MOF-74-type frameworks: tunable pore environment and functionality through metal and ligand modification
MOF-74-type frameworks are considered one of the most promising metal-organic frameworks owing to their remarkable structural features and properties such as a high density of open metal sites, hexagonal channels along the c -axis, and high porosity. Diverse strategies have been adopted to prepare b...
Saved in:
Published in | CrystEngComm Vol. 23; no. 6; pp. 1377 - 1387 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
01.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1466-8033 1466-8033 |
DOI | 10.1039/d0ce01870h |
Cover
Loading…
Abstract | MOF-74-type frameworks are considered one of the most promising metal-organic frameworks owing to their remarkable structural features and properties such as a high density of open metal sites, hexagonal channels along the
c
-axis, and high porosity. Diverse strategies have been adopted to prepare bimetallic MOF-74 frameworks, in the pursuit of synergistic effects and enhanced properties originating from different metal sites that serve as Lewis acidic sites. Moreover, extended versions of the MOF-74-type structure have been demonstrated in terms of ligand extension, featuring enhanced pore size and surface area. The extended variants of MOF-74 are beneficial for the incorporation of additional functional groups due to the relatively larger pore size. Pre- or post-synthetic modification approaches have been applied to introduce functionalities into the framework, resulting in desirable and superior properties such as chemical stability, binding affinity, and catalytic activity. This review addresses the significant progress made in the development of MOF-74-type frameworks with respect to synthetic strategies and modification approaches.
This highlight demonstrates a comprehensive overview of MOF-74-type frameworks in terms of synthetic approaches and pre- or post-synthetic modification approaches. |
---|---|
AbstractList | MOF-74-type frameworks are considered one of the most promising metal–organic frameworks owing to their remarkable structural features and properties such as a high density of open metal sites, hexagonal channels along the
c
-axis, and high porosity. Diverse strategies have been adopted to prepare bimetallic MOF-74 frameworks, in the pursuit of synergistic effects and enhanced properties originating from different metal sites that serve as Lewis acidic sites. Moreover, extended versions of the MOF-74-type structure have been demonstrated in terms of ligand extension, featuring enhanced pore size and surface area. The extended variants of MOF-74 are beneficial for the incorporation of additional functional groups due to the relatively larger pore size. Pre- or post-synthetic modification approaches have been applied to introduce functionalities into the framework, resulting in desirable and superior properties such as chemical stability, binding affinity, and catalytic activity. This review addresses the significant progress made in the development of MOF-74-type frameworks with respect to synthetic strategies and modification approaches. MOF-74-type frameworks are considered one of the most promising metal-organic frameworks owing to their remarkable structural features and properties such as a high density of open metal sites, hexagonal channels along the c -axis, and high porosity. Diverse strategies have been adopted to prepare bimetallic MOF-74 frameworks, in the pursuit of synergistic