Functional connectivity of visual cortex in the blind follows retinotopic organization principles
Is visual input during critical periods of development crucial for the emergence of the fundamental topographical mapping of the visual cortex? And would this structure be retained throughout life-long blindness or would it fade as a result of plastic, use-based reorganization? We used functional co...
Saved in:
Published in | Brain (London, England : 1878) Vol. 138; no. 6; pp. 1679 - 1695 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.06.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0006-8950 1460-2156 |
DOI | 10.1093/brain/awv083 |
Cover
Abstract | Is visual input during critical periods of development crucial for the emergence of the fundamental topographical mapping of the visual cortex? And would this structure be retained throughout life-long blindness or would it fade as a result of plastic, use-based reorganization? We used functional connectivity magnetic resonance imaging based on intrinsic blood oxygen level-dependent fluctuations to investigate whether significant traces of topographical mapping of the visual scene in the form of retinotopic organization, could be found in congenitally blind adults. A group of 11 fully and congenitally blind subjects and 18 sighted controls were studied. The blind demonstrated an intact functional connectivity network structural organization of the three main retinotopic mapping axes: eccentricity (centre-periphery), laterality (left-right), and elevation (upper-lower) throughout the retinotopic cortex extending to high-level ventral and dorsal streams, including characteristic eccentricity biases in face- and house-selective areas. Functional connectivity-based topographic organization in the visual cortex was indistinguishable from the normally sighted retinotopic functional connectivity structure as indicated by clustering analysis, and was found even in participants who did not have a typical retinal development in utero (microphthalmics). While the internal structural organization of the visual cortex was strikingly similar, the blind exhibited profound differences in functional connectivity to other (non-visual) brain regions as compared to the sighted, which were specific to portions of V1. Central V1 was more connected to language areas but peripheral V1 to spatial attention and control networks. These findings suggest that current accounts of critical periods and experience-dependent development should be revisited even for primary sensory areas, in that the connectivity basis for visual cortex large-scale topographical organization can develop without any visual experience and be retained through life-long experience-dependent plasticity. Furthermore, retinotopic divisions of labour, such as that between the visual cortex regions normally representing the fovea and periphery, also form the basis for topographically-unique plastic changes in the blind. |
---|---|
AbstractList | Although early visual experience is essential for the proper development of visual cortex, Striem-Amit
et al.
show that the underlying connectivity structure of retinotopic mapping is retained even in congenitally blind individuals. This basic organisational principle emerges independently of visual input and persists despite lifelong experience-dependent plasticity.
Although early visual experience is essential for the proper development of visual cortex, Striem-Amit
et al.
show that the underlying connectivity structure of retinotopic mapping is retained even in congenitally blind individuals. This basic organisational principle emerges independently of visual input and persists despite lifelong experience-dependent plasticity.
Is visual input during critical periods of development crucial for the emergence of the fundamental topographical mapping of the visual cortex? And would this structure be retained throughout life-long blindness or would it fade as a result of plastic, use-based reorganization? We used functional connectivity magnetic resonance imaging based on intrinsic blood oxygen level-dependent fluctuations to investigate whether significant traces of topographical mapping of the visual scene in the form of retinotopic organization, could be found in congenitally blind adults. A group of 11 fully and congenitally blind subjects and 18 sighted controls were studied. The blind demonstrated an intact functional connectivity network structural organization of the three main retinotopic mapping axes: eccentricity (centre-periphery), laterality (left-right), and elevation (upper-lower) throughout the retinotopic cortex extending to high-level ventral and dorsal streams, including characteristic eccentricity biases in face- and house-selective areas. Functional connectivity-based topographic organization in the visual cortex was indistinguishable from the normally sighted retinotopic functional connectivity structure as indicated by clustering analysis, and was found even in participants who did not have a typical retinal development
in utero
(microphthalmics). While the internal structural organization of the visual cortex was strikingly similar, the blind exhibited profound differences in functional connectivity to other (non-visual) brain regions as compared to the sighted, which were specific to portions of V1. Central V1 was more connected to language areas but peripheral V1 to spatial attention and control networks. These findings suggest that current accounts of critical periods and experience-dependent development should be revisited even for primary sensory areas, in that the connectivity basis for visual cortex large-scale topographical organization can develop without any visual experience and be retained through life-long experience-dependent plasticity. Furthermore, retinotopic divisions of labour, such as that between the visual cortex regions normally representing the fovea and periphery, also form the basis for