MOF-74-type frameworks: tunable pore environment and functionality through metal and ligand modification

MOF-74-type frameworks are considered one of the most promising metal-organic frameworks owing to their remarkable structural features and properties such as a high density of open metal sites, hexagonal channels along the c -axis, and high porosity. Diverse strategies have been adopted to prepare b...

Full description

Saved in:
Bibliographic Details
Published inCrystEngComm Vol. 23; no. 6; pp. 1377 - 1387
Main Authors Kim, Hyojin, Hong, Chang Seop
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 01.01.2021
Subjects
Online AccessGet full text
ISSN1466-8033
1466-8033
DOI10.1039/d0ce01870h

Cover

Loading…
Abstract MOF-74-type frameworks are considered one of the most promising metal-organic frameworks owing to their remarkable structural features and properties such as a high density of open metal sites, hexagonal channels along the c -axis, and high porosity. Diverse strategies have been adopted to prepare bimetallic MOF-74 frameworks, in the pursuit of synergistic effects and enhanced properties originating from different metal sites that serve as Lewis acidic sites. Moreover, extended versions of the MOF-74-type structure have been demonstrated in terms of ligand extension, featuring enhanced pore size and surface area. The extended variants of MOF-74 are beneficial for the incorporation of additional functional groups due to the relatively larger pore size. Pre- or post-synthetic modification approaches have been applied to introduce functionalities into the framework, resulting in desirable and superior properties such as chemical stability, binding affinity, and catalytic activity. This review addresses the significant progress made in the development of MOF-74-type frameworks with respect to synthetic strategies and modification approaches. This highlight demonstrates a comprehensive overview of MOF-74-type frameworks in terms of synthetic approaches and pre- or post-synthetic modification approaches.
AbstractList MOF-74-type frameworks are considered one of the most promising metal–organic frameworks owing to their remarkable structural features and properties such as a high density of open metal sites, hexagonal channels along the c -axis, and high porosity. Diverse strategies have been adopted to prepare bimetallic MOF-74 frameworks, in the pursuit of synergistic effects and enhanced properties originating from different metal sites that serve as Lewis acidic sites. Moreover, extended versions of the MOF-74-type structure have been demonstrated in terms of ligand extension, featuring enhanced pore size and surface area. The extended variants of MOF-74 are beneficial for the incorporation of additional functional groups due to the relatively larger pore size. Pre- or post-synthetic modification approaches have been applied to introduce functionalities into the framework, resulting in desirable and superior properties such as chemical stability, binding affinity, and catalytic activity. This review addresses the significant progress made in the development of MOF-74-type frameworks with respect to synthetic strategies and modification approaches.
MOF-74-type frameworks are considered one of the most promising metal-organic frameworks owing to their remarkable structural features and properties such as a high density of open metal sites, hexagonal channels along the c -axis, and high porosity. Diverse strategies have been adopted to prepare bimetallic MOF-74 frameworks, in the pursuit of synergistic effects and enhanced properties originating from different metal sites that serve as Lewis acidic sites. Moreover, extended versions of the MOF-74-type structure have been demonstrated in terms of ligand extension, featuring enhanced pore size and surface area. The extended variants of MOF-74 are beneficial for the incorporation of additional functional groups due to the relatively larger pore size. Pre- or post-synthetic modification approaches have been applied to introduce functionalities into the framework, resulting in desirable and superior properties such as chemical stability, binding affinity, and catalytic activity. This review addresses the significant progress made in the development of MOF-74-type frameworks with respect to synthetic strategies and modification approaches. This highlight demonstrates a comprehensive overview of MOF-74-type frameworks in terms of synthetic approaches and pre- or post-synthetic modification approaches.
