Towards a microscopic description of the free-energy landscape of water

Free-energy landscape theory is often used to describe complex molecular systems. Here, a microscopic description of water structure and dynamics based on configuration-space-networks and molecular dynamics simulations of the TIP4P/2005 model is applied to investigate the free-energy landscape of wa...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 137; no. 14; p. 144504
Main Authors Prada-Gracia, Diego, Shevchuk, Roman, Hamm, Peter, Rao, Francesco
Format Journal Article
LanguageEnglish
Published United States 14.10.2012
Online AccessGet more information

Cover

Loading…
Abstract Free-energy landscape theory is often used to describe complex molecular systems. Here, a microscopic description of water structure and dynamics based on configuration-space-networks and molecular dynamics simulations of the TIP4P/2005 model is applied to investigate the free-energy landscape of water. The latter is built on top of a large set of water microstates describing the kinetic stability of local hydrogen-bond arrangements up to the second solvation shell. In temperature space, the landscape displays three different regimes. At around ambient conditions, the free-energy surface is characterized by many short-lived basins of attraction which are structurally well-defined (inhomogeneous regime). At lower temperatures instead, the liquid rapidly becomes homogeneous. In this regime, the free energy is funneled-like, with fully coordinated water arrangements at the bottom of the funnel. Finally, a third regime develops below the temperature of maximal compressibility (Widom line) where the funnel becomes steeper with few interconversions between microstates other than the fully coordinated ones. Our results present a way to manage the complexity of water structure and dynamics, connecting microscopic properties to its ensemble behavior.
AbstractList Free-energy landscape theory is often used to describe complex molecular systems. Here, a microscopic description of water structure and dynamics based on configuration-space-networks and molecular dynamics simulations of the TIP4P/2005 model is applied to investigate the free-energy landscape of water. The latter is built on top of a large set of water microstates describing the kinetic stability of local hydrogen-bond arrangements up to the second solvation shell. In temperature space, the landscape displays three different regimes. At around ambient conditions, the free-energy surface is characterized by many short-lived basins of attraction which are structurally well-defined (inhomogeneous regime). At lower temperatures instead, the liquid rapidly becomes homogeneous. In this regime, the free energy is funneled-like, with fully coordinated water arrangements at the bottom of the funnel. Finally, a third regime develops below the temperature of maximal compressibility (Widom line) where the funnel becomes steeper with few interconversions between microstates other than the fully coordinated ones. Our results present a way to manage the complexity of water structure and dynamics, connecting microscopic properties to its ensemble behavior.
Author Shevchuk, Roman
Hamm, Peter
Prada-Gracia, Diego
Rao, Francesco
Author_xml – sequence: 1
  givenname: Diego
  surname: Prada-Gracia
  fullname: Prada-Gracia, Diego
  organization: Freiburg Institute for Advanced Studies, School of Soft Matter Research, Freiburg im Breisgau, Germany
– sequence: 2
  givenname: Roman
  surname: Shevchuk
  fullname: Shevchuk, Roman
– sequence: 3
  givenname: Peter
  surname: Hamm
  fullname: Hamm, Peter
– sequence: 4
  givenname: Francesco
