Development of a multimodal machine-learning fusion model to non-invasively assess ileal Crohn’s disease endoscopic activity
•Multimodal Machine-Learning model for non-invasive assessment of ileal Crohn’s disease endoscopic activity.•Improved accuracy of non-invasive assessment of ileal Crohn’s disease endoscopic activity compared to current approaches.•Optimized set of radiological and biochemical features for machine-le...
Saved in:
Published in | Computer methods and programs in biomedicine Vol. 227; p. 107207 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0169-2607 1872-7565 1872-7565 |
DOI | 10.1016/j.cmpb.2022.107207 |
Cover
Loading…
Abstract | •Multimodal Machine-Learning model for non-invasive assessment of ileal Crohn’s disease endoscopic activity.•Improved accuracy of non-invasive assessment of ileal Crohn’s disease endoscopic activity compared to current approaches.•Optimized set of radiological and biochemical features for machine-learning-based ileal Crohn’s disease endoscopic activity assessment.
Background and Objective: Recurrent attentive non-invasive observation of intestinal inflammation is essential for the proper management of Crohn’s disease (CD). The goal of this study was to develop and evaluate a multi-modal machine-learning (ML) model to assess ileal CD endoscopic activity by integrating information from Magnetic Resonance Enterography (MRE) and biochemical biomarkers. Methods: We obtained MRE, biochemical and ileocolonoscopy data from the multi-center ImageKids study database. We developed an optimized multimodal fusion ML model to non-invasively assess terminal ileum (TI) endoscopic disease activity in CD from MRE data. We determined the most informative features for model development using a permutation feature importance technique. We assessed model performance in comparison to the clinically recommended linear-regression MRE model in an experimental setup that consisted of stratified 2-fold validation, repeated 50 times, with the ileocolonoscopy-based Simple Endoscopic Score for CD at the TI (TI SES-CD) as a reference. We used the predictions’ mean-squared-error (MSE) and the receiver operation characteristics (ROC) area under curve (AUC) for active disease classification (TI SEC-CD≥3) as performance metrics. Results: 121 subjects out of the 240 subjects in the ImageKids study cohort had all required information (Non-active CD: 62 [51%], active CD: 59 [49%]). Length of disease segment and normalized biochemical biomarkers were the most informative features. The optimized fusion model performed better than the clinically recommended model determined by both a better median test MSE distribution (7.73 vs. 8.8, Wilcoxon test, p<1e-5) and a better aggregated AUC over the folds (0.84 vs. 0.8, DeLong’s test, p<1e-9). Conclusions: Optimized ML models for ileal CD endoscopic activity assessment have the potential to enable accurate and non-invasive attentive observation of intestinal inflammation in CD patients. The presented model is available at https://tcml-bme.github.io/ML_SESCD.html. |
---|---|
AbstractList | •Multimodal Machine-Learning model for non-invasive assessment of ileal Crohn’s disease endoscopic activity.•Improved accuracy of non-invasive assessment of ileal Crohn’s disease endoscopic activity compared to current approaches.•Optimized set of radiological and biochemical features for machine-learning-based ileal Crohn’s disease endoscopic activity assessment.
Background and Objective: Recurrent attentive non-invasive observation of intestinal inflammation is essential for the proper management of Crohn’s disease (CD). The goal of this study was to develop and evaluate a multi-modal machine-learning (ML) model to assess ileal CD endoscopic activity by integrating information from Magnetic Resonance Enterography (MRE) and biochemical biomarkers. Methods: We obtained MRE, biochemical and ileocolonoscopy data from the multi-center ImageKids study database. We developed an optimized multimodal fusion ML model to non-invasively assess terminal ileum (TI) endoscopic disease activity in CD from MRE data. We determined the most informative features for model development using a permutation feature importance technique. We assessed model performance in comparison to the clinically recommended linear-regression MRE model in an experimental setup that consisted of stratified 2-fold validation, repeated 50 times, with the ileocolonoscopy-based Simple Endoscopic Score for CD at the TI (TI SES-CD) as a reference. We used the predictions’ mean-squared-error (MSE) and the receiver operation characteristics (ROC) area under curve (AUC) for active disease classification (TI SEC-CD≥3) as performance metrics. Results: 121 subjects out of the 240 subjects in the ImageKids study cohort had all required information (Non-active CD: 62 [51%], active CD: 59 [49%]). Length of disease segment and normalized biochemical biomarkers were the most informative features. The optimized fusion model performed better than the clinically recommended model determined by both a better median test MSE distribution (7.73 vs. 8.8, Wilcoxon test, p<1e-5) and a better aggregated AUC over the folds (0.84 vs. 0.8, DeLong’s test, p<1e-9). Conclusions: Optimized ML models for ileal CD endoscopic activity assessment have the potential to enable accurate and non-invasive attentive