MOF-74-type frameworks are considered one of the most promising metal–organic frameworks owing to their remarkable structural features and properties such as a high density of open metal sites, hexagonal channels along the c-axis, and high porosity. Diverse strategies have been adopted to prepare bimetallic MOF-74 frameworks, in the pursuit of synergistic effects and enhanced properties originating from different metal sites that serve as Lewis acidic sites. Moreover, extended versions of the MOF-74-type structure have been demonstrated in terms of ligand extension, featuring enhanced pore size and surface area. The extended variants of MOF-74 are beneficial for the incorporation of additional functional groups due to the relatively larger pore size. Pre- or post-synthetic modification approaches have been applied to introduce functionalities into the framework, resulting in desirable and superior properties such as chemical stability, binding affinity, and catalytic activity. This review addresses the significant progress made in the development of MOF-74-type frameworks with respect to synthetic strategies and modification approaches.
Author Kim, Hyojin
Hong, Chang Seop
AuthorAffiliation Department of Chemistry
Korea University
AuthorAffiliation_xml – name: Korea University
– name: Department of Chemistry
Author_xml – sequence: 1
  givenname: Hyojin
  surname: Kim
  fullname: Kim, Hyojin
– sequence: 2
  givenname: Chang Seop
  surname: Hong
  fullname: Hong, Chang Seop
BookMark eNptkUtLAzEUhYNUsK1u3AsBd8JonvNwJ7W1QqWb7odMJtNJnUnGJKP039uHqIirc-F-53I4dwQGxhoFwCVGtxjR7K5EUiGcJqg-AUPM4jhKEaWDX_MZGHm_QQgzjNEQ1C_LWZSwKGw7BSsnWvVh3au_h6E3omgU7KxTUJl37axplQlQmBJWvZFBWyMaHbYw1M726xq2KojmsG_0ei-tLXWlpdij5-C0Eo1XF186BqvZdDWZR4vl0_PkYRFJmrIQMSkTkhGRxkmMOc2IzOKsVGVRFJinnPMqSWUcU8aQ4lRUuFAcq5STmNCiZHQMro9nO2ffeuVDvrG92wX1OWFpRhAlmOwodKSks947VeVSh0PM4IRucozyfZ35I5pMD3XOd5abP5bO6Va47f_w1RF2Xn5zP7-hn--BgV0
CitedBy_id crossref_primary_10_1002_slct_202101471
crossref_primary_10_1038_s41524_024_01205_w
crossref_primary_10_1021_acs_inorgchem_3c03945
crossref_primary_10_1093_rb_rbad115
crossref_primary_10_1039_D4TA00838C
crossref_primary_10_1039_D4TA09271F
crossref_primary_10_1021_acs_langmuir_3c00735
crossref_primary_10_1515_ntrev_2022_0152
crossref_primary_10_1002_open_202400428
crossref_primary_10_1039_D4DT02391A
crossref_primary_10_3390_cryst14070626
crossref_primary_10_1016_j_jelechem_2023_117276
crossref_primary_10_1021_jacs_3c14778
crossref_primary_10_1016_j_comptc_2024_114748
crossref_primary_10_1016_j_micromeso_2023_112699
crossref_primary_10_1039_D4MA00204K
crossref_primary_10_1021_acsami_4c01316
crossref_primary_10_1021_jacs_4c05318
crossref_primary_10_1016_j_cej_2024_151319
crossref_primary_10_1021_acs_langmuir_2c00816
crossref_primary_10_1021_acsami_3c09902
crossref_primary_10_1039_D4TA03268C
crossref_primary_10_1016_j_fuel_2025_134504
crossref_primary_10_1021_acs_jpclett_4c00762
crossref_primary_10_1002_ange_202218252
crossref_primary_10_1021_jacs_3c10475
crossref_primary_10_3390_nano14020227
