A meta-analysis on the immunogenicity of prototype, monovalent-adapted and bivalent vaccines against SARS-CoV-2 wildtype, Omicron BA.1 and Omicron BA.4/5 in healthy adults
Although COVID-19 is no longer classified as the first public health emergency, nevertheless, it still presents a serious menace to the health of the global population. Consequently, the development of COVID-19 vaccines possessing an optimal composition that can elicit broad-spectrum neutralizing re...
Saved in:
Published in | Virology (New York, N.Y.) Vol. 606; p. 110509 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.05.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although COVID-19 is no longer classified as the first public health emergency, nevertheless, it still presents a serious menace to the health of the global population. Consequently, the development of COVID-19 vaccines possessing an optimal composition that can elicit broad-spectrum neutralizing responses against various SARS-CoV-2 variants is crucial. This meta-analysis aimed to compare the immunogenicity of prototype, monovalent-adapted, and bivalent COVID-19 vaccines against prototype SARS-CoV-2, Omicron BA.1 variant, and Omicron BA.4/5 subvariant in healthy adults. We utilized 4 medical databases to retrieve original studies and employed the fixed effect model to estimate pooled neutralization titers. A total of 12 studies concerning 4581 subjects were included in the meta-analysis. We found that participants who received prototype, monovalent-adapted, and bivalent vaccines as a second booster significantly developed neutralizing antibody (nAb) titers against prototype SARS-CoV-2, Omicron BA.1 variant, and Omicron BA.4/5 subvariant, with monovalent-adapted and bivalent vaccines exhibiting a higher increment. Furthermore, the bivalent(Prototype/Omicron BA.1) recombinant protein vaccine exhibited the highest increment in neutralization titers(MD = 1.95; 95 %CI:0.78–3.12; p < 0.01) against the prototype SARS-CoV-2 and Omicron BA.4/5 subvariant compared to the other vaccine regimens. Interestingly, only individuals who received the monovalent (Omicron BA.1)-adapted mRNA vaccine as a second booster showed the highest increase in neutralization titers (MD:1.37; 95 %CI:0.50–2.24; p < 0.01) against the Omicron BA.1 variant compared to the other vaccine regimens. These findings showed that bivalent recombinant protein vaccines seem more immunogenic than bivalent mRNA vaccines, and bivalent vaccines might not be superior immunogens for induced strong protective immune responses compared to monovalent-adapted vaccines.
•Monovalent-adapted and bivalent vaccines showed a higher increment in neutralization titer compared to prototype vaccines.•Monovalent mRNA vaccines seem to induce a higher neutralization activity compared to bivalent vaccines.•Bivalent recombinant protein vaccine regimens seem to be more immunogenic compared to bivalent mRNA vaccines. |
---|---|
AbstractList | Although COVID-19 is no longer classified as the first public health emergency, nevertheless, it still presents a serious menace to the health of the global population. Consequently, the development of COVID-19 vaccines possessing an optimal composition that can elicit broad-spectrum neutralizing responses against various SARS-CoV-2 variants is crucial. This meta-analysis aimed to compare the immunogenicity of prototype, monovalent-adapted, and bivalent COVID-19 vaccines against prototype SARS-CoV-2, Omicron BA.1 variant, and Omicron BA.4/5 subvariant in healthy adults. We utilized 4 medical databases to retrieve original studies and employed the fixed effect model to estimate pooled neutralization titers. A total of 12 studies concerning 4581 subjects were included in the meta-analysis. We found that participants who received prototype, monovalent-adapted, and bivalent vaccines as a second booster significantly developed neutralizing antibody (nAb) titers against prototype SARS-CoV-2, Omicron BA.1 variant, and Omicron BA.4/5 subvariant, with monovalent-adapted and bivalent vaccines exhibiting a higher increment. Furthermore, the bivalent(Prototype/Omicron BA.1) recombinant protein vaccine exhibited the highest increment in neutralization titers(MD = 1.95; 95 %CI:0.78-3.12; p < 0.01) against the prototype SARS-CoV-2 and Omicron BA.4/5 subvariant compared to the other vaccine regimens. Interestingly, only individuals who received the monovalent (Omicron BA.1)-adapted mRNA vaccine as a second booster showed the highest increase in neutralization titers (MD:1.37; 95 %CI:0.50-2.24; p < 0.01) against the Omicron BA.1 variant compared to the other vaccine regimens. These findings showed that bivalent recombinant protein vaccines seem more immunogenic than bivalent mRNA vaccines, and bivalent vaccines might not be superior immunogens for induced strong protective immune responses compared to monovalent-adapted vaccines. Although COVID-19 is no longer classified as the first public health emergency, nevertheless, it still presents a serious menace to the health of the global population. Consequently, the development of COVID-19 vaccines possessing an optimal composition that can elicit broad-spectrum neutralizing responses against various SARS-CoV-2 variants is crucial. This meta-analysis aimed to compare the immunogenicity of prototype, monovalent-adapted, and bivalent COVID-19 vaccines against prototype SARS-CoV-2, Omicron BA.1 variant, and Omicron BA.4/5 subvariant in healthy adults. We utilized 4 medical databases to retrieve original studies and employed the fixed effect model to estimate pooled neutralization titers. A total of 12 studies concerning 4581 subjects were included in the meta-analysis. We found that participants who received prototype, monovalent-adapted, and bivalent vaccines as a second booster significantly developed neutralizing antibody (nAb) titers against prototype SARS-CoV-2, Omicron BA.1 variant, and Omicron BA.4/5 subvariant, with monovalent-adapted and bivalent vaccines exhibiting a higher increment. Furthermore, the bivalent(Prototype/Omicron BA.1) recombinant protein vaccine exhibited the highest increment in neutralization titers(MD = 1.95; 95 %CI:0.78–3.12; p < 0.01) against the prototype SARS-CoV-2 and Omicron BA.4/5 subvariant compared to the other vaccine regimens. Interestingly, only individuals who received the monovalent (Omicron BA.1)-adapted mRNA vaccine as a second booster showed the highest increase in neutralization titers (MD:1.37; 95 %CI:0.50–2.24; p < 0.01) against the Omicron BA.1 variant compared to the other vaccine regimens. These findings showed that bivalent recombinant protein vaccines seem more immunogenic than bivalent mRNA vaccines, and bivalent vaccines might not be superior immunogens for induced strong protective immune responses compared to monovalent-adapted vaccines. •Monovalent-adapted and bivalent vaccines showed a higher increment in neutralization titer compared to prototype vaccines.•Monovalent mRNA vaccines seem to induce a higher neutralization activity compared to bivalent vaccines.