observation of intestinal inflammation in CD patients. The presented model is available at https://tcml-bme.github.io/ML_SESCD.html. Recurrent attentive non-invasive observation of intestinal inflammation is essential for the proper management of Crohn's disease (CD). The goal of this study was to develop and evaluate a multi-modal machine-learning (ML) model to assess ileal CD endoscopic activity by integrating information from Magnetic Resonance Enterography (MRE) and biochemical biomarkers.BACKGROUND AND OBJECTIVERecurrent attentive non-invasive observation of intestinal inflammation is essential for the proper management of Crohn's disease (CD). The goal of this study was to develop and evaluate a multi-modal machine-learning (ML) model to assess ileal CD endoscopic activity by integrating information from Magnetic Resonance Enterography (MRE) and biochemical biomarkers.We obtained MRE, biochemical and ileocolonoscopy data from the multi-center ImageKids study database. We developed an optimized multimodal fusion ML model to non-invasively assess terminal ileum (TI) endoscopic disease activity in CD from MRE data. We determined the most informative features for model development using a permutation feature importance technique. We assessed model performance in comparison to the clinically recommended linear-regression MRE model in an experimental setup that consisted of stratified 2-fold validation, repeated 50 times, with the ileocolonoscopy-based Simple Endoscopic Score for CD at the TI (TI SES-CD) as a reference. We used the predictions' mean-squared-error (MSE) and the receiver operation characteristics (ROC) area under curve (AUC) for active disease classification (TI SEC-CD≥3) as performance metrics.METHODSWe obtained MRE, biochemical and ileocolonoscopy data from the multi-center ImageKids study database. We developed an optimized multimodal fusion ML model to non-invasively assess terminal ileum (TI) endoscopic disease activity in CD from MRE data. We determined the most informative features for model development using a permutation feature importance technique. We assessed model performance in comparison to the clinically recommended linear-regression MRE model in an experimental setup that consisted of stratified 2-fold validation, repeated 50 times, with the ileocolonoscopy-based Simple Endoscopic Score for CD at the TI (TI SES-CD) as a reference. We used the predictions' mean-squared-error (MSE) and the receiver operation characteristics (ROC) area under curve (AUC) for active disease classification (TI SEC-CD≥3) as performance metrics.121 subjects out of the 240 subjects in the ImageKids study cohort had all required information (Non-active CD: 62 [51%], active CD: 59 [49%]). Length of disease segment and normalized biochemical biomarkers were the most informative features. The optimized fusion model performed better than the clinically recommended model determined by both a better median test MSE distribution (7.73 vs. 8.8, Wilcoxon test, p<1e-5) and a better aggregated AUC over the folds (0.84 vs. 0.8, DeLong's test, p<1e-9).RESULTS121 subjects out of the 240 subjects in the ImageKids study cohort had all required information (Non-active CD: 62 [51%], active CD: 59 [49%]). Length of disease segment and normalized biochemical biomarkers were the most informative features. The optimized fusion model performed better than the clinically recommended model determined by both a better median test MSE distribution (7.73 vs. 8.8, Wilcoxon test, p<1e-5) and a better aggregated AUC over the folds (0.84 vs. 0.8, DeLong's test, p<1e-9).Optimized ML models for ileal CD endoscopic activity assessment have the potential to enable accurate and non-invasive attentive observation of intestinal inflammation in CD patients. The presented model is available at https://tcml-bme.github.io/ML_SESCD.html.CONCLUSIONSOptimized ML models for ileal CD endoscopic activity assessment have the potential to enable accurate and non-invasive attentive observation of intestinal inflammation in CD patients. The presented model is available at https://tcml-bme.github.io/ML_SESCD.html. |
ArticleNumber | 107207 |
Author | Cytter-Kuint, Ruth Guez, Itai Pratt, Li-Tal Greer, Mary-Louise C. Focht, Gili Castro, Denise A. Turner, Dan Freiman, Moti Griffiths, Anne M. |
Author_xml | – sequence: 1 givenname: Itai orcidid: 0000-0002-7536-8614 surname: Guez fullname: Guez, Itai email: itaijj2@gmail.com organization: Faculty of Industrial Engineering, Technion - Israel Institute of Technology, Haifa, Israel – sequence: 2 givenname: Gili surname: Focht fullname: Focht, Gili organization: Shaare Zedek Medical Center, Jerusalem, Israel – sequence: 3 givenname: Mary-Louise C. surname: Greer fullname: Greer, Mary-Louise C. organization: Hospital for Sick Children, Toronto, Canada – sequence: 4 givenname: Ruth surname: Cytter-Kuint fullname: Cytter-Kuint, Ruth organization: Shaare Zedek Medical Center, Jerusalem, Israel – sequence: 5 givenname: Li-Tal surname: Pratt fullname: Pratt, Li-Tal organization: Kingston Health Sciences Centre, Queen’s University, Kingston, Canada – sequence: 6 givenname: Denise A. orcidid: 0000-0002-7300-6556 surname: Castro fullname: Castro, Denise A. organization: Kingston Health Sciences Centre, Queen’s University, Kingston, Canada – sequence: 7 givenname: Dan orcidid: 0000-0001-5160-868X surname: Turner fullname: Turner, Dan organization: Shaare Zedek Medical Center, Jerusalem, Israel – sequence: 8 givenname: Anne M. orcidid: 0000-0001-8623-4665 surname: Griffiths fullname: Griffiths, Anne M. organization: Hospital for Sick Children, Toronto, Canada – sequence: 9 givenname: Moti orcidid: 0000-0003-1083-1548 surname: Freiman fullname: Freiman, Moti organization: Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel |
BookMark | eNqFkM-O0zAQhyO0SHQXXoCTj1xSHCexE8QFlb_SSlzgbE0nE3aKYxfbrdQL4jV4PZ4EV-W0h-U00sz3jWZ-19WVD56q6nkj141s9MvdGpf9dq2kUqVhlDSPqlUzGFWbXvdX1apAY620NE-q65R2UkrV93pV_XxLR3Jhv5DPIswCxHJwmZcwgRML4B17qh1B9Oy_ifmQOHhRpuREDqJcUbM_QuKy5CQgJUpJcOGd2MRw5__8-p3ExIkgkSA_hYRhzygAMx85n55Wj2dwiZ79qzfV1_fvvmw-1refP3zavLmtsR26XButBmPQKNrOgwTErtMGGugas8V5hHEwM2hA1Uk0rdEzgBrGWWHb6IIM7U314rJ3H8OPA6VsF05IzoGncEhWmVZr3Y-qK-hwQTGGlCLNFjlDLn_nCOxsI-05cruz58jtOXJ7ibyo6p66j7xAPD0svb5IVP4_MkWbkMkjTRwJs50CP6y_uqejY88I7jud_if_BUA4s5Y |
CitedBy_id | crossref_primary_10_1097_MOG_0000000000000945 crossref_primary_10_1016_j_inffus_2023_102134 crossref_primary_10_1093_ibd_izae030 crossref_primary_10_1007_s12664_024_01531_3 crossref_primary_10_1016_j_cmpb_2024_108513 crossref_primary_10_1186_s13244_024_01703_x crossref_primary_10_1111_1751_2980_13308 crossref_primary_10_3390_biomedicines12030475 crossref_primary_10_1016_j_ijmedinf_2024_105341 crossref_primary_10_1016_j_rcl_2024_11_005 crossref_primary_10_1007_s10278_024_01066_1 crossref_primary_10_1016_j_compbiomed_2023_107790 crossref_primary_10_1080_07853890_2023_2300670 |
Cites_doi | 10.2307/2531595 10.1007/s00330-013-3010-z 10.1007/s00330-015-4036-1 10.5114/aoms.2014.43672 10.1097/MPG.0000000000002404 10.1038/s41746-020-00341-z 10.1016/j.bpg.2019.02.004 10.1016/j.cgh.2018.01.024 10.1038/ajg.2009.545 10.1093/ibd/izx040 10.1002/ibd.21551 10.1136/gutjnl-2018-317987 10.1016/S0016-5107(04)01878-4 10.1093/ecco-jcc/jjw120 10.3748/wjg.v19.i23.3596 10.1038/ajg.2015.233 10.1038/s41575-019-0102-5 10.3390/diagnostics10060367 10.3748/wjg.v22.i20.4794 10.1093/biomet/75.4.800 10.1007/s00261-020-02590-8 10.1136/gutjnl-2014-308973 10.1023/A:1010933404324 10.1053/j.gastro.2017.11.274 10.1148/radiol.2513081184 10.1016/S0140-6736(17)32448-0 10.1097/MIB.0000000000000131 10.1053/j.gastro.2022.07.048 10.1007/s00247-017-3790-4 10.1007/s00535-016-1253-6 10.1177/1756284818765956 10.1016/j.disamonth.2017.07.001 10.1038/nrgastro.2016.128 10.1016/j.cgh.2018.03.034 10.1053/j.gastro.2019.08.058 10.1136/gutjnl-2019-320065 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright © 2022 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright © 2022 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1016/j.cmpb.2022.107207 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1872-7565 |
ExternalDocumentID | 10_1016_j_cmpb_2022_107207 S0169260722005880 |
GroupedDBID | --- --K --M -~X .1- .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMK HMO HVGLF HZ~ IHE J1W KOM LG9 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SBC SDF SDG SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WUQ XPP Z5R ZGI ZY4 ~G- AACTN AAIAV ABLVK ABTAH ABYKQ AFKWA AJBFU AJOXV AMFUW EFLBG LCYCR RIG AAYXX AFCTW AGRNS CITATION 7X8 |
ID | FETCH-LOGICAL-c384t-762877c72ebf80acc4467a1a417bcf9a987fa6ac240c7376faa289f2c31617b83 |
IEDL.DBID | .~1 |
ISSN | 0169-2607 1872-7565 |
IngestDate | Fri Sep 05 07:29:43 EDT 2025 Tue Jul 01 02:41:23 EDT 2025 Thu Apr 24 22:59:23 EDT 2025 Fri Feb 23 02:39:26 EST 2024 Tue Aug 26 16:34:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multimodal Learning in Medical Imaging and Informatics Machine-learning Crohn’s disease Magnetic Resonance Enterography |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c384t-762877c72ebf80acc4467a1a417bcf9a987fa6ac240c7376faa289f2c31617b83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5160-868X 0000-0002-7536-8614 0000-0001-8623-4665 0000-0003-1083-1548 0000-0002-7300-6556 |
PQID | 2736665924 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2736665924 crossref_citationtrail_10_1016_j_cmpb_2022_107207 crossref_primary_10_1016_j_cmpb_2022_107207 elsevier_sciencedirect_doi_10_1016_j_cmpb_2022_107207 elsevier_clinicalkey_doi_10_1016_j_cmpb_2022_107207 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2022 2022-12-00 20221201 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
PublicationDecade | 2020 |
PublicationTitle | Computer methods and programs in biomedicine |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | DeLong, DeLong, Clarke-Pearson (bib0034) 1988 Weiss, Turner, Griffiths, Walters, Herman-Sucharska, Coppenrath, Anupindi, Towbin, O’Brien, Silverstein (bib0020) 2019; 69 Rozendorn, Amitai, Eliakim, Kopylov, Klang (bib0015) 2018; 11 Seyed Tabib, Madgwick, Sudhakar, Verstockt, Korcsmaros, Vermeire (bib0025) 2020; 69 Khanna, Bouguen, Feagan, D’Haens, Sandborn, Dubcenco, Baker, Levesque (bib0006) 2014; 20 Khanna, Zou, D’Haens, Rutgeerts, McDonald, Daperno, Feagan, Sandborn, Dubcenco, Stitt (bib0007) 2016; 65 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (bib0035) 2011; 12 Schoepfer, Beglinger, Straumann, Trummler, Vavricka, Bruegger, Seibold (bib0038) 2010; 105 Bruining, Zimmermann, Loftus Jr, Sandborn, Sauer, Strong, Al-Hawary, Anupindi, Baker, Bruining (bib0014) 2018; 154 Wilcoxon (bib0032) 1992 Huang, Pareek, Seyyedi, Banerjee, Lungren (bib0026) 2020; 3 