topographically-unique plastic changes in the blind. Is visual input during critical periods of development crucial for the emergence of the fundamental topographical mapping of the visual cortex? And would this structure be retained throughout life-long blindness or would it fade as a result of plastic, use-based reorganization? We used functional connectivity magnetic resonance imaging based on intrinsic blood oxygen level-dependent fluctuations to investigate whether significant traces of topographical mapping of the visual scene in the form of retinotopic organization, could be found in congenitally blind adults. A group of 11 fully and congenitally blind subjects and 18 sighted controls were studied. The blind demonstrated an intact functional connectivity network structural organization of the three main retinotopic mapping axes: eccentricity (centre-periphery), laterality (left-right), and elevation (upper-lower) throughout the retinotopic cortex extending to high-level ventral and dorsal streams, including characteristic eccentricity biases in face- and house-selective areas. Functional connectivity-based topographic organization in the visual cortex was indistinguishable from the normally sighted retinotopic functional connectivity structure as indicated by clustering analysis, and was found even in participants who did not have a typical retinal development in utero (microphthalmics). While the internal structural organization of the visual cortex was strikingly similar, the blind exhibited profound differences in functional connectivity to other (non-visual) brain regions as compared to the sighted, which were specific to portions of V1. Central V1 was more connected to language areas but peripheral V1 to spatial attention and control networks. These findings suggest that current accounts of critical periods and experience-dependent development should be revisited even for primary sensory areas, in that the connectivity basis for visual cortex large-scale topographical organization can develop without any visual experience and be retained through life-long experience-dependent plasticity. Furthermore, retinotopic divisions of labour, such as that between the visual cortex regions normally representing the fovea and periphery, also form the basis for topographically-unique plastic changes in the blind. |
Author | Ovadia-Caro, Smadar Striem-Amit, Ella Margulies, Daniel S. Villringer, Arno Amedi, Amir Caramazza, Alfonso |
Author_xml | – sequence: 1 givenname: Ella surname: Striem-Amit fullname: Striem-Amit, Ella – sequence: 2 givenname: Smadar surname: Ovadia-Caro fullname: Ovadia-Caro, Smadar – sequence: 3 givenname: Alfonso surname: Caramazza fullname: Caramazza, Alfonso – sequence: 4 givenname: Daniel S. surname: Margulies fullname: Margulies, Daniel S. – sequence: 5 givenname: Arno surname: Villringer fullname: Villringer, Arno – sequence: 6 givenname: Amir surname: Amedi fullname: Amedi, Amir |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25869851$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1PVDEUxRsDkQHcuTZduvBBv1_fxsQQURISN7Bu-jq3UNNpx7ZvAP9638wgUeOqub2_e87NPcfoIOUECL2l5IySgZ-PxYZ0bh82RPNXaEGFIh2jUh2gBSFEdXqQ5Agd1_qdECo4U6_REZNaDVrSBbKXU3It5GQjdjklmItNaE84e7wJddp9lwaPOCTc7gGPMaQl9jnG_FBxgRZSbnkdHM7lzqbw027V8LqE5MI6Qj1Fh97GCm-e3xN0e_n55uJrd_3ty9XFp-vOcS1aJ60eBfU9dyDcSAY79oz0XoD0TErPB8uc75VmHGZSWdDLcakJ0TDyQbCBn6CPe931NK5g6SC1YqOZF1nZ8mSyDebvTgr35i5vjFBUUMFmgffPAiX_mKA2swrVQYw2QZ6qoUrzXvZMb73e_en1YvL7rjPwYQ-4kmst4F8QSsw2NrOLzexjm3H2D-5C2x1y3jTE_w_9At5loh8 |
CitedBy_id | crossref_primary_10_1016_j_ymthe_2017_09_014 crossref_primary_10_1523_JNEUROSCI_0376_23_2023 crossref_primary_10_1371_journal_pbio_1002569 crossref_primary_10_1089_brain_2021_0145 crossref_primary_10_1007_s00429_017_1523_y crossref_primary_10_1093_cercor_bhv275 crossref_primary_10_1093_cercor_bhx179 crossref_primary_10_1088_1741_2552_ab0169 crossref_primary_10_1016_j_tins_2016_05_003 crossref_primary_10_1016_j_tics_2017_06_003 crossref_primary_10_3389_fcomm_2020_519955 crossref_primary_10_1016_j_ymthe_2018_07_012 crossref_primary_10_1038_srep29375 crossref_primary_10_3389_fnins_2024_1334283 crossref_primary_10_1093_cercor_bhac221 crossref_primary_10_3233_RNN_160647 crossref_primary_10_1126_sciadv_adk6840 crossref_primary_10_1146_annurev_neuro_082823_073701 crossref_primary_10_1155_2020_1913805 crossref_primary_10_1016_j_cub_2020_05_071 crossref_primary_10_1016_j_cub_2023_02_025 crossref_primary_10_1002_wcs_1468 crossref_primary_10_1002_hbm_70064 crossref_primary_10_1016_j_neuroimage_2016_08_035 crossref_primary_10_1016_j_neuroimage_2015_12_048 crossref_primary_10_1088_1741_2552_aa795e crossref_primary_10_1097_WNR_0000000000001200 crossref_primary_10_1016_j_tics_2017_03_007 crossref_primary_10_1146_annurev_vision_091718_014917 crossref_primary_10_1523_JNEUROSCI_1291_24_2024 crossref_primary_10_1016_j_ophtha_2015_05_046 crossref_primary_10_3390_brainsci11101279 crossref_primary_10_1093_braincomms_fcad119 crossref_primary_10_7554_eLife_37227 crossref_primary_10_7554_eLife_31640 crossref_primary_10_1038_s41597_022_01180_1 crossref_primary_10_1162_jocn_a_01945 crossref_primary_10_1146_annurev_vision_111815_114535 crossref_primary_10_1093_cercor_bhz006 crossref_primary_10_1016_j_conb_2015_09_001 crossref_primary_10_1073_pnas_1911359117 crossref_primary_10_1016_j_cub_2017_03_057 crossref_primary_10_1073_pnas_2004607117 crossref_primary_10_1016_j_neuroimage_2021_118029 crossref_primary_10_1016_j_neuroimage_2016_12_053 crossref_primary_10_1002_hbm_23414 crossref_primary_10_1146_annurev_devpsych_120621_042108 crossref_primary_10_1016_j_neuroimage_2021_118023 crossref_primary_10_1098_rspb_2019_1910 crossref_primary_10_1080_20445911_2016_1181691 crossref_primary_10_1093_brain_awae187 crossref_primary_10_1371_journal_pone_0289671 crossref_primary_10_1073_pnas_2207025120 crossref_primary_10_1016_j_brs_2022_08_007 crossref_primary_10_1038_s41593_024_01618_2 crossref_primary_10_1016_j_neuropsychologia_2019_107302 