effects and enhanced properties originating from different metal sites that serve as Lewis acidic sites. Moreover, extended versions of the MOF-74-type structure have been demonstrated in terms of ligand extension, featuring enhanced pore size and surface area. The extended variants of MOF-74 are beneficial for the incorporation of additional functional groups due to the relatively larger pore size. Pre- or post-synthetic modification approaches have been applied to introduce functionalities into the framework, resulting in desirable and superior properties such as chemical stability, binding affinity, and catalytic activity. This review addresses the significant progress made in the development of MOF-74-type frameworks with respect to synthetic strategies and modification approaches. This highlight demonstrates a comprehensive overview of MOF-74-type frameworks in terms of synthetic approaches and pre- or post-synthetic modification approaches. MOF-74-type frameworks are considered one of the most promising metal–organic frameworks owing to their remarkable structural features and properties such as a high density of open metal sites, hexagonal channels along the c-axis, and high porosity. Diverse strategies have been adopted to prepare bimetallic MOF-74 frameworks, in the pursuit of synergistic effects and enhanced properties originating from different metal sites that serve as Lewis acidic sites. Moreover, extended versions of the MOF-74-type structure have been demonstrated in terms of ligand extension, featuring enhanced pore size and surface area. The extended variants of MOF-74 are beneficial for the incorporation of additional functional groups due to the relatively larger pore size. Pre- or post-synthetic modification approaches have been applied to introduce functionalities into the framework, resulting in desirable and superior properties such as chemical stability, binding affinity, and catalytic activity. This review addresses the significant progress made in the development of MOF-74-type frameworks with respect to synthetic strategies and modification approaches. |
Author | Kim, Hyojin Hong, Chang Seop |
AuthorAffiliation | Department of Chemistry Korea University |
AuthorAffiliation_xml | – name: Korea University – name: Department of Chemistry |
Author_xml | – sequence: 1 givenname: Hyojin surname: Kim fullname: Kim, Hyojin – sequence: 2 givenname: Chang Seop surname: Hong fullname: Hong, Chang Seop |
BookMark | eNptkUtLAzEUhYNUsK1u3AsBd8JonvNwJ7W1QqWb7odMJtNJnUnGJKP039uHqIirc-F-53I4dwQGxhoFwCVGtxjR7K5EUiGcJqg-AUPM4jhKEaWDX_MZGHm_QQgzjNEQ1C_LWZSwKGw7BSsnWvVh3au_h6E3omgU7KxTUJl37axplQlQmBJWvZFBWyMaHbYw1M726xq2KojmsG_0ei-tLXWlpdij5-C0Eo1XF186BqvZdDWZR4vl0_PkYRFJmrIQMSkTkhGRxkmMOc2IzOKsVGVRFJinnPMqSWUcU8aQ4lRUuFAcq5STmNCiZHQMro9nO2ffeuVDvrG92wX1OWFpRhAlmOwodKSks947VeVSh0PM4IRucozyfZ35I5pMD3XOd5abP5bO6Va47f_w1RF2Xn5zP7-hn--BgV0 |
CitedBy_id | crossref_primary_10_1002_slct_202101471 crossref_primary_10_1038_s41524_024_01205_w crossref_primary_10_1021_acs_inorgchem_3c03945 crossref_primary_10_1093_rb_rbad115 crossref_primary_10_1039_D4TA00838C crossref_primary_10_1039_D4TA09271F crossref_primary_10_1021_acs_langmuir_3c00735 crossref_primary_10_1515_ntrev_2022_0152 crossref_primary_10_1002_open_202400428 crossref_primary_10_1039_D4DT02391A crossref_primary_10_3390_cryst14070626 crossref_primary_10_1016_j_jelechem_2023_117276 crossref_primary_10_1021_jacs_3c14778 crossref_primary_10_1016_j_comptc_2024_114748 crossref_primary_10_1016_j_micromeso_2023_112699 