A meta-analysis on the immunogenicity of prototype, monovalent-adapted and bivalent vaccines against SARS-CoV-2 wildtype, Omicron BA.1 and Omicron BA.4/5 in healthy adults

Although COVID-19 is no longer classified as the first public health emergency, nevertheless, it still presents a serious menace to the health of the global population. Consequently, the development of COVID-19 vaccines possessing an optimal composition that can elicit broad-spectrum neutralizing re...

Full description

Saved in:
Bibliographic Details
Published inVirology (New York, N.Y.) Vol. 606; p. 110509
Main Authors Banga Ndzouboukou, Jo-Lewis, Kamara, Abdul A., Ullah, Nadeem, Lei, Qing, Fan, Xiong-lin
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.05.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although COVID-19 is no longer classified as the first public health emergency, nevertheless, it still presents a serious menace to the health of the global population. Consequently, the development of COVID-19 vaccines possessing an optimal composition that can elicit broad-spectrum neutralizing responses against various SARS-CoV-2 variants is crucial. This meta-analysis aimed to compare the immunogenicity of prototype, monovalent-adapted, and bivalent COVID-19 vaccines against prototype SARS-CoV-2, Omicron BA.1 variant, and Omicron BA.4/5 subvariant in healthy adults. We utilized 4 medical databases to retrieve original studies and employed the fixed effect model to estimate pooled neutralization titers. A total of 12 studies concerning 4581 subjects were included in the meta-analysis. We found that participants who received prototype, monovalent-adapted, and bivalent vaccines as a second booster significantly developed neutralizing antibody (nAb) titers against prototype SARS-CoV-2, Omicron BA.1 variant, and Omicron BA.4/5 subvariant, with monovalent-adapted and bivalent vaccines exhibiting a higher increment. Furthermore, the bivalent(Prototype/Omicron BA.1) recombinant protein vaccine exhibited the highest increment in neutralization titers(MD = 1.95; 95 %CI:0.78–3.12; p < 0.01) against the prototype SARS-CoV-2 and Omicron BA.4/5 subvariant compared to the other vaccine regimens. Interestingly, only individuals who received the monovalent (Omicron BA.1)-adapted mRNA vaccine as a second booster showed the highest increase in neutralization titers (MD:1.37; 95 %CI:0.50–2.24; p < 0.01) against the Omicron BA.1 variant compared to the other vaccine regimens. These findings showed that bivalent recombinant protein vaccines seem more immunogenic than bivalent mRNA vaccines, and bivalent vaccines might not be superior immunogens for induced strong protective immune responses compared to monovalent-adapted vaccines. •Monovalent-adapted and bivalent vaccines showed a higher increment in neutralization titer compared to prototype vaccines.•Monovalent mRNA vaccines seem to induce a higher neutralization activity compared to bivalent vaccines.•Bivalent recombinant protein vaccine regimens seem to be more immunogenic compared to bivalent mRNA vaccines.
AbstractList Although COVID-19 is no longer classified as the first public health emergency, nevertheless, it still presents a serious menace to the health of the global population. Consequently, the development of COVID-19 vaccines possessing an optimal composition that can elicit broad-spectrum neutralizing responses against various SARS-CoV-2 variants is crucial. This meta-analysis aimed to compare the immunogenicity of prototype, monovalent-adapted, and bivalent COVID-19 vaccines against prototype SARS-CoV-2, Omicron BA.1 variant, and Omicron BA.4/5 subvariant in healthy adults. We utilized 4 medical databases to retrieve original studies and employed the fixed effect model to estimate pooled neutralization titers. A total of 12 studies concerning 4581 subjects were included in the meta-analysis. We found that participants who received prototype, monovalent-adapted, and bivalent vaccines as a second booster significantly developed neutralizing antibody (nAb) titers against prototype SARS-CoV-2, Omicron BA.1 variant, and Omicron BA.4/5 subvariant, with monovalent-adapted and bivalent vaccines exhibiting a higher increment. Furthermore, the bivalent(Prototype/Omicron BA.1) recombinant protein vaccine exhibited the highest increment in neutralization titers(MD = 1.95; 95 %CI:0.78-3.12; p < 0.01) against the prototype SARS-CoV-2 and Omicron BA.4/5 subvariant compared to the other vaccine regimens. Interestingly, only individuals who received the monovalent (Omicron BA.1)-adapted mRNA vaccine as a second booster showed the highest increase in neutralization titers (MD:1.37; 95 %CI:0.50-2.24; p < 0.01) against the Omicron BA.1 variant compared to the other vaccine regimens. These findings showed that bivalent recombinant protein vaccines seem more immunogenic than bivalent mRNA vaccines, and bivalent vaccines might not be superior immunogens for induced strong protective immune responses compared to monovalent-adapted vaccines.
Although COVID-19 is no longer classified as the first public health emergency, nevertheless, it still presents a serious menace to the health of the global population. Consequently, the development of COVID-19 vaccines possessing an optimal composition that can elicit broad-spectrum neutralizing responses against various SARS-CoV-2 variants is crucial. This meta-analysis aimed to compare the immunogenicity of prototype, monovalent-adapted, and bivalent COVID-19 vaccines against prototype SARS-CoV-2, Omicron BA.1 variant, and Omicron BA.4/5 subvariant in healthy adults. We utilized 4 medical databases to retrieve original studies and employed the fixed effect model to estimate pooled neutralization titers. A total of 12 studies concerning 4581 subjects were included in the meta-analysis. We found that participants who received prototype, monovalent-adapted, and bivalent vaccines as a second booster significantly developed neutralizing antibody (nAb) titers against prototype SARS-CoV-2, Omicron BA.1 variant, and Omicron BA.4/5 subvariant, with monovalent-adapted and bivalent vaccines exhibiting a higher increment. Furthermore, the bivalent(Prototype/Omicron BA.1) recombinant protein vaccine exhibited the highest increment in neutralization titers(MD = 1.95; 95 %CI:0.78–3.12; p < 0.01) against the prototype SARS-CoV-2 and Omicron BA.4/5 subvariant compared to the other vaccine regimens. Interestingly, only individuals who received the monovalent (Omicron BA.1)-adapted mRNA vaccine as a second booster showed the highest increase in neutralization titers (MD:1.37; 95 %CI:0.50–2.24; p < 0.01) against the Omicron BA.1 variant compared to the other vaccine regimens. These findings showed that bivalent recombinant protein vaccines seem more immunogenic than bivalent mRNA vaccines, and bivalent vaccines might not be superior immunogens for induced strong protective immune responses compared to monovalent-adapted vaccines. •Monovalent-adapted and bivalent vaccines showed a higher increment in neutralization titer compared to prototype vaccines.•Monovalent mRNA vaccines seem to induce a higher neutralization activity compared to bivalent vaccines.•Bivalent recombinant protein vaccine regimens seem to be more immunogenic compared to bivalent mRNA vaccines.
AbstractAlthough COVID-19 is no longer classified as the first public health emergency, nevertheless, it still presents a serious menace to the health of the global population. Consequently, the development of COVID-19 vaccines possessing an optimal composition that can elicit broad-spectrum neutralizing responses against various SARS-CoV-2 variants is crucial. This meta-analysis aimed to compare the immunogenicity of prototype, monovalent-adapted, and bivalent COVID-19 vaccines against prototype SARS-CoV-2, Omicron BA.1 variant, and Omicron BA.4/5 subvariant in healthy adults. We utilized 4 medical databases to retrieve original studies and employed the fixed effect model to estimate pooled neutralization titers. A total of 12 studies concerning 4581 subjects were included in the meta-analysis. We found that participants who received prototype, monovalent-adapted, and bivalent vaccines as a second booster significantly developed neutralizing antibody (nAb) titers against prototype SARS-CoV-2, Omicron BA.1 variant, and Omicron BA.4/5 subvariant, with monovalent-adapted and bivalent vaccines exhibiting a higher increment. Furthermore, the bivalent(Prototype/Omicron BA.1) recombinant protein vaccine exhibited the highest increment in neutralization titers(MD = 1.95; 95 %CI:0.78–3.12; p < 0.01) against the prototype SARS-CoV-2 and Omicron BA.4/5 subvariant compared to the other vaccine regimens. Interestingly, only individuals who received the monovalent (Omicron BA.1)-adapted mRNA vaccine as a second booster showed the highest increase in neutralization titers (MD:1.37; 95 %CI:0.50–2.24; p < 0.01) against the Omicron BA.1 variant compared to the other vaccine regimens. These findings showed that bivalent recombinant protein vaccines seem more immunogenic than bivalent mRNA vaccines, and bivalent vaccines might not be superior immunogens for induced strong protective immune responses compared to monovalent-adapted vaccines.
