A cross-subject MDD detection approach based on multiscale nonlinear analysis in resting state EEG

•A multiscale nonlinear feature fusion method is proposed to detect MDD patients.•Cross-subject experiments are conducted on multi datasets to validate the experimental results.•LZC of high frequency scale in resting state EEG signals is proved to be more effective for MDD diagnosis. Exploring multi...

Full description

Saved in:
Bibliographic Details
Published inNeuroscience Vol. 582; pp. 1 - 10
Main Authors Zhang, Zhen, Yang, Jianli, Xiong, Peng, Hao, Huaqing, Zhang, Jieshuo, Li, Licong, Wang, Changyong, Liu, Xiuling
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 30.08.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A multiscale nonlinear feature fusion method is proposed to detect MDD patients.•Cross-subject experiments are conducted on multi datasets to validate the experimental results.•LZC of high frequency scale in resting state EEG signals is proved to be more effective for MDD diagnosis. Exploring multi-scale nonlinear patterns from different frequency bands in resting state electroencephalogram (EEG) signals is significant for major depressive disorder (MDD) detection. The study aims to investigate potential EEG biomarkers and realize cross-subject detection of MDD. This study used multiscale LZC (MLZC) to extract nonlinear features of resting state EEG. Brain topography analysis was used to investigate the difference between MDD and healthy controls (HC) among different scales. A multiscale feature fusion method was proposed to realize the cross-subject detection of MDD. Two public datasets (MPHC and MODMA) and three classifiers were used to validate the performance of the proposed method. Compared with other scales, the difference between the two groups was larger in the high frequency scale, as demonstrated by the higher complexity of brain activity in the HC group than in the MDD group. For the classification, the high frequency scale LZC had the best classification results, with accuracies of 68.75%, 82.61%, and 73.44% in MODMA, MPHC, and fused datasets. Through the multiscale feature fusion analysis, it is found that it retains a large amount of high-frequency channel information for the three datasets, highlighting the importance of high frequency features. By combining the multiscale nonlinear feature fusion, it achieves the best classification results on the three dataset experiments, with accuracies of 72.42%, 84.81%, and 76.13%, respectively. The high frequency scale LZC is more effective for MDD diagnosis in resting state EEG. The cross-subject MDD patients detection accuracy can be promoted by multiscale nonlinear feature fusion.
AbstractList Exploring multi-scale nonlinear patterns from different frequency bands in resting state electroencephalogram (EEG) signals is significant for major depressive disorder (MDD) detection. The study aims to investigate potential EEG biomarkers and realize cross-subject detection of MDD. This study used multiscale LZC (MLZC) to extract nonlinear features of resting state EEG. Brain topography analysis was used to investigate the difference between MDD and healthy controls (HC) among different scales. A multiscale feature fusion method was proposed to realize the cross-subject detection of MDD. Two public datasets (MPHC and MODMA) and three classifiers were used to validate the performance of the proposed method. Compared with other scales, the difference between the two groups was larger in the high frequency scale, as demonstrated by the higher complexity of brain activity in the HC group than in the MDD group. For the classification, the high frequency scale LZC had the best classification results, with accuracies of 68.75%, 82.61%, and 73.44% in MODMA, MPHC, and fused datasets. Through the multiscale feature fusion analysis, it is found that it retains a large amount of high-frequency channel information for the three datasets, highlighting the importance of high frequency features. By combining the multiscale nonlinear feature fusion, it achieves the best classification results on the three dataset experiments, with accuracies of 72.42%, 84.81%, and 76.13%, respectively. The high frequency scale LZC is more effective for MDD diagnosis in resting state EEG. The cross-subject MDD patients detection accuracy can be promoted by multiscale nonlinear feature fusion.
•A multiscale nonlinear feature fusion method is proposed to detect MDD patients.•Cross-subject experiments are conducted on multi datasets to validate the experimental results.•LZC of high frequency scale in resting state EEG signals is proved to be more effective for MDD diagnosis. Exploring multi-scale nonlinear patterns from different frequency bands in resting state electroencephalogram (EEG) signals is significant for major depressive disorder (MDD) detection. The study aims to investigate potential EEG biomarkers and realize cross-subject detection of MDD. This study used multiscale LZC (MLZC) to extract nonlinear features of resting state EEG. Brain topography analysis was used to investigate the difference between MDD and healthy controls (HC) among different scales. A multiscale feature fusion method was proposed to realize the cross-subject detection of MDD. Two public datasets (MPHC and MODMA) and three classifiers were used to validate the performance of the proposed method. Compared with other scales, the difference between the two groups was larger in the high frequency scale, as demonstrated by the higher complexity of brain activity in the HC group than in the MDD group. For the classification, the high frequency scale LZC had the best classification results, with accuracies of 68.75%, 82.61%, and 73.44% in MODMA, MPHC, and fused datasets. Through the multiscale feature fusion analysis, it is found that it retains a large amount of high-frequency channel information for the three datasets, highlighting the importance of high frequency features. By combining the multiscale nonlinear feature fusion, it achieves the best classification results on the three dataset experiments, with accuracies of 72.42%, 84.81%, and 76.13%, respectively. The high frequency scale LZC is more effective for MDD diagnosis in resting state EEG. The cross-subject MDD patients detection accuracy can be promoted by multiscale nonlinear feature fusion.