•Bivalent recombinant protein vaccine regimens seem to be more immunogenic compared to bivalent mRNA vaccines. AbstractAlthough COVID-19 is no longer classified as the first public health emergency, nevertheless, it still presents a serious menace to the health of the global population. Consequently, the development of COVID-19 vaccines possessing an optimal composition that can elicit broad-spectrum neutralizing responses against various SARS-CoV-2 variants is crucial. This meta-analysis aimed to compare the immunogenicity of prototype, monovalent-adapted, and bivalent COVID-19 vaccines against prototype SARS-CoV-2, Omicron BA.1 variant, and Omicron BA.4/5 subvariant in healthy adults. We utilized 4 medical databases to retrieve original studies and employed the fixed effect model to estimate pooled neutralization titers. A total of 12 studies concerning 4581 subjects were included in the meta-analysis. We found that participants who received prototype, monovalent-adapted, and bivalent vaccines as a second booster significantly developed neutralizing antibody (nAb) titers against prototype SARS-CoV-2, Omicron BA.1 variant, and Omicron BA.4/5 subvariant, with monovalent-adapted and bivalent vaccines exhibiting a higher increment. Furthermore, the bivalent(Prototype/Omicron BA.1) recombinant protein vaccine exhibited the highest increment in neutralization titers(MD = 1.95; 95 %CI:0.78–3.12; p < 0.01) against the prototype SARS-CoV-2 and Omicron BA.4/5 subvariant compared to the other vaccine regimens. Interestingly, only individuals who received the monovalent (Omicron BA.1)-adapted mRNA vaccine as a second booster showed the highest increase in neutralization titers (MD:1.37; 95 %CI:0.50–2.24; p < 0.01) against the Omicron BA.1 variant compared to the other vaccine regimens. These findings showed that bivalent recombinant protein vaccines seem more immunogenic than bivalent mRNA vaccines, and bivalent vaccines might not be superior immunogens for induced strong protective immune responses compared to monovalent-adapted vaccines. Although COVID-19 is no longer classified as the first public health emergency, nevertheless, it still presents a serious menace to the health of the global population. Consequently, the development of COVID-19 vaccines possessing an optimal composition that can elicit broad-spectrum neutralizing responses against various SARS-CoV-2 variants is crucial. This meta-analysis aimed to compare the immunogenicity of prototype, monovalent-adapted, and bivalent COVID-19 vaccines against prototype SARS-CoV-2, Omicron BA.1 variant, and Omicron BA.4/5 subvariant in healthy adults. We utilized 4 medical databases to retrieve original studies and employed the fixed effect model to estimate pooled neutralization titers. A total of 12 studies concerning 4581 subjects were included in the meta-analysis. We found that participants who received prototype, monovalent-adapted, and bivalent vaccines as a second booster significantly developed neutralizing antibody (nAb) titers against prototype SARS-CoV-2, Omicron BA.1 variant, and Omicron BA.4/5 subvariant, with monovalent-adapted and bivalent vaccines exhibiting a higher increment. Furthermore, the bivalent(Prototype/Omicron BA.1) recombinant protein vaccine exhibited the highest increment in neutralization titers(MD = 1.95; 95 %CI:0.78–3.12; p < 0.01) against the prototype SARS-CoV-2 and Omicron BA.4/5 subvariant compared to the other vaccine regimens. Interestingly, only individuals who received the monovalent (Omicron BA.1)-adapted mRNA vaccine as a second booster showed the highest increase in neutralization titers (MD:1.37; 95 %CI:0.50–2.24; p < 0.01) against the Omicron BA.1 variant compared to the other vaccine regimens. These findings showed that bivalent recombinant protein vaccines seem more immunogenic than bivalent mRNA vaccines, and bivalent vaccines might not be superior immunogens for induced strong protective immune responses compared to monovalent-adapted vaccines. Although COVID-19 is no longer classified as the first public health emergency, nevertheless, it still presents a serious menace to the health of the global population. Consequently, the development of COVID-19 vaccines possessing an optimal composition that can elicit broad-spectrum neutralizing responses against various SARS-CoV-2 variants is crucial. This meta-analysis aimed to compare the immunogenicity of prototype, monovalent-adapted, and bivalent COVID-19 vaccines against prototype SARS-CoV-2, Omicron BA.1 variant, and Omicron BA.4/5 subvariant in healthy adults. We utilized 4 medical databases to retrieve original studies and employed the fixed effect model to estimate pooled neutralization titers. A total of 12 studies concerning 4581 subjects were included in the meta-analysis. We found that participants who received prototype, monovalent-adapted, and bivalent vaccines as a second booster significantly developed neutralizing antibody (nAb) titers against prototype SARS-CoV-2, Omicron BA.1 variant, and Omicron BA.4/5 subvariant, with monovalent-adapted and bivalent vaccines exhibiting a higher increment. Furthermore, the bivalent(Prototype/Omicron BA.1) recombinant protein vaccine exhibited the highest increment in neutralization titers(MD = 1.95; 95 %CI:0.78-3.12; p < 0.01) against the prototype SARS-CoV-2 and Omicron BA.4/5 subvariant compared to the other vaccine regimens. Interestingly, only individuals who received the monovalent (Omicron BA.1)-adapted mRNA vaccine as a second booster showed the highest increase in neutralization titers (MD:1.37; 95 %CI:0.50-2.24; p < 0.01) against the Omicron BA.1 variant compared to the other vaccine regimens. These findings showed that bivalent recombinant protein vaccines seem more immunogenic than bivalent mRNA vaccines, and bivalent vaccines might not be superior immunogens for induced strong protective immune responses compared to monovalent-adapted vaccines.Although COVID-19 is no longer classified as the first public health emergency, nevertheless, it still presents a serious menace to the health of the global population. Consequently, the development of COVID-19 vaccines possessing an optimal composition that can elicit broad-spectrum neutralizing responses against various SARS-CoV-2 variants is crucial. This meta-analysis aimed to compare the immunogenicity of prototype, monovalent-adapted, and bivalent COVID-19 vaccines against prototype SARS-CoV-2, Omicron BA.1 variant, and Omicron BA.4/5 subvariant in healthy adults. We utilized 4 medical databases to retrieve original studies and employed the fixed effect model to estimate pooled neutralization titers. A total of 12 studies concerning 4581 subjects were included in the meta-analysis. We found that participants who received prototype, monovalent-adapted, and bivalent vaccines as a second booster significantly developed neutralizing antibody (nAb) titers against prototype SARS-CoV-2, Omicron BA.1 variant, and Omicron BA.4/5 subvariant, with monovalent-adapted and bivalent vaccines exhibiting a higher increment. Furthermore, the bivalent(Prototype/Omicron BA.1) recombinant protein vaccine exhibited the highest increment in neutralization titers(MD = 1.95; 95 %CI:0.78-3.12; p < 0.01) against the prototype SARS-CoV-2 and Omicron BA.4/5 subvariant compared to the other vaccine regimens. Interestingly, only individuals who received the monovalent (Omicron BA.1)-adapted mRNA vaccine as a second booster showed the highest increase in neutralization titers (MD:1.37; 95 %CI:0.50-2.24; p < 0.01) against the Omicron BA.1 variant compared to the other vaccine regimens. These findings showed that bivalent recombinant protein vaccines seem more immunogenic than bivalent mRNA vaccines, and bivalent vaccines might not be superior immunogens for induced strong protective immune responses compared to monovalent-adapted vaccines. |