Although COVID-19 is no longer classified as the first public health emergency, nevertheless, it still presents a serious menace to the health of the global population. Consequently, the development of COVID-19 vaccines possessing an optimal composition that can elicit broad-spectrum neutralizing responses against various SARS-CoV-2 variants is crucial. This meta-analysis aimed to compare the immunogenicity of prototype, monovalent-adapted, and bivalent COVID-19 vaccines against prototype SARS-CoV-2, Omicron BA.1 variant, and Omicron BA.4/5 subvariant in healthy adults. We utilized 4 medical databases to retrieve original studies and employed the fixed effect model to estimate pooled neutralization titers. A total of 12 studies concerning 4581 subjects were included in the meta-analysis. We found that participants who received prototype, monovalent-adapted, and bivalent vaccines as a second booster significantly developed neutralizing antibody (nAb) titers against prototype SARS-CoV-2, Omicron BA.1 variant, and Omicron BA.4/5 subvariant, with monovalent-adapted and bivalent vaccines exhibiting a higher increment. Furthermore, the bivalent(Prototype/Omicron BA.1) recombinant protein vaccine exhibited the highest increment in neutralization titers(MD = 1.95; 95 %CI:0.78–3.12; p &lt; 0.01) against the prototype SARS-CoV-2 and Omicron BA.4/5 subvariant compared to the other vaccine regimens. Interestingly, only individuals who received the monovalent (Omicron BA.1)-adapted mRNA vaccine as a second booster showed the highest increase in neutralization titers (MD:1.37; 95 %CI:0.50–2.24; p &lt; 0.01) against the Omicron BA.1 variant compared to the other vaccine regimens. These findings showed that bivalent recombinant protein vaccines seem more immunogenic than bivalent mRNA vaccines, and bivalent vaccines might not be superior immunogens for induced strong protective immune responses compared to monovalent-adapted vaccines.
Although COVID-19 is no longer classified as the first public health emergency, nevertheless, it still presents a serious menace to the health of the global population. Consequently, the development of COVID-19 vaccines possessing an optimal composition that can elicit broad-spectrum neutralizing responses against various SARS-CoV-2 variants is crucial. This meta-analysis aimed to compare the immunogenicity of prototype, monovalent-adapted, and bivalent COVID-19 vaccines against prototype SARS-CoV-2, Omicron BA.1 variant, and Omicron BA.4/5 subvariant in healthy adults. We utilized 4 medical databases to retrieve original studies and employed the fixed effect model to estimate pooled neutralization titers. A total of 12 studies concerning 4581 subjects were included in the meta-analysis. We found that participants who received prototype, monovalent-adapted, and bivalent vaccines as a second booster significantly developed neutralizing antibody (nAb) titers against prototype SARS-CoV-2, Omicron BA.1 variant, and Omicron BA.4/5 subvariant, with monovalent-adapted and bivalent vaccines exhibiting a higher increment. Furthermore, the bivalent(Prototype/Omicron BA.1) recombinant protein vaccine exhibited the highest increment in neutralization titers(MD = 1.95; 95 %CI:0.78-3.12; p < 0.01) against the prototype SARS-CoV-2 and Omicron BA.4/5 subvariant compared to the other vaccine regimens. Interestingly, only individuals who received the monovalent (Omicron BA.1)-adapted mRNA vaccine as a second booster showed the highest increase in neutralization titers (MD:1.37; 95 %CI:0.50-2.24; p < 0.01) against the Omicron BA.1 variant compared to the other vaccine regimens. These findings showed that bivalent recombinant protein vaccines seem more immunogenic than bivalent mRNA vaccines, and bivalent vaccines might not be superior immunogens for induced strong protective immune responses compared to monovalent-adapted vaccines.Although COVID-19 is no longer classified as the first public health emergency, nevertheless, it still presents a serious menace to the health of the global population. Consequently, the development of COVID-19 vaccines possessing an optimal composition that can elicit broad-spectrum neutralizing responses against various SARS-CoV-2 variants is crucial. This meta-analysis aimed to compare the immunogenicity of prototype, monovalent-adapted, and bivalent COVID-19 vaccines against prototype SARS-CoV-2, Omicron BA.1 variant, and Omicron BA.4/5 subvariant in healthy adults. We utilized 4 medical databases to retrieve original studies and employed the fixed effect model to estimate pooled neutralization titers. A total of 12 studies concerning 4581 subjects were included in the meta-analysis. We found that participants who received prototype, monovalent-adapted, and bivalent vaccines as a second booster significantly developed neutralizing antibody (nAb) titers against prototype SARS-CoV-2, Omicron BA.1 variant, and Omicron BA.4/5 subvariant, with monovalent-adapted and bivalent vaccines exhibiting a higher increment. Furthermore, the bivalent(Prototype/Omicron BA.1) recombinant protein vaccine exhibited the highest increment in neutralization titers(MD = 1.95; 95 %CI:0.78-3.12; p < 0.01) against the prototype SARS-CoV-2 and Omicron BA.4/5 subvariant compared to the other vaccine regimens. Interestingly, only individuals who received the monovalent (Omicron BA.1)-adapted mRNA vaccine as a second booster showed the highest increase in neutralization titers (MD:1.37; 95 %CI:0.50-2.24; p < 0.01) against the Omicron BA.1 variant compared to the other vaccine regimens. These findings showed that bivalent recombinant protein vaccines seem more immunogenic than bivalent mRNA vaccines, and bivalent vaccines might not be superior immunogens for induced strong protective immune responses compared to monovalent-adapted vaccines.
ArticleNumber 110509
Author Lei, Qing
Kamara, Abdul A.
Banga Ndzouboukou, Jo-Lewis
Fan, Xiong-lin
Ullah, Nadeem
Author_xml – sequence: 1
  givenname: Jo-Lewis
  orcidid: 0000-0003-1501-8361
  surname: Banga Ndzouboukou
  fullname: Banga Ndzouboukou, Jo-Lewis
  organization: Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
– sequence: 2
  givenname: Abdul A.
  surname: Kamara
  fullname: Kamara, Abdul A.
  organization: Department of Mathematica and Statistics, Fourah Bay College, University of Sierra Leone, Sierra Leone
– sequence: 3
  givenname: Nadeem
  surname: Ullah
  fullname: Ullah, Nadeem
  organization: Department of Clinical Microbiology, Umeå University, 90187, Umeå, Sweden
– sequence: 4
  givenname: Qing
  surname: Lei
  fullname: Lei, Qing
  organization: Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
– sequence: 5
  givenname: Xiong-lin
  orcidid: 0000-0001-9754-372X
  surname: Fan
  fullname: Fan, Xiong-lin
  email: xlfan@hust.edu.cn
  organization: Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40132435$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-237144$$DView record from Swedish Publication Index
BookMark eNqFUt1q2zAYFaNjTbM9wWDochdzqj87DmODLOt-oFBYtt4KWfqcKLOlzJJT_Ex7ySp1V8Zg9EZCn845H5xzztCJ8w4QeknJjBJanO9mB9v5ZsYIy2eUkpwsnqAJJYsiI1zQEzQhRLCsKBk7RWch7Eh6z-fkGToVhHImeD5Bv5e4hagy5VQzBBuwdzhuAdu27Z3fgLPaxgH7Gu87H30c9vAGt975g2rAxUwZtY9gsHIGV3Yc4oPS2joIWG2UdSHi9fLbOlv564zhG9uYUeWqtbpL6z4sZ_SO_9dAnOfYOrwF1cTtgJXpmxieo6e1agK8uL-n6Meni--rL9nl1eevq-VlpnkpYpbXJRULKEqVV1QJXefCmEVRGaC6YoTW8-SOSZ-VhroApQrNeF1yLgpKmSB8irJRN9zAvq_kvrOt6gbplZUf7fVS-m4j-7aXjM-pEAn_esQni371EKJsbdDQNMqB74PktKS8KHg6p-jVPbSvWjAP0n8CSQA-ApITIXRQP0AokcfY5U7exS6Pscsx9sR6N7Ig2XKw0MmgLTgNxnagozTePsJ__w9fNzZFr5qfMEDY-b5L_QiSysAkketjsY69YjkhlLGjwNv_Czy6_hbs7N_x
Cites_doi 10.3389/fmicb.2022.927306
10.3390/vaccines12050554
10.1038/d41586-022-01730-y
10.1007/s11596-021-2470-7
10.1136/bmj-2021-069761
10.1002/rmv.2391
10.1038/s41586-022-04980-y
10.1038/s41591-023-02517-y
10.1056/NEJMoa2213082
10.1016/j.celrep.2022.111160
10.1016/j.jclinepi.2021.02.003
10.1093/infdis/jiaa797
10.3389/fimmu.2021.701501
10.1016/S0140-6736(21)01699-8
10.1002/rmv.2381
10.1016/j.eclinm.2023.102195
10.1016/j.celrep.2022.111729
10.1038/s41591-023-02503-4
10.1016/j.cell.2021.10.011
10.1038/s41590-022-01248-5
10.1016/S1473-3099(24)00077-X
10.1016/bs.ai.2022.07.001
10.1038/s41591-022-02031-7
10.1038/s41467-023-39766-x
10.1136/bmj.l4898
10.1053/apnr.2002.34181
10.1016/j.chom.2022.05.001
10.1038/s41467-022-30681-1
10.1016/S0140-6736(20)32661-1
10.1016/j.addr.2021.01.001
10.1056/NEJMoa2208343
10.1186/s12985-024-02335-9
10.1080/22221751.2022.2099305
10.1038/s41586-023-06025-4
10.1093/cid/ciad209
10.1038/s41467-023-38892-w
10.1038/s41467-024-48414-x
10.1080/21645515.2023.2264589
10.1093/infdis/jiad508
ContentType Journal Article
Copyright 2025 Elsevier Inc.