Exploring multi-scale nonlinear patterns from different frequency bands in resting state electroencephalogram (EEG) signals is significant for major depressive disorder (MDD) detection. The study aims to investigate potential EEG biomarkers and realize cross-subject detection of MDD. This study used multiscale LZC (MLZC) to extract nonlinear features of resting state EEG. Brain topography analysis was used to investigate the difference between MDD and healthy controls (HC) among different scales. A multiscale feature fusion method was proposed to realize the cross-subject detection of MDD. Two public datasets (MPHC and MODMA) and three classifiers were used to validate the performance of the proposed method. Compared with other scales, the difference between the two groups was larger in the high frequency scale, as demonstrated by the higher complexity of brain activity in the HC group than in the MDD group. For the classification, the high frequency scale LZC had the best classification results, with accuracies of 68.75%, 82.61%, and 73.44% in MODMA, MPHC, and fused datasets. Through the multiscale feature fusion analysis, it is found that it retains a large amount of high-frequency channel information for the three datasets, highlighting the importance of high frequency features. By combining the multiscale nonlinear feature fusion, it achieves the best classification results on the three dataset experiments, with accuracies of 72.42%, 84.81%, and 76.13%, respectively. The high frequency scale LZC is more effective for MDD diagnosis in resting state EEG. The cross-subject MDD patients detection accuracy can be promoted by multiscale nonlinear feature fusion.Exploring multi-scale nonlinear patterns from different frequency bands in resting state electroencephalogram (EEG) signals is significant for major depressive disorder (MDD) detection. The study aims to investigate potential EEG biomarkers and realize cross-subject detection of MDD. This study used multiscale LZC (MLZC) to extract nonlinear features of resting state EEG. Brain topography analysis was used to investigate the difference between MDD and healthy controls (HC) among different scales. A multiscale feature fusion method was proposed to realize the cross-subject detection of MDD. Two public datasets (MPHC and MODMA) and three classifiers were used to validate the performance of the proposed method. Compared with other scales, the difference between the two groups was larger in the high frequency scale, as demonstrated by the higher complexity of brain activity in the HC group than in the MDD group. For the classification, the high frequency scale LZC had the best classification results, with accuracies of 68.75%, 82.61%, and 73.44% in MODMA, MPHC, and fused datasets. Through the multiscale feature fusion analysis, it is found that it retains a large amount of high-frequency channel information for the three datasets, highlighting the importance of high frequency features. By combining the multiscale nonlinear feature fusion, it achieves the best classification results on the three dataset experiments, with accuracies of 72.42%, 84.81%, and 76.13%, respectively. The high frequency scale LZC is more effective for MDD diagnosis in resting state EEG. The cross-subject MDD patients detection accuracy can be promoted by multiscale nonlinear feature fusion.
Author Xiong, Peng
Li, Licong
Yang, Jianli
Liu, Xiuling
Zhang, Zhen
Hao, Huaqing
Zhang, Jieshuo
Wang, Changyong
Author_xml – sequence: 1
  givenname: Zhen
  surname: Zhang
  fullname: Zhang, Zhen
  organization: College of Electronic Information and Engineering, Hebei University, Baoding 071002, China
– sequence: 2
  givenname: Jianli
  surname: Yang
  fullname: Yang, Jianli
  email: yangjianli_1987@126.com
  organization: College of Electronic Information and Engineering, Hebei University, Baoding 071002, China
– sequence: 3
  givenname: Peng
  surname: Xiong
  fullname: Xiong, Peng
  organization: College of Electronic Information and Engineering, Hebei University, Baoding 071002, China
– sequence: 4
  givenname: Huaqing
  surname: Hao
  fullname: Hao, Huaqing
  organization: College of Electronic Information and Engineering, Hebei University, Baoding 071002, China
– sequence: 5
  givenname: Jieshuo
  surname: Zhang
  fullname: Zhang, Jieshuo
  organization: College of Electronic Information and Engineering, Hebei University, Baoding 071002, China
– sequence: 6
  givenname: Licong
  surname: Li
  fullname: Li, Licong
  organization: College of Electronic Information and Engineering, Hebei University, Baoding 071002, China
– sequence: 7
  givenname: Changyong
  surname: Wang
  fullname: Wang, Changyong
  organization: Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China
– sequence: 8
  givenname: Xiuling
  surname: Liu
  fullname: Liu, Xiuling
  email: liuxiuling121@hotmail.com
  organization: College of Electronic Information and Engineering, Hebei University, Baoding 071002, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40659284$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAUhS1URKeFV0AWKzZJr3-TsCudoSAVsYG15dg34CHjDHZSad4elxlQxare2LK-e3TuORfkLE4RCXnDoGbA9NW2jrikKbuA0WHNgasamho4PCMr1jaiapSUZ2QFAnQlFefn5CLnLZSjpHhBziVo1fFWrkh_TV2RylVe-i26mX5er6nHuTzDFKnd79Nk3Q_a24yelp_dMs4hOzsiLbbGENEmaqMdDzlkGiJNmOcQv9M82xnpZnP7kjwf7Jjx1em-JN8-bL7efKzuvtx-urm-q5xo5Vxp5jiwxloudC9Z0yivhVcShPCNGHTnUKOyne247wcJwOSgxTB0Tg0WfSsuydujbrH8aykuzK4YxXG0EaclG8EFcCbbThT09Qld-h16s09hZ9PB_M2lAO-OwJ9wEg7_EAbmoQSzNY9LMA8lGGhMKaEMr4_DWLa9D5jMifIhlVyNn8LTZN7_J-NK3KFE_xMPTxX5DYuJrY4
Cites_doi 10.1016/S0140-6736(18)31948-2
10.1038/s44184-025-00117-x
10.3390/biomedicines12092054
10.1007/s11571-022-09869-0
10.1023/A:1022643204877
10.1016/j.clinph.2014.07.012
10.1007/s11571-025-10239-9
10.1111/psyp.14274
10.1109/TIT.1967.1053964
10.1023/A:1022627411411
10.1371/journal.pone.0171409
10.31083/j.jin2204093
10.1016/j.comppsych.2014.09.007
10.1109/TAI.2024.3394792
10.1163/22134468-bja10061
10.3390/brainsci14010044
10.1016/S0140-6736(21)02221-2
10.1109/BIBM58861.2023.10385385
10.1103/PhysRevA.36.842
10.1016/j.physa.2024.130093
10.1109/TIM.2017.2775358
10.1007/s11055-007-0025-4
10.1109/TIT.1976.1055501
10.1371/journal.pone.0048658
10.1007/3-540-57868-4_57
10.1038/s41597-022-01211-x
10.1109/TNNLS.2023.3238519
10.1007/s10548-023-00976-7
ContentType Journal Article
Copyright 2025 International Brain Research Organization (IBRO)
Copyright © 2025 International Brain Research Organization (IBRO). Published by Elsevier Inc. All rights reserved.