crossref_primary_10_1039_D4QM00358F
crossref_primary_10_1002_ange_202423496
crossref_primary_10_1007_s10751_025_02277_w
crossref_primary_10_1039_D4RA04441J
crossref_primary_10_1002_slct_202203820
crossref_primary_10_1016_j_micromeso_2022_112148
crossref_primary_10_1021_acs_inorgchem_2c02661
crossref_primary_10_1002_anie_202218252
crossref_primary_10_1002_eem2_12442
crossref_primary_10_1021_acsami_1c19217
crossref_primary_10_1039_D4DT01554A
crossref_primary_10_1002_anie_202423496
crossref_primary_10_1021_acs_langmuir_4c02795
crossref_primary_10_1039_D3MA00822C
crossref_primary_10_3390_nano13101691
crossref_primary_10_1016_j_chemosphere_2023_138514
crossref_primary_10_1016_j_est_2024_114990
crossref_primary_10_1002_tcr_202500001
crossref_primary_10_1039_D4CE00641K
crossref_primary_10_1039_D1RA05068K
crossref_primary_10_1039_D2CC00925K
crossref_primary_10_1016_j_apsadv_2024_100607
crossref_primary_10_3390_molecules27010100
crossref_primary_10_1016_j_ccr_2024_215958
crossref_primary_10_1039_D1CE01052B
crossref_primary_10_1021_acs_langmuir_4c01634
crossref_primary_10_1021_acsomega_2c07137
crossref_primary_10_1039_D2TA02699F
crossref_primary_10_1016_j_matchemphys_2024_130292
crossref_primary_10_1021_acs_cgd_4c00884
crossref_primary_10_1016_j_molstruc_2024_140852
crossref_primary_10_1038_s42004_023_00845_1
crossref_primary_10_3390_appliedchem4030016
crossref_primary_10_1002_adom_202403168
crossref_primary_10_1039_D3RA07109J
Cites_doi 10.1021/ja503296c
10.1021/acs.jpclett.5b00440
10.1038/nchem.1956
10.1021/ja8036096
10.1039/C9SC06064B
10.1002/cplu.201600168
10.1021/ic500434a
10.1039/C4CS00010B
10.1039/C8DT04339F
10.1021/jacs.9b11963
10.1021/ja202223d
10.1039/C9DT03332G
10.1021/ja807023q
10.1021/jacs.6b08417
10.1002/chem.201600189
10.1021/ja506230r
10.1002/ijch.201800117
10.1021/acs.inorgchem.5b01278
10.1021/jacs.6b04204
10.1039/C4CS90059F
10.1039/C3CS60442J
10.1039/C9QM00581A
10.1021/jacs.5b13038
10.1039/C8TA07965J
10.1021/ja045123o
10.1021/acs.inorgchem.9b02126
10.1021/jacs.7b06397
10.1039/C4SC02064B
10.1021/ja074366o
10.1002/anie.201001551
10.1021/jacs.5b00382
10.1039/C4CS00093E
10.1021/ic102436b
10.1016/j.chempr.2019.10.012
10.1002/anie.201702501
10.1021/ja405078u
10.1021/la201774x
10.1021/ja4064475
10.1126/science.1220131
10.1039/c3ta10784a
10.1016/j.ijhydene.2011.05.187
10.1021/acs.jpcc.7b07179
10.1021/acs.chemmater.9b01068
10.1039/C8CS00337H
10.1021/jacs.6b05200
10.1002/cssc.201801585
10.1016/j.cej.2016.04.102
10.1002/anie.200905898
10.1021/acs.inorgchem.7b00899
10.1021/cr200190s
10.1021/acsami.9b04768
10.1039/b804757j
10.1021/ja300034j
10.1039/C8SC04581J
10.1039/C7SC00449D
10.1021/ja900258t
10.1016/j.micromeso.2016.09.005
10.1039/C7DT04701K
10.1016/j.chempr.2019.03.003
10.1016/j.ijhydene.2015.01.113
10.1021/acs.chemmater.7b01601
10.1021/jz300328j
10.1002/anie.202000278
10.1039/C7SC04266C
10.1039/C8CE01808A
10.1021/acs.chemmater.5b04538
10.1016/j.chempr.2019.12.001
10.1038/nature14327
10.1039/C8EE01332B
10.1002/anie.200802908
10.1039/C5TA02357B
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
