Characterization of Pyrin Dephosphorylation and Inflammasome Activation in Macrophages as Triggered by the Yersinia Effectors YopE and YopT
Pathogenic species deliver Yop effector proteins through a type III secretion system into host cells. Among these effectors, YopE and YopT are Rho-modifying toxins, which function to modulate host cell physiology and evade immune responses. YopE is a GTPase-activating protein (GAP) while YopT is a p...
Saved in:
Published in | Infection and immunity Vol. 87; no. 3 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pathogenic
species deliver Yop effector proteins through a type III secretion system into host cells. Among these effectors, YopE and YopT are Rho-modifying toxins, which function to modulate host cell physiology and evade immune responses. YopE is a GTPase-activating protein (GAP) while YopT is a protease, and they inhibit RhoA by different modes of action. Modifications to RhoA are sensed by pyrin, which, once activated, assembles a caspase-1 inflammasome, which generates cytokines such as interleukin-1β (IL-1β) and cell death by pyroptosis. In
-infected macrophages, YopE or YopT triggers inflammasome assembly only in the absence of another effector, YopM, which counteracts pyrin by keeping it inactive. The glucosyltransferase TcdB from
, a well-studied RhoA-inactivating toxin, triggers activation of murine pyrin by dephosphorylation of Ser205 and Ser241. To determine if YopE or YopT triggers pyrin dephosphorylation, we infected lipopolysaccharide (LPS)-primed murine macrophages with Δ
strains expressing wild-type (wt) or YopE mutant variants or YopT. By immunoblotting pyrin after infection, we observed that wt YopE triggered dephosphorylation of Ser205 and inflammasome activation. Pyrin dephosphorylation was reduced if a YopE variant had a defect in stability or RhoA specificity but not membrane localization. We also observed that wt YopT triggered pyrin dephosphorylation but more slowly than YopE, suggesting that YopE is dominant in this process. Our findings provide evidence that RhoA-modifying toxins trigger activation of pyrin by a conserved dephosphorylation mechanism. In addition, by characterization of YopE and YopT, we show that different features of effectors, such as RhoA specificity, affect the efficiency of pyrin dephosphorylation. |
---|---|
AbstractList | Pathogenic
species deliver Yop effector proteins through a type III secretion system into host cells. Among these effectors, YopE and YopT are Rho-modifying toxins, which function to modulate host cell physiology and evade immune responses. YopE is a GTPase-activating protein (GAP) while YopT is a protease, and they inhibit RhoA by different modes of action. Modifications to RhoA are sensed by pyrin, which, once activated, assembles a caspase-1 inflammasome, which generates cytokines such as interleukin-1β (IL-1β) and cell death by pyroptosis. In
-infected macrophages, YopE or YopT triggers inflammasome assembly only in the absence of another effector, YopM, which counteracts pyrin by keeping it inactive. The glucosyltransferase TcdB from
, a well-studied RhoA-inactivating toxin, triggers activation of murine pyrin by dephosphorylation of Ser205 and Ser241. To determine if YopE or YopT triggers pyrin dephosphorylation, we infected lipopolysaccharide (LPS)-primed murine macrophages with Δ
strains expressing wild-type (wt) or YopE mutant variants or YopT. By immunoblotting pyrin after infection, we observed that wt YopE triggered dephosphorylation of Ser205 and inflammasome activation. Pyrin dephosphorylation was reduced if a YopE variant had a defect in stability or RhoA specificity but not membrane localization. We also observed that wt YopT triggered pyrin dephosphorylation but more slowly than YopE, suggesting that YopE is dominant in this process. Our findings provide evidence that RhoA-modifying toxins trigger activation of pyrin by a conserved dephosphorylation mechanism. In addition, by characterization of YopE and YopT, we show that different features of effectors, such as RhoA specificity, affect the efficiency of pyrin dephosphorylation. Pathogenic Yersinia species deliver Yop effector proteins through a type III secretion system into host cells. Among these effectors, YopE and YopT are Rho-modifying toxins, which function to modulate host cell physiology and evade immune responses. ABSTRACT Pathogenic Yersinia species deliver Yop effector proteins through a type III secretion system into host cells. Among these effectors, YopE and YopT are Rho-modifying toxins, which function to modulate host cell physiology and evade immune responses. YopE is a GTPase-activating protein (GAP) while YopT is a protease, and they inhibit RhoA by different modes of action. Modifications to RhoA are sensed by pyrin, which, once activated, assembles a caspase-1 inflammasome, which generates cytokines such as interleukin-1β (IL-1β) and cell death by pyroptosis. In Yersinia -infected macrophages, YopE or YopT triggers inflammasome assembly only in the absence of another effector, YopM, which counteracts pyrin by keeping it inactive. The glucosyltransferase TcdB from Clostridium difficile , a well-studied RhoA-inactivating toxin, triggers activation of murine pyrin by dephosphorylation of Ser205 and Ser241. To determine if YopE or YopT triggers pyrin dephosphorylation, we infected lipopolysaccharide (LPS)-primed murine macrophages with Δ yopM Yersinia pseudotuberculosis strains expressing wild-type (wt) or YopE mutant variants or YopT. By immunoblotting pyrin after infection, we observed that wt YopE triggered dephosphorylation of Ser205 and inflammasome activation. Pyrin dephosphorylation was reduced if a YopE variant had a defect in stability or RhoA specificity but not membrane localization. We also observed that wt YopT triggered pyrin dephosphorylation but more slowly than YopE, suggesting that YopE is dominant in this process. Our findings provide evidence that RhoA-modifying toxins trigger activation of pyrin by a conserved dephosphorylation mechanism. In addition, by characterization of YopE and YopT, we show that different features of effectors, such as RhoA specificity, affect the efficiency of pyrin dephosphorylation. Pathogenic Yersinia species deliver Yop effector proteins through a type III secretion system into host cells. Among these effectors, YopE and YopT are Rho-modifying toxins, which function to modulate host cell physiology and evade immune responses. Pathogenic Yersinia species deliver Yop effector proteins through a type III secretion system into host cells. Among these effectors, YopE and YopT are Rho-modifying toxins, which function to modulate host cell physiology and evade immune responses. YopE is a GTPase-activating protein (GAP) while YopT is a protease, and they inhibit RhoA by different modes of action. Modifications to RhoA are sensed by pyrin, which, once activated, assembles a caspase-1 inflammasome, which generates cytokines such as interleukin-1β (IL-1β) and cell death by pyroptosis. In Yersinia -infected macrophages, YopE or YopT triggers inflammasome assembly only in the absence of another effector, YopM, which counteracts pyrin by keeping it inactive. The glucosyltransferase TcdB from Clostridium difficile , a well-studied RhoA-inactivating toxin, triggers activation of murine pyrin by dephosphorylation of Ser205 and Ser241. To determine if YopE or YopT triggers pyrin dephosphorylation, we infected lipopolysaccharide (LPS)-primed murine macrophages with Δ yopM Yersinia pseudotuberculosis strains expressing wild-type (wt) or YopE mutant variants or YopT. By immunoblotting pyrin after infection, we observed that wt YopE triggered dephosphorylation of Ser205 and inflammasome activation. Pyrin dephosphorylation was reduced if a YopE variant had a defect in stability or RhoA specificity but not membrane localization. We also observed that wt YopT triggered pyrin dephosphorylation but more slowly than YopE, suggesting that YopE is dominant in this process. Our findings provide evidence that RhoA-modifying toxins trigger activation of pyrin by a conserved dephosphorylation mechanism. In addition, by characterization of YopE and YopT, we show that different features of effectors, such as RhoA specificity, affect the efficiency of pyrin dephosphorylation. |
Author | Medici, Natasha P Rashid, Maheen Bliska, James B |
Author_xml | – sequence: 1 givenname: Natasha P surname: Medici fullname: Medici, Natasha P organization: Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, USA – sequence: 2 givenname: Maheen surname: Rashid fullname: Rashid, Maheen organization: Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, USA – sequence: 3 givenname: James B orcidid: 0000-0002-6047-8837 surname: Bliska fullname: Bliska, James B email: james.bliska@dartmouth.edu organization: Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, New Hampshire, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30602502$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkU9v1DAQxS3Uim4LN87IRw6k9b8kzgVptWxhpSI4LIeerEky2RgldrCzlbZfoV-6plsqOIw8o_fzG8vvnJw475CQd5xdci701Wa5uWRMC5Fx_YosOKt0ludCnJAFY7zKqrwoz8h5jL_SqJTSr8mZZAUTORML8rDqIUAzY7D3MFvvqO_oj0Owjn7GqfcxVTgMRwlcSzeuG2AcIfoR6bKZ7d1RSxe-QRP81MMOI4VIt8HudhiwpfWBzj3SWwzROgt03XXYzD5Eeuun9ZNtarZvyGkHQ8S3z-cF-Xm93q6-Zjffv2xWy5uskVrNWVEqXZe6QgVt0UqpO6lEV-tOYyN0UUkGOebIy0YqTEJZIVS6YAxkVSdAXpBPR99pX4_YNujmAIOZgh0hHIwHa_5XnO3Nzt-ZQuoiV1Uy-PBsEPzvPcbZjDY2OAzg0O-jEbyQjHPO8oR-PKLpa2IM2L2s4cz8yc-k_MxTfobrhL__92kv8N_A5COok5qn |
CitedBy_id | crossref_primary_10_1038_s41564_019_0623_2 crossref_primary_10_1128_iai_00614_21 crossref_primary_10_1016_j_smim_2023_101804 crossref_primary_10_1128_ecosalplus_ESP_0014_2021 crossref_primary_10_1038_s41564_020_00832_5 crossref_primary_10_1128_Spectrum_00496_21 crossref_primary_10_1080_21505594_2024_2316439 crossref_primary_10_3389_fimmu_2019_01745 crossref_primary_10_1186_s13045_021_01184_1 crossref_primary_10_12688_f1000research_18940_1 crossref_primary_10_1152_physrev_00002_2021 crossref_primary_10_3390_toxins14110798 crossref_primary_10_1016_j_mib_2020_07_015 crossref_primary_10_1111_cmi_13309 crossref_primary_10_1371_journal_ppat_1009504 crossref_primary_10_3389_fcimb_2020_577559 crossref_primary_10_1111_imr_12907 crossref_primary_10_1080_19490976_2022_2163839 crossref_primary_10_1128_mbio_02066_23 crossref_primary_10_1016_j_chembiol_2024_03_009 crossref_primary_10_1128_IAI_00095_21 crossref_primary_10_1016_j_mib_2020_01_005 crossref_primary_10_1016_j_tim_2020_09_012 crossref_primary_10_1128_mbio_01310_23 crossref_primary_10_1146_annurev_micro_020518_120221 crossref_primary_10_1111_cmi_13384 |
Cites_doi | 10.1128/IAI.00269-10 10.1146/annurev.cellbio.21.020604.150721 10.1046/j.1365-2958.2000.02021.x 10.1073/pnas.0602081103 10.1016/j.cell.2007.05.018 10.1074/jbc.M114.601153 10.1016/j.chom.2010.04.009 10.3389/fmicb.2016.00042 10.1016/j.chom.2016.07.018 10.1038/cr.2015.139 10.1100/2011/212680 10.1101/cshperspect.a013573 10.1111/j.1574-6976.2011.00271.x 10.1016/j.cell.2006.06.056 10.1128/IAI.00694-10 10.1371/journal.ppat.0010016 10.4331/wjbc.v7.i1.1 10.1083/jcb.200205077 10.1093/femspd/ftv091 10.1074/jbc.M115.697698 10.1128/JCM.02185-13 10.1073/pnas.252770599 10.1042/BC20090151 10.3389/fimmu.2017.00043 10.1083/jcb.201602089 10.1038/nature01148 10.1128/IAI.00843-15 10.1073/pnas.1601700113 10.1038/nrmicro1526 10.1007/s12026-013-8454-3 10.1038/nature18629 10.1146/annurev.micro.59.030804.121320 10.1038/nature13449 10.1371/journal.ppat.1006035 10.1016/j.tcb.2017.05.005 10.1128/IAI.73.12.7938-7945.2005 10.1111/j.1462-5822.2010.01448.x 10.1101/gad.1003302 10.1128/IAI.00183-08 10.1371/journal.ppat.1004346 10.1038/ni.3457 |
ContentType | Journal Article |
Copyright | Copyright © 2019 American Society for Microbiology. Copyright © 2019 American Society for Microbiology. 2019 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2019 American Society for Microbiology. – notice: Copyright © 2019 American Society for Microbiology. 2019 American Society for Microbiology |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1128/IAI.00822-18 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
DocumentTitleAlternate | Pyrin Inflammasome Activation by Yersinia YopE and YopT |
EISSN | 1098-5522 |
Editor | Roy, Craig R. |
Editor_xml | – sequence: 1 givenname: Craig R. surname: Roy fullname: Roy, Craig R. |
ExternalDocumentID | 10_1128_IAI_00822_18 30602502 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI099222 – fundername: ; grantid: R01AI099222 – fundername: ; grantid: 3830 - Full PhD Abroad Program |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 18M 29I 2WC 39C 3O- 4.4 41~ 53G 5GY 5RE 5VS 85S ABOCM ACGFO ADBBV AENEX AGCDD AGVNZ AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C1A CGR CS3 CUY CVF D0S DIK DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HYE HZ~ H~9 IH2 J5H KQ8 L7B MVM NEJ NPM O9- OHT OK1 P2P RHF RHI RNS RPM RSF SJN TR2 TWZ UCJ UPT VH1 VQA W2D W8F WH7 WHG WOQ X7M Y6R ZGI ZXP ~KM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c384t-6748b789e4ad6d338f342fb8f8ec286930a5e5e17c34e2fb79ea98600a39b2863 |
IEDL.DBID | RPM |
ISSN | 0019-9567 |
IngestDate | Tue Sep 17 21:22:38 EDT 2024 Sat Oct 26 00:33:54 EDT 2024 Thu Sep 12 20:08:58 EDT 2024 Sat Sep 28 08:29:22 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | macrophages pyrin Yersinia inflammasome |
Language | English |
License | Copyright © 2019 American Society for Microbiology. All Rights Reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c384t-6748b789e4ad6d338f342fb8f8ec286930a5e5e17c34e2fb79ea98600a39b2863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Citation Medici NP, Rashid M, Bliska JB. 2019. Characterization of pyrin dephosphorylation and inflammasome activation in macrophages as triggered by the Yersinia effectors YopE and YopT. Infect Immun 87:e00822-18. https://doi.org/10.1128/IAI.00822-18. |
ORCID | 0000-0002-6047-8837 |
OpenAccessLink | https://iai.asm.org/content/iai/87/3/e00822-18.full.pdf |
PMID | 30602502 |
PQID | 2163011105 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6386549 proquest_miscellaneous_2163011105 crossref_primary_10_1128_IAI_00822_18 pubmed_primary_30602502 |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Infection and immunity |
PublicationTitleAlternate | Infect Immun |
PublicationYear | 2019 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 |
References_xml | – ident: e_1_3_3_40_2 doi: 10.1128/IAI.00269-10 – ident: e_1_3_3_7_2 doi: 10.1146/annurev.cellbio.21.020604.150721 – ident: e_1_3_3_19_2 doi: 10.1046/j.1365-2958.2000.02021.x – ident: e_1_3_3_24_2 doi: 10.1073/pnas.0602081103 – ident: e_1_3_3_10_2 doi: 10.1016/j.cell.2007.05.018 – ident: e_1_3_3_38_2 doi: 10.1074/jbc.M114.601153 – ident: e_1_3_3_42_2 doi: 10.1016/j.chom.2010.04.009 – ident: e_1_3_3_2_2 doi: 10.3389/fmicb.2016.00042 – ident: e_1_3_3_16_2 doi: 10.1016/j.chom.2016.07.018 – ident: e_1_3_3_29_2 doi: 10.1038/cr.2015.139 – ident: e_1_3_3_31_2 doi: 10.1100/2011/212680 – ident: e_1_3_3_3_2 doi: 10.1101/cshperspect.a013573 – ident: e_1_3_3_4_2 doi: 10.1111/j.1574-6976.2011.00271.x – ident: e_1_3_3_39_2 doi: 10.1016/j.cell.2006.06.056 – ident: e_1_3_3_34_2 doi: 10.1128/IAI.00694-10 – ident: e_1_3_3_37_2 doi: 10.1371/journal.ppat.0010016 – ident: e_1_3_3_12_2 doi: 10.4331/wjbc.v7.i1.1 – ident: e_1_3_3_13_2 doi: 10.1083/jcb.200205077 – ident: e_1_3_3_5_2 doi: 10.1093/femspd/ftv091 – ident: e_1_3_3_32_2 doi: 10.1074/jbc.M115.697698 – ident: e_1_3_3_11_2 doi: 10.1128/JCM.02185-13 – ident: e_1_3_3_18_2 doi: 10.1073/pnas.252770599 – ident: e_1_3_3_9_2 doi: 10.1042/BC20090151 – ident: e_1_3_3_26_2 doi: 10.3389/fimmu.2017.00043 – ident: e_1_3_3_27_2 doi: 10.1083/jcb.201602089 – ident: e_1_3_3_8_2 doi: 10.1038/nature01148 – ident: e_1_3_3_36_2 doi: 10.1128/IAI.00843-15 – ident: e_1_3_3_25_2 doi: 10.1073/pnas.1601700113 – ident: e_1_3_3_15_2 doi: 10.1038/nrmicro1526 – ident: e_1_3_3_14_2 doi: 10.1007/s12026-013-8454-3 – ident: e_1_3_3_28_2 doi: 10.1038/nature18629 – ident: e_1_3_3_20_2 doi: 10.1146/annurev.micro.59.030804.121320 – ident: e_1_3_3_21_2 doi: 10.1038/nature13449 – ident: e_1_3_3_22_2 doi: 10.1371/journal.ppat.1006035 – ident: e_1_3_3_30_2 doi: 10.1016/j.tcb.2017.05.005 – ident: e_1_3_3_35_2 doi: 10.1128/IAI.73.12.7938-7945.2005 – ident: e_1_3_3_33_2 doi: 10.1111/j.1462-5822.2010.01448.x – ident: e_1_3_3_6_2 doi: 10.1101/gad.1003302 – ident: e_1_3_3_41_2 doi: 10.1128/IAI.00183-08 – ident: e_1_3_3_17_2 doi: 10.1371/journal.ppat.1004346 – ident: e_1_3_3_23_2 doi: 10.1038/ni.3457 |
SSID | ssj0014448 |
Score | 2.4561353 |
Snippet | Pathogenic
species deliver Yop effector proteins through a type III secretion system into host cells. Among these effectors, YopE and YopT are Rho-modifying... Pathogenic Yersinia species deliver Yop effector proteins through a type III secretion system into host cells. Among these effectors, YopE and YopT are... |
SourceID | pubmedcentral proquest crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
SubjectTerms | Bacterial Outer Membrane Proteins - immunology Bacterial Outer Membrane Proteins - metabolism Bacterial Proteins - immunology Bacterial Proteins - metabolism Cysteine Endopeptidases - immunology Cysteine Endopeptidases - metabolism Host Response and Inflammation Inflammasomes - metabolism Macrophages - immunology Macrophages - metabolism Phosphorylation Pyrin - metabolism Yersinia - metabolism |
Title | Characterization of Pyrin Dephosphorylation and Inflammasome Activation in Macrophages as Triggered by the Yersinia Effectors YopE and YopT |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30602502 https://search.proquest.com/docview/2163011105 https://pubmed.ncbi.nlm.nih.gov/PMC6386549 |
Volume | 87 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ba9swFH60hY5dytZ1W7puaLAelcSSbMvHkLY0g5QeUmhPRpalJbDIIU4P-Q39032S7bBstx0MBkvC-H1I37M-vQ_gh9Q8Tks-pEMTJVRYJmjGjaLSDjWPolKmyp8dnt4ltw_i52P8eABxdxYmiPZ1sei738u-W8yDtnK11INOJza4n44Tb1QpssEhHCJAuxS93ToQQrTTb0aR_Ked2p3JwWQ06YcS5zTyPn3Ilj0DYPtL0j8882-55B_rz807OGmJIxk1L_geDow7hePGSnJ7Cm-m7Sb5B3gZ74owN2csSWXJ_Xa9cOTKrOZVjdd622jgiHIlmTiLuFiquloaMtKd4RnBDlPlLb7mOOnURNVkhrn8L-_uSYotQepInvzvNrdQpKmCXK1r8lStrsOweDM7g4eb69n4lraeC1RzKTbUe48UqcyMUGVSYv5quWC2kFYazaT3TVSxiU2Uai4MPkgzozKJrEnxrMAG_CMcucqZz0CUt8LChVHzLMEs0qgC2aJVw8jGOLpkPbjsPnu-akpr5CElYTLHSOUhUnkke_C9i0mO2PcbGsqZ6rnOGZJJnJ-QIvbgUxOj3UhdcHuQ7kVv18DX1d5_gnAL9bVbeJ3_d88v8JZ5-AWp2gUcbdbP5ityl03xLWD1FaE57zQ |
link.rule.ids | 230,315,730,783,787,888,27938,27939,53806,53808 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4aQ8BeuIwB5WokeEyaxE7iPFZlUwvLtIcObU-R4zhrBHWqpH3o_sL-9I5zqeh4godIkXxRonNsf8f-fD6AL1xSP8yoYznKDSyWe8yKqBIWzx1JXTfjoTB3h-OzYHLBvl_6l3vg93dhGtK-TAtb_17Yupg33MrlQg57ntjwPB4HRqiSRcMH8BDHqxP0QXp3eMAY6ybgyEL4H_Z8d48Pp6Op3SQ5t1yj1Id42WAAb3dR-gtp3idM_rECnTyDn_23t8STX_Z6ldry5l5ax3_-uefwtMOkZNQWv4A9pQ_hUatSuTmEx3F3_v4Sbsfb_M7t9U1S5uR8UxWafFPLeVnjU21aeh0ROiNTnaPLLURdLhQZyV5LjWCDWBj1sDnOZzURNZlVxfW1EQ4l6YYgKiVXZidPF4K0CZbLqiZX5fK46RZfZkdwcXI8G0-sTs7BkpSzlWVkTdKQR4qJLMgwNM4p8_KU51xJjxtJRuErX7mhpExhQRgpEXEEZIJGKVagr2Bfl1q9ASKMyhauuZJGAQaoSqQIRHPhuLmPvXNvAF97eybLNmtH0kQ7Hk_QBZLGBRKXD-Bzb-wEh5U5KxFales68RCn4tSH6HMAr1vjb3vqvWYA4Y5bbCuYlN27JWjsJnV3Z9y3_93yEzyZzOLT5HR69uMdHHjGxxtG3HvYX1Vr9QEh0ir92AyIO6U1EUQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgiImXDQZjZQOMBI-52kmcx6pbtQKd-tBJGy-R49hrBHWipH0of4E_zXEu1bq97SFSJF-U6Bzb37E_nw-hr0yQIMqIa7nSCy2qfGrFRHKLKVcQz8tYxM3d4elVeHlNv98EN_ekvhrSvkhzW_9Z2jpfNNzKcimcnifmzKaj0AhV0tgpM-U8Ry9gzLqsD9S7AwRKaTcJxxaEAFHPefeZMxlO7CbRueUZtT7AzAYH-LsL0yO0-ZA0eW8VGh-iX_33t-ST3_Z6ldri74PUjk_6wdfooMOmeNhWeYOeSX2EXrZqlZsjtD_tzuHfon-jbZ7n9honLhSebapc43NZLooanmrT0uww1xmeaAWut-R1sZR4KHpNNQwNptyoiC1gXqsxr_G8yu_ujIAoTjcY0Cm-NTt6Oue4TbRcVDW-LcqLplt4mb9D1-OL-ejS6mQdLEEYXVlG3iSNWCwpz8IMQmRFqK9SppgUPjPSjDyQgfQiQaiEgiiWPGYAzDiJU6hAjtGeLrQ8QZgbtS1YewWJQwhUJU8BkCrueiqA3pk_QN96myZlm70jaaIenyXgBknjBonHBuhLb_AEhpc5M-FaFus68QGvwhQIKHSA3rcOsO2p95wBinZcY1vBpO7eLQGDNym8OwN_eHLLz2h_dj5Ofk6ufpyiV75x84YYd4b2VtVafgSktEo_NWPiPy3WE8Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+Pyrin+Dephosphorylation+and+Inflammasome+Activation+in+Macrophages+as+Triggered+by+the+Yersinia+Effectors+YopE+and+YopT&rft.jtitle=Infection+and+immunity&rft.au=Medici%2C+Natasha+P.&rft.au=Rashid%2C+Maheen&rft.au=Bliska%2C+James+B.&rft.date=2019-03-01&rft.issn=0019-9567&rft.eissn=1098-5522&rft.volume=87&rft.issue=3&rft_id=info:doi/10.1128%2FIAI.00822-18&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_IAI_00822_18 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-9567&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-9567&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-9567&client=summon |