Copyright © 2025. Published by Elsevier Inc.
Copyright_xml – notice: 2025 International Brain Research Organization (IBRO)
– notice: Copyright © 2025 International Brain Research Organization (IBRO). Published by Elsevier Inc. All rights reserved.
– notice: Copyright © 2025. Published by Elsevier Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neuroscience.2025.07.020
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1873-7544
EndPage 10
ExternalDocumentID 40659284
10_1016_j_neuroscience_2025_07_020
S0306452225007821
Genre Journal Article
GroupedDBID ---
--K
--M
-DZ
-~X
.1-
.FO
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5RE
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABCQJ
ABFNM
ABFRF
ABJNI
ABLJU
ABMAC
ABTEW
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMQ
IHE
J1W
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OP~
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSN
SSZ
T5K
UNMZH
Z5R
~G-
.55
.GJ
29N
53G
5VS
AAQXK
AAYXX
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
AGHFR
AGQPQ
AHHHB
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SNS
WUQ
X7M
YYP
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AFCTW
AGRNS
BNPGV
SSH
ID FETCH-LOGICAL-c384t-61c2017aa236b41775d63d54033d73f69ce6e5a9a92dbf40014f63ff9c5faed83
IEDL.DBID .~1
ISSN 0306-4522
1873-7544
IngestDate Tue Jul 15 17:30:29 EDT 2025
Thu Aug 28 04:44:18 EDT 2025
Thu Aug 21 00:26:50 EDT 2025
Sat Aug 30 17:12:33 EDT 2025
Sat Aug 30 06:04:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Resting state EEG
MDD
Cross-subject
Multiscale
Language English
License Copyright © 2025 International Brain Research Organization (IBRO). Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c384t-61c2017aa236b41775d63d54033d73f69ce6e5a9a92dbf40014f63ff9c5faed83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 40659284
PQID 3230214893
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_3230214893
pubmed_primary_40659284
crossref_primary_10_1016_j_neuroscience_2025_07_020
elsevier_sciencedirect_doi_10_1016_j_neuroscience_2025_07_020
elsevier_clinicalkey_doi_10_1016_j_neuroscience_2025_07_020
PublicationCentury 2000
PublicationDate 2025-08-30
PublicationDateYYYYMMDD 2025-08-30
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-30
  day: 30
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neuroscience
PublicationTitleAlternate Neuroscience
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Lempel, Ziv (b0080) 1976; 22
Wang, Dai, Su, Wang, Tan (b0160) 2012; 7
Cover, Hart (b0035) 1967; 13
Malhi, Mann (b0110) 2018; 392
Xu, Zhang, Wang, Liu (b0170) 2024; 32
Yang, Zhang, Fu, Li, Xiong, Liu (b0180) 2023; 236
Kononenko, I. (1994). Estimating attributes: Analysis and extensions of RELIEF. In F. Bergadano & L. De Raedt (Eds.), Machine learning: ECML-94 (Lecture Notes in Computer Science, 784, 171-182. Springer. DOI: 10.1007/3-540-57868-4_57.
Pratiwi (b0125) 2023
Angulo-Ruiz, Ruiz-Martínez, Rodríguez-Martínez, Ionescu, Saldaña, Gómez (b0010) 2023; 36
Zimmerman, Ellison, Young, Chelminski, Dalrymple (b0200) 2015; 56
Mao, Z., Wu, H., Tan, Y., & Jin, Y. (2024). EEG based generative depression discriminator. arXiv preprint arXiv:2402.09421. DOI: 10.48550/arXiv.2402.09421.
COVID-19 Mental Disorders Collaborators. (2021). Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet, 398(10312), 1665-1666. DOI: 10.1016/S0140-6736(21)02221-2.
Ibáñez-Molina, Iglesias-Parro, Soriano, Aznarte (b0055) 2015; 126
Cai, Yuan, Gao (b0025) 2022; 9
Maddirala, Shaik (b0105) 2018; 67
Cortes, Vapnik (b0030) 1995; 20
Shen, Chen, Ma, Cao, Zhang, Hu (b0135) 2023
Kaspar, Schuster (b0060) 1987; 36
Li, C., Li, P., Zhang, Y., et al. (2024). Effective Emotion Recognition by Learning Discriminative Graph Topologies in EEG Brain Networks. IEEE Transactions on Neural Networks and Learning Systems, 35(8), 10258-10272. https://doi.org/ 10.1109/TNNLS.2023.3238519.