Peyrin-Biroulet, Sandborn, Sands, Reinisch, Bemelman, Bryant, d’Haens, Dotan, Dubinsky, Feagan (bib0037) 2015; 110 Ng, Shi, Hamidi, Underwood, Tang, Benchimol, Panaccione, Ghosh, Wu, Chan (bib0001) 2017; 390 Rimola, Ordás, Rodriguez, García-Bosch, Aceituno, Llach, Ayuso, Ricart, Panés (bib0016) 2011; 17 Turner, Griffiths, Wilson, Mould, Baldassano, Russell, Dubinsky, Heyman, de Ridder, Hyams, Martin de Carpi, Conklin, Faubion, Koletzko, Bousvaros, Ruemmele (bib0019) 2020; 69 Daperno, D’Haens, Van Assche, Baert, Bulois, Maunoury, Sostegni, Rocca, Pera, Gevers (bib0029) 2004; 60 Breiman (bib0030) 2001; 45 Daperno, D’Haens, Van Assche, Baert, Bulois, Maunoury, Sostegni, Rocca, Pera, Gevers (bib0004) 2004; 60 Zheng, Li, Wu, Lin, Zhang, Zheng, Wang (bib0017) 2020; 45 Walsh, Bryant, Travis (bib0009) 2016; 13 Jairath, Ordas, Zou, Panes, Stoker, Taylor, Santillan, Horsthuis, Samaan, Shackelton (bib0011) 2018; 24 Hamdani, Naeem, Haider, Bansal, Komar, Diehl, Kirchner (bib0008) 2013; 19 Ma, Battat, Khanna, Parker, Feagan, Jairath (bib0022) 2019; 38 Krzystek-Korpacka, Kempiński, Bromke, Neubauer (bib0021) 2020; 10 Le Berre, Sandborn, Aridhi, Devignes, Fournier, Smaïl-Tabbone, Danese, Peyrin-Biroulet (bib0023) 2020; 158 . Prezzi, Bhatnagar, Vega, Makanyanga, Halligan, Taylor (bib0040) 2016; 26 Lee, Kim, Yang, Chung, Kim, Park, Ha (bib0041) 2009; 251 Panés, Rimola (bib0010) 2018; 16 Church, Greer, Cytter-Kuint, Doria, Griffiths, Turner, Walters, Feldman (bib0012) 2017; 47 Makanyanga, Pendsé, Dikaios, Bloom, McCartney, Helbren, Atkins, Cuthbertson, Punwani, Forbes (bib0018) 2014; 24 Stawczyk-Eder, Eder, Lykowska-Szuber, Krela-Kazmierczak, Klimczak, Szymczak, Szachta, Katulska, Linke (bib0039) 2015; 11 Rimola, Alvarez-Cofino, Pérez-Jeldres, Ayuso, Alfaro, Rodríguez, Ricart, Ordás, Panés (bib0036) 2017; 52 Olivera, Danese, Jay, Natoli, Peyrin-Biroulet (bib0024) 2019; 16 Weinstein-Nakar, Focht, Church, Walters, Abitbol, Anupindi, Berteloot, Hulst, Ruemmele, Lemberg (bib0028) 2018; 16 Gajendran, Loganathan, Catinella, Hashash (bib0002) 2018; 64 Hochberg (bib0033) 1988; 75 Axelrad, Lichtiger, Yajnik (bib0003) 2016; 22 Dubcenco, Zou, Stitt, Baker, Jeejeebhoy, Kandel, Kim, Grover, McDonald, Shackelton (bib0005) 2016; 10 Focht, Kuint, Greer, Pratt, Castro, Church, Walters, Hyams, Navon, de Carpi (bib0013) 2022 Seyed Tabib (10.1016/j.cmpb.2022.107207_bib0025) 2020; 69 Focht (10.1016/j.cmpb.2022.107207_bib0013) 2022 Bruining (10.1016/j.cmpb.2022.107207_bib0014) 2018; 154 Church (10.1016/j.cmpb.2022.107207_bib0012) 2017; 47 Rimola (10.1016/j.cmpb.2022.107207_bib0036) 2017; 52 Stawczyk-Eder (10.1016/j.cmpb.2022.107207_bib0039) 2015; 11 10.1016/j.cmpb.2022.107207_bib0031 Le Berre (10.1016/j.cmpb.2022.107207_bib0023) 2020; 158 Pedregosa (10.1016/j.cmpb.2022.107207_bib0035) 2011; 12 Zheng (10.1016/j.cmpb.2022.107207_bib0017) 2020; 45 10.1016/j.cmpb.2022.107207_bib0027 Weiss (10.1016/j.cmpb.2022.107207_bib0020) 2019; 69 Lee (10.1016/j.cmpb.2022.107207_bib0041) 2009; 251 Rozendorn (10.1016/j.cmpb.2022.107207_bib0015) 2018; 11 Olivera (10.1016/j.cmpb.2022.107207_bib0024) 2019; 16 Weinstein-Nakar (10.1016/j.cmpb.2022.107207_bib0028) 2018; 16 Ng (10.1016/j.cmpb.2022.107207_bib0001) 2017; 390 Breiman (10.1016/j.cmpb.2022.107207_bib0030) 2001; 45 Wilcoxon (10.1016/j.cmpb.2022.107207_bib0032) 1992 Daperno (10.1016/j.cmpb.2022.107207_bib0004) 2004; 60 Huang (10.1016/j.cmpb.2022.107207_bib0026) 2020; 3 Hamdani (10.1016/j.cmpb.2022.107207_bib0008) 2013; 19 Axelrad (10.1016/j.cmpb.2022.107207_bib0003) 2016; 22 Peyrin-Biroulet (10.1016/j.cmpb.2022.107207_bib0037) 2015; 110 Makanyanga (10.1016/j.cmpb.2022.107207_bib0018) 2014; 24 Ma (10.1016/j.cmpb.2022.107207_bib0022) 2019; 38 Walsh (10.1016/j.cmpb.2022.107207_bib0009) 2016; 13 Hochberg (10.1016/j.cmpb.2022.107207_bib0033) 1988; 75 Jairath (10.1016/j.cmpb.2022.107207_bib0011) 2018; 24 DeLong (10.1016/j.cmpb.2022.107207_bib0034) 1988 Gajendran (10.1016/j.cmpb.2022.107207_bib0002) 2018; 64 Panés (10.1016/j.cmpb.2022.107207_bib0010) 2018; 16 Turner (10.1016/j.cmpb.2022.107207_bib0019) 2020; 69 Rimola (10.1016/j.cmpb.2022.107207_bib0016) 2011; 17 Khanna (10.1016/j.cmpb.2022.107207_bib0006) 2014; 20 Daperno (10.1016/j.cmpb.2022.107207_bib0029) 2004; 60 Schoepfer (10.1016/j.cmpb.2022.107207_bib0038) 2010; 105 Dubcenco (10.1016/j.cmpb.2022.107207_bib0005) 2016; 10 Krzystek-Korpacka (10.1016/j.cmpb.2022.107207_bib0021) 2020; 10 Prezzi (10.1016/j.cmpb.2022.107207_bib0040) 2016; 26 Khanna (10.1016/j.cmpb.2022.107207_bib0007) 2016; 65 |
References_xml | – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bib0035 article-title: Scikit-learn: Machine learning in python publication-title: the Journal of machine Learning research – volume: 38 start-page: 101602 year: 2019 ident: bib0022 article-title: What is the role of c-reactive protein and fecal calprotectin in evaluating crohn’s disease activity? publication-title: Best Practice & Research Clinical Gastroenterology – volume: 22 start-page: 4794 year: 2016 ident: bib0003 article-title: Inflammatory bowel disease and cancer: the role of inflammation, immunosuppression, and cancer treatment publication-title: World journal of gastroenterology – start-page: 196 year: 1992 end-page: 202 ident: bib0032 article-title: Individual comparisons by ranking methods publication-title: Breakthroughs in statistics – volume: 13 start-page: 567 year: 2016 end-page: 