Elsevier Inc.
Copyright © 2025 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2025 Elsevier Inc.
– notice: Elsevier Inc.
– notice: Copyright © 2025 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTPV
AOWAS
D93
DOI 10.1016/j.virol.2025.110509
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
SwePub
SwePub Articles
SWEPUB Umeå universitet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE




MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1096-0341
EndPage 110509
ExternalDocumentID oai_DiVA_org_umu_237144
40132435
10_1016_j_virol_2025_110509
S0042682225001229
1_s2_0_S0042682225001229
Genre Research Support, Non-U.S. Gov't
Meta-Analysis
Journal Article
GroupedDBID ---
--K
--M
-DZ
-~X
.1-
.55
.FO
.GJ
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
29Q
3O-
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
AAAJQ
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABMZM
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADMUD
ADNMO
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEXQZ
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGEKW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
CJTIS
COF
CS3
DM4
DU5
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEJ
HMG
HMK
HMO
HVGLF
HX~
HZ~
H~9
IHE
IXB
J1W
KOM
LG5
LUGTX
LZ5
M29
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OD-
OHT
OK1
OO.
OZT
P-8
P-9
P2P
PC.
Q38
Q44
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SIN
SSH
SSI
SSZ
T5K
TN5
UAP
UQL
WH7
WUQ
X7M
XOL
XPP
Y6R
Z5R
ZGI
ZKB
ZMT
ZU3
~G-
~KM
AACTN
AFCTW
RIG
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTPV
AOWAS
D93
ID FETCH-LOGICAL-c384t-5f8149e68a5b1a4cf54dd96bde1cb201f7341da5bbcef6eaa6c23f83346112403
IEDL.DBID .~1
ISSN 0042-6822
1096-0341
IngestDate Thu Aug 21 06:29:05 EDT 2025
Wed Jul 02 05:13:58 EDT 2025
Fri Aug 08 01:51:59 EDT 2025
Tue Jul 01 05:15:04 EDT 2025
Sat Apr 05 15:42:21 EDT 2025
Thu Apr 17 13:50:53 EDT 2025
Tue Aug 26 17:14:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Monovalent-adapted vaccine
Second booster
SARS-CoV-2 variants
Bivalent vaccine
Immunogenicity
Neutralizing antibody
Language English
License Copyright © 2025 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c384t-5f8149e68a5b1a4cf54dd96bde1cb201f7341da5bbcef6eaa6c23f83346112403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1501-8361
0000-0001-9754-372X
PMID 40132435
PQID 3181366381
PQPubID 23479
PageCount 1
ParticipantIDs swepub_primary_oai_DiVA_org_umu_237144
proquest_miscellaneous_3181366381
pubmed_primary_40132435
crossref_primary_10_1016_j_virol_2025_110509
elsevier_sciencedirect_doi_10_1016_j_virol_2025_110509
elsevier_clinicalkeyesjournals_1_s2_0_S0042682225001229
elsevier_clinicalkey_doi_10_1016_j_virol_2025_110509
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Virology (New York, N.Y.)
PublicationTitleAlternate Virology
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Xie, Zou, Kurhade, Liu, Ren, Pei-Yong Shi (bib49) 2022; 41
Kurhade, Zou, Xia, Liu, Yang, Cutler, Cooper, Muik, Sahin, Jansen, Ren, Xie, Swanson, Shi (bib28) 2022; 11
Hannawi, Saf Eldin, Abuquta, Alamadi, Mahmoud, Hassan, Xu, Li, Liu, Baidoo, Ibrahim, Alhaj, Chen, Zhou, Xie (bib21) 2023; 14
Zaeck, Tan, Rietdijk, Geers, Sablerolles, Bogers, van Dijk, Gommers, van Leeuwen, Rugebregt, Goorhuis, Postma, Visser, Dalm, Lafeber, Kootstra, Huckriede, Haagmans, van Baarle, Koopmans, Switch-On, van der Kuy, GeurtsvanKessel, de Vries (bib50) 2024; 15
Shrestha, Foster, Rawlinson, Tedla, Bull (bib40) 2022; 32
(bib17) 2024
Winokur, Gayed, Fitz-Patrick, Thomas, Diya, Lockhart, Xu, Zhang, Bangad, Schwartz, Denham, Cardona, Usdan, Ginis, Mensa, Zou, Xie, Shi, Lu, Buitrago, Scully, Cooper, Koury, Jansen, Türeci, Şahin, Swanson, Gruber, Kitchin (bib48) 2023; 388
Hannawi, Yan, Saifeldin, Abuquta, Alamadi, Mahmoud, Hassan, Zhang, Gao, Chen, Gai, Xie (bib22) 2023; 64
Errico, Adams, Fremont (bib19) 2022; 154
Lauring, A.S., Tenforde, M.W., Chappell, J.D., Gaglani, M., Ginde, A.A., McNeal, T., Ghamande, S., Douin, D.J., Talbot, H.K., Casey, J.D., Mohr, N.M., Zepeski, A., Shapiro, N.I., Gibbs, K.W., Files, D.C., Hager, D.N., Shehu, A., Prekker, M.E., Erickson, H.L., Exline, M.C., Gong, M.N., Mohamed, A., Johnson, N.J., Srinivasan, V., Steingrub, J.S., Peltan, I.D., Brown, S.M., Martin, E.T., Monto, A.S., Khan, A., Hough, C.L., Busse, L.W., Ten Lohuis, C.C., Duggal, A., Wilson, J.G., Gordon, A.J., Qadir, N., Chang, S.Y., Mallow, C., Rivas, C., Babcock, H.M., Kwon, J.H., Halasa, N., Grijalva, C.G., Rice, T.W., Stubblefield, W.B., Baughman, A., Womack, K.N., Rhoads, J.P., Lindsell, C.J., Hart, K.W., Zhu, Y., Adams, K., Schrag, S.J., Olson, S.M., Kobayashi, M., Verani, J.R., Patel, M.M., Self, W.H., Influenza and Other Viruses in the Acutely Ill (IVY) Network, 2022. Clinical severity of, and effectiveness of mRNA vaccines against, covid-19 from omicron, delta, and alpha SARS-CoV-2 variants in the United States: prospective observational study. Br. Med. J. 376, e069761.
Payne, Longet, Austin, Skelly, Dejnirattisai, Adele, Meardon, Faustini, Al-Taei, Moore, Tipton, Hering, Angyal, Brown, Nicols, Gillson, Dobson, Amini, Supasa, Cross, Bridges-Webb, Reyes, Linder, Sandhar, Kilby, Tyerman, Altmann, Hornsby, Whitham, Phillips, Malone, Hargreaves, Shields, Saei, Foulkes, Stafford, Johnson, Wootton, Conlon, Jeffery, Matthews, Frater, Deeks, Pollard, Brown, Rowland-Jones, Mongkolsapaya, Barnes, Hopkins, Hall, Dold, Duncan, Richter, Carroll, Screaton, Silva, Turtle, Klenerman, Dunachie, Abuelgasim, Adland, Adlou, Akther, Alhussni, Ali, Ansari, Arancibia-Cárcamo, Bayley, Brown, Chalk, Chand, Chawla, Chinnakannan, Cutteridge, Lara, Denly, Diffey, Dimitriadis, Drake, Donnison, Dupont, Eyre, Fairman, Gardiner, Gilbert-Jarmillo, Goulder, Hackstein, Hambleton, Haniffa, Haworth, Holmes, Horner, Jämsén, Johnson, Jones, Kasanyinga, Kelly, Kirk, Knight, Lawrie, Lee, Lett, Lillie, Lim, Mehta, Mentzer, O'Donnell, Ogbe, Pace, Payne, Platt, Poolan, Provine, Ramamurthy, Robinson, Romaniuk, Rongkard, Sampson, Simmons, Spegarova, Stephenson, Subramaniam, Thaventhiran, Thomas, Travis, Tucker, Turton, Watson, Watson, Weeks, Wilson, Wood, Wright, Xiao, Zawia (bib35) 2021; 184
Lopez, Vazquez, Alvarez, Arribas, Arana-Arri, Muñoz, Navarro-Pérez, Ramos, Molto, Otero-Romero, Esteban, Aurrecoechea, Pomarol, Plana, Perez-Caballero, Bernad, Prado, Riera-Sans, Soriano (bib32) 2024
Chalkias, Harper, Vrbicky, Walsh, Essink, Brosz, McGhee, Tomassini, Chen, Chang, Sutherland, Montefiori, Girard, Edwards, Feng, Zhou, Baden, Miller, Das (bib13) 2022; 387
Rathe, Hemann, Eggenberger, Li, Knoll, Stokes, Hsiang, Netland, Takehara, Pepper, Gale (bib39) 2021; 223
Voysey, Clemens, Madhi, Weckx, Folegatti, Aley, Angus, Baillie, Barnabas, Bhorat, Bibi, Briner, Cicconi, Collins, Colin-Jones, Cutland, Darton, Dheda, Duncan, Emary, Ewer, Fairlie, Faust, Feng, Ferreira, Finn, Goodman, Green, Green, Heath, Hill, Hill, Hirsch, Hodgson, Izu, Jackson, Jenkin, Joe, Kerridge, Koen, Kwatra, Lazarus, Lawrie, Lelliott, Libri, Lillie, Mallory, Mendes, Milan, Minassian, McGregor, Morrison, Mujadidi, Nana, O'Reilly, Padayachee, Pittella, Plested, Pollock, Ramasamy, Rhead, Schwarzbold, Singh, Smith, Song, Snape, Sprinz, Sutherland, Tarrant, Thomson, Török, Toshner, Turner, Vekemans, Villafana, Watson, Williams, Douglas, Hill, Lambe, Gilbert, Pollard (bib46) 2021; 397
Martínez-Flores, Zepeda-Cervantes, Cruz-Reséndiz, Aguirre-Sampieri, Sampieri, Vaca (bib33) 2021; 12
(bib25) 2008
Li, Zhao, Tao, Zhao, Xiao, Ding, Li, Chen, Cheng, Lou, Chen, Wu (bib31) 2023; 19
.