Yang, Hu, Zeng (b0175) 2023; 14
Liang, Lomayesva, Isham (b0090) 2022; 11
Zhu, Li, Hou, Hu, Zhang (b0195) 2023; 2023
Yang, Zhang, Xiong, Liu (b0185) 2023; 22
Quinlan (b0130) 1986; 1
Lord, Allen (b0095) 2023; 60
Sun, Jiang, Gao, Xin, Dong (b0145) 2024; 84
Angulo-Ruiz, Muñoz, Rodríguez-Martínez, Cabello-Navarro, Gómez (b0015) 2023; 17
Ke, Li, Huang, Chen (b0065) 2024; 155
Anik, Kamal, Kabir, Uddin, Moni (b0020) 2024; 5
He, Guo, Ren, Liu, Ming (b0050) 2023
Luo, Tang, Fan (b0100) 2025; 4
Dimitri Marques Abramov, Henrique Santos Lima, Vladimir Lazarev, Paulo Ricardo Galhanone, Constantino Tsallis, Identifying attention-deficit/hyperactivity disorder through the electroencephalogram complexity, Physica A: Statistical Mechanics and its Applications, Volume 653, 2024, 130093, ISSN 0378-4371, https://doi.org/10.1016/j.physa.2024.130093.
Strelets, Garakh, Novototskii-Vlasov (b0140) 2007; 37
Sun, Mao, Cai (b0150) 2025; 19
Tatti, Cinti, Serbina, Luciani, D’Urso, Cacciola, Quartarone, Ghilardi (b0155) 2024; 12
Wang, Li, Zhao (b0165) 2023; 70
Mumtaz, Xia, Mohd Yasin, Azhar Ali, Malik (b0120) 2017; 12
Zhang, Liu, Liu (b0190) 2022; 203–208
Lan, Peng, Liu (b0075) 2023
Lord (10.1016/j.neuroscience.2025.07.020_b0095) 2023; 60
Tatti (10.1016/j.neuroscience.2025.07.020_b0155) 2024; 12
Angulo-Ruiz (10.1016/j.neuroscience.2025.07.020_b0015) 2023; 17
Anik (10.1016/j.neuroscience.2025.07.020_b0020) 2024; 5
Maddirala (10.1016/j.neuroscience.2025.07.020_b0105) 2018; 67
He (10.1016/j.neuroscience.2025.07.020_b0050) 2023
Mumtaz (10.1016/j.neuroscience.2025.07.020_b0120) 2017; 12
Strelets (10.1016/j.neuroscience.2025.07.020_b0140) 2007; 37
10.1016/j.neuroscience.2025.07.020_b0005
Shen (10.1016/j.neuroscience.2025.07.020_b0135) 2023
Xu (10.1016/j.neuroscience.2025.07.020_b0170) 2024; 32
Yang (10.1016/j.neuroscience.2025.07.020_b0185) 2023; 22
Yang (10.1016/j.neuroscience.2025.07.020_b0180) 2023; 236
10.1016/j.neuroscience.2025.07.020_b0085
Cortes (10.1016/j.neuroscience.2025.07.020_b0030) 1995; 20
10.1016/j.neuroscience.2025.07.020_b0040
Liang (10.1016/j.neuroscience.2025.07.020_b0090) 2022; 11
Cai (10.1016/j.neuroscience.2025.07.020_b0025) 2022; 9
Zimmerman (10.1016/j.neuroscience.2025.07.020_b0200) 2015; 56
Pratiwi (10.1016/j.neuroscience.2025.07.020_b0125) 2023
Malhi (10.1016/j.neuroscience.2025.07.020_b0110) 2018; 392
Sun (10.1016/j.neuroscience.2025.07.020_b0145) 2024; 84
Lan (10.1016/j.neuroscience.2025.07.020_b0075) 2023
Sun (10.1016/j.neuroscience.2025.07.020_b0150) 2025; 19
Zhang (10.1016/j.neuroscience.2025.07.020_b0190) 2022; 203–208
Wang (10.1016/j.neuroscience.2025.07.020_b0160) 2012; 7
Zhu (10.1016/j.neuroscience.2025.07.020_b0195) 2023; 2023
Lempel (10.1016/j.neuroscience.2025.07.020_b0080) 1976; 22
10.1016/j.neuroscience.2025.07.020_b0115
Yang (10.1016/j.neuroscience.2025.07.020_b0175) 2023; 14
Quinlan (10.1016/j.neuroscience.2025.07.020_b0130) 1986; 1
Angulo-Ruiz (10.1016/j.neuroscience.2025.07.020_b0010) 2023; 36
Kaspar (10.1016/j.neuroscience.2025.07.020_b0060) 1987; 36
Ke (10.1016/j.neuroscience.2025.07.020_b0065) 2024; 155
10.1016/j.neuroscience.2025.07.020_b0070
Ibáñez-Molina (10.1016/j.neuroscience.2025.07.020_b0055) 2015; 126
Wang (10.1016/j.neuroscience.2025.07.020_b0165) 2023; 70
Luo (10.1016/j.neuroscience.2025.07.020_b0100) 2025; 4
Cover (10.1016/j.neuroscience.2025.07.020_b0035) 1967; 13
References_xml – reference: Kononenko, I. (1994). Estimating attributes: Analysis and extensions of RELIEF. In F. Bergadano & L. De Raedt (Eds.), Machine learning: ECML-94 (Lecture Notes in Computer Science, 784, 171-182. Springer. DOI: 10.1007/3-540-57868-4_57.