crossref_primary_10_1039_D4MA00204K crossref_primary_10_1021_acsami_4c01316 crossref_primary_10_1021_jacs_4c05318 crossref_primary_10_1016_j_cej_2024_151319 crossref_primary_10_1021_acs_langmuir_2c00816 crossref_primary_10_1021_acsami_3c09902 crossref_primary_10_1039_D4TA03268C crossref_primary_10_1016_j_fuel_2025_134504 crossref_primary_10_1021_acs_jpclett_4c00762 crossref_primary_10_1002_ange_202218252 crossref_primary_10_1021_jacs_3c10475 crossref_primary_10_3390_nano14020227 crossref_primary_10_1039_D4QM00358F crossref_primary_10_1002_ange_202423496 crossref_primary_10_1007_s10751_025_02277_w crossref_primary_10_1039_D4RA04441J crossref_primary_10_1002_slct_202203820 crossref_primary_10_1016_j_micromeso_2022_112148 crossref_primary_10_1021_acs_inorgchem_2c02661 crossref_primary_10_1002_anie_202218252 crossref_primary_10_1002_eem2_12442 crossref_primary_10_1021_acsami_1c19217 crossref_primary_10_1039_D4DT01554A crossref_primary_10_1002_anie_202423496 crossref_primary_10_1021_acs_langmuir_4c02795 crossref_primary_10_1039_D3MA00822C crossref_primary_10_3390_nano13101691 crossref_primary_10_1016_j_chemosphere_2023_138514 crossref_primary_10_1016_j_est_2024_114990 crossref_primary_10_1002_tcr_202500001 crossref_primary_10_1039_D4CE00641K crossref_primary_10_1039_D1RA05068K crossref_primary_10_1039_D2CC00925K crossref_primary_10_1016_j_apsadv_2024_100607 crossref_primary_10_3390_molecules27010100 crossref_primary_10_1016_j_ccr_2024_215958 crossref_primary_10_1039_D1CE01052B crossref_primary_10_1021_acs_langmuir_4c01634 crossref_primary_10_1021_acsomega_2c07137 crossref_primary_10_1039_D2TA02699F crossref_primary_10_1016_j_matchemphys_2024_130292 crossref_primary_10_1021_acs_cgd_4c00884 crossref_primary_10_1016_j_molstruc_2024_140852 crossref_primary_10_1038_s42004_023_00845_1 crossref_primary_10_3390_appliedchem4030016 crossref_primary_10_1002_adom_202403168 crossref_primary_10_1039_D3RA07109J |
Cites_doi | 10.1021/ja503296c 10.1021/acs.jpclett.5b00440 10.1038/nchem.1956 10.1021/ja8036096 10.1039/C9SC06064B 10.1002/cplu.201600168 10.1021/ic500434a 10.1039/C4CS00010B 10.1039/C8DT04339F 10.1021/jacs.9b11963 10.1021/ja202223d 10.1039/C9DT03332G 10.1021/ja807023q 10.1021/jacs.6b08417 10.1002/chem.201600189 10.1021/ja506230r 10.1002/ijch.201800117 10.1021/acs.inorgchem.5b01278 10.1021/jacs.6b04204 10.1039/C4CS90059F 10.1039/C3CS60442J 10.1039/C9QM00581A 10.1021/jacs.5b13038 10.1039/C8TA07965J 10.1021/ja045123o 10.1021/acs.inorgchem.9b02126 10.1021/jacs.7b06397 10.1039/C4SC02064B 10.1021/ja074366o 10.1002/anie.201001551 10.1021/jacs.5b00382 10.1039/C4CS00093E 10.1021/ic102436b 10.1016/j.chempr.2019.10.012 10.1002/anie.201702501 10.1021/ja405078u 10.1021/la201774x 10.1021/ja4064475 10.1126/science.1220131 10.1039/c3ta10784a 10.1016/j.ijhydene.2011.05.187 10.1021/acs.jpcc.7b07179 10.1021/acs.chemmater.9b01068 10.1039/C8CS00337H 10.1021/jacs.6b05200 10.1002/cssc.201801585 10.1016/j.cej.2016.04.102 10.1002/anie.200905898 10.1021/acs.inorgchem.7b00899 10.1021/cr200190s 10.1021/acsami.9b04768 10.1039/b804757j 10.1021/ja300034j 10.1039/C8SC04581J 10.1039/C7SC00449D 10.1021/ja900258t 10.1016/j.micromeso.2016.09.005 10.1039/C7DT04701K 10.1016/j.chempr.2019.03.003 10.1016/j.ijhydene.2015.01.113 10.1021/acs.chemmater.7b01601 10.1021/jz300328j 10.1002/anie.202000278 10.1039/C7SC04266C 10.1039/C8CE01808A 10.1021/acs.chemmater.5b04538 10.1016/j.chempr.2019.12.001 10.1038/nature14327 10.1039/C8EE01332B 10.1002/anie.200802908 10.1039/C5TA02357B |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION 7U5 8FD L7M |