Branche, Rouphael, Losada, Baden, Anderson, Luetkemeyer, Diemert, Winokur, Presti, Kottkamp (bib8) 2023; 77
Flaxman, Marchevsky, Jenkin, Aboagye, Aley, Angus, Belij-Rammerstorfer, Bibi, Bittaye, Cappuccini, Cicconi, Clutterbuck, Davies, Dejnirattisai, Dold, Ewer, Folegatti, Fowler, Hill, Kerridge, Minassian, Mongkolsapaya, Mujadidi, Plested, Ramasamy, Robinson, Sanders, Sheehan, Smith, Snape, Song, Woods, Screaton, Gilbert, Voysey, Pollard, Lambe (bib20) 2021; 398
Page, McKenzie, Bossuyt, Boutron, Hoffmann, Mulrow, Shamseer, Tetzlaff, Moher (bib34) 2021; 134
He, Sun, Chen, Hu, Zhang, Peng, Fu, Yang, Chen (bib23) 2023; 12
Chalkias, Harper, Vrbicky, Walsh, Essink, Brosz, McGhee, Tomassini, Chen, Ying Chang, Sutherland, Montefiori, Girard, Edwards, Jing Feng, Zhou, Baden, Miller, Das (bib14) 2023; 14
Cheng, Mok, Li, Chan, Luk, Lee, Gu, Chan, Tsang, Yiu, Ling, Tang, Luk, Yu, Pekosz, Webby, Cowling, Hui, Peiris (bib16) 2024; 21
Qi, Liu, Wang, Zhang (bib38) 2022; 23
Branche, Rouphael, Diemert, Falsey, Losada, Baden, Frey, Whitaker, Little, Anderson, Walter, Novak, Rupp, Jackson, Babu, Kottkamp, Luetkemeyer, Immergluck, Presti, Bäcker, Winokur, Mahgoub, Goepfert, Fusco, Malkin, Bethony, Walsh, Graciaa, Samaha, Sherman, Walsh, Abate, Oikonomopoulou, El Sahly, Martin, Kamidani, Smith, Ladner, Porterfield, Dunstan, Wald, Davis, Atmar, Mulligan, Lyke, Posavad, Meagher, Stephens, Neuzil, Abebe, Hill, Albert, Telu, Mu, Lewis, Giebeig, Eaton, Netzl, Wilks, Türeli, Makhene, Crandon, Montefiori, Makowski, Smith, Nayak, Roberts, Beigel (bib9) 2023; 29
Pollet, Chen, Strych (bib37) 2021; 170
Sun, Huang, Xiang, Nie (bib43) 2024; 12
Kurhade, Zou, Xia, Cai, Yang, Cutler, Cooper, Muik, Jansen, Xie, Swanson, Shi (bib27) 2022; 13
Barda, Lustig, Indenbaum, Zibly, Joseph, Asraf, Weiss-Ottolenghi, Amit, Kliker, Abd Elkader, Ben-Ami, Canetti, Koren, Katz-Likvornik, Halpern, Mendelson, Doolman, Harats, Kreiss, Mandelboim, Regev-Yochay (bib5) 2023; 29
Asamoah-Boaheng, Goldfarb, Kayda, Yap, Kirkham, Karim, Demers, Copp, Grunau (bib3) 2024
Chalkias, Whatley, Eder, Essink, Khetan, Bradley, Brosz, McGhee, Tomassini, Chen, Zhao, Sutherland, Shen, Girard, Edwards, Feng, Zhou, Walsh, Montefiori, Baden, Miller, Das (bib15) 2023; 29
Banga Ndzouboukou, Zhang, Fan (bib4) 2021
Bennett, Woo, Bloch, Cheung, Griffin, Mohan, Deshmukh, Arya, Cumming, Neville, McCallum Pardey, Plested, Cloney-Clark, Zhu, Kalkeri, Patel, Marcheschi, Swan, Smith, Cho, Glenn, Walker, Mallory (bib7) 2024; 24
Tallei, Alhumaid, AlMusa, Fatimawali, Kusumawaty, Alynbiawi, Alshukairi, Rabaan (bib44) 2023; 33
(bib26) 2022
Wells, Wells, Shea, O'Connell, Peterson, Welch, Losos, Tugwell, Ga, Zello, Petersen (bib47) 2014
Zhang, Banga Ndzouboukou, Gan, Lin, Fan (bib51) 2021; 12
Bennett, Rivers, Woo, Bloch, Cheung, Griffin, Mohan, Deshmukh, Arya, Cumming, Neville, Pardey, Plested, Cloney-Clark, Zhu, Kalkeri, Patel, Buchanan, Marcheschi, Swan, Smith, Cho, Glenn, Walker, Mallory (bib6) 2024; 230
Cao, Yisimayi, Jian, Song, Xiao, Wang, Du, Wang, Li, Chen, Yu, Wang, Zhang, Liu, An, Hao, Wang, Wang, Feng, Sun, Zhao, Zhang, Zhao, Zheng, Yu, Li, Zhang, Wang, Niu, Yang, Song, Chai, Hu, Shi, Zheng, Li, Gu, Shao, Huang, Jin, Shen, Wang, Wang, Xiao, Xie (bib11) 2022; 608
Ai, Wang, He, Zhao, Zhang, Jiang, Li, Cui, Chen, Qiao, Li, Yang, Li, Hu, Zhang, Wang (bib1) 2022; 30
Lee, Cosgrove, Moore, Bethune, Nally, Bula, Kalra, Clark, Dargan, Boffito, Sheridan, Moran, Darton, Burns, Saralaya, Duncan, Lillie, Ramos, Galiza, Heath, Girard, Parker, Rust, Mehta, Windt, Sutherland, Tomassini, Dutko, Chalkias, Deng, Chen, Tracy, Zhou, Miller, Das (bib30) 2023; 24
Dayan, Rouphael, Walsh, Chen, Grunenberg, Allen, Antony, Asante, Bhate, Beresnev, Bonaparte, Ceregido, Dobrianskyi, Fu, Grillet, Keshtkar-Jahromi, Juraska, Kee, Kibuuka, Koutsoukos, Masotti, Michael, Reynales, Robb, Martínez, Sawe, Schuerman, Tong, Treanor, Wartel, Diazgranados, Chicz, Gurunathan, Savarino, Sridhar (bib18) 2023
Stone (bib42) 2002; 15
Chalkias, Eder, Essink, Khetan, Nestorova, Feng, Chen, Chang, Zhou, Montefiori, Edwards, Girard, Pajon, Dutko, Leav, Walsh, Baden, Miller, Das (bib12) 2022; 28
Sterne, Savović, Page, Elbers, Blencowe, Boutron, Cates, Cheng, Corbett, Eldridge, Emberson, Hernán, Hopewell, Hróbjartsson, Junqueira, Jüni, Kirkham, Lasserson, Li, McAleenan, Reeves, Shepperd, Shrier, Stewart, Tilling, White, Whiting, Higgins (bib41) 2019; 366
Alsoussi, Malladi, Zhou, Liu, Ying, Kim, Schmitz, Lei, Horvath, Sturtz, McIntire, Evavold, Han, Scheaffer, Fox, Mirza, Parra-Rodriguez, Nachbagauer, Nestorova, Chalkias, Farnsworth, Klebert, Pusic, Strnad, Middleton, Teefey, Whelan, Diamond, Paris, O'Halloran, Presti, Turner, Ellebedy (bib2) 2023; 617
(bib45) 2024
Peng, Fang, Renauer, McNamara, Park, Lin, Zhou, Dong, Zhu, Zhao, Wilen, Chen (bib36) 2022; 40
Heidary, Kaviar, Shirani, Ghanavati, Motahar, Sholeh, Ghahramanpour, Khoshnood (bib24) 2022; 13
Zhang, He, Zhao, Li, Yang, Hu, Chen, Peng, Fu, Chen, Lu (bib52) 2022; 11
Callaway (bib10) 2022; 606
Xie (10.1016/j.virol.2025.110509_bib49) 2022; 41
Cheng (10.1016/j.virol.2025.110509_bib16) 2024; 21
Branche (10.1016/j.virol.2025.110509_bib9) 2023; 29
Kurhade (10.1016/j.virol.2025.110509_bib28) 2022; 11
Sterne (10.1016/j.virol.2025.110509_bib41) 2019; 366
Barda (10.1016/j.virol.2025.110509_bib5) 2023; 29
Zhang (10.1016/j.virol.2025.110509_bib52) 2022; 11
Cao (10.1016/j.virol.2025.110509_bib11) 2022; 608
Chalkias (10.1016/j.virol.2025.110509_bib15) 2023; 29
Callaway (10.1016/j.virol.2025.110509_bib10) 2022; 606
Heidary (10.1016/j.virol.2025.110509_bib24) 2022; 13
Chalkias (10.1016/j.virol.2025.110509_bib13) 2022; 387
Kurhade (10.1016/j.virol.2025.110509_bib27) 2022; 13
Alsoussi (10.1016/j.virol.2025.110509_bib2) 2023; 617
He (10.1016/j.virol.2025.110509_bib23) 2023; 12