579 ident: bib0009 article-title: Current best practice for disease activity assessment in ibd publication-title: Nature reviews Gastroenterology & hepatology – volume: 16 start-page: 1037 year: 2018 end-page: 1039 ident: bib0010 article-title: Is the objective of treatment for crohn’s disease mucosal or transmural healing? publication-title: Clinical Gastroenterology and Hepatology – volume: 69 start-page: 461 year: 2019 end-page: 465 ident: bib0020 article-title: Simple endoscopic score of crohn disease and magnetic resonance enterography in children: report from imagekids study publication-title: Journal of pediatric gastroenterology and nutrition – volume: 24 start-page: 440 year: 2018 end-page: 449 ident: bib0011 article-title: Reliability of measuring ileo-colonic disease activity in crohn’s disease by magnetic resonance enterography publication-title: Inflammatory bowel diseases – volume: 16 start-page: 1089 year: 2018 end-page: 1097 ident: bib0028 article-title: Associations among mucosal and transmural healing and fecal level of calprotectin in children with crohn’s disease publication-title: Clinical Gastroenterology and Hepatology – volume: 20 start-page: 1850 year: 2014 end-page: 1861 ident: bib0006 article-title: A systematic review of measurement of endoscopic disease activity and mucosal healing in crohn’s disease: recommendations for clinical trial design publication-title: Inflammatory bowel diseases – volume: 251 start-page: 751 year: 2009 end-page: 761 ident: bib0041 article-title: Crohn disease of the small bowel: comparison of ct enterography, mr enterography, and small-bowel follow-through as diagnostic techniques publication-title: Radiology – volume: 11 year: 2018 ident: bib0015 article-title: A review of magnetic resonance enterography-based indices for quantification of crohn’s disease inflammation publication-title: Therapeutic advances in gastroenterology – volume: 110 start-page: 1324 year: 2015 end-page: 1338 ident: bib0037 article-title: Selecting therapeutic targets in inflammatory bowel disease (stride): determining therapeutic goals for treat-to-target publication-title: Official journal of the American College of Gastroenterology| ACG – volume: 24 start-page: 277 year: 2014 end-page: 287 ident: bib0018 article-title: Evaluation of crohn’s disease activity: initial validation of a magnetic resonance enterography global score (megs) against faecal calprotectin publication-title: European radiology – volume: 105 start-page: 162 year: 2010 end-page: 169 ident: bib0038 article-title: Fecal calprotectin correlates more closely with the simple endoscopic score for crohn’s disease (ses-cd) than crp, blood leukocytes, and the cdai publication-title: Official journal of the American College of Gastroenterology| ACG – volume: 69 start-page: 32 year: 2020 end-page: 41 ident: bib0019 article-title: Designing clinical trials in paediatric inflammatory bowel diseases: a pibdnet commentary publication-title: Gut – volume: 60 start-page: 505 year: 2004 end-page: 512 ident: bib0029 article-title: Development and validation of a new, simplified endoscopic activity score for crohn’s disease: the ses-cd publication-title: Gastrointestinal endoscopy – volume: 69 start-page: 1520 year: 2020 end-page: 1532 ident: bib0025 article-title: Big data in ibd: big progress for clinical practice publication-title: Gut – volume: 64 start-page: 20 year: 2018 end-page: 57 ident: bib0002 article-title: A comprehensive review and update on crohn’s disease publication-title: Disease-a-month – start-page: 837 year: 1988 end-page: 845 ident: bib0034 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach publication-title: Biometrics – volume: 75 start-page: 800 year: 1988 end-page: 802 ident: bib0033 article-title: A sharper bonferroni procedure for multiple tests of significance publication-title: Biometrika – year: 2022 ident: bib0013 article-title: Development, validation and evaluation of the pediatric inflammatory crohn’s magnetic resonance enterography index (picmi) from the imagekids study publication-title: Gastroenterology – volume: 11 start-page: 353 year: 2015 end-page: 361 ident: bib0039 article-title: Is faecal calprotectin equally useful in all crohn’s disease locations? a prospective, comparative study publication-title: Archives of Medical Science – volume: 65 start-page: 1119 year: 2016 end-page: 1125 ident: bib0007 article-title: Reliability among central readers in the evaluation of endoscopic findings from patients with crohn’s disease publication-title: Gut – volume: 47 start-page: 565 year: 2017 end-page: 575 ident: bib0012 article-title: Magnetic resonance enterography has good inter-rater agreement and diagnostic accuracy for detecting inflammation in pediatric crohn disease publication-title: Pediatric radiology – volume: 390 start-page: 2769 year: 2017 end-page: 2778 ident: bib0001 article-title: Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies publication-title: The Lancet – reference: . – volume: 10 start-page: 1006 year: 2016 end-page: 1014 ident: bib0005 article-title: Effect of standardised scoring conventions on inter-rater reliability in the endoscopic evaluation of crohn’s disease publication-title: Journal of Crohn’s and Colitis – volume: 158 start-page: 76 year: 2020 end-page: 94 ident: bib0023 article-title: Application of artificial