  surname: Rao
  fullname: Rao, Francesco
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23061852$$D View this record in MEDLINE/PubMed
BookMark eNo1j8tKAzEUQIMo9qELf0DyA1Nv3slSilah4KauSya50ZHOZEhGSv9eRLs6iwMHzoJcDnlAQu4YrBho8cBW0ihlpL4gcwbWNUY7mJFFrV8AwAyX12TGBWhmFZ-TzS4ffYmVetp3oeQa8tgFGrGG0o1TlweaE50-kaaC2OCA5eNED36INfgRf-XRT1huyFXyh4q3_1yS9-en3fql2b5tXteP2yYIK6dGcScBUbrWBW9ZisgZjx64kVEll2LkVoigXLQCpPetRmBOJ2UVtkkZviT3f93xu-0x7sfS9b6c9ucj_gMPiUw5
CitedBy_id crossref_primary_10_1063_1_4902538
crossref_primary_10_1063_1_4993166
crossref_primary_10_1021_jp501132z
crossref_primary_10_1063_1_4922930
crossref_primary_10_1063_1_4818885
crossref_primary_10_1038_ncomms7210
crossref_primary_10_1021_acs_jpca_5b11650
crossref_primary_10_1063_1_5033419
crossref_primary_10_1021_acs_jctc_5b00743
crossref_primary_10_1063_1_4795008
crossref_primary_10_1007_s11467_017_0693_7
crossref_primary_10_1063_1_5064808
crossref_primary_10_1063_1_4904431
crossref_primary_10_1088_0953_8984_26_15_155103
crossref_primary_10_1002_jcc_23506
crossref_primary_10_3389_fphy_2014_00022
crossref_primary_10_1063_1_4764868
ContentType Journal Article
DBID NPM
DOI 10.1063/1.4755746
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID 23061852
Genre Journal Article
GroupedDBID ---
-DZ
-ET
-~X
123
1UP
2-P
29K
4.4
53G
5VS
85S
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABPPZ
ABRJW
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CS3
D-I
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPM
NPSNA
O-B
P0-
P2P
RIP
RNS
ROL
RQS
TN5
TWZ
UPT
UQL
WH7
YQT
YZZ
~02
ID FETCH-LOGICAL-c384t-52940ee49b9ca81fde212da0274d5f9fdd2833c59d8304aab6e0196f585ebf572
IngestDate Sat Sep 28 08:07:22 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c384t-52940ee49b9ca81fde212da0274d5f9fdd2833c59d8304aab6e0196f585ebf572
PMID 23061852
ParticipantIDs pubmed_primary_23061852
PublicationCentury 2000
PublicationDate 2012-10-14
PublicationDateYYYYMMDD 2012-10-14
PublicationDate_xml – month: 10
  year: 2012
  text: 2012-10-14
  day: 14
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2012
SSID ssj0001724
Score 2.2245317
Snippet Free-energy landscape theory is often used to describe complex molecular systems. Here, a microscopic description of water structure and dynamics based on...
SourceID pubmed
SourceType Index Database
StartPage 144504
Title Towards a microscopic description of the free-energy landscape of water
URI https://www.ncbi.nlm.nih.gov/pubmed/23061852
Volume 137
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZ5UNpLaNNXkrbo0NvirR-SJR1D0iYUEkJIILcgS6MmLbsO220D_fWdsfwiaenjYowHL4u_z-NPHzMjxt6qIquyDFyi8HNC1o1PdEmFa3kGNnVCKqB-56Pj8vBcfLyQF4On23SXLKup-_HLvpL_QRWvIa7UJfsPyPY_ihfwHPHFIyKMx7_DuKl5_TqxkxnV1VGHybWbeBhSQVsBEBYACcQ2v6a5l8qeKHhru_LczwNtRiLVdfMEogPSC_CThfU2OVhYF4tt96_hU927NVfw3V19-xIrt2cD_8gmv1cUfGrrTkFjznL12IfIckrgsf9zCjF3ptokqoy7f_bJNY506VgkRrkSl3Iybj18L42jbiJHYSqUlCpalCM4b2YNnrR4otbvP0fvTNTuQqtsVWnKisfk8LRfbxR0optAVRbv-v9AU6Pb--6sQBolcvaYbbTo8N3IhydsBeab7OFet3PfJntwEsF6yg5ahnDLRwzhI4bwOnBkCB8xhPcMoWDDkGfs_MP7s73DpN06I3GFFstE5kakAMJUxlmdBQ8oUbwlD8LLYIL3KCsLJ43XRSqsrUqgQUkBF49QBany52xtXs_hJeNeV2npUOcYEQRKKiO0rXRaGuVV8Hm6xV7Ep3F5E-ejXHbPafu3kR32aKDQK7Ye8IWE16jultWbBo6fx1tO7Q
link.rule.ids 786
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+a+microscopic+description+of+the+free-energy+landscape+of+water&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Prada-Gracia%2C+Diego&rft.au=Shevchuk%2C+Roman&rft.au=Hamm%2C+Peter&rft.au=Rao%2C+Francesco&rft.date=2012-10-14&rft.eissn=1089-7690&rft.volume=137&rft.issue=14&rft.spage=144504&rft_id=info:doi/10.1063%2F1.4755746&rft_id=info%3Apmid%2F23061852&rft_id=info%3Apmid%2F23061852&rft.externalDocID=23061852