crossref_primary_10_1016_j_neuropsychologia_2015_11_009 crossref_primary_10_1073_pnas_1609000114 crossref_primary_10_1146_annurev_vision_091517_034202 crossref_primary_10_3389_fnins_2022_902866 crossref_primary_10_1016_j_nicl_2024_103688 crossref_primary_10_3389_fncom_2017_00089 crossref_primary_10_1073_pnas_2320251121 crossref_primary_10_1002_hbm_23687 crossref_primary_10_1038_srep43223 crossref_primary_10_1016_j_neuroimage_2016_04_063 crossref_primary_10_1038_s41598_019_48079_3 crossref_primary_10_1177_10738584211037619 crossref_primary_10_1038_s41583_021_00490_4 crossref_primary_10_1038_s41598_019_39864_1 crossref_primary_10_3233_RNN_231334 crossref_primary_10_1093_cercor_bhz021 crossref_primary_10_1016_j_neubiorev_2020_06_034 crossref_primary_10_3389_fnins_2023_973525 crossref_primary_10_1016_j_neuroimage_2016_04_056 crossref_primary_10_1038_s41598_018_37821_y crossref_primary_10_1016_j_neubiorev_2020_10_030 crossref_primary_10_1093_cercor_bhaa370 crossref_primary_10_1093_cercor_bhy125 crossref_primary_10_1523_JNEUROSCI_3622_16_2017 crossref_primary_10_1111_opo_12293 crossref_primary_10_1371_journal_pone_0173064 crossref_primary_10_1080_23273798_2023_2210235 crossref_primary_10_1016_j_dcn_2024_101360 crossref_primary_10_1016_j_neuron_2018_08_009 crossref_primary_10_1016_j_cub_2023_10_010 crossref_primary_10_1073_pnas_1803926115 crossref_primary_10_1016_j_neuropsychologia_2020_107617 crossref_primary_10_1038_s41598_024_76879_9 crossref_primary_10_1146_annurev_vision_102016_061241 crossref_primary_10_1016_j_neubiorev_2020_03_019 crossref_primary_10_1016_j_neuropsychologia_2016_05_022 crossref_primary_10_1162_jocn_a_02041 crossref_primary_10_1016_j_tics_2021_10_011 crossref_primary_10_1093_bjps_axy073 crossref_primary_10_3389_fnins_2021_718958 crossref_primary_10_1016_j_cognition_2024_106058 crossref_primary_10_1016_j_conb_2020_11_011 crossref_primary_10_1016_j_neubiorev_2019_10_011 |
Cites_doi | 10.1038/nrn2961 10.1016/j.neuron.2011.04.028 10.1152/jn.00587.2007 10.1002/hbm.22350 10.1523/JNEUROSCI.3295-06.2006 10.1523/JNEUROSCI.1114-13.2014 10.3389/fnsys.2013.00092 10.1002/hbm.460010306 10.1016/j.visres.2010.08.004 10.1016/j.neuroimage.2013.07.035 10.1073/pnas.1014818108 10.1523/JNEUROSCI.17-11-04302.1997 10.1016/S0896-6273(03)00790-6 10.1016/j.neuron.2010.09.021 10.1073/pnas.162342799 10.1016/j.cub.2007.05.060 10.1146/annurev-neuro-062012-170341 10.1016/j.neuron.2012.08.026 10.1038/380526a0 10.1016/j.tics.2011.01.004 10.1016/j.neuropsychologia.2013.01.024 10.1152/jn.1965.28.6.1029 10.1093/cercor/bhj102 10.3389/fpsyg.2013.00664 10.1080/02643294.2012.713342 10.1016/j.neuroimage.2013.05.038 10.1016/j.cub.2014.04.020 10.1038/nn1328 10.1038/nature05758 10.1016/j.cub.2013.01.017 10.1073/pnas.0705843104 10.1007/s00429-009-0208-6 10.1073/pnas.0400707101 10.1016/j.cub.2005.06.053 10.1016/j.neubiorev.2013.01.025 10.1002/mrm.1910340409 10.1523/JNEUROSCI.0363-13.2013 10.1016/j.neuron.2007.10.012 10.1016/j.jaapos.2008.07.010 10.1073/pnas.1311041111 10.1177/1073858414524442 10.1093/brain/awt176 10.1002/dev.20055 10.1016/j.cub.2012.01.030 10.1016/j.neubiorev.2013.08.001 10.1016/j.neuroimage.2013.04.051 10.1016/j.neuroscience.2013.05.021 10.1093/brain/aws067 10.3389/fnhum.2013.00007 10.1016/S0896-6273(03)00144-2 10.1016/j.conb.2013.11.011 10.1002/dev.21022 10.1093/brain/awm121 10.1371/journal.pone.0020162 10.1007/s002210000653 10.1038/87490 10.1152/jn.90463.2008 10.1007/s00431-012-1700-1 10.1152/jn.1963.26.6.1003 10.1073/pnas.0704320104 10.1038/nrn2201 10.1097/WNR.0b013e3283279909 10.1097/WCO.0b013e32834ed723 10.1016/S0896-6273(02)00662-1 10.1016/j.cortex.2013.01.001 10.1016/j.neuroimage.2013.12.036 10.1016/j.neuroimage.2007.05.014 10.1093/cercor/bhr253 10.1016/j.neuroscience.2014.04.029 10.1016/j.neuropsychologia.2007.02.015 10.1146/annurev-neuro-061010-113813 10.1002/dev.21197 10.1016/j.neuron.2012.06.009 10.1146/annurev.neuro.31.060407.125533 10.1126/science.7754376 10.1371/journal.pbio.0030027 10.1016/j.neuroimage.2010.04.186 10.1038/nn1072 10.1203/00006450-199904010-00001 10.1073/pnas.88.6.2083 10.1038/nrn1787 10.1038/nature12485 10.1093/oso/9780195165685.001.0001 10.1007/s00221-011-2715-y 10.1016/j.cell.2014.10.035 10.1093/cercor/bhu051 10.1371/journal.pone.0004645 10.1016/j.neuron.2005.09.015 10.1007/s10334-010-0228-5 10.1073/pnas.0811168106 10.2307/2532051 10.1002/hbm.20560 10.1016/j.cub.2014.02.010 10.3389/fnsys.2014.00051 10.1038/369525a0 10.1073/pnas.0905267106 10.1016/j.tics.2005.01.006 10.1002/hbm.20420 10.1016/j.neuron.2009.07.012 10.3389/fnhum.2014.00971 10.1007/s00221-004-1965-3 10.1006/nimg.1999.0439 10.1038/nrn2758 10.1155/2012/305693 10.1016/j.neuron.2012.06.031 10.1007/BF00348878 10.1038/nn.2326 10.1006/nimg.2001.1037 10.1038/33402 10.1523/JNEUROSCI.4812-10.2010 10.1152/jn.00279.2003 10.1371/journal.pone.0017832 10.1073/pnas.1013928108 |
ContentType | Journal Article |
Copyright | The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. 2015 |
Copyright_xml | – notice: The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. – notice: The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/brain/awv083 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1460-2156 |
EndPage | 1695 |