– volume: 36
  start-page: 736
  year: 2023
  end-page: 749
  ident: b0010
  article-title: Linear and Non-linear analyses of EEG in a Group of ASD Children during resting state condition
  publication-title: Brain Topogr.
– volume: 11
  start-page: 322
  year: 2022
  end-page: 342
  ident: b0090
  article-title: Dissociable Roles of Theta and Alpha in Sub-second and Supra-Second Time Reproduction: an Investigation of their Links to Depression and anxiety
  publication-title: Timing Time Percept.
– volume: 36
  start-page: 842
  year: 1987
  end-page: 848
  ident: b0060
  article-title: Easily calculable measure for the complexity of spatiotemporal patterns
  publication-title: Phys. Rev. A
– start-page: 173
  year: 2023
  end-page: 178
  ident: b0125
  article-title: Comparative analysis of brain waves for EEG-based depression detection in the prefrontal cortex lobe using LSTM
  publication-title: Proceedings of the 2023 7th International Conference on New Media Studies (CONMEDIA)
– volume: 203–208
  year: 2022
  ident: b0190
  article-title: Altered lateralization of gamma oscillations and theta-gamma coupling in major depression: an eeg study
  publication-title: ACM Trans.
– volume: 19
  start-page: 52
  year: 2025
  ident: b0150
  article-title: BISNN: Bio-information-fused spiking neural networks for enhanced EEG-based emotion recognition
  publication-title: Cogn. Neurodyn.
– volume: 236
  year: 2023
  ident: b0180
  article-title: Cross-subject classification of depression by using multiparadigm EEG feature fusion
  publication-title: Comput. Methods Programs Biomed.
– volume: 32
  start-page: 563
  year: 2024
  end-page: 574
  ident: b0170
  article-title: An EEG-based depressive detection network with adaptive feature learning and channel activation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 4
  start-page: 2
  year: 2025
  ident: b0100
  article-title: Meta analysis of resting frontal alpha asymmetry as a biomarker of depression
  publication-title: Npj Mental Health Res
– start-page: 1
  year: 2023
  end-page: 4
  ident: b0050
  article-title: Gamma rhythm and theta-gamma coupling alternation in chronic unpredictable stress (CUS)-induced depression rats
  publication-title: 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
– start-page: 1
  year: 2023
  end-page: 4
  ident: b0075
  article-title: Investigating Emotion EEG patterns for Depression Detection with Attentive simple Graph Convolutional Network
  publication-title: 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
– volume: 60
  year: 2023
  ident: b0095
  article-title: Evaluating EEG complexity metrics as biomarkers for depression
  publication-title: Psychophysiology
– volume: 70
  start-page: 2203
  year: 2023
  end-page: 2216
  ident: b0165
  article-title: AMGCN-L: an adaptive multi-time-window graph convolutional network with long-short-term memory for depression detection
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 17
  start-page: 869
  year: 2023
  end-page: 891
  ident: b0015
  article-title: Multiscale entropy of ADHD children during resting state condition
  publication-title: Cogn. Neurodyn.
– volume: 12
  start-page: 2054
  year: 2024
  ident: b0155
  article-title: Resting-state EEG alterations of practice-related spectral activity and connectivity patterns in depression
  publication-title: Biomedicines
– volume: 12
  year: 2017
  ident: b0120
  article-title: A wavelet-based technique to predict treatment outcome for Major Depressive Disorder
  publication-title: PLoS One
– volume: 1
  start-page: 81
  year: 1986
  end-page: 106
  ident: b0130
  article-title: Induction of decision trees
  publication-title: Mach. Learn.
– volume: 5
  start-page: 4938
  year: 2024
  end-page: 4947
  ident: b0020
  article-title: A robust deep-learning model to detect major depressive disorder utilizing EEG signals
  publication-title: IEEE Trans. Artif. Intell.
– volume: 13
  start-page: 21
  year: 1967
  end-page: 27
  ident: b0035
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inf. Theory
– volume: 155
  start-page: 34
  year: 2024
  end-page: 45
  ident: b0065
  article-title: Multi-region and multi-band electroencephalogram emotion recognition based on self-attention and capsule network
  publication-title: Neural Netw.
– reference: Li, C., Li, P., Zhang, Y., et al. (2024). Effective Emotion Recognition by Learning Discriminative Graph Topologies in EEG Brain Networks. IEEE Transactions on Neural Networks and Learning Systems, 35(8), 10258-10272. https://doi.org/ 10.1109/TNNLS.2023.3238519.
– volume: 126
  start-page: 541
  year: 2015
  end-page: 548
  ident: b0055
  article-title: Multiscale Lempel-Ziv complexity for EEG measures
  publication-title: Clin. Neurophysiol.
– volume: 37
  start-page: 387
  year: 2007
  end-page: 394
  ident: b0140
  article-title: Comparative study of the gamma rhythm in normal conditions, during examination stress, and in patients with first depressive episode
  publication-title: Neurosci. Behav. Physiol.
– volume: 9
  start-page: 178
  year: 2022
  ident: b0025
  article-title: A multi-modal open dataset for mental-disorder analysis
  publication-title: Sci. Data
– reference: Dimitri Marques Abramov, Henrique Santos Lima, Vladimir Lazarev, Paulo Ricardo Galhanone, Constantino Tsallis, Identifying attention-deficit/hyperactivity disorder through the electroencephalogram complexity, Physica A: Statistical Mechanics and its Applications, Volume 653, 2024, 130093, ISSN 0378-4371, https://doi.org/10.1016/j.physa.2024.130093.