ArticleNumber | 110509 |
Author | Lei, Qing Kamara, Abdul A. Banga Ndzouboukou, Jo-Lewis Fan, Xiong-lin Ullah, Nadeem |
Author_xml | – sequence: 1 givenname: Jo-Lewis orcidid: 0000-0003-1501-8361 surname: Banga Ndzouboukou fullname: Banga Ndzouboukou, Jo-Lewis organization: Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China – sequence: 2 givenname: Abdul A. surname: Kamara fullname: Kamara, Abdul A. organization: Department of Mathematica and Statistics, Fourah Bay College, University of Sierra Leone, Sierra Leone – sequence: 3 givenname: Nadeem surname: Ullah fullname: Ullah, Nadeem organization: Department of Clinical Microbiology, Umeå University, 90187, Umeå, Sweden – sequence: 4 givenname: Qing surname: Lei fullname: Lei, Qing organization: Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China – sequence: 5 givenname: Xiong-lin orcidid: 0000-0001-9754-372X surname: Fan fullname: Fan, Xiong-lin email: xlfan@hust.edu.cn organization: Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40132435$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-237144$$DView record from Swedish Publication Index |
BookMark | eNqFUt1q2zAYFaNjTbM9wWDochdzqj87DmODLOt-oFBYtt4KWfqcKLOlzJJT_Ex7ySp1V8Zg9EZCn845H5xzztCJ8w4QeknJjBJanO9mB9v5ZsYIy2eUkpwsnqAJJYsiI1zQEzQhRLCsKBk7RWch7Eh6z-fkGToVhHImeD5Bv5e4hagy5VQzBBuwdzhuAdu27Z3fgLPaxgH7Gu87H30c9vAGt975g2rAxUwZtY9gsHIGV3Yc4oPS2joIWG2UdSHi9fLbOlv564zhG9uYUeWqtbpL6z4sZ_SO_9dAnOfYOrwF1cTtgJXpmxieo6e1agK8uL-n6Meni--rL9nl1eevq-VlpnkpYpbXJRULKEqVV1QJXefCmEVRGaC6YoTW8-SOSZ-VhroApQrNeF1yLgpKmSB8irJRN9zAvq_kvrOt6gbplZUf7fVS-m4j-7aXjM-pEAn_esQni371EKJsbdDQNMqB74PktKS8KHg6p-jVPbSvWjAP0n8CSQA-ApITIXRQP0AokcfY5U7exS6Pscsx9sR6N7Ig2XKw0MmgLTgNxnagozTePsJ__w9fNzZFr5qfMEDY-b5L_QiSysAkketjsY69YjkhlLGjwNv_Czy6_hbs7N_x |
Cites_doi | 10.3389/fmicb.2022.927306 10.3390/vaccines12050554 10.1038/d41586-022-01730-y 10.1007/s11596-021-2470-7 10.1136/bmj-2021-069761 10.1002/rmv.2391 10.1038/s41586-022-04980-y 10.1038/s41591-023-02517-y 10.1056/NEJMoa2213082 10.1016/j.celrep.2022.111160 10.1016/j.jclinepi.2021.02.003 10.1093/infdis/jiaa797 10.3389/fimmu.2021.701501 10.1016/S0140-6736(21)01699-8 10.1002/rmv.2381 10.1016/j.eclinm.2023.102195 10.1016/j.celrep.2022.111729 10.1038/s41591-023-02503-4 10.1016/j.cell.2021.10.011 10.1038/s41590-022-01248-5 10.1016/S1473-3099(24)00077-X 10.1016/bs.ai.2022.07.001 10.1038/s41591-022-02031-7 10.1038/s41467-023-39766-x 10.1136/bmj.l4898 10.1053/apnr.2002.34181 10.1016/j.chom.2022.05.001 10.1038/s41467-022-30681-1 10.1016/S0140-6736(20)32661-1 10.1016/j.addr.2021.01.001 10.1056/NEJMoa2208343 10.1186/s12985-024-02335-9 10.1080/22221751.2022.2099305 10.1038/s41586-023-06025-4 10.1093/cid/ciad209 10.1038/s41467-023-38892-w 10.1038/s41467-024-48414-x 10.1080/21645515.2023.2264589 10.1093/infdis/jiad508 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Inc. Elsevier Inc. Copyright © 2025 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2025 Elsevier Inc. – notice: Elsevier Inc. – notice: Copyright © 2025 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTPV AOWAS D93 |
DOI | 10.1016/j.virol.2025.110509 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic SwePub SwePub Articles SWEPUB Umeå universitet |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1096-0341 |
EndPage | 110509 |
ExternalDocumentID | oai_DiVA_org_umu_237144 40132435 10_1016_j_virol_2025_110509 S0042682225001229 1_s2_0_S0042682225001229 |
Genre | Research Support, Non-U.S. Gov't Meta-Analysis Journal Article |
GroupedDBID | --- --K --M -DZ -~X .1- .55 .FO .GJ .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29Q 3O- 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM AAAJQ AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AATTM AAXKI AAXUO AAYWO ABBQC ABEFU ABFNM ABFRF ABJNI ABMAC ABMZM ABXDB ACDAQ ACGFO ACGFS ACIEU ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADMUD ADNMO ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AEXQZ AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGEKW AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CAG CJTIS COF CS3 DM4 DU5 EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEJ HMG HMK HMO HVGLF HX~ HZ~ H~9 IHE IXB J1W KOM LG5 LUGTX LZ5 M29 M41 MO0 MVM N9A O-L O9- OAUVE OD- OHT OK1 OO. OZT P-8 P-9 P2P PC. Q38 Q44 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SIN SSH SSI SSZ T5K TN5 UAP UQL WH7 WUQ X7M XOL XPP Y6R Z5R ZGI ZKB ZMT ZU3 ~G- ~KM AACTN AFCTW RIG AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTPV AOWAS D93 |
ID | FETCH-LOGICAL-c384t-5f8149e68a5b1a4cf54dd96bde1cb201f7341da5bbcef6eaa6c23f83346112403 |
IEDL.DBID | .~1 |
ISSN | 0042-6822 1096-0341 |
IngestDate | Thu Aug 21 06:29:05 EDT 2025 Wed Jul 02 05:13:58 EDT 2025 Fri Aug 08 01:51:59 EDT 2025 Tue Jul 01 05:15:04 EDT 2025 Sat Apr 05 15:42:21 EDT 2025 Thu Apr 17 13:50:53 EDT 2025 Tue Aug 26 17:14:52 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Monovalent-adapted vaccine Second booster SARS-CoV-2 variants Bivalent vaccine Immunogenicity Neutralizing antibody |
Language | English |
License | Copyright © 2025 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c384t-5f8149e68a5b1a4cf54dd96bde1cb201f7341da5bbcef6eaa6c23f83346112403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1501-8361 0000-0001-9754-372X |
PMID | 40132435 |
PQID | 3181366381 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | swepub_primary_oai_DiVA_org_umu_237144 proquest_miscellaneous_3181366381 pubmed_primary_40132435 crossref_primary_10_1016_j_virol_2025_110509 elsevier_sciencedirect_doi_10_1016_j_virol_2025_110509 elsevier_clinicalkeyesjournals_1_s2_0_S0042682225001229 elsevier_clinicalkey_doi_10_1016_j_virol_2025_110509 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-05-01 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Virology (New York, N.Y.) |
PublicationTitleAlternate | Virology |
PublicationYear | 2025 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Xie, Zou, Kurhade, Liu, Ren, Pei-Yong Shi (bib49) 2022; 41 Kurhade, Zou, Xia, Liu, Yang, Cutler, Cooper, Muik, Sahin, Jansen, Ren, Xie, Swanson, Shi (bib28) 2022; 11 Hannawi, Saf Eldin, Abuquta, Alamadi, Mahmoud, Hassan, Xu, Li, Liu, Baidoo, Ibrahim, Alhaj, Chen, Zhou, Xie (bib21) 2023; 14 Zaeck, Tan, Rietdijk, Geers, Sablerolles, Bogers, van Dijk, Gommers, van Leeuwen, Rugebregt, Goorhuis, Postma, Visser, Dalm, Lafeber, Kootstra, Huckriede, Haagmans, van Baarle, Koopmans, Switch-On, van der Kuy, GeurtsvanKessel, de Vries (bib50) 2024; 15 Shrestha, Foster, Rawlinson, Tedla, Bull (bib40) 2022; 32 (bib17) 2024 Winokur, Gayed, Fitz-Patrick, Thomas, Diya, Lockhart, Xu, Zhang, Bangad, Schwartz, Denham, Cardona, Usdan, Ginis, Mensa, Zou, Xie, Shi, Lu, Buitrago, Scully, Cooper, Koury, Jansen, Türeci, Şahin, Swanson, Gruber, Kitchin (bib48) 2023; 388 Hannawi, Yan, Saifeldin, Abuquta, Alamadi, Mahmoud, Hassan, Zhang, Gao, Chen, Gai, Xie (bib22) 2023; 64 Errico, Adams, Fremont (bib19) 2022; 154 Lauring, A.S., Tenforde, M.W., Chappell, J.D., Gaglani, M., Ginde, A.A., McNeal, T., Ghamande, S., Douin, D.J., Talbot, H.K., Casey, J.D., Mohr, N.M., Zepeski, A., Shapiro, N.I., Gibbs, K.W., Files, D.C., Hager, D.N., Shehu, A., Prekker, M.E., Erickson, H.L., Exline, M.C., Gong, M.N., Mohamed, A., Johnson, N.J., Srinivasan, V., Steingrub, J.S., Peltan, I.D., Brown, S.M., Martin, E.T., Monto, A.S., Khan, A., Hough, C.L., Busse, L.W., Ten