DBID AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1039/d0ce01870h
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList CrossRef

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1466-8033
EndPage 1387
ExternalDocumentID 10_1039_D0CE01870H
d0ce01870h
GroupedDBID 0-7
0R
1TJ
29F
5GY
70
705
70J
7~J
AAEMU
AAGNR
AAIWI
AANOJ
AAPBV
ABDVN
ABGFH
ABPTK
ABRYZ
ACGFS
ACLDK
ADACO
ADMRA
ADSRN
AENEX
AFVBQ
AGKEF
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
CS3
E3Z
EBS
ECGLT
EE0
EF-
GNO
HZ
H~N
IDZ
J3I
JG
KC5
N9A
O9-
OK1
P2P
R7B
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SLH
VH6
0R~
6J9
70~
AAJAE
AAMEH
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
R56
RAOCF
7U5
8FD
L7M
ID FETCH-LOGICAL-c384t-4cc7292a867615392c969dedbbb158555f78c663440e53af1be51e852623bd43
ISSN 1466-8033
IngestDate Sun Jun 29 15:53:24 EDT 2025
Tue Jul 01 02:07:20 EDT 2025
Thu Apr 24 23:04:09 EDT 2025
Sat Jan 08 03:48:26 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c384t-4cc7292a867615392c969dedbbb158555f78c663440e53af1be51e852623bd43
Notes Chang Seop Hong received his PhD degree from the Department of Chemistry at Korea Advanced Institute of Science and Technology in 1999 and undertook postdoctoral research at the Korea Research Institute of Standards and Science and at the University of California, Berkeley, during the period of 1999-2003. Since then, he has pursued his academic career at Korea University as an Assistant Professor in 2003, Associate Professor in 2006, and Professor in 2010. His current research has focused on the development of metal-organic frameworks and porous materials for gas storage and separation, sensing, and proton conductivity.
Hyojin Kim received her BS degree from Sookmyung Women's University, Korea, in 2018. She is now a graduate student under the supervision of Prof. Chang Seop Hong at Korea University. Her research interests include the synthesis and characterization of porous materials for gas storage and separation.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4329-4745
PQID 2489203212
PQPubID 2047491
PageCount 11
ParticipantIDs crossref_citationtrail_10_1039_D0CE01870H
proquest_journals_2489203212
crossref_primary_10_1039_D0CE01870H
rsc_primary_d0ce01870h
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 20210101
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle CrystEngComm
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Rosi (D0CE01870H-(cit9)/*[position()=1]) 2005; 127
Fracaroli (D0CE01870H-(cit45)/*[position()=1]) 2014; 136
Ayoub (D0CE01870H-(cit37)/*[position()=1]) 2019; 31
Choi (D0CE01870H-(cit46)/*[position()=1]) 2012; 3
Li (D0CE01870H-(cit1)/*[position()=1]) 2012; 112
Ramaswamy (D0CE01870H-(cit7)/*[position()=1]) 2014; 43
Lee (D0CE01870H-(cit58)/*[position()=1]) 2016; 236
Burrows (D0CE01870H-(cit48)/*[position()=1]) 2008; 47
Brozek (D0CE01870H-(cit40)/*[position()=1]) 2013; 135
Kim (D0CE01870H-(cit52)/*[position()=1]) 2011; 50
Zheng (D0CE01870H-(cit23)/*[position()=1]) 2020; 142
Wang (D0CE01870H-(cit16)/*[position()=1]) 2014; 53