ExternalDocumentID | PMC4614142 25869851 10_1093_brain_awv083 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -E4 -~X .2P .55 .GJ .I3 .XZ .ZR 0R~ 1CY 1TH 23N 2WC 354 3O- 4.4 41~ 482 48X 53G 5GY 5RE 5VS 5WA 5WD 6PF 70D AABZA AACZT AAGKA AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPGJ AAPNW AAPQZ AAPXW AAQQT AARHZ AAUAY AAUQX AAVAP AAVLN AAWDT AAWTL AAYJJ AAYXX ABDFA ABDPE ABEJV ABEUO ABGNP ABIME ABIVO ABIXL ABJNI ABKDP ABLJU ABMNT ABNGD ABNHQ ABNKS ABPIB ABPQP ABPTD ABQLI ABQNK ABSMQ ABVGC ABWST ABXVV ABXZS ABZBJ ABZEO ACBNA ACFRR ACGFS ACIWK ACPQN ACPRK ACUFI ACUKT ACUTJ ACUTO ACVCV ACYHN ACZBC ADBBV ADEYI ADEZT ADGKP ADGZP ADHKW ADHZD ADIPN ADMTO ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZXQ AEGPL AEHUL AEJOX AEKPW AEKSI AELWJ AEMDU AEMQT AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFQV AFFZL AFGWE AFIYH AFOFC AFSHK AFXAL AFYAG AGINJ AGKEF AGKRT AGMDO AGORE AGQPQ AGQXC AGSYK AGUTN AHGBF AHMBA AHMMS AHXPO AI. AIJHB AJBYB AJDVS AJEEA AJNCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX ANFBD APIBT APJGH APWMN AQDSO AQKUS ARIXL ASAOO ASPBG ATDFG ATGXG ATTQO AVNTJ AVWKF AXUDD AYOIW AZFZN BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BR6 BSWAC BTRTY BVRKM BZKNY C1A C45 CAG CDBKE CITATION COF CS3 CXTWN CZ4 DAKXR DFGAJ DIK DILTD DU5 D~K E3Z EBS EE~ EIHJH EJD ELUNK EMOBN ENERS F5P F9B FECEO FEDTE FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HVGLF HW0 HZ~ IOX J21 J5H JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN L7B M-Z MBLQV MBTAY MHKGH ML0 MVM N4W N9A NGC NLBLG NOMLY NOYVH NTWIH NU- NVLIB O0~ O9- OAUYM OAWHX OBFPC OBOKY OCZFY ODMLO OHH OHT OJQWA OJZSN OK1 OPAEJ OVD OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RIG RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO TCN TCURE TEORI TJX TLC TMA TR2 VH1 VVN W8F WH7 WOQ X7H X7M XJT XOL YAYTL YKOAZ YQJ YSK YXANX ZCG ZGI ZKB ZKX ZXP ~91 ABQTQ CGR CUY CVF ECM EIF M49 NPM 7X8 5PM |
ID | FETCH-LOGICAL-c384t-5a8b41f73ce4cb09ab7207f4e5f255f39a2cf76823ea8b6ae8dbd8008eb394293 |
ISSN | 0006-8950 |
IngestDate | Thu Aug 21 18:32:59 EDT 2025 Thu Jul 10 19:26:08 EDT 2025 Thu Apr 03 07:06:26 EDT 2025 Tue Jul 01 00:46:07 EDT 2025 Thu Apr 24 23:10:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | vision plasticity development blindness |
Language | English |
License | The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c384t-5a8b41f73ce4cb09ab7207f4e5f255f39a2cf76823ea8b6ae8dbd8008eb394293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC4614142 |
PMID | 25869851 |
PQID | 1683757289 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4614142 proquest_miscellaneous_1683757289 pubmed_primary_25869851 crossref_primary_10_1093_brain_awv083 crossref_citationtrail_10_1093_brain_awv083 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-06-01 |
PublicationDateYYYYMMDD | 2015-06-01 |
PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Brain (London, England : 1878) |
PublicationTitleAlternate | Brain |
PublicationYear | 2015 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | 2015072401133596000_138.6.1679.77 2015072401133596000_138.6.1679.76 2015072401133596000_138.6.1679.75 2015072401133596000_138.6.1679.74 2015072401133596000_138.6.1679.79 2015072401133596000_138.6.1679.78 2015072401133596000_138.6.1679.73 2015072401133596000_138.6.1679.72 2015072401133596000_138.6.1679.71 2015072401133596000_138.6.1679.70 2015072401133596000_138.6.1679.88 2015072401133596000_138.6.1679.87 2015072401133596000_138.6.1679.86 2015072401133596000_138.6.1679.85 2015072401133596000_138.6.1679.89 2015072401133596000_138.6.1679.80 2015072401133596000_138.6.1679.84 2015072401133596000_138.6.1679.83 2015072401133596000_138.6.1679.82 2015072401133596000_138.6.1679.81 2015072401133596000_138.6.1679.11 2015072401133596000_138.6.1679.99 2015072401133596000_138.6.1679.10 2015072401133596000_138.6.1679.98 2015072401133596000_138.6.1679.97 2015072401133596000_138.6.1679.96 2015072401133596000_138.6.1679.15 2015072401133596000_138.6.1679.14 2015072401133596000_138.6.1679.13 2015072401133596000_138.6.1679.12 2015072401133596000_138.6.1679.91 2015072401133596000_138.6.1679.90 2015072401133596000_138.6.1679.95 2015072401133596000_138.6.1679.94 2015072401133596000_138.6.1679.93 2015072401133596000_138.6.1679.92 2015072401133596000_138.6.1679.111 2015072401133596000_138.6.1679.112 2015072401133596000_138.6.1679.110 2015072401133596000_138.6.1679.115 2015072401133596000_138.6.1679.116 2015072401133596000_138.6.1679.113 2015072401133596000_138.6.1679.114 2015072401133596000_138.6.1679.117 2015072401133596000_138.6.1679.22 2015072401133596000_138.6.1679.21 2015072401133596000_138.6.1679.20 2015072401133596000_138.6.1679.26 2015072401133596000_138.6.1679.25 2015072401133596000_138.6.1679.24 2015072401133596000_138.6.1679.23 2015072401133596000_138.6.1679.100 2015072401133596000_138.6.1679.101 2015072401133596000_138.6.1679.19 2015072401133596000_138.6.1679.104 2015072401133596000_138.6.1679.18 2015072401133596000_138.6.1679.105 2015072401133596000_138.6.1679.17 2015072401133596000_138.6.1679.102 2015072401133596000_138.6.1679.16 2015072401133596000_138.6.1679.103 2015072401133596000_138.6.1679.108 2015072401133596000_138.6.1679.109 2015072401133596000_138.6.1679.106 2015072401133596000_138.6.1679.107 2015072401133596000_138.6.1679.33 2015072401133596000_138.6.1679.32 2015072401133596000_138.6.1679.31 2015072401133596000_138.6.1679.30 2015072401133596000_138.6.1679.37 2015072401133596000_138.6.1679.36 2015072401133596000_138.6.1679.35 2015072401133596000_138.6.1679.34 2015072401133596000_138.6.1679.29 2015072401133596000_138.6.1679.28 2015072401133596000_138.6.1679.27 2015072401133596000_138.6.1679.44 2015072401133596000_138.6.1679.43 2015072401133596000_138.6.1679.42 2015072401133596000_138.6.1679.41 2015072401133596000_138.6.1679.48 2015072401133596000_138.6.1679.47 2015072401133596000_138.6.1679.46 2015072401133596000_138.6.1679.45 2015072401133596000_138.6.1679.40 2015072401133596000_138.6.1679.39 2015072401133596000_138.6.1679.38 2015072401133596000_138.6.1679.55 2015072401133596000_138.6.1679.54 2015072401133596000_138.6.1679.53 2015072401133596000_138.6.1679.52 2015072401133596000_138.6.1679.59 2015072401133596000_138.6.1679.58 2015072401133596000_138.6.1679.57 2015072401133596000_138.6.1679.56 2015072401133596000_138.6.1679.51 2015072401133596000_138.6.1679.50 2015072401133596000_138.6.1679.49 2015072401133596000_138.6.1679.66 2015072401133596000_138.6.1679.65 2015072401133596000_138.6.1679.64 2015072401133596000_138.6.1679.63 2015072401133596000_138.6.1679.69 2015072401133596000_138.6.1679.68 2015072401133596000_138.6.1679.67 2015072401133596000_138.6.1679.62 2015072401133596000_138.6.1679.61 2015072401133596000_138.6.1679.60 2015072401133596000_138.6.1679.2 2015072401133596000_138.6.1679.1 2015072401133596000_138.6.1679.6 2015072401133596000_138.6.1679.5 2015072401133596000_138.6.1679.4 2015072401133596000_138.6.1679.3 2015072401133596000_138.6.1679.9 2015072401133596000_138.6.1679.8 2015072401133596000_138.6.1679.7 12789013 - J Neurophysiol. 