Lohuis, C.C., Duggal, A., Wilson, J.G., Gordon, A.J., Qadir, N., Chang, S.Y., Mallow, C., Rivas, C., Babcock, H.M., Kwon, J.H., Halasa, N., Grijalva, C.G., Rice, T.W., Stubblefield, W.B., Baughman, A., Womack, K.N., Rhoads, J.P., Lindsell, C.J., Hart, K.W., Zhu, Y., Adams, K., Schrag, S.J., Olson, S.M., Kobayashi, M., Verani, J.R., Patel, M.M., Self, W.H., Influenza and Other Viruses in the Acutely Ill (IVY) Network, 2022. Clinical severity of, and effectiveness of mRNA vaccines against, covid-19 from omicron, delta, and alpha SARS-CoV-2 variants in the United States: prospective observational study. Br. Med. J. 376, e069761. Payne, Longet, Austin, Skelly, Dejnirattisai, Adele, Meardon, Faustini, Al-Taei, Moore, Tipton, Hering, Angyal, Brown, Nicols, Gillson, Dobson, Amini, Supasa, Cross, Bridges-Webb, Reyes, Linder, Sandhar, Kilby, Tyerman, Altmann, Hornsby, Whitham, Phillips, Malone, Hargreaves, Shields, Saei, Foulkes, Stafford, Johnson, Wootton, Conlon, Jeffery, Matthews, Frater, Deeks, Pollard, Brown, Rowland-Jones, Mongkolsapaya, Barnes, Hopkins, Hall, Dold, Duncan, Richter, Carroll, Screaton, Silva, Turtle, Klenerman, Dunachie, Abuelgasim, Adland, Adlou, Akther, Alhussni, Ali, Ansari, Arancibia-Cárcamo, Bayley, Brown, Chalk, Chand, Chawla, Chinnakannan, Cutteridge, Lara, Denly, Diffey, Dimitriadis, Drake, Donnison, Dupont, Eyre, Fairman, Gardiner, Gilbert-Jarmillo, Goulder, Hackstein, Hambleton, Haniffa, Haworth, Holmes, Horner, Jämsén, Johnson, Jones, Kasanyinga, Kelly, Kirk, Knight, Lawrie, Lee, Lett, Lillie, Lim, Mehta, Mentzer, O'Donnell, Ogbe, Pace, Payne, Platt, Poolan, Provine, Ramamurthy, Robinson, Romaniuk, Rongkard, Sampson, Simmons, Spegarova, Stephenson, Subramaniam, Thaventhiran, Thomas, Travis, Tucker, Turton, Watson, Watson, Weeks, Wilson, Wood, Wright, Xiao, Zawia (bib35) 2021; 184 Lopez, Vazquez, Alvarez, Arribas, Arana-Arri, Muñoz, Navarro-Pérez, Ramos, Molto, Otero-Romero, Esteban, Aurrecoechea, Pomarol, Plana, Perez-Caballero, Bernad, Prado, Riera-Sans, Soriano (bib32) 2024 Chalkias, Harper, Vrbicky, Walsh, Essink, Brosz, McGhee, Tomassini, Chen, Chang, Sutherland, Montefiori, Girard, Edwards, Feng, Zhou, Baden, Miller, Das (bib13) 2022; 387 Rathe, Hemann, Eggenberger, Li, Knoll, Stokes, Hsiang, Netland, Takehara, Pepper, Gale (bib39) 2021; 223 Voysey, Clemens, Madhi, Weckx, Folegatti, Aley, Angus, Baillie, Barnabas, Bhorat, Bibi, Briner, Cicconi, Collins, Colin-Jones, Cutland, Darton, Dheda, Duncan, Emary, Ewer, Fairlie, Faust, Feng, Ferreira, Finn, Goodman, Green, Green, Heath, Hill, Hill, Hirsch, Hodgson, Izu, Jackson, Jenkin, Joe, Kerridge, Koen, Kwatra, Lazarus, Lawrie, Lelliott, Libri, Lillie, Mallory, Mendes, Milan, Minassian, McGregor, Morrison, Mujadidi, Nana, O'Reilly, Padayachee, Pittella, Plested, Pollock, Ramasamy, Rhead, Schwarzbold, Singh, Smith, Song, Snape, Sprinz, Sutherland, Tarrant, Thomson, Török, Toshner, Turner, Vekemans, Villafana, Watson, Williams, Douglas, Hill, Lambe, Gilbert, Pollard (bib46) 2021; 397 Martínez-Flores, Zepeda-Cervantes, Cruz-Reséndiz, Aguirre-Sampieri, Sampieri, Vaca (bib33) 2021; 12 (bib25) 2008 Li, Zhao, Tao, Zhao, Xiao, Ding, Li, Chen, Cheng, Lou, Chen, Wu (bib31) 2023; 19 . Branche, Rouphael, Losada, Baden, Anderson, Luetkemeyer, Diemert, Winokur, Presti, Kottkamp (bib8) 2023; 77 Flaxman, Marchevsky, Jenkin, Aboagye, Aley, Angus, Belij-Rammerstorfer, Bibi, Bittaye, Cappuccini, Cicconi, Clutterbuck, Davies, Dejnirattisai, Dold, Ewer, Folegatti, Fowler, Hill, Kerridge, Minassian, Mongkolsapaya, Mujadidi, Plested, Ramasamy, Robinson, Sanders, Sheehan, Smith, Snape, Song, Woods, Screaton, Gilbert, Voysey, Pollard, Lambe (bib20) 2021; 398 Page, McKenzie, Bossuyt, Boutron, Hoffmann, Mulrow, Shamseer, Tetzlaff, Moher (bib34) 2021; 134 He, Sun, Chen, Hu, Zhang, Peng, Fu, Yang, Chen (bib23) 2023; 12 Chalkias, Harper, Vrbicky, Walsh, Essink, Brosz, McGhee, Tomassini, Chen, Ying Chang, Sutherland, Montefiori, Girard, Edwards, Jing Feng, Zhou, Baden, Miller, Das (bib14) 2023; 14 Cheng, Mok, Li, Chan, Luk, Lee, Gu, Chan, Tsang, Yiu, Ling, Tang, Luk, Yu, Pekosz, Webby, Cowling, Hui, Peiris (bib16) 2024; 21 Qi, Liu, Wang, Zhang (bib38) 2022; 23 Branche, Rouphael, Diemert, Falsey, Losada, Baden, Frey, Whitaker, Little, Anderson, Walter, Novak, Rupp, Jackson, Babu, Kottkamp, Luetkemeyer, Immergluck, Presti, Bäcker, Winokur, Mahgoub, Goepfert, Fusco, Malkin, Bethony, Walsh, Graciaa, Samaha, Sherman, Walsh, Abate, Oikonomopoulou, El Sahly, Martin, Kamidani, Smith, Ladner, Porterfield, Dunstan, Wald, Davis, Atmar, Mulligan, Lyke, Posavad, Meagher, Stephens, Neuzil, Abebe, Hill, Albert, Telu, Mu, Lewis, Giebeig, Eaton, Netzl, Wilks, Türeli, Makhene, Crandon, Montefiori, Makowski, Smith, Nayak, Roberts, Beigel (bib9) 2023; 29 Pollet, Chen, Strych (bib37) 2021; 170 Sun, Huang, Xiang, Nie (bib43) 2024; 12 Kurhade, Zou, Xia, Cai, Yang, Cutler, Cooper, Muik, Jansen, Xie, Swanson, Shi (bib27) 2022; 13 Barda, Lustig, Indenbaum, Zibly, Joseph, Asraf, Weiss-Ottolenghi, Amit, Kliker, Abd Elkader, Ben-Ami, Canetti, Koren, Katz-Likvornik, Halpern, Mendelson, Doolman, Harats, Kreiss, Mandelboim, Regev-Yochay (bib5) 2023; 29 Asamoah-Boaheng, Goldfarb, Kayda, Yap, Kirkham, Karim, Demers, Copp, Grunau (bib3) 2024 Chalkias, Whatley, Eder, Essink, Khetan, Bradley, Brosz, McGhee, Tomassini, Chen, Zhao, Sutherland, Shen, Girard, Edwards, Feng, Zhou, Walsh, Montefiori, Baden, Miller, Das (bib15) 2023; 29 Banga Ndzouboukou, Zhang, Fan (bib4) 2021 Bennett, Woo, Bloch, Cheung, Griffin, Mohan, Deshmukh, Arya, Cumming, Neville, McCallum Pardey, Plested, Cloney-Clark, Zhu, Kalkeri, Patel, Marcheschi, Swan, Smith, Cho, Glenn, Walker, Mallory (bib7) 2024; 24 Tallei, Alhumaid, AlMusa, Fatimawali, Kusumawaty, Alynbiawi, Alshukairi, Rabaan (bib44) 2023; 33 (bib26) 2022 Wells, Wells, Shea, O'Connell, Peterson, Welch, Losos, Tugwell, Ga, Zello, Petersen (bib47) 2014 Zhang, Banga Ndzouboukou, Gan, Lin, Fan (bib51) 2021; 12 Bennett, Rivers, Woo, Bloch, Cheung, Griffin, Mohan, Deshmukh, Arya, Cumming, Neville, Pardey, Plested, Cloney-Clark, Zhu, Kalkeri, Patel, Buchanan, Marcheschi, Swan, Smith, Cho, Glenn, Walker, Mallory (bib6) 2024; 230 Cao, Yisimayi, Jian, Song, Xiao, Wang, Du, Wang, Li, Chen, Yu, Wang, Zhang, Liu, An, Hao, Wang, Wang, Feng, Sun, Zhao, Zhang, Zhao, Zheng, Yu, Li, Zhang, Wang, Niu, Yang, Song, Chai, Hu, Shi, Zheng, Li, Gu, Shao, Huang, Jin, Shen, Wang, Wang, Xiao, Xie (bib11) 2022; 608 Ai, Wang, He, Zhao, Zhang, Jiang, Li, Cui, Chen, Qiao, Li, Yang, Li, Hu, Zhang, Wang (bib1) 2022; 30 Lee, Cosgrove, Moore, Bethune, Nally, Bula, Kalra, Clark, Dargan, Boffito, Sheridan, Moran, Darton, Burns, Saralaya, Duncan, Lillie, Ramos, Galiza, Heath, Girard, Parker, Rust, Mehta, Windt, Sutherland, Tomassini, Dutko, Chalkias, Deng, Chen, Tracy, Zhou, Miller, Das (bib30) 2023; 24 Dayan, Rouphael, Walsh, Chen, Grunenberg, Allen, Antony, Asante, Bhate, Beresnev, Bonaparte, Ceregido, Dobrianskyi, Fu, Grillet, Keshtkar-Jahromi, Juraska, Kee, Kibuuka, Koutsoukos, Masotti, Michael, Reynales, Robb, Martínez, Sawe, Schuerman, Tong, Treanor, Wartel, Diazgranados, Chicz, Gurunathan, Savarino, Sridhar (bib18) 2023 Stone (bib42) 2002; 15 Chalkias, Eder, Essink, Khetan, Nestorova, Feng, Chen, Chang, Zhou, Montefiori, Edwards, Girard, Pajon, Dutko, Leav, Walsh, Baden, Miller, Das (bib12) 2022; 28 Sterne, Savović, Page, Elbers, Blencowe, Boutron, Cates, Cheng, Corbett, Eldridge, Emberson, Hernán, Hopewell, Hróbjartsson, Junqueira, Jüni, Kirkham, Lasserson, Li, McAleenan, Reeves, Shepperd, Shrier, Stewart, Tilling, White, Whiting, Higgins (bib41) 