DOI | 10.1039/d0ce01870h |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1466-8033 |
EndPage | 1387 |
ExternalDocumentID | 10_1039_D0CE01870H d0ce01870h |
GroupedDBID | 0-7 0R 1TJ 29F 5GY 70 705 70J 7~J AAEMU AAGNR AAIWI AANOJ AAPBV ABDVN ABGFH ABPTK ABRYZ ACGFS ACLDK ADACO ADMRA ADSRN AENEX AFVBQ AGKEF AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX CS3 E3Z EBS ECGLT EE0 EF- GNO HZ H~N IDZ J3I JG KC5 N9A O9- OK1 P2P R7B RCNCU RIG RNS RPMJG RRA RRC RSCEA SKA SLH VH6 0R~ 6J9 70~ AAJAE AAMEH AAWGC AAXHV AAXPP AAYXX ABASK ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRZK AGEGJ AGRSR AHGCF AKMSF ANUXI APEMP CITATION GGIMP H13 HZ~ R56 RAOCF 7U5 8FD L7M |
ID | FETCH-LOGICAL-c384t-4cc7292a867615392c969dedbbb158555f78c663440e53af1be51e852623bd43 |
ISSN | 1466-8033 |
IngestDate | Sun Jun 29 15:53:24 EDT 2025 Tue Jul 01 02:07:20 EDT 2025 Thu Apr 24 23:04:09 EDT 2025 Sat Jan 08 03:48:26 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c384t-4cc7292a867615392c969dedbbb158555f78c663440e53af1be51e852623bd43 |
Notes | Chang Seop Hong received his PhD degree from the Department of Chemistry at Korea Advanced Institute of Science and Technology in 1999 and undertook postdoctoral research at the Korea Research Institute of Standards and Science and at the University of California, Berkeley, during the period of 1999-2003. Since then, he has pursued his academic career at Korea University as an Assistant Professor in 2003, Associate Professor in 2006, and Professor in 2010. His current research has focused on the development of metal-organic frameworks and porous materials for gas storage and separation, sensing, and proton conductivity. Hyojin Kim received her BS degree from Sookmyung Women's University, Korea, in 2018. She is now a graduate student under the supervision of Prof. Chang Seop Hong at Korea University. Her research interests include the synthesis and characterization of porous materials for gas storage and separation. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4329-4745 |
PQID | 2489203212 |
PQPubID | 2047491 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1039_D0CE01870H proquest_journals_2489203212 crossref_primary_10_1039_D0CE01870H rsc_primary_d0ce01870h |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 20210101 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | CrystEngComm |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Rosi (D0CE01870H-(cit9)/*[position()=1]) 2005; 127 Fracaroli (D0CE01870H-(cit45)/*[position()=1]) 2014; 136 Ayoub (D0CE01870H-(cit37)/*[position()=1]) 2019; 31 Choi (D0CE01870H-(cit46)/*[position()=1]) 2012; 3 Li (D0CE01870H-(cit1)/*[position()=1]) 2012; 112 Ramaswamy (D0CE01870H-(cit7)/*[position()=1]) 2014; 43 Lee (D0CE01870H-(cit58)/*[position()=1]) 2016; 236 Burrows (D0CE01870H-(cit48)/*[position()=1]) 2008; 47 Brozek (D0CE01870H-(cit40)/*[position()=1]) 2013; 135 Kim (D0CE01870H-(cit52)/*[position()=1]) 2011; 50 Zheng (D0CE01870H-(cit23)/*[position()=1]) 2020; 142 Wang (D0CE01870H-(cit16)/*[position()=1]) 2014; 53 Canossa (D0CE01870H-(cit42)/*[position()=1]) 2019; 21 Feng (D0CE01870H-(cit69)/*[position()=1]) 2019; 5 Lee (D0CE01870H-(cit53)/*[position()=1]) 2019; 11 Eom (D0CE01870H-(cit44)/*[position()=1]) 2019; 10 Kapelewski (D0CE01870H-(cit60)/*[position()=1]) 2014; 136 Queen (D0CE01870H-(cit10)/*[position()=1]) 2014; 5 Xiao (D0CE01870H-(cit32)/*[position()=1]) 2014; 6 Julien (D0CE01870H-(cit34)/*[position()=1]) 2016; 138 Botas (D0CE01870H-(cit31)/*[position()=1]) 2011; 36 Lin (D0CE01870H-(cit4)/*[position()=1]) 2020; 6 Flores (D0CE01870H-(cit62)/*[position()=1]) 2018; 47 Kang (D0CE01870H-(cit26)/*[position()=1]) 2019; 7 Marti (D0CE01870H-(cit30)/*[position()=1]) 2017; 121 Liu (D0CE01870H-(cit51)/*[position()=1]) 2011; 27 Kim (D0CE01870H-(cit35)/*[position()=1]) 2017; 56 Fu (D0CE01870H-(cit29)/*[position()=1]) 2016; 299 Zhang (D0CE01870H-(cit43)/*[position()=1]) 2019; 48 Villajos (D0CE01870H-(cit18)/*[position()=1]) 2015; 40 Lee (D0CE01870H-(cit49)/*[position()=1]) 2020; 59 Mir (D0CE01870H-(cit56)/*[position()=1]) 2010; 49 Gygi (D0CE01870H-(cit66)/*[position()=1]) 2016; 28 Ghose (D0CE01870H-(cit61)/*[position()=1]) 2015; 6 Fracaroli (D0CE01870H-(cit24)/*[position()=1]) 2016; 138 Verma (D0CE01870H-(cit33)/*[position()=1]) 2015; 137 Palomino Cabello (D0CE01870H-(cit2)/*[position()=1]) 2016; 81 Vermoortele (D0CE01870H-(cit38)/*[position()=1]) 2013; 135 Bachman (D0CE01870H-(cit64)/*[position()=1]) 2017; 139 Deng (D0CE01870H-(cit22)/*[position()=1]) 2012; 336 Liu (D0CE01870H-(cit55)/*[position()=1]) 2010; 49 Caskey (D0CE01870H-(cit59)/*[position()=1]) 2008; 130 Hu (D0CE01870H-(cit5)/*[position()=1]) 2014; 43 Milner (D0CE01870H-(cit68)/*[position()=1]) 2018; 9 Comito (D0CE01870H-(cit41)/*[position()=1]) 2016; 138 Sun (D0CE01870H-(cit17)/*[position()=1]) 2015; 54 Feng (D0CE01870H-(cit70)/*[position()=1]) 2020; 6 Choe (D0CE01870H-(cit27)/*[position()=1]) 2019; 3 Yeon (D0CE01870H-(cit20)/*[position()=1]) 2015; 3 Zhou (D0CE01870H-(cit3)/*[position()=1]) 2014; 43 Yoo (D0CE01870H-(cit67)/*[position()=1]) 2016; 22 Lim (D0CE01870H-(cit11)/*[position()=1]) 2017; 56 McDonald (D0CE01870H-(cit12)/*[position()=1]) 2012; 134 Abednatanzi (D0CE01870H-(cit15)/*[position()=1]) 2019; 48 Kang (D0CE01870H-(cit25)/*[position()=1]) 2019; 48 Bachman (D0CE01870H-(cit63)/*[position()=1]) 2018; 11 Kim (D0CE01870H-(cit36)/*[position()=1]) 2019; 58 Wang (D0CE01870H-(cit47)/*[position()=1]) 2007; 129 Rubio-Giménez (D0CE01870H-(cit19)/*[position()=1]) 2017; 29 Kurmoo (D0CE01870H-(cit6)/*[position()=1]) 2009; 38 Meng (D0CE01870H-(cit21)/*[position()=1]) 2018; 11 Xiao (D0CE01870H-(cit28)/*[position()=1]) 2016; 138 Feng (D0CE01870H-(cit71)/*[position()=1]) 2020; 11 Zhou (D0CE01870H-(cit13)/*[position()=1]) 2008; 130 Gonzalez (D0CE01870H-(cit14)/*[position()=1]) 2017; 8 McDonald (D0CE01870H-(cit54)/*[position()=1]) 2015; 519 Kapelewski (D0CE01870H-(cit65)/*[position()=1]) 2018; 58 Dhakshinamoorthy (D0CE01870H-(cit8)/*[position()=1]) 2014; 43 Lalonde (D0CE01870H-(cit39)/*[position()=1]) 2013; 1 Lun (D0CE01870H-(cit50)/*[position()=1]) 2011; 133 Wu (D0CE01870H-(cit57)/*[position()=1]) 2009; 131 |
References_xml | – volume: 136 start-page: 8863 year: 2014 ident: D0CE01870H-(cit45)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja503296c – volume: 6 start-page: 1790 year: 2015 ident: D0CE01870H-(cit61)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b00440 – volume: 6 start-page: 590 year: 2014 ident: D0CE01870H-(cit32)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.1956 – volume: 130 start-page: 10870 year: 2008 ident: D0CE01870H-(cit59)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8036096 – volume: 11 start-page: 1643 year: 2020 ident: D0CE01870H-(cit71)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C9SC06064B – volume: 81 start-page: 828 year: 2016 ident: D0CE01870H-(cit2)/*[position()=1] publication-title: ChemPlusChem doi: 10.1002/cplu.201600168 – volume: 53 start-page: 5881 year: 2014 ident: D0CE01870H-(cit16)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic500434a – volume: 43 start-page: 5815 year: 2014 ident: D0CE01870H-(cit5)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00010B – volume: 48 start-page: 2263 year: 2019 ident: D0CE01870H-(cit25)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C8DT04339F – volume: 142 start-page: 3002 year: 2020 ident: D0CE01870H-(cit23)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b11963 – volume: 133 start-page: 5806 year: 2011 ident: D0CE01870H-(cit50)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja202223d – volume: 48 start-page: 14971 year: 2019 ident: D0CE01870H-(cit43)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C9DT03332G – volume: 130 start-page: 15268 year: 2008 ident: D0CE01870H-(cit13)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja807023q – volume: 138 start-page: 14371 year: 2016 ident: D0CE01870H-(cit28)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b08417 – volume: 22 start-page: 7444 year: 2016 ident: D0CE01870H-(cit67)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201600189 – volume: 136 start-page: 12119 year: 2014 ident: D0CE01870H-(cit60)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja506230r – volume: 58 start-page: 1138 year: 2018 ident: D0CE01870H-(cit65)/*[position()=1] publication-title: Isr. J. Chem. doi: 10.1002/ijch.201800117 – volume: 54 start-page: 8639 year: 2015 ident: D0CE01870H-(cit17)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.5b01278 – volume: 138 start-page: 8352 year: 2016 ident: D0CE01870H-(cit24)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b04204 – volume: 43 start-page: 5415 year: 2014 ident: D0CE01870H-(cit3)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS90059F – volume: 43 start-page: 5750 year: 2014 ident: D0CE01870H-(cit8)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60442J – volume: 3 start-page: 2759 year: 2019 ident: D0CE01870H-(cit27)/*[position()=1] publication-title: Mater. Chem. Front. doi: 10.1039/C9QM00581A – volume: 138 start-page: 2929 year: 2016 ident: D0CE01870H-(cit34)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b13038 – volume: 7 start-page: 8177 year: 2019 ident: D0CE01870H-(cit26)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA07965J – volume: 127 start-page: 1504 year: 2005 ident: D0CE01870H-(cit9)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja045123o – volume: 58 start-page: 14107 year: 2019 ident: D0CE01870H-(cit36)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.9b02126 – volume: 139 start-page: 15363 year: 2017 ident: D0CE01870H-(cit64)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06397 – volume: 5 start-page: 4569 year: 2014 ident: D0CE01870H-(cit10)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C4SC02064B – volume: 129 start-page: 12368 year: 2007 ident: D0CE01870H-(cit47)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja074366o – volume: 49 start-page: 4767 year: 2010 ident: D0CE01870H-(cit55)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201001551 – volume: 137 start-page: 5770 year: 2015 ident: D0CE01870H-(cit33)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b00382 – volume: 43 start-page: 5913 year: 2014 ident: D0CE01870H-(cit7)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00093E – volume: 50 start-page: 729 year: 2011 ident: D0CE01870H-(cit52)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic102436b – volume: 6 start-page: 337 year: 2020 ident: D0CE01870H-(cit4)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2019.10.012 – volume: 56 start-page: 5071 year: 2017 ident: D0CE01870H-(cit35)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201702501 – volume: 135 start-page: 11465 year: 2013 ident: D0CE01870H-(cit38)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja405078u – volume: 27 start-page: 11451 year: 2011 ident: D0CE01870H-(cit51)/*[position()=1] publication-title: Langmuir doi: 10.1021/la201774x – volume: 135 start-page: 12886 year: 2013 ident: D0CE01870H-(cit40)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4064475 – volume: 336 start-page: 1018 year: 2012 ident: D0CE01870H-(cit22)/*[position()=1] publication-title: Science doi: 10.1126/science.1220131 – volume: 1 start-page: 5453 year: 2013 ident: D0CE01870H-(cit39)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/c3ta10784a – volume: 36 start-page: 10834 year: 2011 ident: D0CE01870H-(cit31)/*[position()=1] publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2011.05.187 – volume: 121 start-page: 25778 year: 2017 ident: D0CE01870H-(cit30)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b07179 – volume: 31 start-page: 5494 year: 2019 ident: D0CE01870H-(cit37)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b01068 – volume: 48 start-page: 2535 year: 2019 ident: D0CE01870H-(cit15)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00337H – volume: 138 start-page: 10232 year: 2016 ident: D0CE01870H-(cit41)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05200 – volume: 11 start-page: 3751 year: 2018 ident: D0CE01870H-(cit21)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201801585 – volume: 299 start-page: 135 year: 2016 ident: D0CE01870H-(cit29)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.04.102 – volume: 49 start-page: 390 year: 2010 ident: D0CE01870H-(cit56)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200905898 – volume: 56 start-page: 7443 year: 2017 ident: D0CE01870H-(cit11)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.7b00899 – volume: 112 start-page: 869 year: 2012 ident: D0CE01870H-(cit1)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr200190s – volume: 11 start-page: 25817 year: 2019 ident: D0CE01870H-(cit53)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b04768 – volume: 38 start-page: 1353 year: 2009 ident: D0CE01870H-(cit6)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/b804757j – volume: 134 start-page: 7056 year: 2012 ident: D0CE01870H-(cit12)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja300034j – volume: 10 start-page: 2663 year: 2019 ident: D0CE01870H-(cit44)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C8SC04581J – volume: 8 start-page: 4387 year: 2017 ident: D0CE01870H-(cit14)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C7SC00449D – volume: 131 start-page: 4995 year: 2009 ident: D0CE01870H-(cit57)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja900258t – volume: 236 start-page: 284 year: 2016 ident: D0CE01870H-(cit58)/*[position()=1] publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2016.09.005 – volume: 47 start-page: 4639 year: 2018 ident: D0CE01870H-(cit62)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C7DT04701K – volume: 5 start-page: 1265 year: 2019 ident: D0CE01870H-(cit69)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2019.03.003 – volume: 40 start-page: 5346 year: 2015 ident: D0CE01870H-(cit18)/*[position()=1] publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2015.01.113 – volume: 29 start-page: 6181 year: 2017 ident: D0CE01870H-(cit19)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b01601 – volume: 3 start-page: 1136 year: 2012 ident: D0CE01870H-(cit46)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz300328j – volume: 59 start-page: 13793 year: 2020 ident: D0CE01870H-(cit49)/*[position()=1] publication-title: Angew. Chem. doi: 10.1002/anie.202000278 – volume: 9 start-page: 160 year: 2018 ident: D0CE01870H-(cit68)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C7SC04266C – volume: 21 start-page: 827 year: 2019 ident: D0CE01870H-(cit42)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/C8CE01808A – volume: 28 start-page: 1128 year: 2016 ident: D0CE01870H-(cit66)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04538 – volume: 6 start-page: 460 year: 2020 ident: D0CE01870H-(cit70)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2019.12.001 – volume: 519 start-page: 303 year: 2015 ident: D0CE01870H-(cit54)/*[position()=1] publication-title: Nature doi: 10.1038/nature14327 – volume: 11 start-page: 2423 year: 2018 ident: D0CE01870H-(cit63)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C8EE01332B – volume: 47 start-page: 8482 year: 2008 ident: D0CE01870H-(cit48)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200802908 – volume: 3 start-page: 19177 year: 2015 ident: D0CE01870H-(cit20)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA02357B |
SSID | ssj0014110 |
Score | 2.570011 |
Snippet | MOF-74-type frameworks are considered one of the most promising metal-organic frameworks owing to their remarkable structural features and properties such as a... MOF-74-type frameworks are considered one of the most promising metal–organic frameworks owing to their remarkable structural features and properties such as a... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1377 |
SubjectTerms | Bimetals Catalytic activity Functional groups Ligands Metal-organic frameworks Pore size Porosity Properties (attributes) |
Title | MOF-74-type frameworks: tunable pore environment and functionality through metal and ligand modification |
URI | https://www.proquest.com/docview/2489203212 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYKXNoD6gt1C60stZceTJ3YefWG6KJQlfaylbhFseMAFeyiJRzg1zN-xQb2QHtJIm8caTNf5uHxfIPQ555rskKVEQbmjnBeFKSVlJJSSEG7qkqV0usdR7_y-g__cZwdh3JFU10yiF15u7Ku5H-kCmMgV10l-w-SHR8KA3AN8oUjSBiOT5Lx0e8DUnBillF7v8vK7HEbrm1NFHjXKi5mM7kCbcvsEqB2wX2nngs1ON6A87MTfbpYdHofURCdJzRY3lwN0_mJri0JKXyDq_pm8fdshFvttvuaCgbQSovLeI0hTaI1BqsWea5piy1lxa5aMeZ0qa0ddpiJFaMmNoyMbMKsmX2kwCnT_Kff6f5UdwukdTBTPjX_wHqNewpNNp1VTZi7hjZSCB5AXW_sTWeHP8fsEk8sS4X_B562llVfw-z7jkqIPtaWvjWMcUFmL9Gmix3wngXCK_RMzV-jFxGj5Bt0GkECB0h8ww4QWAMCR4DAIGl8DxDYAQIbQJjfLSBwDIi3aHYwne3XxDXTIJKVfCBcSoij0rbMC-3jV6ms8qpTnRAigZAxy_qilOB-cg5fLmv7RKgsUWWWgn8sOs620Pp8MVfvEK5Y0iolRa5z1mnSt4q3RSd0j3ghSiom6It_cY10RPO638l581hEE_RpvPfS0qusvGvHv__GfX5XTcrLKqUMXK8J2gKZjPM7KpWZd_r-SU_fRs8D5nfQ-rC8Vh_A0xzERwecO52HfL0 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MOF-74-type+frameworks%3A+tunable+pore+environment+and+functionality+through+metal+and+ligand+modification&rft.jtitle=CrystEngComm&rft.au=Kim%2C+Hyojin&rft.au=Hong%2C+Chang+Seop&rft.date=2021-01-01&rft.issn=1466-8033&rft.eissn=1466-8033&rft.volume=23&rft.issue=6&rft.spage=1377&rft.epage=1387&rft_id=info:doi/10.1039%2FD0CE01870H&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D0CE01870H |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-8033&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-8033&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-8033&client=summon |