Lopez (10.1016/j.virol.2025.110509_bib32) 2024
Voysey (10.1016/j.virol.2025.110509_bib46) 2021; 397
Winokur (10.1016/j.virol.2025.110509_bib48) 2023; 388
Ai (10.1016/j.virol.2025.110509_bib1) 2022; 30
Banga Ndzouboukou (10.1016/j.virol.2025.110509_bib4) 2021
Stone (10.1016/j.virol.2025.110509_bib42) 2002; 15
10.1016/j.virol.2025.110509_bib29
Hannawi (10.1016/j.virol.2025.110509_bib21) 2023; 14
(10.1016/j.virol.2025.110509_bib25) 2008
Dayan (10.1016/j.virol.2025.110509_bib18)
Lee (10.1016/j.virol.2025.110509_bib30) 2023; 24
Peng (10.1016/j.virol.2025.110509_bib36) 2022; 40
Sun (10.1016/j.virol.2025.110509_bib43) 2024; 12
Errico (10.1016/j.virol.2025.110509_bib19) 2022; 154
Payne (10.1016/j.virol.2025.110509_bib35) 2021; 184
Qi (10.1016/j.virol.2025.110509_bib38) 2022; 23
Shrestha (10.1016/j.virol.2025.110509_bib40) 2022; 32
Zaeck (10.1016/j.virol.2025.110509_bib50) 2024; 15
Zhang (10.1016/j.virol.2025.110509_bib51) 2021; 12
Li (10.1016/j.virol.2025.110509_bib31) 2023; 19
Asamoah-Boaheng (10.1016/j.virol.2025.110509_bib3) 2024
Bennett (10.1016/j.virol.2025.110509_bib7) 2024; 24
Chalkias (10.1016/j.virol.2025.110509_bib12) 2022; 28
Martínez-Flores (10.1016/j.virol.2025.110509_bib33) 2021; 12
Wells (10.1016/j.virol.2025.110509_bib47) 2014
Chalkias (10.1016/j.virol.2025.110509_bib14) 2023; 14
Tallei (10.1016/j.virol.2025.110509_bib44) 2023; 33
Page (10.1016/j.virol.2025.110509_bib34) 2021; 134
Rathe (10.1016/j.virol.2025.110509_bib39) 2021; 223
Bennett (10.1016/j.virol.2025.110509_bib6) 2024; 230
(10.1016/j.virol.2025.110509_bib17) 2024
Pollet (10.1016/j.virol.2025.110509_bib37) 2021; 170
Flaxman (10.1016/j.virol.2025.110509_bib20) 2021; 398
Branche (10.1016/j.virol.2025.110509_bib8) 2023; 77
Hannawi (10.1016/j.virol.2025.110509_bib22) 2023; 64
References_xml – volume: 14
  start-page: 5125
  year: 2023
  ident: bib14
  article-title: Three-month antibody persistence of a bivalent Omicron-containing booster vaccine against COVID-19
  publication-title: Nat. Commun.
– reference: Lauring, A.S., Tenforde, M.W., Chappell, J.D., Gaglani, M., Ginde, A.A., McNeal, T., Ghamande, S., Douin, D.J., Talbot, H.K., Casey, J.D., Mohr, N.M., Zepeski, A., Shapiro, N.I., Gibbs, K.W., Files, D.C., Hager, D.N., Shehu, A., Prekker, M.E., Erickson, H.L., Exline, M.C., Gong, M.N., Mohamed, A., Johnson, N.J., Srinivasan, V., Steingrub, J.S., Peltan, I.D., Brown, S.M., Martin, E.T., Monto, A.S., Khan, A., Hough, C.L., Busse, L.W., Ten Lohuis, C.C., Duggal, A., Wilson, J.G., Gordon, A.J., Qadir, N., Chang, S.Y., Mallow, C., Rivas, C., Babcock, H.M., Kwon, J.H., Halasa, N., Grijalva, C.G., Rice, T.W., Stubblefield, W.B., Baughman, A., Womack, K.N., Rhoads, J.P., Lindsell, C.J., Hart, K.W., Zhu, Y., Adams, K., Schrag, S.J., Olson, S.M., Kobayashi, M., Verani, J.R., Patel, M.M., Self, W.H., Influenza and Other Viruses in the Acutely Ill (IVY) Network, 2022. Clinical severity of, and effectiveness of mRNA vaccines against, covid-19 from omicron, delta, and alpha SARS-CoV-2 variants in the United States: prospective observational study. Br. Med. J. 376, e069761.
– volume: 33
  year: 2023
  ident: bib44
  article-title: Update on the omicron sub-variants BA.4 and BA.5
  publication-title: Rev. Med. Virol.
– volume: 606
  start-page: 848
  year: 2022
  end-page: 849
  ident: bib10
  article-title: What Omicron's BA.4 and BA.5 variants mean for the pandemic
  publication-title: Nature
– volume: 134
  start-page: 103
  year: 2021
  end-page: 112
  ident: bib34
  article-title: Updating guidance for reporting systematic reviews: development of the PRISMA 2020 statement
  publication-title: J. Clin. Epidemiol.
– volume: 366
  start-page: l4898
  year: 2019
  ident: bib41
  article-title: RoB 2: a revised tool for assessing risk of bias in randomised trials
  publication-title: Br. Med. J.
– volume: 398
  start-page: 981
  year: 2021
  end-page: 990
  ident: bib20
  article-title: Reactogenicity and immunogenicity after a late second dose or a third dose of ChAdOx1 nCoV-19 in the UK: a substudy of two randomised controlled trials (COV001 and COV002)
  publication-title: Lancet Lond. Engl.
– volume: 24
  year: 2023
  ident: bib30
  article-title: A randomized trial comparing omicron-containing boosters with the original covid-19 vaccine mRNA-1273
  publication-title: medRxiv 2023.01.
– volume: 41
  year: 2022
  ident: bib49
  article-title: Neutralization of SARS-CoV-2 Omicron sublineages by 4 doses of the original mRNA vaccine
  publication-title: Cell Rep.
– volume: 21
  start-page: 70
  year: 2024
  ident: bib16
  article-title: Cross-neutralizing antibody against emerging Omicron subvariants of SARS-CoV-2 in infection-naïve individuals with homologous BNT162b2 or BNT162b2(WT + BA.4/5) bivalent booster vaccination
  publication-title: Virol. J.
– year: 2024
  ident: bib32
  article-title: Safety and immunogenicity of PHH-1V as booster vaccination through the Omicron era: results from a phase IIb open-label extension study up to 6 months
  publication-title: medRxiv
– year: 2022
  ident: bib26
  article-title: International coalition of Medicines regulatory Authorities (ICMRA)
– volume: 11
  year: 2022
  ident: bib52
  article-title: A heterologous V-01 or variant-matched bivalent V-01D-351 booster following primary series of inactivated vaccine enhances the neutralizing capacity against SARS-CoV-2 delta and omicron strains
  publication-title: J. Clin. Med.
– year: 2023
  ident: bib18
  article-title: Efficacy of a bivalent (D614 + B.1.351) SARS-CoV-2 protein vaccine
– volume: 29
  start-page: 918
  year: 2023
  end-page: 923
  ident: bib5
  article-title: Immunogenicity of Omicron BA.1-adapted BNT162b2 vaccines: randomized trial, 3-month follow-up
  publication-title: Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis.