2003 Sep;90(3):1965-82 22848849 - Neural Plast. 2012;2012:305693 19620724 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5 21368161 - Proc Natl Acad Sci U S A. 2011 Mar 15;108(11):4429-34 25417151 - Cell. 2014 Nov 6;159(4):727-37 24642421 - Cereb Cortex. 2015 Sep;25(9):2507-16 17679691 - Proc Natl Acad Sci U S A. 2007 Aug 14;104(33):13507-12 24435505 - Dev Psychobiol. 2014 Feb;56(2):292-315 21317022 - Trends Cogn Sci. 2011 Mar;15(3):97-103 10385576 - Neuroimage. 1999 Jul;10(1):1-5 11906227 - Neuroimage. 2002 Apr;15(4):870-8 19247451 - PLoS One. 2009;4(2):e4645 23684881 - Neuroimage. 2013 Nov 1;81:325-34 23453908 - Neurosci Biobehav Rev. 2014 Apr;41:53-63 14084161 - J Neurophysiol. 1963 Nov;26:1003-17 22970390 - Neural Plast. 2012;2012:687659 16337917 - Neuron. 2005 Dec 8;48(5):797-809 19240660 - Neuroreport. 2009 Apr 22;20(6):543-7 15772974 - Dev Psychobiol. 2005 Apr;46(3):163-83 12163645 - Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11429-34 15064396 - Proc Natl Acad Sci U S A. 2004 Apr 13;101(15):5658-63 23707979 - Neuroscience. 2013 Sep 5;247:117-33 8524021 - Magn Reson Med. 1995 Oct;34(4):537-41 24791715 - Neuroscience. 2014 Dec 26;283:4-16 17108157 - J Neurosci. 2006 Nov 15;26(46):11844-9 19188601 - Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):2035-40 24449865 - Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):2035-9 8031403 - Nature. 1994 Jun 16;369(6481):525 23642132 - Annu Rev Neurosci. 2013 Jul 8;36:51-77 22157107 - Curr Opin Neurol. 2012 Feb;25(1):86-95 24133469 - Front Psychol. 2013 Sep 26;4:664 24381278 - J Neurosci. 2014 Jan 1;34(1):163-70 24613309 - Curr Biol. 2014 Mar 17;24(6):687-92 11988177 - Neuron. 2002 Apr 25;34(3):479-90 23831614 - Brain. 2013 Sep;136(Pt 9):2769-83 8606771 - Nature. 1996 Apr 11;380(6574):526-8 23624496 - Neuroimage. 2013 Oct 1;79:1-9 19471266 - Nat Neurosci. 2009 Jun;12(6):686-91 17397882 - Neuropsychologia. 2007 Jun 11;45(10):2307-21 22383071 - Eur J Pediatr. 2012 Apr;171(4):625-30 23391560 - Neuropsychologia. 2013 Apr;51(5):938-49 22415912 - Dev Psychobiol. 2012 Apr;54(3):224-38 12808458 - Nat Neurosci. 2003 Jul;6(7):758-66 17476267 - Nature. 2007 May 3;447(7140):83-6 23876247 - Neuroimage. 2014 Jun;93 Pt 2:276-91 10203134 - Pediatr Res. 1999 Apr;45(4 Pt 1):447-58 21689598 - Neuron. 2011 Jun 23;70(6):1115-27 5883730 - J Neurophysiol. 1965 Nov;28(6):1029-40 17704812 - Nat Rev Neurosci. 2007 Sep;8(9):700-11 15737823 - Trends Cogn Sci. 2005 Mar;9(3):144-51 17525980 - Hum Brain Mapp. 2008 May;29(5):533-43 24778608 - Front Syst Neurosci. 2014 Apr 07;8:51 17533167 - Brain. 2007 Aug;130(Pt 8):2085-96 21633496 - PLoS One. 2011;6(5):e20162 16400157 - Cereb Cortex. 2006 Nov;16(11):1653-61 15467719 - Nat Neurosci. 2004 Nov;7(11):1266-70 24038713 - Hum Brain Mapp. 2014 Jun;35(6):2573-81 24374078 - Neuroimage. 2014 Jun;93 Pt 2:292-7 9560155 - Nature. 1998 Apr 9;392(6676):598-601 24324409 - Front Syst Neurosci. 2013 Nov 26;7:92 17583507 - Curr Biol. 2007 Jul 3;17(13):1129-33 23017086 - Cogn Neuropsychol. 2012;29(1-2):56-84 9151747 - J Neurosci. 1997 Jun 1;17(11):4302-11 20972883 - MAGMA. 2010 Dec;23(5-6):289-307 11319563 - Nat Neurosci. 2001 May;4(5):533-9 18412133 - Hum Brain Mapp. 2008 Jul;29(7):848-57 23372547 - Front Hum Neurosci. 2013 Jan 28;7:7 22841309 - Neuron. 2012 Jul 26;75(2):230-49 18558864 - Annu Rev Neurosci. 2008;31:479-509 23416100 - Curr Biol. 2013 Mar 4;23(5):382-6 24107953 - J Neurosci. 2013 Oct 9;33(41):16209-19 25566016 - Front Hum Neurosci. 2014 Dec 17;8:971 20412861 - Neuroimage. 2010 Aug 15;52(2):617-32 14316385 - Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1964 Aug 19;248:492-7 22401900 - Curr Biol. 2012 Mar 6;22(5):R168-73 15241575 - Exp Brain Res. 2004 Dec;159(3):370-81 20920797 - Neuron. 2010 Oct 6;68(1):138-48 22427328 - Brain. 2012 May;135(Pt 5):1566-77 21368198 - Proc Natl Acad Sci U S A. 2011 Mar 15;108(11):4435-40 17964252 - Neuron. 2007 Oct 25;56(2):366-83 23954750 - Neurosci Biobehav Rev. 2014 Apr;41:36-52 23141074 - Neuron. 2012 Nov 8;76(3):640-52 22462544 - Annu Rev Neurosci. 2012;35:309-30 21448274 - PLoS One. 2011;6(3):e17832 16261181 - Nat Rev Neurosci. 2005 Nov;6(11):877-88 17576922 - Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):11073-8 14687549 - Neuron. 2003 Dec 18;40(6):1147-60 19679078 - Neuron. 2009 Aug 13;63(3):397-405 2720055 - Biometrics. 1989 Mar;45(1):255-68 21573953 - Exp Brain Res. 2011 Sep;213(2-3):299-308 22841307 - Neuron. 2012 Jul 26;75(2):209-17 19084444 - J AAPOS. 2009 Feb;13(1):67-71 7754376 - Science. 1995 May 12;268(5212):889-93 23975100 - Nature. 2013 Sep 26;501(7468):543-6 16005276 - Curr Biol. 2005 Jul 12;15(13):R488-90 24561514 - Neuroscientist. 2014 Oct;20(5):522-33 12670430 - Neuron. 2003 Mar 27;37(6):1027-41 21940707 - Cereb Cortex. 2012 Jul;22(7):1698-709 11355377 - Exp Brain Res. 2001 Apr;137(3-4):303-8 2006147 - Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2083-7 24578041 - Hum Brain Mapp. 1994;1(3):210-20 20692278 - Vision Res. 2011 Apr 13;51(7):718-37 19565262 - Brain Struct Funct. 2009 Oct;213(6):525-33 21068299 - J Neurosci. 2010 Nov 10;30(45):14964-71 17560797 - Neuroimage. 2007 Aug 1;37(1):212-20 17728386 - J Neurophysiol. 2007 Nov;98(5):2858-67 24856208 - Curr Biol. 2014 Jun 2;24(11):1256-62 21170073 - Nat Rev Neurosci. 2011 Jan;12(1):43-56 15678166 - PLoS Biol. 2005 Feb;3(2):e27 18701759 - J Neurophysiol. 2008 Oct;100(4):1740-8 24492092 - Curr Opin Neurobiol. 2014 Feb;24(1):166-75 23419789 - Cortex. 2013 Nov-Dec;49(10):2728-34 19935836 - Nat Rev Neurosci. 2010 Jan;11(1):44-52 |