– reference: COVID-19 Mental Disorders Collaborators. (2021). Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet, 398(10312), 1665-1666. DOI: 10.1016/S0140-6736(21)02221-2.
– volume: 67
  start-page: 382
  year: 2018
  end-page: 393
  ident: b0105
  article-title: Separation of sources from Single-Channel EEG Signals using Independent Component Analysis
  publication-title: IEEE Trans. Instrum. Meas.
– start-page: 1406
  year: 2023
  end-page: 1412
  ident: b0135
  article-title: Explainable depression recognition from EEG signals via graph convolutional network
  publication-title: In 2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
– volume: 2023
  start-page: 2601
  year: 2023
  end-page: 2608
  ident: b0195
  article-title: EEG-based depression recognition using convolutional neural network with FFT and EMD
  publication-title: IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
– volume: 22
  start-page: 75
  year: 1976
  end-page: 81
  ident: b0080
  article-title: On the complexity of finite sequences
  publication-title: IEEE Trans. Inf. Theory
– volume: 392
  start-page: 2299
  year: 2018
  end-page: 2312
  ident: b0110
  publication-title: Depression. Lancet
– volume: 7
  year: 2012
  ident: b0160
  article-title: Amplitude of low-frequency oscillations in first-episode, treatment-naive patients with major depressive disorder: a resting-state functional MRI study
  publication-title: PLoS One
– volume: 22
  start-page: 93
  year: 2023
  ident: b0185
  article-title: Depression detection based on analysis of EEG signals in multi brain regions
  publication-title: J. Integr. Neurosci.
– volume: 56
  start-page: 29
  year: 2015
  end-page: 34
  ident: b0200
  article-title: How many different ways do patients meet the diagnostic criteria for major depressive disorder?
  publication-title: Compr. Psychiatry
– volume: 84
  year: 2024
  ident: b0145
  article-title: A novel study for depression detecting using audio signals based on graph neural network
  publication-title: Biomed. Signal Process. Control
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: b0030
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– reference: Mao, Z., Wu, H., Tan, Y., & Jin, Y. (2024). EEG based generative depression discriminator. arXiv preprint arXiv:2402.09421. DOI: 10.48550/arXiv.2402.09421.
– volume: 14
  start-page: 44
  year: 2023
  ident: b0175
  article-title: EEG network analysis of depressive emotion interference spatial cognition based on a simulated robotic arm docking task
  publication-title: Brain Sci.
– start-page: 173
  year: 2023
  ident: 10.1016/j.neuroscience.2025.07.020_b0125
  article-title: Comparative analysis of brain waves for EEG-based depression detection in the prefrontal cortex lobe using LSTM
– volume: 392
  start-page: 2299
  issue: 10161
  year: 2018
  ident: 10.1016/j.neuroscience.2025.07.020_b0110
  publication-title: Depression. Lancet
  doi: 10.1016/S0140-6736(18)31948-2
– volume: 4
  start-page: 2
  year: 2025
  ident: 10.1016/j.neuroscience.2025.07.020_b0100
  article-title: Meta analysis of resting frontal alpha asymmetry as a biomarker of depression
  publication-title: Npj Mental Health Res
  doi: 10.1038/s44184-025-00117-x
– volume: 12
  start-page: 2054
  issue: 9
  year: 2024
  ident: 10.1016/j.neuroscience.2025.07.020_b0155
  article-title: Resting-state EEG alterations of practice-related spectral activity and connectivity patterns in depression
  publication-title: Biomedicines
  doi: 10.3390/biomedicines12092054
– volume: 236
  year: 2023
  ident: 10.1016/j.neuroscience.2025.07.020_b0180
  article-title: Cross-subject classification of depression by using multiparadigm EEG feature fusion
  publication-title: Comput. Methods Programs Biomed.
– volume: 155
  start-page: 34
  year: 2024
  ident: 10.1016/j.neuroscience.2025.07.020_b0065
  article-title: Multi-region and multi-band electroencephalogram emotion recognition based on self-attention and capsule network
  publication-title: Neural Netw.
– volume: 17
  start-page: 869
  issue: 4
  year: 2023
  ident: 10.1016/j.neuroscience.2025.07.020_b0015
  article-title: Multiscale entropy of ADHD children during resting state condition
  publication-title: Cogn. Neurodyn.
  doi: 10.1007/s11571-022-09869-0
– volume: 1
  start-page: 81
  issue: 1
  year: 1986
  ident: 10.1016/j.neuroscience.2025.07.020_b0130
  article-title: Induction of decision trees
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022643204877
– volume: 126
  start-page: 541
  issue: 3
  year: 2015
  ident: 10.1016/j.neuroscience.2025.07.020_b0055
  article-title: Multiscale Lempel-Ziv complexity for EEG measures
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2014.07.012
– volume: 19
  start-page: 52
  year: 2025
  ident: 10.1016/j.neuroscience.2025.07.020_b0150
  article-title: BISNN: Bio-information-fused spiking neural networks for enhanced EEG-based emotion recognition
  publication-title: Cogn. Neurodyn.