– volume: 77
  start-page: 560
  year: 2023
  end-page: 564
  ident: bib8
  article-title: Immunogenicity of the BA.1 and BA.4/BA.5 severe acute respiratory syndrome coronavirus 2 bivalent boosts: preliminary results from the COVAIL randomized clinical trial
  publication-title: Clin. Infect. Dis.
– volume: 15
  start-page: 197
  year: 2002
  end-page: 198
  ident: bib42
  article-title: Popping the (PICO) question in research and evidence-based practice
  publication-title: Appl. Nurs. Res. ANR
– volume: 12
  year: 2021
  ident: bib33
  article-title: SARS-CoV-2 vaccines based on the spike glycoprotein and implications of new viral variants
  publication-title: Front. Immunol.
– year: 2008
  ident: bib25
  publication-title: Cochrane Handbook for Systematic Reviews of Interventions: Cochrane Book Series
– year: 2014
  ident: bib47
  article-title: The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses
– volume: 29
  start-page: 2325
  year: 2023
  end-page: 2333
  ident: bib15
  article-title: Original SARS-CoV-2 monovalent and Omicron BA.4/BA.5 bivalent COVID-19 mRNA vaccines: phase 2/3 trial interim results
  publication-title: Nat. Med.
– volume: 387
  start-page: 1279
  year: 2022
  end-page: 1291
  ident: bib13
  article-title: A bivalent omicron-containing booster vaccine against covid-19
  publication-title: N. Engl. J. Med.
– volume: 608
  start-page: 593
  year: 2022
  end-page: 602
  ident: bib11
  article-title: BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection
  publication-title: Nature
– volume: 230
  start-page: e4
  year: 2024
  end-page: e16
  ident: bib6
  article-title: Immunogenicity and safety of heterologous omicron BA.1 and bivalent SARS-CoV-2 recombinant spike protein booster vaccines: a phase 3 randomized clinical trial
  publication-title: J. Infect. Dis.
– volume: 19
  year: 2023
  ident: bib31
  article-title: Monovalent Omicron COVID-19 vaccine triggers superior neutralizing antibody responses against Omicron subvariants than Delta and Omicron bivalent vaccine
  publication-title: Hum. Vaccines Immunother.
– volume: 24
  start-page: 581
  year: 2024
  end-page: 593
  ident: bib7
  article-title: Immunogenicity and safety of a bivalent (omicron BA.5 plus ancestral) SARS-CoV-2 recombinant spike protein vaccine as a heterologous booster dose: interim analysis of a phase 3, non-inferiority, randomised, clinical trial
  publication-title: Lancet Infect. Dis.
– volume: 11
  start-page: 1828
  year: 2022
  end-page: 1832
  ident: bib28
  article-title: Neutralization of Omicron sublineages and Deltacron SARS-CoV-2 by three doses of BNT162b2 vaccine or BA.1 infection
  publication-title: Emerg. Microb. Infect.
– volume: 170
  start-page: 71
  year: 2021
  end-page: 82
  ident: bib37
  article-title: Recombinant protein vaccines, a proven approach against coronavirus pandemics
  publication-title: Adv. Drug Deliv. Rev.
– volume: 40
  year: 2022
  ident: bib36
  article-title: Multiplexed LNP-mRNA vaccination against pathogenic coronavirus species
  publication-title: Cell Rep.
– volume: 14
  start-page: 4043
  year: 2023
  ident: bib21
  article-title: Safety and immunogenicity of a tetravalent and bivalent SARS-CoV-2 protein booster vaccine in men
  publication-title: Nat. Commun.
– volume: 32
  year: 2022
  ident: bib40
  article-title: Evolution of the SARS-CoV-2 omicron variants BA.1 to BA.5: implications for immune escape and transmission
  publication-title: Rev. Med. Virol.
– volume: 154
  start-page: 1
  year: 2022
  end-page: 69
  ident: bib19
  article-title: Antibody-mediated immunity to SARS-CoV-2 spike
  publication-title: Adv. Immunol.
– volume: 15
  start-page: 4224
  year: 2024
  ident: bib50
  article-title: Original COVID-19 priming regimen impacts the immunogenicity of bivalent BA.1 and BA.5 boosters
  publication-title: Nat. Commun.
– volume: 617
  start-page: 592
  year: 2023
  end-page: 598
  ident: bib2
  article-title: SARS-CoV-2 Omicron boosting induces de novo B cell response in humans
  publication-title: Nature
– volume: 223
  start-page: 1120
  year: 2021
  end-page: 1131
  ident: bib39
  article-title: SARS-CoV-2 serologic assays in control and unknown populations demonstrate the necessity of virus neutralization testing
  publication-title: J. Infect. Dis.
– volume: 12
  start-page: 4842
  year: 2021
  ident: bib51
  article-title: Immune evasive effects of SARS-CoV-2 variants to COVID-19 emergency used vaccines
  publication-title: Front. Immunol.
– volume: 397
  start-page: 99
  year: 2021
  end-page: 111
  ident: bib46
  article-title: Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK
  publication-title: Lancet Lond. Engl.
– volume: 29
  start-page: 2334
  year: 2023
  end-page: 2346
  ident: bib9
  article-title: Comparison of bivalent and monovalent SARS-CoV-2 variant vaccines: the phase 2 randomized open-label COVAIL trial
  publication-title: Nat. Med.
– volume: 28
  start-page: 2388
  year: 2022
  end-page: 2397
  ident: bib12
  article-title: Safety, immunogenicity and antibody persistence of a bivalent Beta-containing booster vaccine against COVID-19: a phase 2/3 trial
  publication-title: Nat. Med.
– volume: 12
  year: 2023
  ident: bib23
  article-title: The bivalent COVID-19 booster immunization after three doses of inactivated vaccine augments the neutralizing antibody response against circulating omicron sublineages
  publication-title: J. Clin. Med.
– year: 2024
  ident: bib17
  article-title: WHO COVID-19 dashboard
  publication-title: datadot
– volume: 64
  year: 2023
  ident: bib22
  article-title: Safety and immunogenicity of multivalent SARS-CoV-2 protein vaccines: a randomized phase 3 trial
  publication-title: eClinicalMedicine
– year: 2024
  ident: bib3
  article-title: Immunogenicity of bivalent versus monovalent mRNA booster vaccination among adult paramedics in Canada who had received three prior mRNA wild-type doses
  publication-title: Access Microbiol.
– year: 2021
  ident: bib4
  article-title: Recent developments in SARS-CoV-2 neutralizing antibody detection methods
  publication-title: Curr. Med. Sci.
– volume: 388
  start-page: 214
  year: 2023
  end-page: 227
  ident: bib48
  article-title: Bivalent omicron BA.1-Adapted BNT162b2 booster in adults older than 55 years
  publication-title: N. Engl. J. Med.
– volume: 12
  start-page: 554
  year: 2024
  ident: bib43
  article-title: SARS-CoV-2 neutralization assays used in clinical trials: a narrative review
  publication-title: Vaccines
– reference: .
– volume: 13
  year: 2022
  ident: bib24
  article-title: A comprehensive review of the protein subunit vaccines against COVID-19
  publication-title: Front. Microbiol.
– volume: 184
  start-page: 5699
  year: 2021
  end-page: 5714.e11
  ident: bib35
  article-title: Immunogenicity of standard and extended dosing intervals of BNT162b2 mRNA vaccine
  publication-title: Cell
– volume: 30
  start-page: 1077
  year: 2022
  end-page: 1083.e4
  ident: bib1
  article-title: Antibody evasion of SARS-CoV-2 Omicron BA.1, BA.1.1, BA.2, and BA.3 sub-lineages
  publication-title: Cell Host Microbe
– year: 2024
  ident: bib45
  article-title: Vaccines and related biological Products advisory committee
– volume: 13
  start-page: 3602
  year: 2022
  ident: bib27
  article-title: Neutralization of Omicron BA.1, BA.2, and BA.3 SARS-CoV-2 by 3 doses of BNT162b2 vaccine
  publication-title: Nat. Commun.
– volume: 23
  start-page: 1008
  year: 2022
  end-page: 1020
  ident: bib38
  article-title: The humoral response and antibodies against SARS-CoV-2 infection
  publication-title: Nat. Immunol.
– volume: 13
  year: 2022
  ident: 10.1016/j.virol.2025.110509_bib24
  article-title: A comprehensive review of the protein subunit vaccines against COVID-19
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2022.927306
– volume: 12
  start-page: 554
  year: 2024
  ident: 10.1016/j.virol.2025.110509_bib43
  article-title: SARS-CoV-2 neutralization assays used in clinical trials: a narrative review
  publication-title: Vaccines
  doi: 10.3390/vaccines12050554
– volume: 29
  start-page: 918
  year: 2023
  ident: 10.1016/j.virol.2025.110509_bib5
  article-title: Immunogenicity of Omicron BA.1-adapted BNT162b2 vaccines: randomized trial, 3-month follow-up
  publication-title: Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis.