2019; 366 Alsoussi, Malladi, Zhou, Liu, Ying, Kim, Schmitz, Lei, Horvath, Sturtz, McIntire, Evavold, Han, Scheaffer, Fox, Mirza, Parra-Rodriguez, Nachbagauer, Nestorova, Chalkias, Farnsworth, Klebert, Pusic, Strnad, Middleton, Teefey, Whelan, Diamond, Paris, O'Halloran, Presti, Turner, Ellebedy (bib2) 2023; 617 (bib45) 2024 Peng, Fang, Renauer, McNamara, Park, Lin, Zhou, Dong, Zhu, Zhao, Wilen, Chen (bib36) 2022; 40 Heidary, Kaviar, Shirani, Ghanavati, Motahar, Sholeh, Ghahramanpour, Khoshnood (bib24) 2022; 13 Zhang, He, Zhao, Li, Yang, Hu, Chen, Peng, Fu, Chen, Lu (bib52) 2022; 11 Callaway (bib10) 2022; 606 Xie (10.1016/j.virol.2025.110509_bib49) 2022; 41 Cheng (10.1016/j.virol.2025.110509_bib16) 2024; 21 Branche (10.1016/j.virol.2025.110509_bib9) 2023; 29 Kurhade (10.1016/j.virol.2025.110509_bib28) 2022; 11 Sterne (10.1016/j.virol.2025.110509_bib41) 2019; 366 Barda (10.1016/j.virol.2025.110509_bib5) 2023; 29 Zhang (10.1016/j.virol.2025.110509_bib52) 2022; 11 Cao (10.1016/j.virol.2025.110509_bib11) 2022; 608 Chalkias (10.1016/j.virol.2025.110509_bib15) 2023; 29 Callaway (10.1016/j.virol.2025.110509_bib10) 2022; 606 Heidary (10.1016/j.virol.2025.110509_bib24) 2022; 13 Chalkias (10.1016/j.virol.2025.110509_bib13) 2022; 387 Kurhade (10.1016/j.virol.2025.110509_bib27) 2022; 13 Alsoussi (10.1016/j.virol.2025.110509_bib2) 2023; 617 He (10.1016/j.virol.2025.110509_bib23) 2023; 12 Lopez (10.1016/j.virol.2025.110509_bib32) 2024 Voysey (10.1016/j.virol.2025.110509_bib46) 2021; 397 Winokur (10.1016/j.virol.2025.110509_bib48) 2023; 388 Ai (10.1016/j.virol.2025.110509_bib1) 2022; 30 Banga Ndzouboukou (10.1016/j.virol.2025.110509_bib4) 2021 Stone (10.1016/j.virol.2025.110509_bib42) 2002; 15 10.1016/j.virol.2025.110509_bib29 Hannawi (10.1016/j.virol.2025.110509_bib21) 2023; 14 (10.1016/j.virol.2025.110509_bib25) 2008 Dayan (10.1016/j.virol.2025.110509_bib18) Lee (10.1016/j.virol.2025.110509_bib30) 2023; 24 Peng (10.1016/j.virol.2025.110509_bib36) 2022; 40 Sun (10.1016/j.virol.2025.110509_bib43) 2024; 12 Errico (10.1016/j.virol.2025.110509_bib19) 2022; 154 Payne (10.1016/j.virol.2025.110509_bib35) 2021; 184 Qi (10.1016/j.virol.2025.110509_bib38) 2022; 23 Shrestha (10.1016/j.virol.2025.110509_bib40) 2022; 32 Zaeck (10.1016/j.virol.2025.110509_bib50) 2024; 15 Zhang (10.1016/j.virol.2025.110509_bib51) 2021; 12 Li (10.1016/j.virol.2025.110509_bib31) 2023; 19 Asamoah-Boaheng (10.1016/j.virol.2025.110509_bib3) 2024 Bennett (10.1016/j.virol.2025.110509_bib7) 2024; 24 Chalkias (10.1016/j.virol.2025.110509_bib12) 2022; 28 Martínez-Flores (10.1016/j.virol.2025.110509_bib33) 2021; 12 Wells (10.1016/j.virol.2025.110509_bib47) 2014 Chalkias (10.1016/j.virol.2025.110509_bib14) 2023; 14 Tallei (10.1016/j.virol.2025.110509_bib44) 2023; 33 Page (10.1016/j.virol.2025.110509_bib34) 2021; 134 Rathe (10.1016/j.virol.2025.110509_bib39) 2021; 223 Bennett (10.1016/j.virol.2025.110509_bib6) 2024; 230 (10.1016/j.virol.2025.110509_bib17) 2024 Pollet (10.1016/j.virol.2025.110509_bib37) 2021; 170 Flaxman (10.1016/j.virol.2025.110509_bib20) 2021; 398 Branche (10.1016/j.virol.2025.110509_bib8) 2023; 77 Hannawi (10.1016/j.virol.2025.110509_bib22) 2023; 64 |
References_xml | – volume: 14 start-page: 5125 year: 2023 ident: bib14 article-title: Three-month antibody persistence of a bivalent Omicron-containing booster vaccine against COVID-19 publication-title: Nat. Commun. – reference: Lauring, A.S., Tenforde, M.W., Chappell, J.D., Gaglani, M., Ginde, A.A., McNeal, T., Ghamande, S., Douin, D.J., Talbot, H.K., Casey, J.D., Mohr, N.M., Zepeski, A., Shapiro, N.I., Gibbs, K.W., Files, D.C., Hager, D.N., Shehu, A., Prekker, M.E., Erickson, H.L., Exline, M.C., Gong, M.N., Mohamed, A., Johnson, N.J., Srinivasan, V., Steingrub, J.S., Peltan, I.D., Brown, S.M., Martin, E.T., Monto, A.S., Khan, A., Hough, C.L., Busse, L.W., Ten Lohuis, C.C., Duggal, A., Wilson, J.G., Gordon, A.J., Qadir, N., Chang, S.Y., Mallow, C., Rivas, C., Babcock, H.M., Kwon, J.H., Halasa, N., Grijalva, C.G., Rice, T.W., Stubblefield, W.B., Baughman, A., Womack, K.N., Rhoads, J.P., Lindsell, C.J., Hart, K.W., Zhu, Y., Adams, K., Schrag, S.J., Olson, S.M., Kobayashi, M., Verani, J.R., Patel, M.M., Self, W.H., Influenza and Other Viruses in the Acutely Ill (IVY) Network, 2022. Clinical severity of, and effectiveness of mRNA vaccines against, covid-19 from omicron, delta, and alpha SARS-CoV-2 variants in the United States: prospective observational study. Br. Med. J. 376, e069761. – volume: 33 year: 2023 ident: bib44 article-title: Update on the omicron sub-variants BA.4 and BA.5 publication-title: Rev. Med. Virol. – volume: 606 start-page: 848 year: 2022 end-page: 849 ident: bib10 article-title: What Omicron's BA.4 and BA.5 variants mean for the pandemic publication-title: Nature – volume: 134 start-page: 103 year: 2021 end-page: 112 ident: bib34 article-title: Updating guidance for reporting systematic reviews: development of the PRISMA 2020 statement publication-title: J. Clin. Epidemiol. – volume: 366 start-page: l4898 year: 2019 ident: bib41 article-title: RoB 2: a revised tool for assessing risk of bias in randomised trials publication-title: Br. Med. J. – volume: 398 start-page: 981 year: 2021 end-page: 990 ident: bib20 article-title: Reactogenicity and immunogenicity after a late second dose or a third dose of ChAdOx1 nCoV-19 in the UK: a substudy of two randomised controlled trials (COV001 and COV002) publication-title: Lancet Lond. Engl. – volume: 24 year: 2023 ident: bib30 article-title: A randomized trial comparing omicron-containing boosters with the original covid-19 vaccine mRNA-1273 publication-title: medRxiv 2023.01. – volume: 41 year: 2022 ident: bib49 article-title: Neutralization of SARS-CoV-2 Omicron sublineages by 4 doses of the original mRNA vaccine publication-title: Cell Rep. – volume: 21 start-page: 70 year: 2024 ident: bib16 article-title: Cross-neutralizing antibody against emerging Omicron subvariants of SARS-CoV-2 in infection-naïve individuals with homologous BNT162b2 or BNT162b2(WT + BA.4/5) bivalent booster vaccination publication-title: Virol. J. – year: 2024 ident: bib32 article-title: Safety and immunogenicity of PHH-1V as booster vaccination through the Omicron era: results from a phase IIb open-label extension study up to 6 months publication-title: medRxiv – year: 2022 ident: bib26 article-title: International coalition of Medicines regulatory Authorities (ICMRA) – volume: 11 year: 2022 ident: bib52 article-title: A heterologous V-01 or variant-matched bivalent V-01D-351 booster following primary series of inactivated vaccine enhances the neutralizing capacity against SARS-CoV-2 delta and omicron strains publication-title: J. Clin. Med. – year: 2023 ident: bib18 article-title: Efficacy of a bivalent (D614 + B.1.351) SARS-CoV-2 protein vaccine – volume: 29 start-page: 918 year: 2023 end-page: 923 ident: bib5 article-title: Immunogenicity of Omicron BA.1-adapted BNT162b2 vaccines: randomized trial, 3-month follow-up publication-title: Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. – volume: 77 start-page: 560 year: 2023 end-page: 564 ident: bib8 article-title: Immunogenicity of the BA.1 and BA.4/BA.5 severe acute respiratory syndrome coronavirus 2 bivalent boosts: preliminary results from the COVAIL randomized clinical trial publication-title: Clin. Infect. Dis. – volume: 15 start-page: 197 year: 2002 end-page: 198 ident: bib42 article-title: Popping the (PICO) question in research and