  doi: 10.1007/s11571-025-10239-9
– volume: 60
  issue: 8
  year: 2023
  ident: 10.1016/j.neuroscience.2025.07.020_b0095
  article-title: Evaluating EEG complexity metrics as biomarkers for depression
  publication-title: Psychophysiology
  doi: 10.1111/psyp.14274
– volume: 13
  start-page: 21
  issue: 1
  year: 1967
  ident: 10.1016/j.neuroscience.2025.07.020_b0035
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1967.1053964
– volume: 32
  start-page: 563
  issue: 4
  year: 2024
  ident: 10.1016/j.neuroscience.2025.07.020_b0170
  article-title: An EEG-based depressive detection network with adaptive feature learning and channel activation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.neuroscience.2025.07.020_b0030
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022627411411
– volume: 12
  issue: 2
  year: 2017
  ident: 10.1016/j.neuroscience.2025.07.020_b0120
  article-title: A wavelet-based technique to predict treatment outcome for Major Depressive Disorder
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0171409
– volume: 22
  start-page: 93
  issue: 4
  year: 2023
  ident: 10.1016/j.neuroscience.2025.07.020_b0185
  article-title: Depression detection based on analysis of EEG signals in multi brain regions
  publication-title: J. Integr. Neurosci.
  doi: 10.31083/j.jin2204093
– start-page: 1
  year: 2023
  ident: 10.1016/j.neuroscience.2025.07.020_b0050
  article-title: Gamma rhythm and theta-gamma coupling alternation in chronic unpredictable stress (CUS)-induced depression rats
– start-page: 1406
  year: 2023
  ident: 10.1016/j.neuroscience.2025.07.020_b0135
  article-title: Explainable depression recognition from EEG signals via graph convolutional network
– volume: 56
  start-page: 29
  year: 2015
  ident: 10.1016/j.neuroscience.2025.07.020_b0200
  article-title: How many different ways do patients meet the diagnostic criteria for major depressive disorder?
  publication-title: Compr. Psychiatry
  doi: 10.1016/j.comppsych.2014.09.007
– volume: 70
  start-page: 2203
  issue: 7
  year: 2023
  ident: 10.1016/j.neuroscience.2025.07.020_b0165
  article-title: AMGCN-L: an adaptive multi-time-window graph convolutional network with long-short-term memory for depression detection
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 5
  start-page: 4938
  issue: 10
  year: 2024
  ident: 10.1016/j.neuroscience.2025.07.020_b0020
  article-title: A robust deep-learning model to detect major depressive disorder utilizing EEG signals
  publication-title: IEEE Trans. Artif. Intell.
  doi: 10.1109/TAI.2024.3394792
– volume: 11
  start-page: 322
  issue: 1–4
  year: 2022
  ident: 10.1016/j.neuroscience.2025.07.020_b0090
  article-title: Dissociable Roles of Theta and Alpha in Sub-second and Supra-Second Time Reproduction: an Investigation of their Links to Depression and anxiety
  publication-title: Timing Time Percept.
  doi: 10.1163/22134468-bja10061
– volume: 84
  year: 2024
  ident: 10.1016/j.neuroscience.2025.07.020_b0145
  article-title: A novel study for depression detecting using audio signals based on graph neural network
  publication-title: Biomed. Signal Process. Control
– volume: 14
  start-page: 44
  issue: 1
  year: 2023
  ident: 10.1016/j.neuroscience.2025.07.020_b0175
  article-title: EEG network analysis of depressive emotion interference spatial cognition based on a simulated robotic arm docking task
  publication-title: Brain Sci.
  doi: 10.3390/brainsci14010044
– start-page: 1
  year: 2023
  ident: 10.1016/j.neuroscience.2025.07.020_b0075
  article-title: Investigating Emotion EEG patterns for Depression Detection with Attentive simple Graph Convolutional Network
– ident: 10.1016/j.neuroscience.2025.07.020_b0040
  doi: 10.1016/S0140-6736(21)02221-2
– volume: 2023
  start-page: 2601
  year: 2023
  ident: 10.1016/j.neuroscience.2025.07.020_b0195
  article-title: EEG-based depression recognition using convolutional neural network with FFT and EMD
  publication-title: IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
  doi: 10.1109/BIBM58861.2023.10385385
– volume: 36
  start-page: 842
  issue: 2
  year: 1987
  ident: 10.1016/j.neuroscience.2025.07.020_b0060
  article-title: Easily calculable measure for the complexity of spatiotemporal patterns
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.36.842
– ident: 10.1016/j.neuroscience.2025.07.020_b0005
  doi: 10.1016/j.physa.2024.130093
– volume: 67
  start-page: 382
  issue: 2
  year: 2018
  ident: 10.1016/j.neuroscience.2025.07.020_b0105
  article-title: Separation of sources from Single-Channel EEG Signals using Independent Component Analysis
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2017.2775358
– volume: 37
  start-page: 387
  issue: 4
  year: 2007
  ident: 10.1016/j.neuroscience.2025.07.020_b0140
  article-title: Comparative study of the gamma rhythm in normal conditions, during examination stress, and in patients with first depressive episode
  publication-title: Neurosci. Behav. Physiol.
  doi: 10.1007/s11055-007-0025-4
– volume: 22
  start-page: 75
  issue: 1
  year: 1976
  ident: 10.1016/j.neuroscience.2025.07.020_b0080
  article-title: On the complexity of finite sequences
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1976.1055501
– volume: 7
  issue: 10
  year: 2012
  ident: 10.1016/j.neuroscience.2025.07.020_b0160
  article-title: Amplitude of low-frequency oscillations in first-episode, treatment-naive patients with major depressive disorder: a resting-state functional MRI study
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0048658
– ident: 10.1016/j.neuroscience.2025.07.020_b0070
  doi: 10.1007/3-540-57868-4_57
– volume: 203–208
  year: 2022
  ident: 10.1016/j.neuroscience.2025.07.020_b0190
  article-title: Altered lateralization of gamma oscillations and theta-gamma coupling in major depression: an eeg study
  publication-title: ACM Trans.