– volume: 606
  start-page: 848
  year: 2022
  ident: 10.1016/j.virol.2025.110509_bib10
  article-title: What Omicron's BA.4 and BA.5 variants mean for the pandemic
  publication-title: Nature
  doi: 10.1038/d41586-022-01730-y
– year: 2021
  ident: 10.1016/j.virol.2025.110509_bib4
  article-title: Recent developments in SARS-CoV-2 neutralizing antibody detection methods
  publication-title: Curr. Med. Sci.
  doi: 10.1007/s11596-021-2470-7
– ident: 10.1016/j.virol.2025.110509_bib29
  doi: 10.1136/bmj-2021-069761
– volume: 33
  year: 2023
  ident: 10.1016/j.virol.2025.110509_bib44
  article-title: Update on the omicron sub-variants BA.4 and BA.5
  publication-title: Rev. Med. Virol.
  doi: 10.1002/rmv.2391
– volume: 608
  start-page: 593
  year: 2022
  ident: 10.1016/j.virol.2025.110509_bib11
  article-title: BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection
  publication-title: Nature
  doi: 10.1038/s41586-022-04980-y
– volume: 29
  start-page: 2325
  year: 2023
  ident: 10.1016/j.virol.2025.110509_bib15
  article-title: Original SARS-CoV-2 monovalent and Omicron BA.4/BA.5 bivalent COVID-19 mRNA vaccines: phase 2/3 trial interim results
  publication-title: Nat. Med.
  doi: 10.1038/s41591-023-02517-y
– volume: 388
  start-page: 214
  year: 2023
  ident: 10.1016/j.virol.2025.110509_bib48
  article-title: Bivalent omicron BA.1-Adapted BNT162b2 booster in adults older than 55 years
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2213082
– year: 2024
  ident: 10.1016/j.virol.2025.110509_bib3
  article-title: Immunogenicity of bivalent versus monovalent mRNA booster vaccination among adult paramedics in Canada who had received three prior mRNA wild-type doses
  publication-title: Access Microbiol.
– volume: 40
  year: 2022
  ident: 10.1016/j.virol.2025.110509_bib36
  article-title: Multiplexed LNP-mRNA vaccination against pathogenic coronavirus species
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2022.111160
– volume: 11
  year: 2022
  ident: 10.1016/j.virol.2025.110509_bib52
  article-title: A heterologous V-01 or variant-matched bivalent V-01D-351 booster following primary series of inactivated vaccine enhances the neutralizing capacity against SARS-CoV-2 delta and omicron strains
  publication-title: J. Clin. Med.
– year: 2008
  ident: 10.1016/j.virol.2025.110509_bib25
– volume: 134
  start-page: 103
  year: 2021
  ident: 10.1016/j.virol.2025.110509_bib34
  article-title: Updating guidance for reporting systematic reviews: development of the PRISMA 2020 statement
  publication-title: J. Clin. Epidemiol.
  doi: 10.1016/j.jclinepi.2021.02.003
– year: 2024
  ident: 10.1016/j.virol.2025.110509_bib17
  article-title: WHO COVID-19 dashboard
  publication-title: datadot
– volume: 223
  start-page: 1120
  year: 2021
  ident: 10.1016/j.virol.2025.110509_bib39
  article-title: SARS-CoV-2 serologic assays in control and unknown populations demonstrate the necessity of virus neutralization testing
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jiaa797
– volume: 12
  year: 2021
  ident: 10.1016/j.virol.2025.110509_bib33
  article-title: SARS-CoV-2 vaccines based on the spike glycoprotein and implications of new viral variants
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2021.701501
– volume: 398
  start-page: 981
  year: 2021
  ident: 10.1016/j.virol.2025.110509_bib20
  article-title: Reactogenicity and immunogenicity after a late second dose or a third dose of ChAdOx1 nCoV-19 in the UK: a substudy of two randomised controlled trials (COV001 and COV002)
  publication-title: Lancet Lond. Engl.
  doi: 10.1016/S0140-6736(21)01699-8
– volume: 32
  year: 2022
  ident: 10.1016/j.virol.2025.110509_bib40
  article-title: Evolution of the SARS-CoV-2 omicron variants BA.1 to BA.5: implications for immune escape and transmission
  publication-title: Rev. Med. Virol.
  doi: 10.1002/rmv.2381
– volume: 64
  year: 2023
  ident: 10.1016/j.virol.2025.110509_bib22
  article-title: Safety and immunogenicity of multivalent SARS-CoV-2 protein vaccines: a randomized phase 3 trial
  publication-title: eClinicalMedicine
  doi: 10.1016/j.eclinm.2023.102195
– volume: 41
  year: 2022
  ident: 10.1016/j.virol.2025.110509_bib49
  article-title: Neutralization of SARS-CoV-2 Omicron sublineages by 4 doses of the original mRNA vaccine
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2022.111729
– volume: 29
  start-page: 2334
  year: 2023
  ident: 10.1016/j.virol.2025.110509_bib9
  article-title: Comparison of bivalent and monovalent SARS-CoV-2 variant vaccines: the phase 2 randomized open-label COVAIL trial
  publication-title: Nat. Med.
  doi: 10.1038/s41591-023-02503-4
– volume: 184
  start-page: 5699
  year: 2021
  ident: 10.1016/j.virol.2025.110509_bib35
  article-title: Immunogenicity of standard and extended dosing intervals of BNT162b2 mRNA vaccine
  publication-title: Cell
  doi: 10.1016/j.cell.2021.10.011
– volume: 23
  start-page: 1008
  year: 2022
  ident: 10.1016/j.virol.2025.110509_bib38
  article-title: The humoral response and antibodies against SARS-CoV-2 infection
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-022-01248-5
– volume: 24
  start-page: 581
  year: 2024
  ident: 10.1016/j.virol.2025.110509_bib7
  article-title: Immunogenicity and safety of a bivalent (omicron BA.5 plus ancestral) SARS-CoV-2 recombinant spike protein vaccine as a heterologous booster dose: interim analysis of a phase 3, non-inferiority, randomised, clinical trial
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(24)00077-X
– volume: 154
  start-page: 1
  year: 2022
  ident: 10.1016/j.virol.2025.110509_bib19
  article-title: Antibody-mediated immunity to SARS-CoV-2 spike
  publication-title: Adv. Immunol.
  doi: 10.1016/bs.ai.2022.07.001
– volume: 28
  start-page: 2388
  year: 2022
  ident: 10.1016/j.virol.2025.110509_bib12
  article-title: Safety, immunogenicity and antibody persistence of a bivalent Beta-containing booster vaccine against COVID-19: a phase 2/3 trial
  publication-title: Nat. Med.
  doi: 10.1038/s41591-022-02031-7
– volume: 14
  start-page: 4043
  year: 2023
  ident: 10.1016/j.virol.2025.110509_bib21
  article-title: Safety and immunogenicity of a tetravalent and bivalent SARS-CoV-2 protein booster vaccine in men
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39766-x
– volume: 366
  start-page: l4898
  year: 2019
  ident: 10.1016/j.virol.2025.110509_bib41
  article-title: RoB 2: a revised tool for assessing risk of bias in randomised trials
  publication-title: Br. Med. J.
  doi: 10.1136/bmj.l4898
– volume: 15
  start-page: 197
  year: 2002
  ident: 10.1016/j.virol.2025.110509_bib42
  article-title: Popping the (PICO) question in research and evidence-based practice
  publication-title: Appl. Nurs. Res. ANR
  doi: 10.1053/apnr.2002.34181
– volume: 30
  start-page: 1077
  year: 2022
  ident: 10.1016/j.virol.2025.110509_bib1
  article-title: Antibody evasion of SARS-CoV-2 Omicron BA.1, BA.1.1, BA.2, and BA.3 sub-lineages
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2022.05.001
– volume: 13
  start-page: 3602
  year: 2022
  ident: 10.1016/j.virol.2025.110509_bib27
  article-title: Neutralization of Omicron BA.1, BA.2, and BA.3 SARS-CoV-2 by 3 doses of BNT162b2 vaccine
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30681-1
– volume: 24
  year: 2023
  ident: 10.1016/j.virol.2025.110509_bib30
  article-title: A randomized trial comparing omicron-containing boosters with the original covid-19 vaccine mRNA-1273
  publication-title: medRxiv 2023.01.