evidence-based practice publication-title: Appl. Nurs. Res. ANR – volume: 12 year: 2021 ident: bib33 article-title: SARS-CoV-2 vaccines based on the spike glycoprotein and implications of new viral variants publication-title: Front. Immunol. – year: 2008 ident: bib25 publication-title: Cochrane Handbook for Systematic Reviews of Interventions: Cochrane Book Series – year: 2014 ident: bib47 article-title: The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses – volume: 29 start-page: 2325 year: 2023 end-page: 2333 ident: bib15 article-title: Original SARS-CoV-2 monovalent and Omicron BA.4/BA.5 bivalent COVID-19 mRNA vaccines: phase 2/3 trial interim results publication-title: Nat. Med. – volume: 387 start-page: 1279 year: 2022 end-page: 1291 ident: bib13 article-title: A bivalent omicron-containing booster vaccine against covid-19 publication-title: N. Engl. J. Med. – volume: 608 start-page: 593 year: 2022 end-page: 602 ident: bib11 article-title: BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection publication-title: Nature – volume: 230 start-page: e4 year: 2024 end-page: e16 ident: bib6 article-title: Immunogenicity and safety of heterologous omicron BA.1 and bivalent SARS-CoV-2 recombinant spike protein booster vaccines: a phase 3 randomized clinical trial publication-title: J. Infect. Dis. – volume: 19 year: 2023 ident: bib31 article-title: Monovalent Omicron COVID-19 vaccine triggers superior neutralizing antibody responses against Omicron subvariants than Delta and Omicron bivalent vaccine publication-title: Hum. Vaccines Immunother. – volume: 24 start-page: 581 year: 2024 end-page: 593 ident: bib7 article-title: Immunogenicity and safety of a bivalent (omicron BA.5 plus ancestral) SARS-CoV-2 recombinant spike protein vaccine as a heterologous booster dose: interim analysis of a phase 3, non-inferiority, randomised, clinical trial publication-title: Lancet Infect. Dis. – volume: 11 start-page: 1828 year: 2022 end-page: 1832 ident: bib28 article-title: Neutralization of Omicron sublineages and Deltacron SARS-CoV-2 by three doses of BNT162b2 vaccine or BA.1 infection publication-title: Emerg. Microb. Infect. – volume: 170 start-page: 71 year: 2021 end-page: 82 ident: bib37 article-title: Recombinant protein vaccines, a proven approach against coronavirus pandemics publication-title: Adv. Drug Deliv. Rev. – volume: 40 year: 2022 ident: bib36 article-title: Multiplexed LNP-mRNA vaccination against pathogenic coronavirus species publication-title: Cell Rep. – volume: 14 start-page: 4043 year: 2023 ident: bib21 article-title: Safety and immunogenicity of a tetravalent and bivalent SARS-CoV-2 protein booster vaccine in men publication-title: Nat. Commun. – volume: 32 year: 2022 ident: bib40 article-title: Evolution of the SARS-CoV-2 omicron variants BA.1 to BA.5: implications for immune escape and transmission publication-title: Rev. Med. Virol. – volume: 154 start-page: 1 year: 2022 end-page: 69 ident: bib19 article-title: Antibody-mediated immunity to SARS-CoV-2 spike publication-title: Adv. Immunol. – volume: 15 start-page: 4224 year: 2024 ident: bib50 article-title: Original COVID-19 priming regimen impacts the immunogenicity of bivalent BA.1 and BA.5 boosters publication-title: Nat. Commun. – volume: 617 start-page: 592 year: 2023 end-page: 598 ident: bib2 article-title: SARS-CoV-2 Omicron boosting induces de novo B cell response in humans publication-title: Nature – volume: 223 start-page: 1120 year: 2021 end-page: 1131 ident: bib39 article-title: SARS-CoV-2 serologic assays in control and unknown populations demonstrate the necessity of virus neutralization testing publication-title: J. Infect. Dis. – volume: 12 start-page: 4842 year: 2021 ident: bib51 article-title: Immune evasive effects of SARS-CoV-2 variants to COVID-19 emergency used vaccines publication-title: Front. Immunol. – volume: 397 start-page: 99 year: 2021 end-page: 111 ident: bib46 article-title: Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK publication-title: Lancet Lond. Engl. – volume: 29 start-page: 2334 year: 2023 end-page: 2346 ident: bib9 article-title: Comparison of bivalent and monovalent SARS-CoV-2 variant vaccines: the phase 2 randomized open-label COVAIL trial publication-title: Nat. Med. – volume: 28 start-page: 2388 year: 2022 end-page: 2397 ident: bib12 article-title: Safety, immunogenicity and antibody persistence of a bivalent Beta-containing booster vaccine against COVID-19: a phase 2/3 trial publication-title: Nat. Med. – volume: 12 year: 2023 ident: bib23 article-title: The bivalent COVID-19 booster immunization after three doses of inactivated vaccine augments the neutralizing antibody response against circulating omicron sublineages publication-title: J. Clin. Med. – year: 2024 ident: bib17 article-title: WHO COVID-19 dashboard publication-title: datadot – volume: 64 year: 2023 ident: bib22 article-title: Safety and immunogenicity of multivalent SARS-CoV-2 protein vaccines: a randomized phase 3 trial publication-title: eClinicalMedicine – year: 2024 ident: bib3 article-title: Immunogenicity of bivalent versus monovalent mRNA booster vaccination among adult paramedics in Canada who had received three prior mRNA wild-type doses publication-title: Access Microbiol. – year: 2021 ident: bib4 article-title: Recent developments in SARS-CoV-2 neutralizing antibody detection methods publication-title: Curr. Med. Sci. – volume: 388 start-page: 214 year: 2023 end-page: 227 ident: bib48 article-title: Bivalent omicron BA.1-Adapted BNT162b2 booster in adults older than 55 years publication-title: N. Engl. J. Med. – volume: 12 start-page: 554 year: 2024 ident: bib43 article-title: SARS-CoV-2 neutralization assays used in clinical trials: a narrative review publication-title: Vaccines – reference: . – volume: 13 year: 2022 ident: bib24 article-title: A comprehensive review of the protein subunit vaccines against COVID-19 publication-title: Front. Microbiol. – volume: 184 start-page: 5699 year: 2021 end-page: 5714.e11 ident: bib35 article-title: Immunogenicity of standard and extended dosing intervals of BNT162b2 mRNA vaccine publication-title: Cell – volume: 30 start-page: 1077 year: 2022 end-page: 1083.e4 ident: bib1 article-title: Antibody evasion of SARS-CoV-2 Omicron BA.1, BA.1.1, BA.2, and BA.3 sub-lineages publication-title: Cell Host Microbe – year: 2024 ident: bib45 article-title: Vaccines and related biological Products advisory committee – volume: 13 start-page: 3602 year: 2022 ident: bib27 article-title: Neutralization of Omicron BA.1, BA.2, and BA.3 SARS-CoV-2 by 3 doses of BNT162b2 vaccine publication-title: Nat. Commun. – volume: 23 start-page: 1008 year: 2022 end-page: 1020 ident: bib38 article-title: The humoral response and antibodies against SARS-CoV-2 infection publication-title: Nat. Immunol. – volume: 13 year: 2022 ident: 10.1016/j.virol.2025.110509_bib24 article-title: A comprehensive review of the protein subunit vaccines against COVID-19 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2022.927306 – volume: 12 start-page: 554 year: 2024 ident: 10.1016/j.virol.2025.110509_bib43 article-title: SARS-CoV-2 neutralization assays used in clinical trials: a narrative review publication-title: Vaccines doi: 10.3390/vaccines12050554 – volume: 29 start-page: 918 year: 2023 ident: 10.1016/j.virol.2025.110509_bib5 article-title: Immunogenicity of Omicron BA.1-adapted BNT162b2 vaccines: randomized trial, 3-month follow-up