Canossa (D0CE01870H-(cit42)/*[position()=1]) 2019; 21
Feng (D0CE01870H-(cit69)/*[position()=1]) 2019; 5
Lee (D0CE01870H-(cit53)/*[position()=1]) 2019; 11
Eom (D0CE01870H-(cit44)/*[position()=1]) 2019; 10
Kapelewski (D0CE01870H-(cit60)/*[position()=1]) 2014; 136
Queen (D0CE01870H-(cit10)/*[position()=1]) 2014; 5
Xiao (D0CE01870H-(cit32)/*[position()=1]) 2014; 6
Julien (D0CE01870H-(cit34)/*[position()=1]) 2016; 138
Botas (D0CE01870H-(cit31)/*[position()=1]) 2011; 36
Lin (D0CE01870H-(cit4)/*[position()=1]) 2020; 6
Flores (D0CE01870H-(cit62)/*[position()=1]) 2018; 47
Kang (D0CE01870H-(cit26)/*[position()=1]) 2019; 7
Marti (D0CE01870H-(cit30)/*[position()=1]) 2017; 121
Liu (D0CE01870H-(cit51)/*[position()=1]) 2011; 27
Kim (D0CE01870H-(cit35)/*[position()=1]) 2017; 56
Fu (D0CE01870H-(cit29)/*[position()=1]) 2016; 299
Zhang (D0CE01870H-(cit43)/*[position()=1]) 2019; 48
Villajos (D0CE01870H-(cit18)/*[position()=1]) 2015; 40
Lee (D0CE01870H-(cit49)/*[position()=1]) 2020; 59
Mir (D0CE01870H-(cit56)/*[position()=1]) 2010; 49
Gygi (D0CE01870H-(cit66)/*[position()=1]) 2016; 28
Ghose (D0CE01870H-(cit61)/*[position()=1]) 2015; 6
Fracaroli (D0CE01870H-(cit24)/*[position()=1]) 2016; 138
Verma (D0CE01870H-(cit33)/*[position()=1]) 2015; 137
Palomino Cabello (D0CE01870H-(cit2)/*[position()=1]) 2016; 81
Vermoortele (D0CE01870H-(cit38)/*[position()=1]) 2013; 135
Bachman (D0CE01870H-(cit64)/*[position()=1]) 2017; 139
Deng (D0CE01870H-(cit22)/*[position()=1]) 2012; 336
Liu (D0CE01870H-(cit55)/*[position()=1]) 2010; 49
Caskey (D0CE01870H-(cit59)/*[position()=1]) 2008; 130
Hu (D0CE01870H-(cit5)/*[position()=1]) 2014; 43
Milner (D0CE01870H-(cit68)/*[position()=1]) 2018; 9
Comito (D0CE01870H-(cit41)/*[position()=1]) 2016; 138
Sun (D0CE01870H-(cit17)/*[position()=1]) 2015; 54
Feng (D0CE01870H-(cit70)/*[position()=1]) 2020; 6
Choe (D0CE01870H-(cit27)/*[position()=1]) 2019; 3
Yeon (D0CE01870H-(cit20)/*[position()=1]) 2015; 3
Zhou (D0CE01870H-(cit3)/*[position()=1]) 2014; 43
Yoo (D0CE01870H-(cit67)/*[position()=1]) 2016; 22
Lim (D0CE01870H-(cit11)/*[position()=1]) 2017; 56
McDonald (D0CE01870H-(cit12)/*[position()=1]) 2012; 134
Abednatanzi (D0CE01870H-(cit15)/*[position()=1]) 2019; 48
Kang (D0CE01870H-(cit25)/*[position()=1]) 2019; 48
Bachman (D0CE01870H-(cit63)/*[position()=1]) 2018; 11
Kim (D0CE01870H-(cit36)/*[position()=1]) 2019; 58
Wang (D0CE01870H-(cit47)/*[position()=1]) 2007; 129
Rubio-Giménez (D0CE01870H-(cit19)/*[position()=1]) 2017; 29
Kurmoo (D0CE01870H-(cit6)/*[position()=1]) 2009; 38
Meng (D0CE01870H-(cit21)/*[position()=1]) 2018; 11
Xiao (D0CE01870H-(cit28)/*[position()=1]) 2016; 138
Feng (D0CE01870H-(cit71)/*[position()=1]) 2020; 11
Zhou (D0CE01870H-(cit13)/*[position()=1]) 2008; 130
Gonzalez (D0CE01870H-(cit14)/*[position()=1]) 2017; 8
McDonald (D0CE01870H-(cit54)/*[position()=1]) 2015; 519
Kapelewski (D0CE01870H-(cit65)/*[position()=1]) 2018; 58
Dhakshinamoorthy (D0CE01870H-(cit8)/*[position()=1]) 2014; 43
Lalonde (D0CE01870H-(cit39)/*[position()=1]) 2013; 1
Lun (D0CE01870H-(cit50)/*[position()=1]) 2011; 133