– volume: 397
  start-page: 99
  year: 2021
  ident: 10.1016/j.virol.2025.110509_bib46
  article-title: Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK
  publication-title: Lancet Lond. Engl.
  doi: 10.1016/S0140-6736(20)32661-1
– year: 2024
  ident: 10.1016/j.virol.2025.110509_bib32
  article-title: Safety and immunogenicity of PHH-1V as booster vaccination through the Omicron era: results from a phase IIb open-label extension study up to 6 months
  publication-title: medRxiv
– volume: 170
  start-page: 71
  year: 2021
  ident: 10.1016/j.virol.2025.110509_bib37
  article-title: Recombinant protein vaccines, a proven approach against coronavirus pandemics
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2021.01.001
– volume: 387
  start-page: 1279
  year: 2022
  ident: 10.1016/j.virol.2025.110509_bib13
  article-title: A bivalent omicron-containing booster vaccine against covid-19
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2208343
– volume: 21
  start-page: 70
  year: 2024
  ident: 10.1016/j.virol.2025.110509_bib16
  article-title: Cross-neutralizing antibody against emerging Omicron subvariants of SARS-CoV-2 in infection-naïve individuals with homologous BNT162b2 or BNT162b2(WT + BA.4/5) bivalent booster vaccination
  publication-title: Virol. J.
  doi: 10.1186/s12985-024-02335-9
– ident: 10.1016/j.virol.2025.110509_bib18
– volume: 11
  start-page: 1828
  year: 2022
  ident: 10.1016/j.virol.2025.110509_bib28
  article-title: Neutralization of Omicron sublineages and Deltacron SARS-CoV-2 by three doses of BNT162b2 vaccine or BA.1 infection
  publication-title: Emerg. Microb. Infect.
  doi: 10.1080/22221751.2022.2099305
– volume: 617
  start-page: 592
  year: 2023
  ident: 10.1016/j.virol.2025.110509_bib2
  article-title: SARS-CoV-2 Omicron boosting induces de novo B cell response in humans
  publication-title: Nature
  doi: 10.1038/s41586-023-06025-4
– volume: 77
  start-page: 560
  year: 2023
  ident: 10.1016/j.virol.2025.110509_bib8
  article-title: Immunogenicity of the BA.1 and BA.4/BA.5 severe acute respiratory syndrome coronavirus 2 bivalent boosts: preliminary results from the COVAIL randomized clinical trial
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/ciad209
– volume: 14
  start-page: 5125
  year: 2023
  ident: 10.1016/j.virol.2025.110509_bib14
  article-title: Three-month antibody persistence of a bivalent Omicron-containing booster vaccine against COVID-19
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-38892-w
– volume: 15
  start-page: 4224
  year: 2024
  ident: 10.1016/j.virol.2025.110509_bib50
  article-title: Original COVID-19 priming regimen impacts the immunogenicity of bivalent BA.1 and BA.5 boosters
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-48414-x
– volume: 19
  year: 2023
  ident: 10.1016/j.virol.2025.110509_bib31
  article-title: Monovalent Omicron COVID-19 vaccine triggers superior neutralizing antibody responses against Omicron subvariants than Delta and Omicron bivalent vaccine
  publication-title: Hum. Vaccines Immunother.
  doi: 10.1080/21645515.2023.2264589
– volume: 230
  start-page: e4
  year: 2024
  ident: 10.1016/j.virol.2025.110509_bib6
  article-title: Immunogenicity and safety of heterologous omicron BA.1 and bivalent SARS-CoV-2 recombinant spike protein booster vaccines: a phase 3 randomized clinical trial
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jiad508
– year: 2014
  ident: 10.1016/j.virol.2025.110509_bib47
– volume: 12
  year: 2023
  ident: 10.1016/j.virol.2025.110509_bib23
  article-title: The bivalent COVID-19 booster immunization after three doses of inactivated vaccine augments the neutralizing antibody response against circulating omicron sublineages
  publication-title: J. Clin. Med.
– volume: 12
  start-page: 4842
  year: 2021
  ident: 10.1016/j.virol.2025.110509_bib51
  article-title: Immune evasive effects of SARS-CoV-2 variants to COVID-19 emergency used vaccines
  publication-title: Front. Immunol.
SSID ssj0004770
Score 2.4662473
SecondaryResourceType review_article
Snippet Although COVID-19 is no longer classified as the first public health emergency, nevertheless, it still presents a serious menace to the health of the global...
AbstractAlthough COVID-19 is no longer classified as the first public health emergency, nevertheless, it still presents a serious menace to the health of the...
SourceID swepub
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 110509
SubjectTerms Adult
Antibodies, Neutralizing - blood
Antibodies, Neutralizing - immunology
Antibodies, Viral - blood
Antibodies, Viral - immunology
Bivalent vaccine
COVID-19 - immunology
COVID-19 - prevention & control
COVID-19 - virology
COVID-19 Vaccines - administration & dosage
COVID-19 Vaccines - immunology
Healthy Volunteers
Humans
Immunization, Secondary
Immunogenicity
Immunogenicity, Vaccine
Infectious Disease
Monovalent-adapted vaccine
Neutralizing antibody
SARS-CoV-2 - genetics
SARS-CoV-2 - immunology
SARS-CoV-2 variants
Second booster
Title A meta-analysis on the immunogenicity of prototype, monovalent-adapted and bivalent vaccines against SARS-CoV-2 wildtype, Omicron BA.1 and Omicron BA.4/5 in healthy adults
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0042682225001229
https://www.clinicalkey.es/playcontent/1-s2.0-S0042682225001229
https://dx.doi.org/10.1016/j.virol.2025.110509
https://www.ncbi.nlm.nih.gov/pubmed/40132435
https://www.proquest.com/docview/3181366381
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-237144
Volume 606
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiQuiDehUA0S4lR3k9hOssewUC0gikRp1ZvlxE6VSpusmt1KvfCH-JPMxMnyaAUSxzhx4mQ-z3zOPMzYqzA01hhD_7-ShEsTlRx5suCFUM5JZ1LX7xLx6TCZH8sPp-p0i83GXBgKqxx0v9fpvbYeWibD15ws65pyfNG6kH1TvX-IkvikTAnl-99-hnnINN2kodDVY-WhPsaLUsnI_xArCodXFJV4s3W6zj7_KC3am6ODe-zuwCMh90O9z7Zc84Dd9jtLXj1k33NYuJXhZqg5Am0DSPWgpnSQFkFTl0i_oa2ACjW09CN2DxCRLQIPzRDHT7tELgqmsVDUvhEuTUlu-A7MmamRVsJR_uWIz9oTHgNSbuvv8nlBMX4NvMn3o77_Lw1yoqBuwCdfXkFf_KN7xI4P3n2dzfmwLwMvRSZXXFUZrqtckhlVREaWlZLWTpPCuqgskFBUKZpGiyeL0lWJMyYpY1FlQsgE2Z0MxWO23bSNe8oADaeToUujSCBxq8JiWqZWxVMr8CFSTgO2N8pDL335DT3GpZ3rXnyaxKe9-AImR5npMbMUdaFG8_D3bulN3Vw3zOdOR7qLdaivYS5gyabnb7D99yNfjpDSOKHJS2Ma1647jUo2EsgDsyhgTzzWNq9Oi-EYCW7AXnvwbc5QlfC39Umu24szvV6sdUylGOWz_x3fDrtDRz608znbXl2s3QukX6tit59fu-xW_v7j_PAHcNIuYg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLZKEYILYi1hfUiIU91JYjvLMQxUA7RFoot6s5zEqYI0yaiZQeqFP8Sf5L04GZZWIHG14zjx2z7bb2Hsle-b0hhD519RxKUJCo44WfBcKGulNbHtq0TsH0SzY_nhVJ1usOkYC0NulYPudzq919ZDy2RYzcmirinGF60L2TfV3w-l19h1ieJLZQx2vv3085BxvI5DocfH1EO9kxfFktEFRKjIH16RW-LV5uky_Pwjt2hvj3bvsNsDkITMfetdtmGbe-yGKy15cZ99z2Bul4abIekItA0g1oOa4kFa5Jq6QPwNbQWUqaGlk9htQJZskfPQDnFc2wWCUTBNCXntGuGrKegevgNzZmrElXCYfT7k0_aEh4CYu3Rv-TQnJ78G3mQ7QT_-lwY5UVA34KIvL6DP_tE9YMe7746mMz4UZuCFSOSSqyrBjZWNEqPywMiiUrIs0ygvbVDkiCiqGG1jiZ15YavIGhMVoagSIWSE8E764iHbbNrGPmKAltNK38ZBIBC5VX6eFnGpwrQUOImUqce2R3rohcu_oUfHtC-6J58m8mlHPo_JkWZ6DC1FZajRPvx9WHzVMNsNAt3pQHeh9vUlpvNYtB75G9_-e8qXI0tplGi6pjGNbVedRi0bCASCSeCxLcdr61-n3XCICNdjrx3zrXsoTfjb-iTT7fmZXs1XOqRcjPLx_37fC3ZzdrS_p_feH3x8wm5Rj_PzfMo2l-cr-wyx2DJ_3svaDxBhL_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+meta-analysis+on+the+immunogenicity+of+prototype%2C+monovalent-adapted+and+bivalent+vaccines+against+SARS-CoV-2+wildtype%2C+Omicron+BA.1+and+Omicron+BA.4%2F5+in+healthy+adults&rft.jtitle=Virology+%28New+York%2C+N.Y.%29&rft.au=Banga+Ndzouboukou%2C+Jo-Lewis&rft.au=Kamara%2C+Abdul+A.&rft.au=Ullah%2C+Nadeem&rft.au=Lei%2C+Qing&rft.date=2025-05-01&rft.pub=Elsevier+Inc&rft.issn=0042-6822&rft.volume=606&rft_id=info:doi/10.1016%2Fj.virol.2025.110509&rft.externalDocID=S0042682225001229
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00426822%2FS0042682225X00039%2Fcov150h.gif