– volume: 9
  start-page: 178
  year: 2022
  ident: 10.1016/j.neuroscience.2025.07.020_b0025
  article-title: A multi-modal open dataset for mental-disorder analysis
  publication-title: Sci. Data
  doi: 10.1038/s41597-022-01211-x
– ident: 10.1016/j.neuroscience.2025.07.020_b0085
  doi: 10.1109/TNNLS.2023.3238519
– volume: 36
  start-page: 736
  issue: 5
  year: 2023
  ident: 10.1016/j.neuroscience.2025.07.020_b0010
  article-title: Linear and Non-linear analyses of EEG in a Group of ASD Children during resting state condition
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-023-00976-7
– ident: 10.1016/j.neuroscience.2025.07.020_b0115
SSID ssj0000543
Score 2.4814653
Snippet •A multiscale nonlinear feature fusion method is proposed to detect MDD patients.•Cross-subject experiments are conducted on multi datasets to validate the...
Exploring multi-scale nonlinear patterns from different frequency bands in resting state electroencephalogram (EEG) signals is significant for major depressive...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Adult
Brain - physiopathology
Cross-subject
Depressive Disorder, Major - diagnosis
Depressive Disorder, Major - physiopathology
Electroencephalography - methods
Female
Humans
Male
MDD
Middle Aged
Multiscale
Nonlinear Dynamics
Rest - physiology
Resting state EEG
Signal Processing, Computer-Assisted
Young Adult
Title A cross-subject MDD detection approach based on multiscale nonlinear analysis in resting state EEG
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0306452225007821
https://dx.doi.org/10.1016/j.neuroscience.2025.07.020
https://www.ncbi.nlm.nih.gov/pubmed/40659284
https://www.proquest.com/docview/3230214893
Volume 582
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9DL15EnR_ziwjira5rknZBPIxtOhW9qLBbSJsEJliH6w5e_Nt9L211goLgsaEhad7re7_38vILIcci0izUKShv15qAG50FUkgRpBLQfGxNV1vMQ97exaNHfj0W4wbp12dhsKyysv2lTffWumppV6vZnk4m7XtEu8gHDk4c_Zw_wc4T1PLT968yD4Ak5RXJEDnj2zXxqK_xWuCMRMrMSHgiT7z7-2cn9RsI9c7oYo2sViiS9sqJrpOGzTdIs5dDBP38Rk-or-v0CfMmSXvUjxLM5ikmXejtYECNLXwNVk5rUnGK_sxQaPE1hjOQnaV5SaShX6muyEvoJKd4nQd4POoPI9Hh8HKTPF4MH_qjoLpZIchYlxcQL2bg-BOtIxanvJMkwsTMAHhjzCTMxTKzsRVaahmZ1HGMo1zMnJOZcBoEyLbIEszA7hAK4YnsSB2HDsAIJhV5FrlIuARwXWakaRFWL6WalgQaqq4se1KLAlAoABUmCgTQImf1qqv6iCgYNQV2_k-9zz97f1OmP_c_qgWt4G_DLRSd25f5TDGI2KIOEva0yHapAZ9fxf0WdZfv_nP0PbKCTz5xHe6TpeJ1bg8A-RTpoVftQ7Lcu7oZ3X0A_MMEow
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_GfNAX8dv5GUF8K9uapl0QH4ZO58f2ooJvIW0SmGAdbnvwv_cubaeCguBr2iNpLr373eXyC8CxCDVv6RQXb8eaIDI6C6SQIkglovnYmo62lIccDOP-Y3TzJJ5qcF6dhaGyytL2FzbdW-uypVnOZnM8GjXvCe0SHzg6cfJzGAItEDuVqMNC9_q2P_w0yKIonsP3AxKouEd9mdcX2khizQyF5_Kk679_9lO_4VDvjy5XYLkEkqxbjHUVajZfg_VujkH0yzs7Yb600-fM1yHtMt9LMJmllHdhg4sLZuzUl2HlrOIVZ-TSDMMWX2Y4QfVZlhdcGvqN6ZK_hI1yRjd6oNNj_jwS6_WuNuDxsvdw3g_KyxWCjHeiKYaMGfr-ROuQx2nUThJhYm4Qv3FuEu5imdnYCi21DE3qIgqlXMydk5lwGnXIN6GOI7DbwDBCkW2p45ZDPEJ5xSgLXShcgtAuM9I0gFdTqcYFh4aqisue1VcFKFKAaiUKFdCA02rWVXVKFO2aQlP_J-mzufS39fRn-aNK0Qp_ONpF0bl9nU0Ux6AtbBNnTwO2ihUw_6rI71J3op1_9n4Ii_2HwZ26ux7e7sISPfF57NYe1KdvM7uPQGiaHpQL_QPfjwdU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+cross-subject+MDD+detection+approach+based+on+multiscale+nonlinear+analysis+in+resting+state+EEG&rft.jtitle=Neuroscience&rft.au=Zhang%2C+Zhen&rft.au=Yang%2C+Jianli&rft.au=Xiong%2C+Peng&rft.au=Hao%2C+Huaqing&rft.date=2025-08-30&rft.pub=Elsevier+Inc&rft.issn=0306-4522&rft.volume=582&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1016%2Fj.neuroscience.2025.07.020&rft.externalDocID=S0306452225007821
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4522&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4522&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4522&client=summon