publication-title: Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. – volume: 606 start-page: 848 year: 2022 ident: 10.1016/j.virol.2025.110509_bib10 article-title: What Omicron's BA.4 and BA.5 variants mean for the pandemic publication-title: Nature doi: 10.1038/d41586-022-01730-y – year: 2021 ident: 10.1016/j.virol.2025.110509_bib4 article-title: Recent developments in SARS-CoV-2 neutralizing antibody detection methods publication-title: Curr. Med. Sci. doi: 10.1007/s11596-021-2470-7 – ident: 10.1016/j.virol.2025.110509_bib29 doi: 10.1136/bmj-2021-069761 – volume: 33 year: 2023 ident: 10.1016/j.virol.2025.110509_bib44 article-title: Update on the omicron sub-variants BA.4 and BA.5 publication-title: Rev. Med. Virol. doi: 10.1002/rmv.2391 – volume: 608 start-page: 593 year: 2022 ident: 10.1016/j.virol.2025.110509_bib11 article-title: BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection publication-title: Nature doi: 10.1038/s41586-022-04980-y – volume: 29 start-page: 2325 year: 2023 ident: 10.1016/j.virol.2025.110509_bib15 article-title: Original SARS-CoV-2 monovalent and Omicron BA.4/BA.5 bivalent COVID-19 mRNA vaccines: phase 2/3 trial interim results publication-title: Nat. Med. doi: 10.1038/s41591-023-02517-y – volume: 388 start-page: 214 year: 2023 ident: 10.1016/j.virol.2025.110509_bib48 article-title: Bivalent omicron BA.1-Adapted BNT162b2 booster in adults older than 55 years publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2213082 – year: 2024 ident: 10.1016/j.virol.2025.110509_bib3 article-title: Immunogenicity of bivalent versus monovalent mRNA booster vaccination among adult paramedics in Canada who had received three prior mRNA wild-type doses publication-title: Access Microbiol. – volume: 40 year: 2022 ident: 10.1016/j.virol.2025.110509_bib36 article-title: Multiplexed LNP-mRNA vaccination against pathogenic coronavirus species publication-title: Cell Rep. doi: 10.1016/j.celrep.2022.111160 – volume: 11 year: 2022 ident: 10.1016/j.virol.2025.110509_bib52 article-title: A heterologous V-01 or variant-matched bivalent V-01D-351 booster following primary series of inactivated vaccine enhances the neutralizing capacity against SARS-CoV-2 delta and omicron strains publication-title: J. Clin. Med. – year: 2008 ident: 10.1016/j.virol.2025.110509_bib25 – volume: 134 start-page: 103 year: 2021 ident: 10.1016/j.virol.2025.110509_bib34 article-title: Updating guidance for reporting systematic reviews: development of the PRISMA 2020 statement publication-title: J. Clin. Epidemiol. doi: 10.1016/j.jclinepi.2021.02.003 – year: 2024 ident: 10.1016/j.virol.2025.110509_bib17 article-title: WHO COVID-19 dashboard publication-title: datadot – volume: 223 start-page: 1120 year: 2021 ident: 10.1016/j.virol.2025.110509_bib39 article-title: SARS-CoV-2 serologic assays in control and unknown populations demonstrate the necessity of virus neutralization testing publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiaa797 – volume: 12 year: 2021 ident: 10.1016/j.virol.2025.110509_bib33 article-title: SARS-CoV-2 vaccines based on the spike glycoprotein and implications of new viral variants publication-title: Front. Immunol. doi: 10.3389/fimmu.2021.701501 – volume: 398 start-page: 981 year: 2021 ident: 10.1016/j.virol.2025.110509_bib20 article-title: Reactogenicity and immunogenicity after a late second dose or a third dose of ChAdOx1 nCoV-19 in the UK: a substudy of two randomised controlled trials (COV001 and COV002) publication-title: Lancet Lond. Engl. doi: 10.1016/S0140-6736(21)01699-8 – volume: 32 year: 2022 ident: 10.1016/j.virol.2025.110509_bib40 article-title: Evolution of the SARS-CoV-2 omicron variants BA.1 to BA.5: implications for immune escape and transmission publication-title: Rev. Med. Virol. doi: 10.1002/rmv.2381 – volume: 64 year: 2023 ident: 10.1016/j.virol.2025.110509_bib22 article-title: Safety and immunogenicity of multivalent SARS-CoV-2 protein vaccines: a randomized phase 3 trial publication-title: eClinicalMedicine doi: 10.1016/j.eclinm.2023.102195 – volume: 41 year: 2022 ident: 10.1016/j.virol.2025.110509_bib49 article-title: Neutralization of SARS-CoV-2 Omicron sublineages by 4 doses of the original mRNA vaccine publication-title: Cell Rep. doi: 10.1016/j.celrep.2022.111729 – volume: 29 start-page: 2334 year: 2023 ident: 10.1016/j.virol.2025.110509_bib9 article-title: Comparison of bivalent and monovalent SARS-CoV-2 variant vaccines: the phase 2 randomized open-label COVAIL trial publication-title: Nat. Med. doi: 10.1038/s41591-023-02503-4 – volume: 184 start-page: 5699 year: 2021 ident: 10.1016/j.virol.2025.110509_bib35 article-title: Immunogenicity of standard and extended dosing intervals of BNT162b2 mRNA vaccine publication-title: Cell doi: 10.1016/j.cell.2021.10.011 – volume: 23 start-page: 1008 year: 2022 ident: 10.1016/j.virol.2025.110509_bib38 article-title: The humoral response and antibodies against SARS-CoV-2 infection publication-title: Nat. Immunol. doi: 10.1038/s41590-022-01248-5 – volume: 24 start-page: 581 year: 2024 ident: 10.1016/j.virol.2025.110509_bib7 article-title: Immunogenicity and safety of a bivalent (omicron BA.5 plus ancestral) SARS-CoV-2 recombinant spike protein vaccine as a heterologous booster dose: interim analysis of a phase 3, non-inferiority, randomised, clinical trial publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(24)00077-X – volume: 154 start-page: 1 year: 2022 ident: 10.1016/j.virol.2025.110509_bib19 article-title: Antibody-mediated immunity to SARS-CoV-2 spike publication-title: Adv. Immunol. doi: 10.1016/bs.ai.2022.07.001 – volume: 28 start-page: 2388 year: 2022 ident: 10.1016/j.virol.2025.110509_bib12 article-title: Safety, immunogenicity and antibody persistence of a bivalent Beta-containing booster vaccine against COVID-19: a phase 2/3 trial publication-title: Nat. Med. doi: 10.1038/s41591-022-02031-7 – volume: 14 start-page: 4043 year: 2023 ident: 10.1016/j.virol.2025.110509_bib21 article-title: Safety and immunogenicity of a tetravalent and bivalent SARS-CoV-2 protein booster vaccine in men publication-title: Nat. Commun. doi: 10.1038/s41467-023-39766-x – volume: 366 start-page: l4898 year: 2019 ident: 10.1016/j.virol.2025.110509_bib41 article-title: RoB 2: a revised tool for assessing risk of bias in randomised trials publication-title: Br. Med. J. doi: 10.1136/bmj.l4898 – volume: 15 start-page: 197 year: 2002 ident: 10.1016/j.virol.2025.110509_bib42 article-title: Popping the (PICO) question in research and evidence-based practice publication-title: Appl. Nurs. Res. ANR doi: 10.1053/apnr.2002.34181 – volume: 30 start-page: 1077 year: 2022 ident: 10.1016/j.virol.2025.110509_bib1 article-title: Antibody evasion of SARS-CoV-2 Omicron BA.1, BA.1.1, BA.2, and BA.3 sub-lineages publication-title: Cell Host Microbe doi: 10.1016/j.chom.2022.05.001 – volume: 13 start-page: 3602 year: 2022 ident: 10.1016/j.virol.2025.110509_bib27 article-title: Neutralization of Omicron BA.1, BA.2, and BA.3 SARS-CoV-2 by 3 doses of BNT162b2 vaccine publication-title: Nat. Commun. doi: 10.1038/s41467-022-30681-1 – volume: 24 year: 2023 ident: 10.1016/j.virol.2025.110509_bib30 article-title: A randomized trial comparing omicron-containing boosters with the original covid-19 vaccine mRNA-1273 publication-title: medRxiv 2023.01. – volume: 397 start-page: 99 year: 2021 ident: 10.1016/j.virol.2025.110509_bib46 article-title: Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK publication-title: Lancet Lond. Engl. doi: 10.1016/S0140-6736(20)32661-1 – year: 2024 ident: 10.1016/j.virol.2025.110509_bib32 article-title: Safety and immunogenicity of PHH-1V as booster vaccination through the Omicron era: results from a phase IIb open-label extension study up to 6 months publication-title: medRxiv – volume: 170 start-page: 71 year: 2021 ident: 10.1016/j.virol.2025.110509_bib37 article-title: Recombinant protein vaccines, a proven approach against coronavirus pandemics publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2021.01.001 – volume: 387 start-page: 1279 year: 2022 ident: 10.1016/j.virol.2025.110509_bib13 article-title: A bivalent omicron-containing booster vaccine against covid-19 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2208343 – volume: 21 start-page: 70 year: 2024 ident: 10.1016/j.virol.2025.110509_bib16 article-title: Cross-neutralizing antibody against emerging Omicron subvariants of SARS-CoV-2 in infection-naïve individuals with homologous BNT162b2 or BNT162b2(WT + BA.4/5) bivalent booster vaccination publication-title: Virol. J. doi: 10.1186/s12985-024-02335-9 – ident: 10.1016/j.virol.2025.110509_bib18 – volume: 11 start-page: 1828 year: 2022 ident: 10.1016/j.virol.2025.110509_bib28 article-title: Neutralization of Omicron sublineages and Deltacron SARS-CoV-2 by three doses of BNT162b2 vaccine or BA.1 infection publication-title: Emerg. Microb. Infect. doi: 10.1080/22221751.2022.2099305 – volume: 617 start-page: 592 year: 2023 ident: 10.1016/j.virol.2025.110509_bib2 article-title: SARS-CoV-2 Omicron boosting induces de novo B cell response in humans publication-title: Nature doi: 10.1038/s41586-023-06025-4 – volume: 77 start-page: 560 year: 2023 ident: 10.1016/j.virol.2025.110509_bib8 article-title: Immunogenicity of the BA.1 and BA.4/BA.5 severe acute respiratory syndrome coronavirus 2 bivalent boosts: preliminary results from the COVAIL randomized clinical trial publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciad209 – volume: 14 start-page: 5125 year: 2023 ident: 10.1016/j.virol.2025.110509_bib14 article-title: Three-month antibody persistence of a bivalent Omicron-containing booster vaccine against COVID-19 publication-title: Nat. Commun. doi: 10.1038/s41467-023-38892-w – volume: 15 start-page: 4224 year: 2024 ident: 10.1016/j.virol.2025.110509_bib50 article-title: Original COVID-19 priming regimen impacts the immunogenicity of bivalent BA.1 and BA.5 boosters publication-title: Nat. Commun. doi: 10.1038/s41467-024-48414-x – volume: 19 year: 2023 ident: 10.1016/j.virol.2025.110509_bib31 article-title: Monovalent Omicron COVID-19 vaccine triggers superior neutralizing antibody responses against Omicron subvariants than Delta and Omicron bivalent vaccine publication-title: Hum. Vaccines Immunother. doi: 10.1080/21645515.2023.2264589 – volume: 230 start-page: e4 year: 2024 ident: 10.1016/j.virol.2025.110509_bib6 article-title: Immunogenicity and safety of heterologous omicron BA.1 and bivalent SARS-CoV-2 recombinant spike protein booster vaccines: a phase 3 randomized clinical trial publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiad508 – year: 2014 ident: 10.1016/j.virol.2025.110509_bib47 – volume: 12 year: 2023 ident: 10.1016/j.virol.2025.110509_bib23 article-title: The bivalent COVID-19 booster immunization after three doses of inactivated vaccine augments the neutralizing antibody response against circulating omicron sublineages publication-title: J. Clin. Med. – volume: 12 start-page: 4842 year: 2021 ident: 10.1016/j.virol.2025.110509_bib51 article-title: Immune evasive effects of SARS-CoV-2 variants to COVID-19 emergency used vaccines publication-title: Front. Immunol. |
SSID | ssj0004770 |
Score | 2.4662473 |
SecondaryResourceType | review_article |
Snippet | Although COVID-19 is no longer classified as the first public health emergency, nevertheless, it still presents a serious menace to the health of the global... AbstractAlthough COVID-19 is no longer classified as the first public health emergency, nevertheless, it still presents a serious menace to the health of the... |
SourceID | swepub proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 110509 |
SubjectTerms | Adult Antibodies, Neutralizing - blood Antibodies, Neutralizing - immunology Antibodies, Viral - blood Antibodies, Viral - immunology Bivalent vaccine COVID-19 - immunology COVID-19 - prevention & control COVID-19 - virology COVID-19 Vaccines - administration & dosage COVID-19 Vaccines - immunology Healthy Volunteers Humans Immunization, Secondary Immunogenicity Immunogenicity, Vaccine Infectious Disease Monovalent-adapted vaccine Neutralizing antibody SARS-CoV-2 - genetics SARS-CoV-2 - immunology SARS-CoV-2 variants Second booster |
Title | A meta-analysis on the immunogenicity of prototype, monovalent-adapted and bivalent vaccines against SARS-CoV-2 wildtype, Omicron BA.1 and Omicron BA.4/5 in healthy adults |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0042682225001229 https://www.clinicalkey.es/playcontent/1-s2.0-S0042682225001229 https://dx.doi.org/10.1016/j.virol.2025.110509 https://www.ncbi.nlm.nih.gov/pubmed/40132435 https://www.proquest.com/docview/3181366381 https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-237144 |
Volume | 606 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiQuiDehUA0S4lR3k9hOssewUC0gikRp1ZvlxE6VSpusmt1KvfCH-JPMxMnyaAUSxzhx4mQ-z3zOPMzYqzA01hhD_7-ShEsTlRx5suCFUM5JZ1LX7xLx6TCZH8sPp-p0i83GXBgKqxx0v9fpvbYeWibD15ws65pyfNG6kH1TvX-IkvikTAnl-99-hnnINN2kodDVY-WhPsaLUsnI_xArCodXFJV4s3W6zj7_KC3am6ODe-zuwCMh90O9z7Zc84Dd9jtLXj1k33NYuJXhZqg5Am0DSPWgpnSQFkFTl0i_oa2ACjW09CN2DxCRLQIPzRDHT7tELgqmsVDUvhEuTUlu-A7MmamRVsJR_uWIz9oTHgNSbuvv8nlBMX4NvMn3o77_Lw1yoqBuwCdfXkFf_KN7xI4P3n2dzfmwLwMvRSZXXFUZrqtckhlVREaWlZLWTpPCuqgskFBUKZpGiyeL0lWJMyYpY1FlQsgE2Z0MxWO23bSNe8oADaeToUujSCBxq8JiWqZWxVMr8CFSTgO2N8pDL335DT3GpZ3rXnyaxKe9-AImR5npMbMUdaFG8_D3bulN3Vw3zOdOR7qLdaivYS5gyabnb7D99yNfjpDSOKHJS2Ma1647jUo2EsgDsyhgTzzWNq9Oi-EYCW7AXnvwbc5QlfC39Umu24szvV6sdUylGOWz_x3fDrtDRz608znbXl2s3QukX6tit59fu-xW_v7j_PAHcNIuYg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLZKEYILYi1hfUiIU91JYjvLMQxUA7RFoot6s5zEqYI0yaiZQeqFP8Sf5L04GZZWIHG14zjx2z7bb2Hsle-b0hhD519RxKUJCo44WfBcKGulNbHtq0TsH0SzY_nhVJ1usOkYC0NulYPudzq919ZDy2RYzcmirinGF60L2TfV3w-l19h1ieJLZQx2vv3085BxvI5DocfH1EO9kxfFktEFRKjIH16RW-LV5uky_Pwjt2hvj3bvsNsDkITMfetdtmGbe-yGKy15cZ99z2Bul4abIekItA0g1oOa4kFa5Jq6QPwNbQWUqaGlk9htQJZskfPQDnFc2wWCUTBNCXntGuGrKegevgNzZmrElXCYfT7k0_aEh4CYu3Rv-TQnJ78G3mQ7QT_-lwY5UVA34KIvL6DP_tE9YMe7746mMz4UZuCFSOSSqyrBjZWNEqPywMiiUrIs0ygvbVDkiCiqGG1jiZ15YavIGhMVoagSIWSE8E764iHbbNrGPmKAltNK38ZBIBC5VX6eFnGpwrQUOImUqce2R3rohcu_oUfHtC-6J58m8mlHPo_JkWZ6DC1FZajRPvx9WHzVMNsNAt3pQHeh9vUlpvNYtB75G9_-e8qXI0tplGi6pjGNbVedRi0bCASCSeCxLcdr61-n3XCICNdjrx3zrXsoTfjb-iTT7fmZXs1XOqRcjPLx_37fC3ZzdrS_p_feH3x8wm5Rj_PzfMo2l-cr-wyx2DJ_3svaDxBhL_A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+meta-analysis+on+the+immunogenicity+of+prototype%2C+monovalent-adapted+and+bivalent+vaccines+against+SARS-CoV-2+wildtype%2C+Omicron+BA.1+and+Omicron+BA.4%2F5+in+healthy+adults&rft.jtitle=Virology+%28New+York%2C+N.Y.%29&rft.au=Banga+Ndzouboukou%2C+Jo-Lewis&rft.au=Kamara%2C+Abdul+A.&rft.au=Ullah%2C+Nadeem&rft.au=Lei%2C+Qing&rft.date=2025-05-01&rft.pub=Elsevier+Inc&rft.issn=0042-6822&rft.volume=606&rft_id=info:doi/10.1016%2Fj.virol.2025.110509&rft.externalDocID=S0042682225001229 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00426822%2FS0042682225X00039%2Fcov150h.gif |