Wu (D0CE01870H-(cit57)/*[position()=1]) 2009; 131
References_xml – volume: 136
  start-page: 8863
  year: 2014
  ident: D0CE01870H-(cit45)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja503296c
– volume: 6
  start-page: 1790
  year: 2015
  ident: D0CE01870H-(cit61)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b00440
– volume: 6
  start-page: 590
  year: 2014
  ident: D0CE01870H-(cit32)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1956
– volume: 130
  start-page: 10870
  year: 2008
  ident: D0CE01870H-(cit59)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8036096
– volume: 11
  start-page: 1643
  year: 2020
  ident: D0CE01870H-(cit71)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC06064B
– volume: 81
  start-page: 828
  year: 2016
  ident: D0CE01870H-(cit2)/*[position()=1]
  publication-title: ChemPlusChem
  doi: 10.1002/cplu.201600168
– volume: 53
  start-page: 5881
  year: 2014
  ident: D0CE01870H-(cit16)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic500434a
– volume: 43
  start-page: 5815
  year: 2014
  ident: D0CE01870H-(cit5)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00010B
– volume: 48
  start-page: 2263
  year: 2019
  ident: D0CE01870H-(cit25)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C8DT04339F
– volume: 142
  start-page: 3002
  year: 2020
  ident: D0CE01870H-(cit23)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b11963
– volume: 133
  start-page: 5806
  year: 2011
  ident: D0CE01870H-(cit50)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja202223d
– volume: 48
  start-page: 14971
  year: 2019
  ident: D0CE01870H-(cit43)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C9DT03332G
– volume: 130
  start-page: 15268
  year: 2008
  ident: D0CE01870H-(cit13)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja807023q
– volume: 138
  start-page: 14371
  year: 2016
  ident: D0CE01870H-(cit28)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b08417
– volume: 22
  start-page: 7444
  year: 2016
  ident: D0CE01870H-(cit67)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201600189
– volume: 136
  start-page: 12119
  year: 2014
  ident: D0CE01870H-(cit60)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja506230r
– volume: 58
  start-page: 1138
  year: 2018
  ident: D0CE01870H-(cit65)/*[position()=1]
  publication-title: Isr. J. Chem.
  doi: 10.1002/ijch.201800117
– volume: 54
  start-page: 8639
  year: 2015
  ident: D0CE01870H-(cit17)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.5b01278
– volume: 138
  start-page: 8352
  year: 2016
  ident: D0CE01870H-(cit24)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b04204
– volume: 43
  start-page: 5415
  year: 2014
  ident: D0CE01870H-(cit3)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS90059F
– volume: 43
  start-page: 5750
  year: 2014
  ident: D0CE01870H-(cit8)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60442J
– volume: 3
  start-page: 2759
  year: 2019
  ident: D0CE01870H-(cit27)/*[position()=1]
  publication-title: Mater. Chem. Front.