References_xml | – ident: 2015072401133596000_138.6.1679.28 doi: 10.1038/nrn2961 – ident: 2015072401133596000_138.6.1679.115 doi: 10.1016/j.neuron.2011.04.028 – ident: 2015072401133596000_138.6.1679.21 doi: 10.1152/jn.00587.2007 – ident: 2015072401133596000_138.6.1679.110 doi: 10.1002/hbm.22350 – ident: 2015072401133596000_138.6.1679.106 doi: 10.1523/JNEUROSCI.3295-06.2006 – ident: 2015072401133596000_138.6.1679.79 doi: 10.1523/JNEUROSCI.1114-13.2014 – ident: 2015072401133596000_138.6.1679.17 doi: 10.3389/fnsys.2013.00092 – ident: 2015072401133596000_138.6.1679.39 doi: 10.1002/hbm.460010306 – ident: 2015072401133596000_138.6.1679.109 doi: 10.1016/j.visres.2010.08.004 – ident: 2015072401133596000_138.6.1679.112 doi: 10.1016/j.neuroimage.2013.07.035 – ident: 2015072401133596000_138.6.1679.6 doi: 10.1073/pnas.1014818108 – ident: 2015072401133596000_138.6.1679.56 doi: 10.1523/JNEUROSCI.17-11-04302.1997 – ident: 2015072401133596000_138.6.1679.68 doi: 10.1016/S0896-6273(03)00790-6 – ident: 2015072401133596000_138.6.1679.88 doi: 10.1016/j.neuron.2010.09.021 – ident: 2015072401133596000_138.6.1679.54 doi: 10.1073/pnas.162342799 – ident: 2015072401133596000_138.6.1679.85 doi: 10.1016/j.cub.2007.05.060 – ident: 2015072401133596000_138.6.1679.19 doi: 10.1146/annurev-neuro-062012-170341 – ident: 2015072401133596000_138.6.1679.97 doi: 10.1016/j.neuron.2012.08.026 – ident: 2015072401133596000_138.6.1679.90 doi: 10.1038/380526a0 – ident: 2015072401133596000_138.6.1679.70 doi: 10.1016/j.tics.2011.01.004 – ident: 2015072401133596000_138.6.1679.4 doi: 10.1016/j.neuropsychologia.2013.01.024 – ident: 2015072401133596000_138.6.1679.114 doi: 10.1152/jn.1965.28.6.1029 – ident: 2015072401133596000_138.6.1679.92 doi: 10.1093/cercor/bhj102 – ident: 2015072401133596000_138.6.1679.104 doi: 10.3389/fpsyg.2013.00664 – ident: 2015072401133596000_138.6.1679.7 doi: 10.1080/02643294.2012.713342 – ident: 2015072401133596000_138.6.1679.13 doi: 10.1016/j.neuroimage.2013.05.038 – ident: 2015072401133596000_138.6.1679.102 doi: 10.1016/j.cub.2014.04.020 – ident: 2015072401133596000_138.6.1679.2 doi: 10.1038/nn1328 – ident: 2015072401133596000_138.6.1679.103 doi: 10.1038/nature05758 – ident: 2015072401133596000_138.6.1679.31 doi: 10.1016/j.cub.2013.01.017 – ident: 2015072401133596000_138.6.1679.36 doi: 10.1073/pnas.0705843104 – ident: 2015072401133596000_138.6.1679.26 doi: 10.1007/s00429-009-0208-6 – ident: 2015072401133596000_138.6.1679.81 doi: 10.1073/pnas.0400707101 – ident: 2015072401133596000_138.6.1679.77 doi: 10.1016/j.cub.2005.06.053 – ident: 2015072401133596000_138.6.1679.89 doi: 10.1016/j.neubiorev.2013.01.025 – ident: 2015072401133596000_138.6.1679.11 doi: 10.1002/mrm.1910340409 – ident: 2015072401133596000_138.6.1679.18 doi: 10.1523/JNEUROSCI.0363-13.2013 – ident: 2015072401133596000_138.6.1679.107 doi: 10.1016/j.neuron.2007.10.012 – ident: 2015072401133596000_138.6.1679.10 doi: 10.1016/j.jaapos.2008.07.010 – ident: 2015072401133596000_138.6.1679.55 doi: 10.1073/pnas.1311041111 – ident: 2015072401133596000_138.6.1679.43 doi: 10.1177/1073858414524442 – ident: 2015072401133596000_138.6.1679.23 doi: 10.1093/brain/awt176 – ident: 2015072401133596000_138.6.1679.63 doi: 10.1002/dev.20055 – ident: 2015072401133596000_138.6.1679.105 doi: 10.1016/j.cub.2012.01.030 – ident: 2015072401133596000_138.6.1679.60 doi: 10.1016/j.neubiorev.2013.08.001 – ident: 2015072401133596000_138.6.1679.46 doi: 10.1016/j.neuroimage.2013.04.051 – ident: 2015072401133596000_138.6.1679.58 doi: 10.1016/j.neuroscience.2013.05.021 – ident: 2015072401133596000_138.6.1679.111 doi: 10.1093/brain/aws067 – ident: 2015072401133596000_138.6.1679.57 doi: 10.3389/fnhum.2013.00007 – ident: 2015072401133596000_138.6.1679.44 doi: 10.1016/S0896-6273(03)00144-2 – ident: 2015072401133596000_138.6.1679.1 doi: 10.1016/j.conb.2013.11.011 – ident: 2015072401133596000_138.6.1679.29 – ident: 2015072401133596000_138.6.1679.72 doi: 10.1002/dev.21022 – ident: 2015072401133596000_138.6.1679.66 doi: 10.1093/brain/awm121 – ident: 2015072401133596000_138.6.1679.101 doi: 10.1371/journal.pone.0020162 – ident: 2015072401133596000_138.6.1679.27 doi: 10.1007/s002210000653 – ident: 2015072401133596000_138.6.1679.62 doi: 10.1038/87490 – ident: 2015072401133596000_138.6.1679.117 doi: 10.1152/jn.90463.2008 – ident: 2015072401133596000_138.6.1679.22 doi: 10.1007/s00431-012-1700-1 – ident: 2015072401133596000_138.6.1679.113 doi: 10.1152/jn.1963.26.6.1003 – ident: 2015072401133596000_138.6.1679.30 doi: 10.1073/pnas.0704320104 – ident: 2015072401133596000_138.6.1679.37 doi: 10.1038/nrn2201 – ident: 2015072401133596000_138.6.1679.82 doi: 10.1097/WNR.0b013e3283279909 – ident: 2015072401133596000_138.6.1679.86 doi: 10.1097/WCO.0b013e32834ed723 – ident: 2015072401133596000_138.6.1679.45 doi: 10.1016/S0896-6273(02)00662-1 – ident: 2015072401133596000_138.6.1679.94 doi: 10.1016/j.cortex.2013.01.001 – ident: 2015072401133596000_138.6.1679.14 doi: 10.1016/j.neuroimage.2013.12.036 – ident: 2015072401133596000_138.6.1679.78 doi: 10.1016/j.neuroimage.2007.05.014 – ident: 2015072401133596000_138.6.1679.98 doi: 10.1093/cercor/bhr253 – ident: 2015072401133596000_138.6.1679.76 doi: 10.1016/j.neuroscience.2014.04.029 – ident: 2015072401133596000_138.6.1679.41 doi: 10.1016/j.neuropsychologia.2007.02.015 – ident: 2015072401133596000_138.6.1679.61 doi: 10.1146/annurev-neuro-061010-113813 – ident: 2015072401133596000_138.6.1679.100 – ident: 2015072401133596000_138.6.1679.64 doi: 10.1002/dev.21197 – ident: 2015072401133596000_138.6.1679.108 doi: 10.1016/j.neuron.2007.10.012 – ident: 2015072401133596000_138.6.1679.35 doi: 10.1016/j.neuron.2012.06.009 – ident: 2015072401133596000_138.6.1679.53 doi: 10.1146/annurev.neuro.31.060407.125533 – ident: 2015072401133596000_138.6.1679.91 doi: 10.1126/science.7754376 – ident: 2015072401133596000_138.6.1679.42 doi: 10.1371/journal.pbio.0030027 – ident: 2015072401133596000_138.6.1679.48 doi: 10.1016/j.neuroimage.2010.04.186 – ident: 2015072401133596000_138.6.1679.3 doi: 10.1038/nn1072 – ident: 2015072401133596000_138.6.1679.80 doi: 10.1203/00006450-199904010-00001 – ident: 2015072401133596000_138.6.1679.84 doi: 10.1073/pnas.88.6.2083 – ident: 2015072401133596000_138.6.1679.47 doi: 10.1038/nrn1787 – ident: 2015072401133596000_138.6.1679.59 doi: 10.1038/nature12485 – ident: 2015072401133596000_138.6.1679.95 doi: 10.1093/oso/9780195165685.001.0001 – ident: 2015072401133596000_138.6.1679.8 doi: 10.1007/s00221-011-2715-y – ident: 2015072401133596000_138.6.1679.52 doi: 10.1016/j.cell.2014.10.035 – ident: 2015072401133596000_138.6.1679.83 doi: 10.1093/cercor/bhu051 – ident: 2015072401133596000_138.6.1679.25 doi: 10.1371/journal.pone.0004645 – ident: 2015072401133596000_138.6.1679.20 doi: 10.1016/j.neuron.2005.09.015 – ident: 2015072401133596000_138.6.1679.71 doi: 10.1007/s10334-010-0228-5 – ident: 2015072401133596000_138.6.1679.49 doi: 10.1073/pnas.0811168106 – ident: 2015072401133596000_138.6.1679.65 doi: 10.2307/2532051 – ident: 2015072401133596000_138.6.1679.32 doi: 10.1002/hbm.20560 – ident: 2015072401133596000_138.6.1679.96 doi: 10.1016/j.cub.2014.02.010 – ident: 2015072401133596000_138.6.1679.16 doi: 10.3389/fnsys.2014.00051 – ident: 2015072401133596000_138.6.1679.33 doi: 10.1038/369525a0 – ident: 2015072401133596000_138.6.1679.93 doi: 10.1073/pnas.0905267106 – ident: 2015072401133596000_138.6.1679.73 doi: 10.1016/j.tics.2005.01.006 – ident: 2015072401133596000_138.6.1679.116 doi: 10.1002/hbm.20420 – ident: 2015072401133596000_138.6.1679.69 doi: 10.1016/j.neuron.2009.07.012 – ident: 2015072401133596000_138.6.1679.12 doi: 10.3389/fnhum.2014.00971 – ident: 2015072401133596000_138.6.1679.50 doi: 10.1007/s00221-004-1965-3 – ident: 2015072401133596000_138.6.1679.67 – ident: 2015072401133596000_138.6.1679.38 doi: 10.1006/nimg.1999.0439 – ident: 2015072401133596000_138.6.1679.74 doi: 10.1038/nrn2758 – ident: 2015072401133596000_138.6.1679.9 doi: 10.1155/2012/305693 – ident: 2015072401133596000_138.6.1679.87 doi: 10.1016/j.neuron.2012.06.031 – ident: 2015072401133596000_138.6.1679.51 doi: 10.1007/BF00348878 – ident: 2015072401133596000_138.6.1679.75 doi: 10.1038/nn.2326 – ident: 2015072401133596000_138.6.1679.40 doi: 10.1006/nimg.2001.1037 – ident: 2015072401133596000_138.6.1679.34 doi: 10.1038/33402 – ident: 2015072401133596000_138.6.1679.5 doi: 10.1523/JNEUROSCI.4812-10.2010 – ident: 2015072401133596000_138.6.1679.15 doi: 10.1152/jn.00279.2003 – ident: 2015072401133596000_138.6.1679.99 doi: 10.1371/journal.pone.0017832 – ident: 2015072401133596000_138.6.1679.24 doi: 10.1073/pnas.1013928108 – reference: 12808458 - Nat Neurosci. 2003 Jul;6(7):758-66 – reference: 17476267 - Nature. 2007 May 3;447(7140):83-6 – reference: 24613309 - Curr Biol. 2014 Mar 17;24(6):687-92 – reference: 20920797 - Neuron. 2010 Oct 6;68(1):138-48 – reference: 15772974 - Dev Psychobiol. 2005 Apr;46(3):163-83 – reference: 17583507 - Curr Biol. 2007 Jul 3;17(13):1129-33 – reference: 12163645 - Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11429-34 – reference: 10203134 - Pediatr Res. 1999 Apr;45(4 Pt 1):447-58 – reference: 17679691 - Proc Natl Acad Sci U S A. 2007 Aug 14;104(33):13507-12 – reference: 22841307 - Neuron. 2012 Jul 26;75(2):209-17 – reference: 24578041 - Hum Brain Mapp. 1994;1(3):210-20 – reference: 19935836 - Nat Rev Neurosci. 2010 Jan;11(1):44-52 – reference: 16337917 - Neuron. 2005 Dec 8;48(5):797-809 – reference: 22462544 - Annu Rev Neurosci. 2012;35:309-30 – reference: 18701759 - J Neurophysiol. 2008 Oct;100(4):1740-8 – reference: 22841309 - Neuron. 2012 Jul 26;75(2):230-49 – reference: 23017086 - Cogn Neuropsychol. 2012;29(1-2):56-84 – reference: 21633496 - PLoS One. 2011;6(5):e20162 – reference: 22157107 - Curr Opin Neurol. 2012 Feb;25(1):86-95 – reference: 19247451 - PLoS One. 2009;4(2):e4645 – reference: 20412861 - Neuroimage. 2010 Aug 15;52(2):617-32 – reference: 24856208 - Curr Biol. 2014 Jun 2;24(11):1256-62 – reference: 20972883 - MAGMA. 2010 Dec;23(5-6):289-307 – reference: 21940707 - Cereb Cortex. 2012 Jul;22(7):1698-709 – reference: 19620724 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5 – reference: 17576922 - Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):11073-8 – reference: 19679078 - Neuron. 2009 Aug 13;63(3):397-405 – reference: 17704812 - Nat Rev Neurosci. 2007 Sep;8(9):700-11 – reference: 10385576 - Neuroimage. 1999 Jul;10(1):1-5 – reference: 24381278 - J Neurosci. 2014 Jan 1;34(1):163-70 – reference: 23419789 - Cortex. 2013 Nov-Dec;49(10):2728-34 – reference: 23141074 - Neuron. 2012 Nov 8;76(3):640-52 – reference: 19565262 - Brain Struct Funct. 2009 Oct;213(6):525-33 – reference: 19471266 - Nat Neurosci. 2009 Jun;12(6):686-91 – reference: 21068299 - J Neurosci. 2010 Nov 10;30(45):14964-71 – reference: 14687549 - Neuron. 2003 Dec 18;40(6):1147-60 – reference: 21170073 - Nat Rev Neurosci. 2011 Jan;12(1):43-56 – reference: 9151747 - J Neurosci. 1997 Jun 1;17(11):4302-11 – reference: 23684881 - Neuroimage. 2013 Nov 1;81:325-34 – reference: 23954750 - Neurosci Biobehav Rev. 2014 Apr;41:36-52 – reference: 22383071 - Eur J Pediatr. 2012 Apr;171(4):625-30 – reference: 24038713 - Hum Brain Mapp. 2014 Jun;35(6):2573-81 – reference: 18558864 - Annu Rev Neurosci. 2008;31:479-509 – reference: 24642421 - Cereb Cortex. 2015 Sep;25(9):2507-16 – reference: 16400157 - Cereb Cortex. 2006 Nov;16(11):1653-61 – reference: 24435505 - Dev Psychobiol. 2014 Feb;56(2):292-315 – reference: 2006147 - Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2083-7 – reference: 17560797 - Neuroimage. 2007 Aug 1;37(1):212-20 – reference: 23707979 - Neuroscience. 2013 Sep 5;247:117-33 – reference: 21317022 - Trends Cogn Sci. 2011 Mar;15(3):97-103 – reference: 21368198 - Proc Natl Acad Sci U S A. 2011 Mar 15;108(11):4435-40 – reference: 21368161 - Proc Natl Acad Sci U S A. 2011 Mar 15;108(11):4429-34 – reference: 24449865 - Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):2035-9 – reference: 21573953 - Exp Brain Res. 2011 Sep;213(2-3):299-308 – reference: 23453908 - Neurosci Biobehav Rev. 2014 Apr;41:53-63 – reference: 8031403 - Nature. 1994 Jun 16;369(6481):525 – reference: 19240660 - Neuroreport. 2009 Apr 22;20(6):543-7 – reference: 16261181 - Nat Rev Neurosci. 2005 Nov;6(11):877-88 – reference: 17964252 - Neuron. 2007 Oct 25;56(2):366-83 – reference: 17728386 - J Neurophysiol. 2007 Nov;98(5):2858-67 – reference: 23876247 - Neuroimage. 2014 Jun;93 Pt 2:276-91 – reference: 23975100 - Nature. 2013 Sep 26;501(7468):543-6 – reference: 11319563 - Nat Neurosci. 2001 May;4(5):533-9 – reference: 2720055 - Biometrics. 1989 Mar;45(1):255-68 – reference: 19084444 - J AAPOS. 2009 Feb;13(1):67-71 – reference: 15064396 - Proc Natl Acad Sci U S A. 2004 Apr 13;101(15):5658-63 – reference: 8606771 - Nature. 1996 Apr 11;380(6574):526-8 – reference: 11988177 - Neuron. 2002 Apr 25;34(3):479-90 – reference: 22970390 - Neural Plast. 2012;2012:687659 – reference: 23642132 - Annu Rev Neurosci. 2013 Jul 8;36:51-77 – reference: 12670430 - Neuron. 2003 Mar 27;37(6):1027-41 – reference: 24561514 - Neuroscientist. 2014 Oct;20(5):522-33 – reference: 25417151 - Cell. 2014 Nov 6;159(4):727-37 – reference: 22848849 - Neural Plast. 2012;2012:305693 – reference: 15737823 - Trends Cogn Sci. 2005 Mar;9(3):144-51 – reference: 14316385 - Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1964 Aug 19;248:492-7 – reference: 15467719 - Nat Neurosci. 2004 Nov;7(11):1266-70 – reference: 24791715 - Neuroscience. 2014 Dec 26;283:4-16 – reference: 22401900 - Curr Biol. 2012 Mar 6;22(5):R168-73 – reference: 23831614 - Brain. 2013 Sep;136(Pt 9):2769-83 – reference: 24492092 - Curr Opin Neurobiol. 2014 Feb;24(1):166-75 – reference: 19188601 - Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):2035-40 – reference: 24374078 - Neuroimage. 2014 Jun;93 Pt 2:292-7 – reference: 24778608 - Front Syst Neurosci. 2014 Apr 07;8:51 – reference: 8524021 - Magn Reson Med. 1995 Oct;34(4):537-41 – reference: 17525980 - Hum Brain Mapp. 2008 May;29(5):533-43 – reference: 5883730 - J Neurophysiol. 1965 Nov;28(6):1029-40 – reference: 15678166 - PLoS Biol. 2005 Feb;3(2):e27 – reference: 21689598 - Neuron. 2011 Jun 23;70(6):1115-27 – reference: 25566016 - Front Hum Neurosci. 2014 Dec 17;8:971 – reference: 21448274 - PLoS One. 2011;6(3):e17832 – reference: 20692278 - Vision Res. 2011 Apr 13;51(7):718-37 – reference: 11906227 - Neuroimage. 2002 Apr;15(4):870-8 – reference: 7754376 - Science. 1995 May 12;268(5212):889-93 – reference: 12789013 - J Neurophysiol. 2003 Sep;90(3):1965-82 – reference: 24107953 - J Neurosci. 2013 Oct 9;33(41):16209-19 – reference: 11355377 - Exp Brain Res. 2001 Apr;137(3-4):303-8 – reference: 24324409 - Front Syst Neurosci. 2013 Nov 26;7:92 – reference: 17397882 - Neuropsychologia. 2007 Jun 11;45(10):2307-21 – reference: 15241575 - Exp Brain Res. 2004 Dec;159(3):370-81 – reference: 23624496 - Neuroimage. 2013 Oct 1;79:1-9 – reference: 14084161 - J Neurophysiol. 1963 Nov;26:1003-17 – reference: 9560155 - Nature. 1998 Apr 9;392(6676):598-601 – reference: 24133469 - Front Psychol. 2013 Sep 26;4:664 – reference: 17533167 - Brain. 2007 Aug;130(Pt 8):2085-96 – reference: 18412133 - Hum Brain Mapp. 2008 Jul;29(7):848-57 – reference: 17108157 - J Neurosci. 2006 Nov 15;26(46):11844-9 – reference: 22415912 - Dev Psychobiol. 2012 Apr;54(3):224-38 – reference: 16005276 - Curr Biol. 2005 Jul 12;15(13):R488-90 – reference: 23372547 - Front Hum Neurosci. 2013 Jan 28;7:7 – reference: 23391560 - Neuropsychologia. 2013 Apr;51(5):938-49 – reference: 22427328 - Brain. 2012 May;135(Pt 5):1566-77 – reference: 23416100 - Curr Biol. 2013 Mar 4;23(5):382-6 |
SSID | ssj0014326 |
Score | 2.5055108 |
Snippet | Is visual input during critical periods of development crucial for the emergence of the fundamental topographical mapping of the visual cortex? And would this... Although early visual experience is essential for the proper development of visual cortex, Striem-Amit et al. show that the underlying connectivity structure... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1679 |
SubjectTerms | Adult Blindness - physiopathology Case-Control Studies Functional Neuroimaging Humans Magnetic Resonance Imaging Male Middle Aged Original Retina - physiology Visual Cortex - physiology Visual Pathways - physiology Young Adult |
Title | Functional connectivity of visual cortex in the blind follows retinotopic organization principles |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25869851 https://www.proquest.com/docview/1683757289 https://pubmed.ncbi.nlm.nih.gov/PMC4614142 |
Volume | 138 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZB2MvY_dmNzTYnoJS25Jt-bGMZWXQ7aEt5M1IsrwFEjskTlvyp_oXdyQ5vrQZdHsxQZGM4_Pl6Fw-nYPQJ-kLqsBOIFmeU8Ko9ogIE0akqb1FJaPKBnNOf0QnF-z7NJwOBjcd1tKmkmO13Xuu5H-kCmMgV3NK9h8k29wUBuAzyBeuIGG43kvGE9iU6lieMoQVVbeCKE3Cfb2xw6tKX-_IjBJsymyUg-jLK5MuqGZFWZXLmaqbO7kjmaPlLgC_7qV8TTOJvR1AXFiBx7wTVjgzjboW5Hgxqxx7bN7o_5-Xph4CMVQTG3tdiEw0FGEYFQux3bpw7zyHV1e2UfPVrw3YzOv2bPzobNyNW_hhy69qdHFEeOLKzo61U78s8ggYIVFPP1PeAWJX25oUUmfn9iPXr_POruAqZsmVjbVMxNWl55rn9Mtv39oWG7KiS9PT1K5P3eoH6GEQx5YX8G3acIrA9rT9_ZqfVp-0gNVHdvWRW923ge44Nrf5uR2D5_wpelJ7KvjYwe4ZGujiOXp0WnMxXiDRog930YfLHDv0YYc-PCswoA9b9OEafbiDPtxFH27R9xJdTL6efzkhdcMOoihnFQkFl8zPY6o0U9JLhIwDL86ZDnPwXHOaiEDl4N8GVMPMSGieyQw8Fq4lTcAwoq_QQVEW-hBhDXa6NLU6g8ikdjX3PS2zQCVhIDUN2RCNdq8wVXU1e9NUZZ7uE9cQfW5mL10Vl7_M-7iTRgpq1uTORKHLzTr1I07jMA54MkSvnXSaOwUhjxLwXIYo7smtmWBKuPe_KWa_bSl3Btaxz4I393y-t-hx-1d6hw6q1Ua_B6O4kh8sEP8A1TTAzg |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+connectivity+of+visual+cortex+in+the+blind+follows+retinotopic+organization+principles&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Striem-Amit%2C+Ella&rft.au=Ovadia-Caro%2C+Smadar&rft.au=Caramazza%2C+Alfonso&rft.au=Margulies%2C+Daniel+S.&rft.date=2015-06-01&rft.issn=0006-8950&rft.eissn=1460-2156&rft.volume=138&rft.issue=6&rft.spage=1679&rft.epage=1695&rft_id=info:doi/10.1093%2Fbrain%2Fawv083&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_brain_awv083 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8950&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8950&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8950&client=summon |