intelligence to gastroenterology and hepatology publication-title: Gastroenterology – volume: 45 start-page: 3653 year: 2020 end-page: 3661 ident: bib0017 article-title: Assessment of pediatric crohn’s disease activity: validation of the magnetic resonance enterography global score (megs) against endoscopic activity score (ses-cd) publication-title: Abdominal Radiology – volume: 52 start-page: 585 year: 2017 end-page: 593 ident: bib0036 article-title: Comparison of three magnetic resonance enterography indices for grading activity in crohn’s disease publication-title: Journal of gastroenterology – volume: 10 start-page: 367 year: 2020 ident: bib0021 article-title: Biochemical biomarkers of mucosal healing for inflammatory bowel disease in adults publication-title: Diagnostics – volume: 17 start-page: 1759 year: 2011 end-page: 1768 ident: bib0016 article-title: Magnetic resonance imaging for evaluation of crohn’s disease: validation of parameters of severity and quantitative index of activity publication-title: Inflammatory bowel diseases – volume: 60 start-page: 505 year: 2004 end-page: 512 ident: bib0004 article-title: Development and validation of a new, simplified endoscopic activity score for crohn’s disease: the ses-cd publication-title: Gastrointestinal endoscopy – volume: 19 start-page: 3596 year: 2013 ident: bib0008 article-title: Risk factors for colonoscopic perforation: a population-based study of 80118 cases publication-title: World Journal of Gastroenterology: WJG – volume: 26 start-page: 2107 year: 2016 end-page: 2117 ident: bib0040 article-title: Monitoring crohn’s disease during anti-tnf- publication-title: European radiology – volume: 3 start-page: 1 year: 2020 end-page: 9 ident: bib0026 article-title: Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines publication-title: NPJ digital medicine – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib0030 article-title: Random forests publication-title: Machine learning – volume: 154 start-page: 1172 year: 2018 end-page: 1194 ident: bib0014 article-title: Consensus recommendations for evaluation, interpretation, and utilization of computed tomography and magnetic resonance enterography in patients with small bowel crohn’s disease publication-title: Gastroenterology – volume: 16 start-page: 312 year: 2019 end-page: 321 ident: bib0024 article-title: Big data in ibd: a look into the future publication-title: Nature Reviews Gastroenterology & Hepatology – start-page: 837 year: 1988 ident: 10.1016/j.cmpb.2022.107207_bib0034 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach publication-title: Biometrics doi: 10.2307/2531595 – volume: 24 start-page: 277 issue: 2 year: 2014 ident: 10.1016/j.cmpb.2022.107207_bib0018 article-title: Evaluation of crohn’s disease activity: initial validation of a magnetic resonance enterography global score (megs) against faecal calprotectin publication-title: European radiology doi: 10.1007/s00330-013-3010-z – volume: 26 start-page: 2107 issue: 7 year: 2016 ident: 10.1016/j.cmpb.2022.107207_bib0040 article-title: Monitoring crohn’s disease during anti-tnf-α therapy: validation of the magnetic resonance enterography global score (megs) against a combined clinical reference standard publication-title: European radiology doi: 10.1007/s00330-015-4036-1 – volume: 11 start-page: 353 issue: 2 year: 2015 ident: 10.1016/j.cmpb.2022.107207_bib0039 article-title: Is faecal calprotectin equally useful in all crohn’s disease locations? a prospective, comparative study publication-title: Archives of Medical Science doi: 10.5114/aoms.2014.43672 – start-page: 196 year: 1992 ident: 10.1016/j.cmpb.2022.107207_bib0032 article-title: Individual comparisons by ranking methods – volume: 69 start-page: 461 issue: 4 year: 2019 ident: 10.1016/j.cmpb.2022.107207_bib0020 article-title: Simple endoscopic score of crohn disease and magnetic resonance enterography in children: report from imagekids study publication-title: Journal of pediatric gastroenterology and nutrition doi: 10.1097/MPG.0000000000002404 – volume: 3 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.cmpb.2022.107207_bib0026 article-title: Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines publication-title: NPJ digital medicine doi: 10.1038/s41746-020-00341-z – volume: 38 start-page: 101602 year: 2019 ident: 10.1016/j.cmpb.2022.107207_bib0022 article-title: What is the role of c-reactive protein and fecal calprotectin in evaluating crohn’s disease activity? publication-title: Best Practice & Research Clinical Gastroenterology doi: 10.1016/j.bpg.2019.02.004 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.cmpb.2022.107207_bib0035 article-title: Scikit-learn: Machine learning in python publication-title: the Journal of machine Learning research – volume: 16 start-page: 1089 issue: 7 year: 2018 ident: 10.1016/j.cmpb.2022.107207_bib0028 article-title: Associations among mucosal and transmural healing and fecal level of calprotectin in children with crohn’s disease publication-title: Clinical Gastroenterology and Hepatology doi: 10.1016/j.cgh.2018.01.024 – volume: 105 start-page: 162 issue: 1 year: 2010 ident: 10.1016/j.cmpb.2022.107207_bib0038 article-title: Fecal calprotectin correlates more closely with the simple endoscopic score for crohn’s disease (ses-cd) than crp, blood leukocytes, and the cdai publication-title: Official journal of the American College of Gastroenterology| ACG doi: 10.1038/ajg.2009.545 – volume: 24 start-page: 440 issue: 2 year: 2018 ident: 10.1016/j.cmpb.2022.107207_bib0011 article-title: Reliability of measuring ileo-colonic disease activity in crohn’s disease by magnetic resonance enterography publication-title: Inflammatory bowel diseases doi: 10.1093/ibd/izx040 – volume: 17 start-page: 1759 issue: 8 year: 2011 ident: 10.1016/j.cmpb.2022.107207_bib0016 article-title: Magnetic resonance imaging for evaluation of crohn’s disease: validation of parameters of severity and quantitative index of activity publication-title: Inflammatory bowel diseases doi: 10.1002/ibd.21551 – volume: 69 start-page: 32 issue: 1 year: 2020 ident: 10.1016/j.cmpb.2022.107207_bib0019 article-title: Designing clinical trials in paediatric inflammatory bowel diseases: a pibdnet commentary publication-title: Gut doi: 10.1136/gutjnl-2018-317987 – volume: 60 start-page: 505 issue: 4 year: 2004 ident: 10.1016/j.cmpb.2022.107207_bib0029 article-title: Development and validation of a new, simplified endoscopic activity score for crohn’s disease: the ses-cd publication-title: Gastrointestinal endoscopy doi: 10.1016/S0016-5107(04)01878-4 – ident: 10.1016/j.cmpb.2022.107207_bib0031 – volume: 60 start-page: 505 issue: 4 year: 2004 ident: 10.1016/j.cmpb.2022.107207_bib0004 article-title: Development and validation of a new, simplified endoscopic activity score for crohn’s disease: the ses-cd publication-title: Gastrointestinal endoscopy doi: 10.1016/S0016-5107(04)01878-4 – volume: 10 start-page: 1006 issue: 9 year: 2016 ident: 10.1016/j.cmpb.2022.107207_bib0005 article-title: Effect of standardised scoring conventions on inter-rater reliability in the endoscopic evaluation of crohn’s disease publication-title: Journal of Crohn’s and Colitis doi: 10.1093/ecco-jcc/jjw120 – volume: 19 start-page: 3596 issue: 23 year: 2013 ident: 10.1016/j.cmpb.2022.107207_bib0008 article-title: Risk factors for colonoscopic perforation: a population-based study of 80118 cases publication-title: World Journal of Gastroenterology: WJG doi: 10.3748/wjg.v19.i23.3596 – volume: 110 start-page: 1324 issue: 9 year: 2015 ident: 10.1016/j.cmpb.2022.107207_bib0037 article-title: Selecting therapeutic targets in inflammatory bowel disease (stride): determining therapeutic goals for treat-to-target publication-title: Official journal of the American College of Gastroenterology| ACG doi: 10.1038/ajg.2015.233 – volume: 16 start-page: 312 issue: 5 year: 2019 ident: 10.1016/j.cmpb.2022.107207_bib0024 article-title: Big data in ibd: a look into the future publication-title: Nature Reviews Gastroenterology & Hepatology doi: 10.1038/s41575-019-0102-5 – volume: 10 start-page: 367 issue: 6 year: 2020 ident: 10.1016/j.cmpb.2022.107207_bib0021 article-title: Biochemical biomarkers of mucosal healing for inflammatory bowel disease in adults publication-title: Diagnostics doi: 10.3390/diagnostics10060367 – volume: 22 start-page: 4794 issue: 20 year: 2016 ident: 10.1016/j.cmpb.2022.107207_bib0003 article-title: Inflammatory bowel disease and cancer: the role of inflammation, immunosuppression, and cancer treatment publication-title: World journal of gastroenterology doi: 10.3748/wjg.v22.i20.4794 – volume: 75 start-page: 800 issue: 4 year: 1988 ident: 10.1016/j.cmpb.2022.107207_bib0033 article-title: A sharper bonferroni procedure for multiple tests of significance publication-title: Biometrika doi: 10.1093/biomet/75.4.800 – volume: 45 start-page: 3653 year: 2020 ident: 10.1016/j.cmpb.2022.107207_bib0017 article-title: Assessment of pediatric crohn’s disease activity: validation of the magnetic resonance enterography global score (megs) against endoscopic activity score (ses-cd) publication-title: Abdominal Radiology doi: 10.1007/s00261-020-02590-8 – volume: 65 start-page: 1119 issue: 7 year: 2016 ident: 10.1016/j.cmpb.2022.107207_bib0007 article-title: Reliability among central readers in the evaluation of endoscopic findings from patients with crohn’s disease publication-title: Gut doi: 10.1136/gutjnl-2014-308973 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.cmpb.2022.107207_bib0030 article-title: Random forests publication-title: Machine learning doi: 10.1023/A:1010933404324 – volume: 154 start-page: 1172 issue: 4 year: 2018 ident: 10.1016/j.cmpb.2022.107207_bib0014 article-title: Consensus recommendations for evaluation, interpretation, and utilization of computed tomography and magnetic resonance enterography in patients with small bowel crohn’s disease publication-title: Gastroenterology doi: 10.1053/j.gastro.2017.11.274 – volume: 251 start-page: 751 issue: 3 year: 2009 ident: 10.1016/j.cmpb.2022.107207_bib0041 article-title: Crohn disease of the small bowel: comparison of ct enterography, mr enterography, and small-bowel follow-through as diagnostic techniques publication-title: Radiology doi: 10.1148/radiol.2513081184 – volume: 390 start-page: 2769 issue: 10114 year: 2017 ident: 10.1016/j.cmpb.2022.107207_bib0001 article-title: Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies publication-title: The Lancet doi: 10.1016/S0140-6736(17)32448-0 – volume: 20 start-page: 1850 issue: 10 year: 2014 ident: 10.1016/j.cmpb.2022.107207_bib0006 article-title: A systematic review of measurement of endoscopic disease activity and mucosal healing in crohn’s disease: recommendations for clinical trial design publication-title: Inflammatory bowel diseases doi: 10.1097/MIB.0000000000000131 – year: 2022 ident: 10.1016/j.cmpb.2022.107207_bib0013 article-title: Development, validation and evaluation of the pediatric inflammatory crohn’s magnetic resonance enterography index (picmi) from the imagekids study publication-title: Gastroenterology doi: 10.1053/j.gastro.2022.07.048 – volume: 47 start-page: 565 issue: 5 year: 2017 ident: 10.1016/j.cmpb.2022.107207_bib0012 article-title: Magnetic resonance enterography has good inter-rater agreement and diagnostic accuracy for detecting inflammation in pediatric crohn disease publication-title: Pediatric radiology doi: 10.1007/s00247-017-3790-4 – volume: 52 start-page: 585 issue: 5 year: 2017 ident: 10.1016/j.cmpb.2022.107207_bib0036 article-title: Comparison of three magnetic resonance enterography indices for grading activity in crohn’s disease publication-title: Journal of gastroenterology doi: 10.1007/s00535-016-1253-6 – ident: 10.1016/j.cmpb.2022.107207_bib0027 – volume: 11 year: 2018 ident: 10.1016/j.cmpb.2022.107207_bib0015 article-title: A review of magnetic resonance enterography-based indices for quantification of crohn’s disease inflammation publication-title: Therapeutic advances in gastroenterology doi: 10.1177/1756284818765956 – volume: 64 start-page: 20 issue: 2 year: 2018 ident: 10.1016/j.cmpb.2022.107207_bib0002 article-title: A comprehensive review and update on crohn’s disease publication-title: Disease-a-month doi: 10.1016/j.disamonth.2017.07.001 – volume: 13 start-page: 567 issue: 10 year: 2016 ident: 10.1016/j.cmpb.2022.107207_bib0009 article-title: Current best practice for disease activity assessment in ibd publication-title: Nature reviews Gastroenterology & hepatology doi: 10.1038/nrgastro.2016.128 – volume: 16 start-page: 1037 issue: 7 year: 2018 ident: 10.1016/j.cmpb.2022.107207_bib0010 article-title: Is the objective of treatment for crohn’s disease mucosal or transmural healing? publication-title: Clinical Gastroenterology and Hepatology doi: 10.1016/j.cgh.2018.03.034 – volume: 158 start-page: 76 issue: 1 year: 2020 ident: 10.1016/j.cmpb.2022.107207_bib0023 article-title: Application of artificial intelligence to gastroenterology and hepatology publication-title: Gastroenterology doi: 10.1053/j.gastro.2019.08.058 – volume: 69 start-page: 1520 issue: 8 year: 2020 ident: 10.1016/j.cmpb.2022.107207_bib0025 article-title: Big data in ibd: big progress for clinical practice publication-title: Gut doi: 10.1136/gutjnl-2019-320065 |
SSID | ssj0002556 |
Score | 2.44851 |
Snippet | •Multimodal Machine-Learning model for non-invasive assessment of ileal Crohn’s disease endoscopic activity.•Improved accuracy of non-invasive assessment of... Recurrent attentive non-invasive observation of intestinal inflammation is essential for the proper management of Crohn's disease (CD). The goal of this study... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107207 |
SubjectTerms | Crohn’s disease Machine-learning Magnetic Resonance Enterography Multimodal Learning in Medical Imaging and Informatics |
Title | Development of a multimodal machine-learning fusion model to non-invasively assess ileal Crohn’s disease endoscopic activity |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0169260722005880 https://dx.doi.org/10.1016/j.cmpb.2022.107207 https://www.proquest.com/docview/2736665924 |
Volume | 227 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fSxwxEA-iUPpSWm2p2h4p-FbSu01ym-TxOJTTUl-q4FvIZpN6xds9zruCL-LX6Nfzkzizm1VbikIfN-wsITM7fzK_mSFkL5emVKXMmTFuwKTQkWknDBvwKLji3sjQoC2O88mpPDobnq2RcVcLg7DKpPtbnd5o67TST6fZn0-n_e_YRwS8ccXxYgTEECvYpcL--V-uH2Ae2GKr7e9tGL6dCmdajJefzQuIETmHBcVxpOy_jdNfarqxPQevyavkNNJRu683ZC1Um-TFt5QW3yLXj6A_tI7U0QYnOKtLoJo1cMnA0nyIHzSu8IaMNjNw6LKmVV2xafXLIZD94oq6Jg1MQVsA8XhRn1e3N78vacrk0FCVNZayTD3FmggcPfGWnB7sn4wnLA1WYF5ouWSgALVSXvFQRD1w3kNMqFzmZKYKH40zWkWXOw_W3ivQQNE5iMsi9wKjoUKLd2Qd9hbeExrVIGQQEpaZBs-KF4XIhdRSGzn0AbynbZJ1J2p96jqOwy8ubAcv-2mRCxa5YFsubJPP9zTztufGk2-LjlG2qyYF_WfBJDxJNbyn-kPenqX71MmChR8RsyuuCvXq0oIfCKHgEOLZnf_89i55iU8tWOYDWV8uVuEjuDzLotfIdI9sjA6_To7vAIkjAL8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELYoSG0vFf0TtEBdqbfK3Y3txPYRrUBLC1wKEjfLceyyiE1WsIvEBfU1-np9ks4kDqVVRSWuTiayPJP58XwzQ8iHQppKVbJgxrghk0JHpp0wbMij4Ip7I0OLtjgsxsfy80l-skRGfS0MwiqT7u90equt08ogneZgNpkMvmIfEfDGFceLERDDR2RF5kKhaH-6-Y3zwB5bXYNvw_D1VDnTgbz8dFZCkMg5LCiOM2X_bZ3-0tOt8dldJc-S10i3u409J0uhfkEeH6S8-Etycwf7Q5tIHW2BgtOmAqppi5cMLA2I-EbjAq_IaDsEh84bWjc1m9RXDpHs59fUtXlgCuoCiEcXzWn98_uPS5pSOTTUVYO1LBNPsSgCZ0-8Ise7O0ejMUuTFZgXWs4ZaECtlFc8lFEPnfcQFCqXOZmp0kfjjFbRFc6DufcKVFB0DgKzyL3AcKjU4jVZhr2FNUKjGoYMYsIq0-Ba8bIUhZBaaiNzH8B9WidZf6LWp7bjOP3i3Pb4sjOLXLDIBdtxYZ18vKWZdU037n1b9IyyfTkpKEALNuFeqvyW6g-B-y_d-14WLPyJmF5xdWgWlxYcQYgFcwho3zzw2-_Ik_HRwb7d3zv88pY8xScdcmaDLM8vFmET_J95udXK9y9tdgJV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+multimodal+machine-learning+fusion+model+to+non-invasively+assess+ileal+Crohn%27s+disease+endoscopic+activity&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Guez%2C+Itai&rft.au=Focht%2C+Gili&rft.au=Greer%2C+Mary-Louise+C&rft.au=Cytter-Kuint%2C+Ruth&rft.date=2022-12-01&rft.issn=1872-7565&rft.eissn=1872-7565&rft.volume=227&rft.spage=107207&rft_id=info:doi/10.1016%2Fj.cmpb.2022.107207&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon |