETCH-LOGICAL-c384t-762877c72ebf80acc4467a1a417bcf9a987fa6ac240c7376faa289f2c31617b83
IEDL.DBID .~1
ISSN 0169-2607
1872-7565
IngestDate Fri Sep 05 07:29:43 EDT 2025
Tue Jul 01 02:41:23 EDT 2025
Thu Apr 24 22:59:23 EDT 2025
Fri Feb 23 02:39:26 EST 2024
Tue Aug 26 16:34:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Multimodal Learning in Medical Imaging and Informatics
Machine-learning
Crohn’s disease
Magnetic Resonance Enterography
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c384t-762877c72ebf80acc4467a1a417bcf9a987fa6ac240c7376faa289f2c31617b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5160-868X
0000-0002-7536-8614
0000-0001-8623-4665
0000-0003-1083-1548
0000-0002-7300-6556
PQID 2736665924
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2736665924
crossref_citationtrail_10_1016_j_cmpb_2022_107207
crossref_primary_10_1016_j_cmpb_2022_107207
elsevier_sciencedirect_doi_10_1016_j_cmpb_2022_107207
elsevier_clinicalkey_doi_10_1016_j_cmpb_2022_107207
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationTitle Computer methods and programs in biomedicine
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References DeLong, DeLong, Clarke-Pearson (bib0034) 1988
Weiss, Turner, Griffiths, Walters, Herman-Sucharska, Coppenrath, Anupindi, Towbin, O’Brien, Silverstein (bib0020) 2019; 69
Rozendorn, Amitai, Eliakim, Kopylov, Klang (bib0015) 2018; 11
Seyed Tabib, Madgwick, Sudhakar, Verstockt, Korcsmaros, Vermeire (bib0025) 2020; 69
Khanna, Bouguen, Feagan, D’Haens, Sandborn, Dubcenco, Baker, Levesque (bib0006) 2014; 20
Khanna, Zou, D’Haens, Rutgeerts, McDonald, Daperno, Feagan, Sandborn, Dubcenco, Stitt (bib0007) 2016; 65
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (bib0035) 2011; 12
Schoepfer, Beglinger, Straumann, Trummler, Vavricka, Bruegger, Seibold (bib0038) 2010; 105
Bruining, Zimmermann, Loftus Jr, Sandborn, Sauer, Strong, Al-Hawary, Anupindi, Baker, Bruining (bib0014) 2018; 154
Wilcoxon (bib0032) 1992
Huang, Pareek, Seyyedi, Banerjee, Lungren (bib0026) 2020; 3
Peyrin-Biroulet, Sandborn, Sands, Reinisch, Bemelman, Bryant, d’Haens, Dotan, Dubinsky, Feagan (bib0037) 2015; 110
Ng, Shi, Hamidi, Underwood, Tang, Benchimol, Panaccione, Ghosh, Wu, Chan (bib0001) 2017; 390
Rimola, Ordás, Rodriguez, García-Bosch, Aceituno, Llach, Ayuso, Ricart, Panés (bib0016) 2011; 17
Turner, Griffiths, Wilson, Mould, Baldassano, Russell, Dubinsky, Heyman, de Ridder, Hyams, Martin de Carpi, Conklin, Faubion, Koletzko, Bousvaros, Ruemmele (bib0019) 2020; 69
Daperno, D’Haens, Van Assche, Baert, Bulois, Maunoury, Sostegni, Rocca, Pera, Gevers (bib0029) 2004; 60
Breiman (bib0030) 2001; 45
Daperno, D’Haens, Van Assche, Baert, Bulois, Maunoury, Sostegni, Rocca, Pera, Gevers (bib0004) 2004; 60
Zheng, Li, Wu, Lin, Zhang, Zheng, Wang (bib0017) 2020; 45
Walsh, Bryant, Travis (bib0009) 2016; 13
Jairath, Ordas, Zou, Panes, Stoker, Taylor, Santillan, Horsthuis, Samaan, Shackelton (bib0011) 2018; 24
Hamdani, Naeem, Haider, Bansal, Komar, Diehl, Kirchner (bib0008) 2013; 19
Ma, Battat, Khanna, Parker, Feagan, Jairath (bib0022) 2019; 38
Krzystek-Korpacka, Kempiński, Bromke, Neubauer (bib0021) 2020; 10
Le Berre, Sandborn, Aridhi, Devignes, Fournier, Smaïl-Tabbone, Danese, Peyrin-Biroulet (bib0023) 2020; 158
.
Prezzi, Bhatnagar, Vega, Makanyanga, Halligan, Taylor (bib0040) 2016; 26
Lee, Kim, Yang, Chung, Kim, Park, Ha (bib0041) 2009; 251
Panés, Rimola (bib0010) 2018; 16
Church, Greer, Cytter-Kuint, Doria, Griffiths, Turner, Walters, Feldman (bib0012) 2017; 47
Makanyanga, Pendsé, Dikaios, Bloom, McCartney, Helbren, Atkins, Cuthbertson, Punwani, Forbes (bib0018) 2014; 24
Stawczyk-Eder, Eder, Lykowska-Szuber, Krela-Kazmierczak, Klimczak, Szymczak, Szachta, Katulska, Linke (bib0039) 2015; 11
Rimola, Alvarez-Cofino, Pérez-Jeldres, Ayuso, Alfaro, Rodríguez, Ricart, Ordás, Panés (bib0036) 2017; 52
Olivera, Danese, Jay, Natoli, Peyrin-Biroulet (bib0024) 2019; 16
Weinstein-Nakar, Focht, Church, Walters, Abitbol, Anupindi, Berteloot, Hulst, Ruemmele, Lemberg (bib0028) 2018; 16
Gajendran, Loganathan, Catinella, Hashash (bib0002) 2018; 64
Hochberg (bib0033) 1988; 75
Axelrad, Lichtiger, Yajnik (bib0003) 2016; 22
Dubcenco, Zou, Stitt, Baker, Jeejeebhoy, Kandel, Kim, Grover, McDonald, Shackelton (bib0005) 2016; 10
Focht, Kuint, Greer, Pratt, Castro, Church, Walters, Hyams, Navon, de Carpi (bib0013) 2022
Seyed Tabib (10.1016/j.cmpb.2022.107207_bib0025) 2020; 69
Focht (10.1016/j.cmpb.2022.107207_bib0013) 2022
Bruining (10.1016/j.cmpb.2022.107207_bib0014) 2018; 154
Church (10.1016/j.cmpb.2022.107207_bib0012) 2017; 47
Rimola (10.1016/j.cmpb.2022.107207_bib0036) 2017; 52
Stawczyk-Eder (10.1016/j.cmpb.2022.107207_bib0039) 2015; 11
10.1016/j.cmpb.2022.107207_bib0031
Le Berre (10.1016/j.cmpb.2022.107207_bib0023) 2020; 158
Pedregosa (10.1016/j.cmpb.2022.107207_bib0035) 2011; 12
Zheng (10.1016/j.cmpb.2022.107207_bib0017) 2020; 45
10.1016/j.cmpb.2022.107207_bib0027
Weiss (10.1016/j.cmpb.2022.107207_bib0020) 2019; 69
Lee (10.1016/j.cmpb.2022.107207_bib0041) 2009; 251
Rozendorn (10.1016/j.cmpb.2022.107207_bib0015) 2018; 11
Olivera (10.1016/j.cmpb.2022.107207_bib0024) 2019; 16
Weinstein-Nakar (10.1016/j.cmpb.2022.107207_bib0028) 2018; 16
Ng (10.1016/j.cmpb.2022.107207_bib0001) 2017; 390
Breiman (10.1016/j.cmpb.2022.107207_bib0030) 2001; 45
Wilcoxon (10.1016/j.cmpb.2022.107207_bib0032) 1992
Daperno (10.1016/j.cmpb.2022.107207_bib0004) 2004; 60
Huang (10.1016/j.cmpb.2022.107207_bib0026) 2020; 3
Hamdani (10.1016/j.cmpb.2022.107207_bib0008) 2013; 19
Axelrad (10.1016/j.cmpb.2022.107207_bib0003) 2016; 22
Peyrin-Biroulet (10.1016/j.cmpb.2022.107207_bib0037) 2015; 110
Makanyanga (10.1016/j.cmpb.2022.107207_bib0018) 2014; 24
Ma (10.1016/j.cmpb.2022.107207_bib0022) 2019; 38
Walsh (10.1016/j.cmpb.2022.107207_bib0009) 2016; 13
Hochberg (10.1016/j.cmpb.2022.107207_bib0033) 1988; 75
Jairath (10.1016/j.cmpb.2022.107207_bib0011) 2018; 24
DeLong (10.1016/j.cmpb.2022.107207_bib0034) 1988
Gajendran (10.1016/j.cmpb.2022.107207_bib0002) 2018; 64
Panés (10.1016/j.cmpb.2022.107207_bib0010) 2018; 16
Turner (10.1016/j.cmpb.2022.107207_bib0019) 2020; 69
Rimola (10.1016/j.cmpb.2022.107207_bib0016) 2011; 17
Khanna (10.1016/j.cmpb.2022.107207_bib0006) 2014; 20
Daperno (10.1016/j.cmpb.2022.107207_bib0029) 2004; 60
Schoepfer (10.1016/j.cmpb.2022.107207_bib0038) 2010; 105
Dubcenco (10.1016/j.cmpb.2022.107207_bib0005) 2016; 10
Krzystek-Korpacka (10.1016/j.cmpb.2022.107207_bib0021) 2020; 10
Prezzi (10.1016/j.cmpb.2022.107207_bib0040) 2016; 26
Khanna (10.1016/j.cmpb.2022.107207_bib0007) 2016; 65
References_xml – volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib0035
  article-title: Scikit-learn: Machine learning in python
  publication-title: the Journal of machine Learning research
– volume: 38
  start-page: 101602
  year: 2019
  ident: bib0022
  article-title: What is the role of c-reactive protein and fecal calprotectin in evaluating crohn’s disease activity?
  publication-title: Best Practice & Research Clinical Gastroenterology
– volume: 22
  start-page: 4794
  year: 2016
  ident: bib0003
  article-title: Inflammatory bowel disease and cancer: the role of inflammation, immunosuppression, and cancer treatment
  publication-title: World journal of gastroenterology
– start-page: 196
  year: 1992
  end-page: 202
  ident: bib0032
  article-title: Individual comparisons by ranking methods
  publication-title: Breakthroughs in statistics
– volume: 13
  start-page: 567
  year: 2016
  end-page: 579
  ident: bib0009
  article-title: Current best practice for disease activity assessment in ibd
  publication-title: Nature reviews Gastroenterology & hepatology
– volume: 16
  start-page: 1037
  year: 2018
  end-page: 1039
  ident: bib0010
  article-title: Is the objective of treatment for crohn’s disease mucosal or transmural healing?
  publication-title: Clinical Gastroenterology and Hepatology
– volume: 69
  start-page: 461
  year: 2019
  end-page: 465
  ident: bib0020
  article-title: Simple endoscopic score of crohn disease and magnetic resonance enterography in children: report from imagekids study
  publication-title: Journal of pediatric gastroenterology and nutrition
– volume: 24
  start-page: 440
  year: 2018
  end-page: 449
  ident: bib0011
  article-title: Reliability of measuring ileo-colonic disease activity in crohn’s disease by magnetic resonance enterography
  publication-title: Inflammatory bowel diseases
– volume: 16
  start-page: 1089
  year: 2018
  end-page: 1097
  ident: bib0028
  article-title: Associations among mucosal and transmural healing and fecal level of calprotectin in children with crohn’s disease
  publication-title: Clinical Gastroenterology and Hepatology
– volume: 20
  start-page: 1850
  year: 2014
  end-page: 1861
  ident: bib0006
  article-title: A systematic review of measurement of endoscopic disease activity and mucosal healing in crohn’s disease: recommendations for clinical trial design
  publication-title: Inflammatory bowel diseases
– volume: 251
  start-page: 751
  year: 2009
  end-page: 761
  ident: bib0041
  article-title: Crohn disease of the small bowel: comparison of ct enterography, mr enterography, and small-bowel follow-through as diagnostic techniques
  publication-title: Radiology
– volume: 11
  year: 2018
  ident: bib0015
  article-title: A review of magnetic resonance enterography-based indices for quantification of crohn’s disease inflammation
  publication-title: Therapeutic advances in gastroenterology
– volume: 110
  start-page: 1324
  year: 2015
  end-page: 1338
  ident: bib0037
  article-title: Selecting therapeutic targets in inflammatory bowel disease (stride): determining therapeutic goals for treat-to-target
  publication-title: Official journal of the American College of Gastroenterology| ACG
– volume: 24
  start-page: 277
  year: 2014
  end-page: 287
  ident: bib0018
  article-title: Evaluation of crohn’s disease activity: initial validation of a magnetic resonance enterography global score (megs) against faecal calprotectin
  publication-title: European radiology
– volume: 105
  start-page: 162
  year: 2010
  end-page: 169
  ident: bib0038
  article-title: Fecal calprotectin correlates more closely with the simple endoscopic score for crohn’s disease (ses-cd) than crp, blood leukocytes, and the cdai
  publication-title: Official journal of the American College of Gastroenterology| ACG
– volume: 69
  start-page: 32
  year: 2020
  end-page: 41
  ident: bib0019
  article-title: Designing clinical trials in paediatric inflammatory bowel diseases: a pibdnet commentary
  publication-title: Gut
– volume: 60
  start-page: 505
  year: 2004
  end-page: 512
  ident: bib0029
  article-title: Development and validation of a new, simplified endoscopic activity score for crohn’s disease: the ses-cd
  publication-title: Gastrointestinal endoscopy
– volume: 69
  start-page: 1520
  year: 2020
  end-page: 1532
  ident: bib0025
  article-title: Big data in ibd: big progress for clinical practice
  publication-title: Gut
– volume: 64
  start-page: 20
  year: 2018
  end-page: 57
  ident: bib0002
  article-title: A comprehensive review and update on crohn’s disease
  publication-title: Disease-a-month
– start-page: 837
  year: 1988
  end-page: 845
  ident: bib0034
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
  publication-title: Biometrics
– volume: 75
  start-page: 800
  year: 1988
  end-page: 802
  ident: bib0033
  article-title: A sharper bonferroni procedure for multiple tests of significance
  publication-title: Biometrika
– year: 2022
  ident: bib0013
  article-title: Development, validation and evaluation of the pediatric inflammatory crohn’s magnetic resonance enterography index (picmi) from the imagekids study
  publication-title: Gastroenterology
– volume: 11
  start-page: 353
  year: 2015
  end-page: 361
  ident: bib0039
  article-title: Is faecal calprotectin equally useful in all crohn’s disease locations? a prospective, comparative study
  publication-title: Archives of Medical Science
– volume: 65
  start-page: 1119
  year: 2016
  end-page: 1125
  ident: bib0007
  article-title: Reliability among central readers in the evaluation of endoscopic findings from patients with crohn’s disease
  publication-title: Gut
– volume: 47
  start-page: 565
  year: 2017
  end-page: 575
  ident: bib0012
  article-title: Magnetic resonance enterography has good inter-rater agreement and diagnostic accuracy for detecting inflammation in pediatric crohn disease
  publication-title: Pediatric radiology
– volume: 390
  start-page: 2769
  year: 2017
  end-page: 2778
  ident: bib0001
  article-title: Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies
  publication-title: The Lancet
– reference: .
– volume: 10
  start-page: 1006
  year: 2016
  end-page: 1014
  ident: bib0005
  article-title: Effect of standardised scoring conventions on inter-rater reliability in the endoscopic evaluation of crohn’s disease
  publication-title: Journal of Crohn’s and Colitis
– volume: 158
  start-page: 76
  year: 2020
  end-page: 94
  ident: bib0023
  article-title: Application of artificial intelligence to gastroenterology and hepatology
  publication-title: Gastroenterology
– volume: 45
  start-page: 3653
  year: 2020
  end-page: 3661
  ident: bib0017
  article-title: Assessment of pediatric crohn’s disease activity: validation of the magnetic resonance enterography global score (megs) against endoscopic activity score (ses-cd)
  publication-title: Abdominal Radiology
– volume: 52
  start-page: 585
  year: 2017
  end-page: 593
  ident: bib0036
  article-title: Comparison of three magnetic resonance enterography indices for grading activity in crohn’s disease
  publication-title: Journal of gastroenterology
– volume: 10
  start-page: 367
  year: 2020
  ident: bib0021
  article-title: Biochemical biomarkers of mucosal healing for inflammatory bowel disease in adults
  publication-title: Diagnostics
– volume: 17
  start-page: 1759
  year: 2011
  end-page: 1768
  ident: bib0016
  article-title: Magnetic resonance imaging for evaluation of crohn’s disease: validation of parameters of severity and quantitative index of activity
  publication-title: Inflammatory bowel diseases
– volume: 60
  start-page: 505
  year: 2004
  end-page: 512
  ident: bib0004
  article-title: Development and validation of a new, simplified endoscopic activity score for crohn’s disease: the ses-cd
  publication-title: Gastrointestinal endoscopy
– volume: 19
  start-page: 3596
  year: 2013
  ident: bib0008
  article-title: Risk factors for colonoscopic perforation: a population-based study of 80118 cases
  publication-title: World Journal of Gastroenterology: WJG
– volume: 26
  start-page: 2107
  year: 2016
  end-page: 2117
  ident: bib0040
  article-title: Monitoring crohn’s disease during anti-tnf-
  publication-title: European radiology
– volume: 3
  start-page: 1
  year: 2020
  end-page: 9
  ident: bib0026
  article-title: Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines
  publication-title: NPJ digital medicine
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0030
  article-title: Random forests
  publication-title: Machine learning
– volume: 154
  start-page: 1172
  year: 2018
  end-page: 1194
  ident: bib0014
  article-title: Consensus recommendations for evaluation, interpretation, and utilization of computed tomography and magnetic resonance enterography in patients with small bowel crohn’s disease
  publication-title: Gastroenterology
– volume: 16
  start-page: 312
  year: 2019
  end-page: 321
  ident: bib0024
  article-title: Big data in ibd: a look into the future
  publication-title: Nature Reviews Gastroenterology & Hepatology
– start-page: 837
  year: 1988
  ident: 10.1016/j.cmpb.2022.107207_bib0034
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
  publication-title: Biometrics
  doi: 10.2307/2531595
– volume: 24
  start-page: 277
  issue: 2
  year: 2014
  ident: 10.1016/j.cmpb.2022.107207_bib0018
  article-title: Evaluation of crohn’s disease activity: initial validation of a magnetic resonance enterography global score (megs) against faecal calprotectin
  publication-title: European radiology
  doi: 10.1007/s00330-013-3010-z
– volume: 26
  start-page: 2107
  issue: 7
  year: 2016
  ident: 10.1016/j.cmpb.2022.107207_bib0040
  article-title: Monitoring crohn’s disease during anti-tnf-α therapy: validation of the magnetic resonance enterography global score (megs) against a combined clinical reference standard
  publication-title: European radiology
  doi: 10.1007/s00330-015-4036-1
– volume: 11
  start-page: 353
  issue: 2
  year: 2015
  ident: 10.1016/j.cmpb.2022.107207_bib0039
  article-title: Is faecal calprotectin equally useful in all crohn’s disease locations? a prospective, comparative study
  publication-title: Archives of Medical Science
  doi: 10.5114/aoms.2014.43672
– start-page: 196
  year: 1992
  ident: 10.1016/j.cmpb.2022.107207_bib0032
  article-title: Individual comparisons by ranking methods
– volume: 69
  start-page: 461
  issue: 4
  year: 2019
  ident: 10.1016/j.cmpb.2022.107207_bib0020
  article-title: Simple endoscopic score of crohn disease and magnetic resonance enterography in children: report from imagekids study
  publication-title: Journal of pediatric gastroenterology and nutrition
  doi: 10.1097/MPG.0000000000002404
– volume: 3
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.cmpb.2022.107207_bib0026
  article-title: Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines
  publication-title: NPJ digital medicine
  doi: 10.1038/s41746-020-00341-z
– volume: 38
  start-page: 101602
  year: 2019
  ident: 10.1016/j.cmpb.2022.107207_bib0022
  article-title: What is the role of c-reactive protein and fecal calprotectin in evaluating crohn’s disease activity?
  publication-title: Best Practice & Research Clinical Gastroenterology
  doi: 10.1016/j.bpg.2019.02.004
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.cmpb.2022.107207_bib0035
  article-title: Scikit-learn: Machine learning in python
  publication-title: the Journal of machine Learning research
– volume: 16
  start-page: 1089
  issue: 7
  year: 2018
  ident: 10.1016/j.cmpb.2022.107207_bib0028
  article-title: Associations among mucosal and transmural healing and fecal level of calprotectin in children with crohn’s disease
  publication-title: Clinical Gastroenterology and Hepatology
  doi: 10.1016/j.cgh.2018.01.024
– volume: 105
  start-page: 162
  issue: 1
  year: 2010
  ident: 10.1016/j.cmpb.2022.107207_bib0038
  article-title: Fecal calprotectin correlates more closely with the simple endoscopic score for crohn’s disease (ses-cd) than crp, blood leukocytes, and the cdai
  publication-title: Official journal of the American College of Gastroenterology| ACG
  doi: 10.1038/ajg.2009.545
– volume: 24
  start-page: 440
  issue: 2
  year: 2018
  ident: 10.1016/j.cmpb.2022.107207_bib0011
  article-title: Reliability of measuring ileo-colonic disease activity in crohn’s disease by magnetic resonance enterography
  publication-title: Inflammatory bowel diseases
  doi: 10.1093/ibd/izx040
– volume: 17
  start-page: 1759
  issue: 8
  year: 2011
  ident: 10.1016/j.cmpb.2022.107207_bib0016
  article-title: Magnetic resonance imaging for evaluation of crohn’s disease: validation of parameters of severity and quantitative index of activity
  publication-title: Inflammatory bowel diseases
  doi: 10.1002/ibd.21551
– volume: 69
  start-page: 32
  issue: 1
  year: 2020
  ident: 10.1016/j.cmpb.2022.107207_bib0019
  article-title: Designing clinical trials in paediatric inflammatory bowel diseases: a pibdnet commentary
  publication-title: Gut
  doi: 10.1136/gutjnl-2018-317987
– volume: 60
  start-page: 505
  issue: 4
  year: 2004
  ident: 10.1016/j.cmpb.2022.107207_bib0029
  article-title: Development and validation of a new, simplified endoscopic activity score for crohn’s disease: the ses-cd
  publication-title: Gastrointestinal endoscopy
  doi: 10.1016/S0016-5107(04)01878-4
– ident: 10.1016/j.cmpb.2022.107207_bib0031
– volume: 60
  start-page: 505
  issue: 4
  year: 2004
  ident: 10.1016/j.cmpb.2022.107207_bib0004
  article-title: Development and validation of a new, simplified endoscopic activity score for crohn’s disease: the ses-cd
  publication-title: Gastrointestinal endoscopy
  doi: 10.1016/S0016-5107(04)01878-4
– volume: 10
  start-page: 1006
  issue: 9
  year: 2016
  ident: 10.1016/j.cmpb.2022.107207_bib0005
  article-title: Effect of standardised scoring conventions on inter-rater reliability in the endoscopic evaluation of crohn’s disease
  publication-title: Journal of Crohn’s and Colitis
  doi: 10.1093/ecco-jcc/jjw120
– volume: 19
  start-page: 3596
  issue: 23
  year: 2013
  ident: 10.1016/j.cmpb.2022.107207_bib0008
  article-title: Risk factors for colonoscopic perforation: a population-based study of 80118 cases
  publication-title: World Journal of Gastroenterology: WJG
  doi: 10.3748/wjg.v19.i23.3596
– volume: 110
  start-page: 1324
  issue: 9
  year: 2015
  ident: 10.1016/j.cmpb.2022.107207_bib0037
  article-title: Selecting therapeutic targets in inflammatory bowel disease (stride): determining therapeutic goals for treat-to-target
  publication-title: Official journal of the American College of Gastroenterology| ACG
  doi: 10.1038/ajg.2015.233
– volume: 16
  start-page: 312
  issue: 5
  year: 2019
  ident: 10.1016/j.cmpb.2022.107207_bib0024
  article-title: Big data in ibd: a look into the future
  publication-title: Nature Reviews Gastroenterology & Hepatology
  doi: 10.1038/s41575-019-0102-5
– volume: 10
  start-page: 367
  issue: 6
  year: 2020
  ident: 10.1016/j.cmpb.2022.107207_bib0021
  article-title: Biochemical biomarkers of mucosal healing for inflammatory bowel disease in adults
  publication-title: Diagnostics
  doi: 10.3390/diagnostics10060367
– volume: 22
  start-page: 4794
  issue: 20
  year: 2016
  ident: 10.1016/j.cmpb.2022.107207_bib0003
  article-title: Inflammatory bowel disease and cancer: the role of inflammation, immunosuppression, and cancer treatment
  publication-title: World journal of gastroenterology
  doi: 10.3748/wjg.v22.i20.4794
– volume: 75
  start-page: 800
  issue: 4
  year: 1988
  ident: 10.1016/j.cmpb.2022.107207_bib0033
  article-title: A sharper bonferroni procedure for multiple tests of significance
  publication-title: Biometrika
  doi: 10.1093/biomet/75.4.800
– volume: 45
  start-page: 3653
  year: 2020
  ident: 10.1016/j.cmpb.2022.107207_bib0017
  article-title: Assessment of pediatric crohn’s disease activity: validation of the magnetic resonance enterography global score (megs) against endoscopic activity score (ses-cd)
  publication-title: Abdominal Radiology
  doi: 10.1007/s00261-020-02590-8
– volume: 65
  start-page: 1119
  issue: 7
  year: 2016
  ident: 10.1016/j.cmpb.2022.107207_bib0007
  article-title: Reliability among central readers in the evaluation of endoscopic findings from patients with crohn’s disease
  publication-title: Gut
  doi: 10.1136/gutjnl-2014-308973
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.cmpb.2022.107207_bib0030
  article-title: Random forests
  publication-title: Machine learning
  doi: 10.1023/A:1010933404324
– volume: 154
  start-page: 1172
  issue: 4
  year: 2018
  ident: 10.1016/j.cmpb.2022.107207_bib0014
  article-title: Consensus recommendations for evaluation, interpretation, and utilization of computed tomography and magnetic resonance enterography in patients with small bowel crohn’s disease
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2017.11.274
– volume: 251
  start-page: 751
  issue: 3
  year: 2009
  ident: 10.1016/j.cmpb.2022.107207_bib0041
  article-title: Crohn disease of the small bowel: comparison of ct enterography, mr enterography, and small-bowel follow-through as diagnostic techniques
  publication-title: Radiology
  doi: 10.1148/radiol.2513081184
– volume: 390
  start-page: 2769
  issue: 10114
  year: 2017
  ident: 10.1016/j.cmpb.2022.107207_bib0001
  article-title: Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(17)32448-0
– volume: 20
  start-page: 1850
  issue: 10
  year: 2014
  ident: 10.1016/j.cmpb.2022.107207_bib0006
  article-title: A systematic review of measurement of endoscopic disease activity and mucosal healing in crohn’s disease: recommendations for clinical trial design
  publication-title: Inflammatory bowel diseases
  doi: 10.1097/MIB.0000000000000131
– year: 2022
  ident: 10.1016/j.cmpb.2022.107207_bib0013
  article-title: Development, validation and evaluation of the pediatric inflammatory crohn’s magnetic resonance enterography index (picmi) from the imagekids study
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2022.07.048
– volume: 47
  start-page: 565
  issue: 5
  year: 2017
  ident: 10.1016/j.cmpb.2022.107207_bib0012
  article-title: Magnetic resonance enterography has good inter-rater agreement and diagnostic accuracy for detecting inflammation in pediatric crohn disease
  publication-title: Pediatric radiology
  doi: 10.1007/s00247-017-3790-4
– volume: 52
  start-page: 585
  issue: 5
  year: 2017
  ident: 10.1016/j.cmpb.2022.107207_bib0036
  article-title: Comparison of three magnetic resonance enterography indices for grading activity in crohn’s disease
  publication-title: Journal of gastroenterology
  doi: 10.1007/s00535-016-1253-6
– ident: 10.1016/j.cmpb.2022.107207_bib0027
– volume: 11
  year: 2018
  ident: 10.1016/j.cmpb.2022.107207_bib0015
  article-title: A review of magnetic resonance enterography-based indices for quantification of crohn’s disease inflammation
  publication-title: Therapeutic advances in gastroenterology
  doi: 10.1177/1756284818765956
– volume: 64
  start-page: 20
  issue: 2
  year: 2018
  ident: 10.1016/j.cmpb.2022.107207_bib0002
  article-title: A comprehensive review and update on crohn’s disease
  publication-title: Disease-a-month
  doi: 10.1016/j.disamonth.2017.07.001
– volume: 13
  start-page: 567
  issue: 10
  year: 2016
  ident: 10.1016/j.cmpb.2022.107207_bib0009
  article-title: Current best practice for disease activity assessment in ibd
  publication-title: Nature reviews Gastroenterology & hepatology
  doi: 10.1038/nrgastro.2016.128
– volume: 16
  start-page: 1037
  issue: 7
  year: 2018
  ident: 10.1016/j.cmpb.2022.107207_bib0010
  article-title: Is the objective of treatment for crohn’s disease mucosal or transmural healing?
  publication-title: Clinical Gastroenterology and Hepatology
  doi: 10.1016/j.cgh.2018.03.034
– volume: 158
  start-page: 76
  issue: 1
  year: 2020
  ident: 10.1016/j.cmpb.2022.107207_bib0023
  article-title: Application of artificial intelligence to gastroenterology and hepatology
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2019.08.058
– volume: 69
  start-page: 1520
  issue: 8
  year: 2020
  ident: 10.1016/j.cmpb.2022.107207_bib0025
  article-title: Big data in ibd: big progress for clinical practice
  publication-title: Gut
  doi: 10.1136/gutjnl-2019-320065
SSID ssj0002556
Score 2.44851
Snippet •Multimodal Machine-Learning model for non-invasive assessment of ileal Crohn’s disease endoscopic activity.•Improved accuracy of non-invasive assessment of...
Recurrent attentive non-invasive observation of intestinal inflammation is essential for the proper management of Crohn's disease (CD). The goal of this study...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107207
SubjectTerms Crohn’s disease
Machine-learning
Magnetic Resonance Enterography
Multimodal Learning in Medical Imaging and Informatics
Title Development of a multimodal machine-learning fusion model to non-invasively assess ileal Crohn’s disease endoscopic activity
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260722005880
https://dx.doi.org/10.1016/j.cmpb.2022.107207
https://www.proquest.com/docview/2736665924
Volume 227
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fSxwxEA-iUPpSWm2p2h4p-FbSu01ym-TxOJTTUl-q4FvIZpN6xds9zruCL-LX6Nfzkzizm1VbikIfN-wsITM7fzK_mSFkL5emVKXMmTFuwKTQkWknDBvwKLji3sjQoC2O88mpPDobnq2RcVcLg7DKpPtbnd5o67TST6fZn0-n_e_YRwS8ccXxYgTEECvYpcL--V-uH2Ae2GKr7e9tGL6dCmdajJefzQuIETmHBcVxpOy_jdNfarqxPQevyavkNNJRu683ZC1Um-TFt5QW3yLXj6A_tI7U0QYnOKtLoJo1cMnA0nyIHzSu8IaMNjNw6LKmVV2xafXLIZD94oq6Jg1MQVsA8XhRn1e3N78vacrk0FCVNZayTD3FmggcPfGWnB7sn4wnLA1WYF5ouWSgALVSXvFQRD1w3kNMqFzmZKYKH40zWkWXOw_W3ivQQNE5iMsi9wKjoUKLd2Qd9hbeExrVIGQQEpaZBs-KF4XIhdRSGzn0AbynbZJ1J2p96jqOwy8ubAcv-2mRCxa5YFsubJPP9zTztufGk2-LjlG2qyYF_WfBJDxJNbyn-kPenqX71MmChR8RsyuuCvXq0oIfCKHgEOLZnf_89i55iU8tWOYDWV8uVuEjuDzLotfIdI9sjA6_To7vAIkjAL8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELYoSG0vFf0TtEBdqbfK3Y3txPYRrUBLC1wKEjfLceyyiE1WsIvEBfU1-np9ks4kDqVVRSWuTiayPJP58XwzQ8iHQppKVbJgxrghk0JHpp0wbMij4Ip7I0OLtjgsxsfy80l-skRGfS0MwiqT7u90equt08ogneZgNpkMvmIfEfDGFceLERDDR2RF5kKhaH-6-Y3zwB5bXYNvw_D1VDnTgbz8dFZCkMg5LCiOM2X_bZ3-0tOt8dldJc-S10i3u409J0uhfkEeH6S8-Etycwf7Q5tIHW2BgtOmAqppi5cMLA2I-EbjAq_IaDsEh84bWjc1m9RXDpHs59fUtXlgCuoCiEcXzWn98_uPS5pSOTTUVYO1LBNPsSgCZ0-8Ise7O0ejMUuTFZgXWs4ZaECtlFc8lFEPnfcQFCqXOZmp0kfjjFbRFc6DufcKVFB0DgKzyL3AcKjU4jVZhr2FNUKjGoYMYsIq0-Ba8bIUhZBaaiNzH8B9WidZf6LWp7bjOP3i3Pb4sjOLXLDIBdtxYZ18vKWZdU037n1b9IyyfTkpKEALNuFeqvyW6g-B-y_d-14WLPyJmF5xdWgWlxYcQYgFcwho3zzw2-_Ik_HRwb7d3zv88pY8xScdcmaDLM8vFmET_J95udXK9y9tdgJV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+multimodal+machine-learning+fusion+model+to+non-invasively+assess+ileal+Crohn%27s+disease+endoscopic+activity&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Guez%2C+Itai&rft.au=Focht%2C+Gili&rft.au=Greer%2C+Mary-Louise+C&rft.au=Cytter-Kuint%2C+Ruth&rft.date=2022-12-01&rft.issn=1872-7565&rft.eissn=1872-7565&rft.volume=227&rft.spage=107207&rft_id=info:doi/10.1016%2Fj.cmpb.2022.107207&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon