Characterization of Pyrin Dephosphorylation and Inflammasome Activation in Macrophages as Triggered by the Yersinia Effectors YopE and YopT

Pathogenic species deliver Yop effector proteins through a type III secretion system into host cells. Among these effectors, YopE and YopT are Rho-modifying toxins, which function to modulate host cell physiology and evade immune responses. YopE is a GTPase-activating protein (GAP) while YopT is a p...

Full description

Saved in:
Bibliographic Details
Published inInfection and immunity Vol. 87; no. 3
Main Authors Medici, Natasha P, Rashid, Maheen, Bliska, James B
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pathogenic species deliver Yop effector proteins through a type III secretion system into host cells. Among these effectors, YopE and YopT are Rho-modifying toxins, which function to modulate host cell physiology and evade immune responses. YopE is a GTPase-activating protein (GAP) while YopT is a protease, and they inhibit RhoA by different modes of action. Modifications to RhoA are sensed by pyrin, which, once activated, assembles a caspase-1 inflammasome, which generates cytokines such as interleukin-1β (IL-1β) and cell death by pyroptosis. In -infected macrophages, YopE or YopT triggers inflammasome assembly only in the absence of another effector, YopM, which counteracts pyrin by keeping it inactive. The glucosyltransferase TcdB from , a well-studied RhoA-inactivating toxin, triggers activation of murine pyrin by dephosphorylation of Ser205 and Ser241. To determine if YopE or YopT triggers pyrin dephosphorylation, we infected lipopolysaccharide (LPS)-primed murine macrophages with Δ strains expressing wild-type (wt) or YopE mutant variants or YopT. By immunoblotting pyrin after infection, we observed that wt YopE triggered dephosphorylation of Ser205 and inflammasome activation. Pyrin dephosphorylation was reduced if a YopE variant had a defect in stability or RhoA specificity but not membrane localization. We also observed that wt YopT triggered pyrin dephosphorylation but more slowly than YopE, suggesting that YopE is dominant in this process. Our findings provide evidence that RhoA-modifying toxins trigger activation of pyrin by a conserved dephosphorylation mechanism. In addition, by characterization of YopE and YopT, we show that different features of effectors, such as RhoA specificity, affect the efficiency of pyrin dephosphorylation.
AbstractList Pathogenic species deliver Yop effector proteins through a type III secretion system into host cells. Among these effectors, YopE and YopT are Rho-modifying toxins, which function to modulate host cell physiology and evade immune responses. YopE is a GTPase-activating protein (GAP) while YopT is a protease, and they inhibit RhoA by different modes of action. Modifications to RhoA are sensed by pyrin, which, once activated, assembles a caspase-1 inflammasome, which generates cytokines such as interleukin-1β (IL-1β) and cell death by pyroptosis. In -infected macrophages, YopE or YopT triggers inflammasome assembly only in the absence of another effector, YopM, which counteracts pyrin by keeping it inactive. The glucosyltransferase TcdB from , a well-studied RhoA-inactivating toxin, triggers activation of murine pyrin by dephosphorylation of Ser205 and Ser241. To determine if YopE or YopT triggers pyrin dephosphorylation, we infected lipopolysaccharide (LPS)-primed murine macrophages with Δ strains expressing wild-type (wt) or YopE mutant variants or YopT. By immunoblotting pyrin after infection, we observed that wt YopE triggered dephosphorylation of Ser205 and inflammasome activation. Pyrin dephosphorylation was reduced if a YopE variant had a defect in stability or RhoA specificity but not membrane localization. We also observed that wt YopT triggered pyrin dephosphorylation but more slowly than YopE, suggesting that YopE is dominant in this process. Our findings provide evidence that RhoA-modifying toxins trigger activation of pyrin by a conserved dephosphorylation mechanism. In addition, by characterization of YopE and YopT, we show that different features of effectors, such as RhoA specificity, affect the efficiency of pyrin dephosphorylation.
Pathogenic Yersinia species deliver Yop effector proteins through a type III secretion system into host cells. Among these effectors, YopE and YopT are Rho-modifying toxins, which function to modulate host cell physiology and evade immune responses. ABSTRACT Pathogenic Yersinia species deliver Yop effector proteins through a type III secretion system into host cells. Among these effectors, YopE and YopT are Rho-modifying toxins, which function to modulate host cell physiology and evade immune responses. YopE is a GTPase-activating protein (GAP) while YopT is a protease, and they inhibit RhoA by different modes of action. Modifications to RhoA are sensed by pyrin, which, once activated, assembles a caspase-1 inflammasome, which generates cytokines such as interleukin-1β (IL-1β) and cell death by pyroptosis. In Yersinia -infected macrophages, YopE or YopT triggers inflammasome assembly only in the absence of another effector, YopM, which counteracts pyrin by keeping it inactive. The glucosyltransferase TcdB from Clostridium difficile , a well-studied RhoA-inactivating toxin, triggers activation of murine pyrin by dephosphorylation of Ser205 and Ser241. To determine if YopE or YopT triggers pyrin dephosphorylation, we infected lipopolysaccharide (LPS)-primed murine macrophages with Δ yopM Yersinia pseudotuberculosis strains expressing wild-type (wt) or YopE mutant variants or YopT. By immunoblotting pyrin after infection, we observed that wt YopE triggered dephosphorylation of Ser205 and inflammasome activation. Pyrin dephosphorylation was reduced if a YopE variant had a defect in stability or RhoA specificity but not membrane localization. We also observed that wt YopT triggered pyrin dephosphorylation but more slowly than YopE, suggesting that YopE is dominant in this process. Our findings provide evidence that RhoA-modifying toxins trigger activation of pyrin by a conserved dephosphorylation mechanism. In addition, by characterization of YopE and YopT, we show that different features of effectors, such as RhoA specificity, affect the efficiency of pyrin dephosphorylation.
Pathogenic Yersinia species deliver Yop effector proteins through a type III secretion system into host cells. Among these effectors, YopE and YopT are Rho-modifying toxins, which function to modulate host cell physiology and evade immune responses. Pathogenic Yersinia species deliver Yop effector proteins through a type III secretion system into host cells. Among these effectors, YopE and YopT are Rho-modifying toxins, which function to modulate host cell physiology and evade immune responses. YopE is a GTPase-activating protein (GAP) while YopT is a protease, and they inhibit RhoA by different modes of action. Modifications to RhoA are sensed by pyrin, which, once activated, assembles a caspase-1 inflammasome, which generates cytokines such as interleukin-1β (IL-1β) and cell death by pyroptosis. In Yersinia -infected macrophages, YopE or YopT triggers inflammasome assembly only in the absence of another effector, YopM, which counteracts pyrin by keeping it inactive. The glucosyltransferase TcdB from Clostridium difficile , a well-studied RhoA-inactivating toxin, triggers activation of murine pyrin by dephosphorylation of Ser205 and Ser241. To determine if YopE or YopT triggers pyrin dephosphorylation, we infected lipopolysaccharide (LPS)-primed murine macrophages with Δ yopM Yersinia pseudotuberculosis strains expressing wild-type (wt) or YopE mutant variants or YopT. By immunoblotting pyrin after infection, we observed that wt YopE triggered dephosphorylation of Ser205 and inflammasome activation. Pyrin dephosphorylation was reduced if a YopE variant had a defect in stability or RhoA specificity but not membrane localization. We also observed that wt YopT triggered pyrin dephosphorylation but more slowly than YopE, suggesting that YopE is dominant in this process. Our findings provide evidence that RhoA-modifying toxins trigger activation of pyrin by a conserved dephosphorylation mechanism. In addition, by characterization of YopE and YopT, we show that different features of effectors, such as RhoA specificity, affect the efficiency of pyrin dephosphorylation.
Author Medici, Natasha P
Rashid, Maheen
Bliska, James B
Author_xml – sequence: 1
  givenname: Natasha P
  surname: Medici
  fullname: Medici, Natasha P
  organization: Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, USA
– sequence: 2
  givenname: Maheen
  surname: Rashid
  fullname: Rashid, Maheen
  organization: Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, USA
– sequence: 3
  givenname: James B
  orcidid: 0000-0002-6047-8837
  surname: Bliska
  fullname: Bliska, James B
  email: james.bliska@dartmouth.edu
  organization: Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, New Hampshire, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30602502$$D View this record in MEDLINE/PubMed
BookMark eNpVkU9v1DAQxS3Uim4LN87IRw6k9b8kzgVptWxhpSI4LIeerEky2RgldrCzlbZfoV-6plsqOIw8o_fzG8vvnJw475CQd5xdci701Wa5uWRMC5Fx_YosOKt0ludCnJAFY7zKqrwoz8h5jL_SqJTSr8mZZAUTORML8rDqIUAzY7D3MFvvqO_oj0Owjn7GqfcxVTgMRwlcSzeuG2AcIfoR6bKZ7d1RSxe-QRP81MMOI4VIt8HudhiwpfWBzj3SWwzROgt03XXYzD5Eeuun9ZNtarZvyGkHQ8S3z-cF-Xm93q6-Zjffv2xWy5uskVrNWVEqXZe6QgVt0UqpO6lEV-tOYyN0UUkGOebIy0YqTEJZIVS6YAxkVSdAXpBPR99pX4_YNujmAIOZgh0hHIwHa_5XnO3Nzt-ZQuoiV1Uy-PBsEPzvPcbZjDY2OAzg0O-jEbyQjHPO8oR-PKLpa2IM2L2s4cz8yc-k_MxTfobrhL__92kv8N_A5COok5qn
CitedBy_id crossref_primary_10_1038_s41564_019_0623_2
crossref_primary_10_1128_iai_00614_21
crossref_primary_10_1016_j_smim_2023_101804
crossref_primary_10_1128_ecosalplus_ESP_0014_2021
crossref_primary_10_1038_s41564_020_00832_5
crossref_primary_10_1128_Spectrum_00496_21
crossref_primary_10_1080_21505594_2024_2316439
crossref_primary_10_3389_fimmu_2019_01745
crossref_primary_10_1186_s13045_021_01184_1
crossref_primary_10_12688_f1000research_18940_1
crossref_primary_10_1152_physrev_00002_2021
crossref_primary_10_3390_toxins14110798
crossref_primary_10_1016_j_mib_2020_07_015
crossref_primary_10_1111_cmi_13309
crossref_primary_10_1371_journal_ppat_1009504
crossref_primary_10_3389_fcimb_2020_577559
crossref_primary_10_1111_imr_12907
crossref_primary_10_1080_19490976_2022_2163839
crossref_primary_10_1128_mbio_02066_23
crossref_primary_10_1016_j_chembiol_2024_03_009
crossref_primary_10_1128_IAI_00095_21
crossref_primary_10_1016_j_mib_2020_01_005
crossref_primary_10_1016_j_tim_2020_09_012
crossref_primary_10_1128_mbio_01310_23
crossref_primary_10_1146_annurev_micro_020518_120221
crossref_primary_10_1111_cmi_13384
Cites_doi 10.1128/IAI.00269-10
10.1146/annurev.cellbio.21.020604.150721
10.1046/j.1365-2958.2000.02021.x
10.1073/pnas.0602081103
10.1016/j.cell.2007.05.018
10.1074/jbc.M114.601153
10.1016/j.chom.2010.04.009
10.3389/fmicb.2016.00042
10.1016/j.chom.2016.07.018
10.1038/cr.2015.139
10.1100/2011/212680
10.1101/cshperspect.a013573
10.1111/j.1574-6976.2011.00271.x
10.1016/j.cell.2006.06.056
10.1128/IAI.00694-10
10.1371/journal.ppat.0010016
10.4331/wjbc.v7.i1.1
10.1083/jcb.200205077
10.1093/femspd/ftv091
10.1074/jbc.M115.697698
10.1128/JCM.02185-13
10.1073/pnas.252770599
10.1042/BC20090151
10.3389/fimmu.2017.00043
10.1083/jcb.201602089
10.1038/nature01148
10.1128/IAI.00843-15
10.1073/pnas.1601700113
10.1038/nrmicro1526
10.1007/s12026-013-8454-3
10.1038/nature18629
10.1146/annurev.micro.59.030804.121320
10.1038/nature13449
10.1371/journal.ppat.1006035
10.1016/j.tcb.2017.05.005
10.1128/IAI.73.12.7938-7945.2005
10.1111/j.1462-5822.2010.01448.x
10.1101/gad.1003302
10.1128/IAI.00183-08
10.1371/journal.ppat.1004346
10.1038/ni.3457
ContentType Journal Article
Copyright Copyright © 2019 American Society for Microbiology.
Copyright © 2019 American Society for Microbiology. 2019 American Society for Microbiology
Copyright_xml – notice: Copyright © 2019 American Society for Microbiology.
– notice: Copyright © 2019 American Society for Microbiology. 2019 American Society for Microbiology
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1128/IAI.00822-18
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
DocumentTitleAlternate Pyrin Inflammasome Activation by Yersinia YopE and YopT
EISSN 1098-5522
Editor Roy, Craig R.
Editor_xml – sequence: 1
  givenname: Craig R.
  surname: Roy
  fullname: Roy, Craig R.
ExternalDocumentID 10_1128_IAI_00822_18
30602502
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI099222
– fundername: ;
  grantid: R01AI099222
– fundername: ;
  grantid: 3830 - Full PhD Abroad Program
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
18M
29I
2WC
39C
3O-
4.4
41~
53G
5GY
5RE
5VS
85S
ABOCM
ACGFO
ADBBV
AENEX
AGCDD
AGVNZ
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CGR
CS3
CUY
CVF
D0S
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HYE
HZ~
H~9
IH2
J5H
KQ8
L7B
MVM
NEJ
NPM
O9-
OHT
OK1
P2P
RHF
RHI
RNS
RPM
RSF
SJN
TR2
TWZ
UCJ
UPT
VH1
VQA
W2D
W8F
WH7
WHG
WOQ
X7M
Y6R
ZGI
ZXP
~KM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c384t-6748b789e4ad6d338f342fb8f8ec286930a5e5e17c34e2fb79ea98600a39b2863
IEDL.DBID RPM
ISSN 0019-9567
IngestDate Tue Sep 17 21:22:38 EDT 2024
Sat Oct 26 00:33:54 EDT 2024
Thu Sep 12 20:08:58 EDT 2024
Sat Sep 28 08:29:22 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords macrophages
pyrin
Yersinia
inflammasome
Language English
License Copyright © 2019 American Society for Microbiology.
All Rights Reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c384t-6748b789e4ad6d338f342fb8f8ec286930a5e5e17c34e2fb79ea98600a39b2863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Citation Medici NP, Rashid M, Bliska JB. 2019. Characterization of pyrin dephosphorylation and inflammasome activation in macrophages as triggered by the Yersinia effectors YopE and YopT. Infect Immun 87:e00822-18. https://doi.org/10.1128/IAI.00822-18.
ORCID 0000-0002-6047-8837
OpenAccessLink https://iai.asm.org/content/iai/87/3/e00822-18.full.pdf
PMID 30602502
PQID 2163011105
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6386549
proquest_miscellaneous_2163011105
crossref_primary_10_1128_IAI_00822_18
pubmed_primary_30602502
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Infection and immunity
PublicationTitleAlternate Infect Immun
PublicationYear 2019
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
References_xml – ident: e_1_3_3_40_2
  doi: 10.1128/IAI.00269-10
– ident: e_1_3_3_7_2
  doi: 10.1146/annurev.cellbio.21.020604.150721
– ident: e_1_3_3_19_2
  doi: 10.1046/j.1365-2958.2000.02021.x
– ident: e_1_3_3_24_2
  doi: 10.1073/pnas.0602081103
– ident: e_1_3_3_10_2
  doi: 10.1016/j.cell.2007.05.018
– ident: e_1_3_3_38_2
  doi: 10.1074/jbc.M114.601153
– ident: e_1_3_3_42_2
  doi: 10.1016/j.chom.2010.04.009
– ident: e_1_3_3_2_2
  doi: 10.3389/fmicb.2016.00042
– ident: e_1_3_3_16_2
  doi: 10.1016/j.chom.2016.07.018
– ident: e_1_3_3_29_2
  doi: 10.1038/cr.2015.139
– ident: e_1_3_3_31_2
  doi: 10.1100/2011/212680
– ident: e_1_3_3_3_2
  doi: 10.1101/cshperspect.a013573
– ident: e_1_3_3_4_2
  doi: 10.1111/j.1574-6976.2011.00271.x
– ident: e_1_3_3_39_2
  doi: 10.1016/j.cell.2006.06.056
– ident: e_1_3_3_34_2
  doi: 10.1128/IAI.00694-10
– ident: e_1_3_3_37_2
  doi: 10.1371/journal.ppat.0010016
– ident: e_1_3_3_12_2
  doi: 10.4331/wjbc.v7.i1.1
– ident: e_1_3_3_13_2
  doi: 10.1083/jcb.200205077
– ident: e_1_3_3_5_2
  doi: 10.1093/femspd/ftv091
– ident: e_1_3_3_32_2
  doi: 10.1074/jbc.M115.697698
– ident: e_1_3_3_11_2
  doi: 10.1128/JCM.02185-13
– ident: e_1_3_3_18_2
  doi: 10.1073/pnas.252770599
– ident: e_1_3_3_9_2
  doi: 10.1042/BC20090151
– ident: e_1_3_3_26_2
  doi: 10.3389/fimmu.2017.00043
– ident: e_1_3_3_27_2
  doi: 10.1083/jcb.201602089
– ident: e_1_3_3_8_2
  doi: 10.1038/nature01148
– ident: e_1_3_3_36_2
  doi: 10.1128/IAI.00843-15
– ident: e_1_3_3_25_2
  doi: 10.1073/pnas.1601700113
– ident: e_1_3_3_15_2
  doi: 10.1038/nrmicro1526
– ident: e_1_3_3_14_2
  doi: 10.1007/s12026-013-8454-3
– ident: e_1_3_3_28_2
  doi: 10.1038/nature18629
– ident: e_1_3_3_20_2
  doi: 10.1146/annurev.micro.59.030804.121320
– ident: e_1_3_3_21_2
  doi: 10.1038/nature13449
– ident: e_1_3_3_22_2
  doi: 10.1371/journal.ppat.1006035
– ident: e_1_3_3_30_2
  doi: 10.1016/j.tcb.2017.05.005
– ident: e_1_3_3_35_2
  doi: 10.1128/IAI.73.12.7938-7945.2005
– ident: e_1_3_3_33_2
  doi: 10.1111/j.1462-5822.2010.01448.x
– ident: e_1_3_3_6_2
  doi: 10.1101/gad.1003302
– ident: e_1_3_3_41_2
  doi: 10.1128/IAI.00183-08
– ident: e_1_3_3_17_2
  doi: 10.1371/journal.ppat.1004346
– ident: e_1_3_3_23_2
  doi: 10.1038/ni.3457
SSID ssj0014448
Score 2.4561353
Snippet Pathogenic species deliver Yop effector proteins through a type III secretion system into host cells. Among these effectors, YopE and YopT are Rho-modifying...
Pathogenic Yersinia species deliver Yop effector proteins through a type III secretion system into host cells. Among these effectors, YopE and YopT are...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
SubjectTerms Bacterial Outer Membrane Proteins - immunology
Bacterial Outer Membrane Proteins - metabolism
Bacterial Proteins - immunology
Bacterial Proteins - metabolism
Cysteine Endopeptidases - immunology
Cysteine Endopeptidases - metabolism
Host Response and Inflammation
Inflammasomes - metabolism
Macrophages - immunology
Macrophages - metabolism
Phosphorylation
Pyrin - metabolism
Yersinia - metabolism
Title Characterization of Pyrin Dephosphorylation and Inflammasome Activation in Macrophages as Triggered by the Yersinia Effectors YopE and YopT
URI https://www.ncbi.nlm.nih.gov/pubmed/30602502
https://search.proquest.com/docview/2163011105
https://pubmed.ncbi.nlm.nih.gov/PMC6386549
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ba9swFH60hY5dytZ1W7puaLAelcSSbMvHkLY0g5QeUmhPRpalJbDIIU4P-Q39032S7bBstx0MBkvC-H1I37M-vQ_gh9Q8Tks-pEMTJVRYJmjGjaLSDjWPolKmyp8dnt4ltw_i52P8eABxdxYmiPZ1sei738u-W8yDtnK11INOJza4n44Tb1QpssEhHCJAuxS93ToQQrTTb0aR_Ked2p3JwWQ06YcS5zTyPn3Ilj0DYPtL0j8882-55B_rz807OGmJIxk1L_geDow7hePGSnJ7Cm-m7Sb5B3gZ74owN2csSWXJ_Xa9cOTKrOZVjdd622jgiHIlmTiLuFiquloaMtKd4RnBDlPlLb7mOOnURNVkhrn8L-_uSYotQepInvzvNrdQpKmCXK1r8lStrsOweDM7g4eb69n4lraeC1RzKTbUe48UqcyMUGVSYv5quWC2kFYazaT3TVSxiU2Uai4MPkgzozKJrEnxrMAG_CMcucqZz0CUt8LChVHzLMEs0qgC2aJVw8jGOLpkPbjsPnu-akpr5CElYTLHSOUhUnkke_C9i0mO2PcbGsqZ6rnOGZJJnJ-QIvbgUxOj3UhdcHuQ7kVv18DX1d5_gnAL9bVbeJ3_d88v8JZ5-AWp2gUcbdbP5ityl03xLWD1FaE57zQ
link.rule.ids 230,315,730,783,787,888,27938,27939,53806,53808
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4aQ8BeuIwB5WokeEyaxE7iPFZlUwvLtIcObU-R4zhrBHWqpH3o_sL-9I5zqeh4godIkXxRonNsf8f-fD6AL1xSP8yoYznKDSyWe8yKqBIWzx1JXTfjoTB3h-OzYHLBvl_6l3vg93dhGtK-TAtb_17Yupg33MrlQg57ntjwPB4HRqiSRcMH8BDHqxP0QXp3eMAY6ybgyEL4H_Z8d48Pp6Op3SQ5t1yj1Id42WAAb3dR-gtp3idM_rECnTyDn_23t8STX_Z6ldry5l5ax3_-uefwtMOkZNQWv4A9pQ_hUatSuTmEx3F3_v4Sbsfb_M7t9U1S5uR8UxWafFPLeVnjU21aeh0ROiNTnaPLLURdLhQZyV5LjWCDWBj1sDnOZzURNZlVxfW1EQ4l6YYgKiVXZidPF4K0CZbLqiZX5fK46RZfZkdwcXI8G0-sTs7BkpSzlWVkTdKQR4qJLMgwNM4p8_KU51xJjxtJRuErX7mhpExhQRgpEXEEZIJGKVagr2Bfl1q9ASKMyhauuZJGAQaoSqQIRHPhuLmPvXNvAF97eybLNmtH0kQ7Hk_QBZLGBRKXD-Bzb-wEh5U5KxFales68RCn4tSH6HMAr1vjb3vqvWYA4Y5bbCuYlN27JWjsJnV3Z9y3_93yEzyZzOLT5HR69uMdHHjGxxtG3HvYX1Vr9QEh0ir92AyIO6U1EUQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgiImXDQZjZQOMBI-52kmcx6pbtQKd-tBJGy-R49hrBHWipH0of4E_zXEu1bq97SFSJF-U6Bzb37E_nw-hr0yQIMqIa7nSCy2qfGrFRHKLKVcQz8tYxM3d4elVeHlNv98EN_ekvhrSvkhzW_9Z2jpfNNzKcimcnifmzKaj0AhV0tgpM-U8Ry9gzLqsD9S7AwRKaTcJxxaEAFHPefeZMxlO7CbRueUZtT7AzAYH-LsL0yO0-ZA0eW8VGh-iX_33t-ST3_Z6ldri74PUjk_6wdfooMOmeNhWeYOeSX2EXrZqlZsjtD_tzuHfon-jbZ7n9honLhSebapc43NZLooanmrT0uww1xmeaAWut-R1sZR4KHpNNQwNptyoiC1gXqsxr_G8yu_ujIAoTjcY0Cm-NTt6Oue4TbRcVDW-LcqLplt4mb9D1-OL-ejS6mQdLEEYXVlG3iSNWCwpz8IMQmRFqK9SppgUPjPSjDyQgfQiQaiEgiiWPGYAzDiJU6hAjtGeLrQ8QZgbtS1YewWJQwhUJU8BkCrueiqA3pk_QN96myZlm70jaaIenyXgBknjBonHBuhLb_AEhpc5M-FaFus68QGvwhQIKHSA3rcOsO2p95wBinZcY1vBpO7eLQGDNym8OwN_eHLLz2h_dj5Ofk6ufpyiV75x84YYd4b2VtVafgSktEo_NWPiPy3WE8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+Pyrin+Dephosphorylation+and+Inflammasome+Activation+in+Macrophages+as+Triggered+by+the+Yersinia+Effectors+YopE+and+YopT&rft.jtitle=Infection+and+immunity&rft.au=Medici%2C+Natasha+P.&rft.au=Rashid%2C+Maheen&rft.au=Bliska%2C+James+B.&rft.date=2019-03-01&rft.issn=0019-9567&rft.eissn=1098-5522&rft.volume=87&rft.issue=3&rft_id=info:doi/10.1128%2FIAI.00822-18&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_IAI_00822_18
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-9567&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-9567&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-9567&client=summon