  doi: 10.1039/C9QM00581A
– volume: 138
  start-page: 2929
  year: 2016
  ident: D0CE01870H-(cit34)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b13038
– volume: 7
  start-page: 8177
  year: 2019
  ident: D0CE01870H-(cit26)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA07965J
– volume: 127
  start-page: 1504
  year: 2005
  ident: D0CE01870H-(cit9)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja045123o
– volume: 58
  start-page: 14107
  year: 2019
  ident: D0CE01870H-(cit36)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.9b02126
– volume: 139
  start-page: 15363
  year: 2017
  ident: D0CE01870H-(cit64)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06397
– volume: 5
  start-page: 4569
  year: 2014
  ident: D0CE01870H-(cit10)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C4SC02064B
– volume: 129
  start-page: 12368
  year: 2007
  ident: D0CE01870H-(cit47)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja074366o
– volume: 49
  start-page: 4767
  year: 2010
  ident: D0CE01870H-(cit55)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201001551
– volume: 137
  start-page: 5770
  year: 2015
  ident: D0CE01870H-(cit33)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b00382
– volume: 43
  start-page: 5913
  year: 2014
  ident: D0CE01870H-(cit7)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00093E
– volume: 50
  start-page: 729
  year: 2011
  ident: D0CE01870H-(cit52)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic102436b
– volume: 6
  start-page: 337
  year: 2020
  ident: D0CE01870H-(cit4)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2019.10.012
– volume: 56
  start-page: 5071
  year: 2017
  ident: D0CE01870H-(cit35)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201702501
– volume: 135
  start-page: 11465
  year: 2013
  ident: D0CE01870H-(cit38)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja405078u
– volume: 27
  start-page: 11451
  year: 2011
  ident: D0CE01870H-(cit51)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la201774x
– volume: 135
  start-page: 12886
  year: 2013
  ident: D0CE01870H-(cit40)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4064475
– volume: 336
  start-page: 1018
  year: 2012
  ident: D0CE01870H-(cit22)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1220131
– volume: 1
  start-page: 5453
  year: 2013
  ident: D0CE01870H-(cit39)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta10784a
– volume: 36
  start-page: 10834
  year: 2011
  ident: D0CE01870H-(cit31)/*[position()=1]
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.05.187
– volume: 121
  start-page: 25778
  year: 2017
  ident: D0CE01870H-(cit30)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b07179
– volume: 31
  start-page: 5494
  year: 2019
  ident: D0CE01870H-(cit37)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b01068
– volume: 48
  start-page: 2535
  year: 2019
  ident: D0CE01870H-(cit15)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00337H
– volume: 138
  start-page: 10232
  year: 2016
  ident: D0CE01870H-(cit41)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05200
– volume: 11
  start-page: 3751
  year: 2018
  ident: D0CE01870H-(cit21)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201801585
– volume: 299
  start-page: 135
  year: 2016
  ident: D0CE01870H-(cit29)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.04.102
– volume: 49
  start-page: 390
  year: 2010
  ident: D0CE01870H-(cit56)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200905898
– volume: 56
  start-page: 7443
  year: 2017
  ident: D0CE01870H-(cit11)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.7b00899
– volume: 112
  start-page: 869
  year: 2012
  ident: D0CE01870H-(cit1)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr200190s
– volume: 11
  start-page: 25817
  year: 2019
  ident: D0CE01870H-(cit53)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b04768
– volume: 38
  start-page: 1353
  year: 2009
  ident: D0CE01870H-(cit6)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b804757j
– volume: 134
  start-page: 7056
  year: 2012
  ident: D0CE01870H-(cit12)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja300034j
– volume: 10
  start-page: 2663
  year: 2019
  ident: D0CE01870H-(cit44)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC04581J
– volume: 8
  start-page: 4387
  year: 2017
  ident: D0CE01870H-(cit14)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC00449D
– volume: 131
  start-page: 4995
  year: 2009
  ident: D0CE01870H-(cit57)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja900258t
– volume: 236
  start-page: 284
  year: 2016
  ident: D0CE01870H-(cit58)/*[position()=1]
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2016.09.005
– volume: 47
  start-page: 4639
  year: 2018
  ident: D0CE01870H-(cit62)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C7DT04701K
– volume: 5
  start-page: 1265
  year: 2019
  ident: D0CE01870H-(cit69)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2019.03.003
– volume: 40
  start-page: 5346
  year: 2015
  ident: D0CE01870H-(cit18)/*[position()=1]
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.01.113
– volume: 29
  start-page: 6181
  year: 2017
  ident: D0CE01870H-(cit19)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b01601
– volume: 3
  start-page: 1136
  year: 2012
  ident: D0CE01870H-(cit46)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz300328j
– volume: 59
  start-page: 13793
  year: 2020
  ident: D0CE01870H-(cit49)/*[position()=1]
  publication-title: Angew. Chem.
  doi: 10.1002/anie.202000278
– volume: 9
  start-page: 160
  year: 2018
  ident: D0CE01870H-(cit68)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC04266C
– volume: 21
  start-page: 827
  year: 2019
  ident: D0CE01870H-(cit42)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/C8CE01808A
– volume: 28
  start-page: 1128
  year: 2016
  ident: D0CE01870H-(cit66)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b04538
– volume: 6
  start-page: 460
  year: 2020
  ident: D0CE01870H-(cit70)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2019.12.001
– volume: 519
  start-page: 303
  year: 2015
  ident: D0CE01870H-(cit54)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature14327
– volume: 11
  start-page: 2423
  year: 2018
  ident: D0CE01870H-(cit63)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE01332B
– volume: 47
  start-page: 8482
  year: 2008
  ident: D0CE01870H-(cit48)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200802908
– volume: 3
  start-page: 19177
  year: 2015
  ident: D0CE01870H-(cit20)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA02357B
SSID ssj0014110
Score 2.570011
Snippet MOF-74-type frameworks are considered one of the most promising metal-organic frameworks owing to their remarkable structural features and properties such as a...
MOF-74-type frameworks are considered one of the most promising metal–organic frameworks owing to their remarkable structural features and properties such as a...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1377
SubjectTerms Bimetals
Catalytic activity
Functional groups
Ligands
Metal-organic frameworks
Pore size
Porosity
Properties (attributes)
Title MOF-74-type frameworks: tunable pore environment and functionality through metal and ligand modification
URI https://www.proquest.com/docview/2489203212
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYKXNoD6gt1C60stZceTJ3YefWG6KJQlfaylbhFseMAFeyiJRzg1zN-xQb2QHtJIm8caTNf5uHxfIPQ555rskKVEQbmjnBeFKSVlJJSSEG7qkqV0usdR7_y-g__cZwdh3JFU10yiF15u7Ku5H-kCmMgV10l-w-SHR8KA3AN8oUjSBiOT5Lx0e8DUnBillF7v8vK7HEbrm1NFHjXKi5mM7kCbcvsEqB2wX2nngs1ON6A87MTfbpYdHofURCdJzRY3lwN0_mJri0JKXyDq_pm8fdshFvttvuaCgbQSovLeI0hTaI1BqsWea5piy1lxa5aMeZ0qa0ddpiJFaMmNoyMbMKsmX2kwCnT_Kff6f5UdwukdTBTPjX_wHqNewpNNp1VTZi7hjZSCB5AXW_sTWeHP8fsEk8sS4X_B562llVfw-z7jkqIPtaWvjWMcUFmL9Gmix3wngXCK_RMzV-jFxGj5Bt0GkECB0h8ww4QWAMCR4DAIGl8DxDYAQIbQJjfLSBwDIi3aHYwne3XxDXTIJKVfCBcSoij0rbMC-3jV6ms8qpTnRAigZAxy_qilOB-cg5fLmv7RKgsUWWWgn8sOs620Pp8MVfvEK5Y0iolRa5z1mnSt4q3RSd0j3ghSiom6It_cY10RPO638l581hEE_RpvPfS0qusvGvHv__GfX5XTcrLKqUMXK8J2gKZjPM7KpWZd_r-SU_fRs8D5nfQ-rC8Vh_A0xzERwecO52HfL0
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MOF-74-type+frameworks%3A+tunable+pore+environment+and+functionality+through+metal+and+ligand+modification&rft.jtitle=CrystEngComm&rft.au=Kim%2C+Hyojin&rft.au=Hong%2C+Chang+Seop&rft.date=2021-01-01&rft.issn=1466-8033&rft.eissn=1466-8033&rft.volume=23&rft.issue=6&rft.spage=1377&rft.epage=1387&rft_id=info:doi/10.1039%2FD0CE01870H&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D0CE01870H
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-8033&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-8033&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-8033&client=summon