Modeling of transdermal drug delivery with a microneedle array

Transdermal drug delivery is generally limited by the extraordinary barrier properties of the stratum corneum, the outer 10-15 mum layer of skin. A conventional needle inserted across this barrier and into deeper tissues could effectively deliver drugs. However, it would lead to infection and cause...

Full description

Saved in:
Bibliographic Details
Published inJournal of micromechanics and microengineering Vol. 16; no. 11; pp. 2492 - 2501
Main Authors Lv, Y-G, Liu, J, Gao, Y-H, Xu, B
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.11.2006
Institute of Physics
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transdermal drug delivery is generally limited by the extraordinary barrier properties of the stratum corneum, the outer 10-15 mum layer of skin. A conventional needle inserted across this barrier and into deeper tissues could effectively deliver drugs. However, it would lead to infection and cause pain, thereby reducing patient compliance. In order to administer a frequent injection of insulin and other therapeutic agents more efficiently, integrated arrays with very short microneedles were recently proposed as very good candidates for painless injection or extraction. A variety of microneedle designs have thus been made available by employing the fabrication tools of the microelectronics industry and using materials such as silicon, metals, polymers and glass with feature sizes ranging from sub-micron to nanometers. At the same time, experiments were also made to test the capability of the microneedles to inject drugs into tissues. However, due to the difficulty encountered in measurement, a detailed understanding of the spatial and transient drug delivery process still remains unclear up to now. To better grasp the mechanisms involved, quantitative theoretical models were developed in this paper to simultaneously characterize the flow and drug transport, and numerical solutions were performed to predict the kinetics of dispersed drugs injected into the skin from a microneedle array. Calculations indicated that increasing the initial injection velocity and accelerating the blood circulation in skin tissue with high porosity are helpful to enhance the transdermal drug delivery. This study provides the first quantitative simulation of fluid injection through a microneedle array and drug species transport inside the skin. The modeling strategy can also possibly be extended to deal with a wider range of clinical issues such as targeted nanoparticle delivery for therapeutics or molecular imaging.
AbstractList Transdermal drug delivery is generally limited by the extraordinary barrier properties of the stratum corneum, the outer 10-15 mum layer of skin. A conventional needle inserted across this barrier and into deeper tissues could effectively deliver drugs. However, it would lead to infection and cause pain, thereby reducing patient compliance. In order to administer a frequent injection of insulin and other therapeutic agents more efficiently, integrated arrays with very short microneedles were recently proposed as very good candidates for painless injection or extraction. A variety of microneedle designs have thus been made available by employing the fabrication tools of the microelectronics industry and using materials such as silicon, metals, polymers and glass with feature sizes ranging from sub-micron to nanometers. At the same time, experiments were also made to test the capability of the microneedles to inject drugs into tissues. However, due to the difficulty encountered in measurement, a detailed understanding of the spatial and transient drug delivery process still remains unclear up to now. To better grasp the mechanisms involved, quantitative theoretical models were developed in this paper to simultaneously characterize the flow and drug transport, and numerical solutions were performed to predict the kinetics of dispersed drugs injected into the skin from a microneedle array. Calculations indicated that increasing the initial injection velocity and accelerating the blood circulation in skin tissue with high porosity are helpful to enhance the transdermal drug delivery. This study provides the first quantitative simulation of fluid injection through a microneedle array and drug species transport inside the skin. The modeling strategy can also possibly be extended to deal with a wider range of clinical issues such as targeted nanoparticle delivery for therapeutics or molecular imaging.
Author Liu, J
Lv, Y-G
Xu, B
Gao, Y-H
Author_xml – sequence: 1
  fullname: Lv, Y-G
– sequence: 2
  fullname: Liu, J
– sequence: 3
  fullname: Gao, Y-H
– sequence: 4
  fullname: Xu, B
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18264266$$DView record in Pascal Francis
BookMark eNp9kE1LAzEQhoNUsK3-Ai970YOw3cwmzSYXQYpfUPHSe4jZSV3ZL5NW6b83S6UeFE8JvM-8MzwTMmq7Fgk5BzoDKmVGlaApMCgyEBlARhk_ImNgAlLBmRqR8YE4IZMQ3igFkCDH5PqpK7Gu2nXSuWTjTRtK9I2pk9Jv18kQfaDfJZ_V5jUxSVNZHzdjWWNivDe7U3LsTB3w7PudktXd7WrxkC6f7x8XN8vUMsk3KedCxXW54iBVQZkTUHA5t_FDmUIhFXLrYG7dS8GKUmJOh6x0gChzy6bkcl_b--59i2GjmypYrGvTYrcNOleM53MlIsj2YLwzBI9O975qjN9poHpQpQcRehChQWgAHVXFqYvvehOsqV3UYKvwMypzwXMxtF_tuarrD-kfhbovXYRnv-H_rvgCcYSEQg
CitedBy_id crossref_primary_10_1007_s12046_009_0035_8
crossref_primary_10_1080_17425255_2020_1832081
crossref_primary_10_3390_pharmaceutics12080693
crossref_primary_10_1016_j_medengphy_2017_08_012
crossref_primary_10_2174_1874120701610010019
crossref_primary_10_1115_1_4049811
crossref_primary_10_1007_s10404_007_0166_3
crossref_primary_10_1038_s41598_018_32026_9
crossref_primary_10_1155_2011_158241
crossref_primary_10_1002_jps_22736
crossref_primary_10_1016_j_ejps_2016_01_007
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119397
crossref_primary_10_1016_j_mser_2016_03_001
crossref_primary_10_4028_p_2SPRuh
crossref_primary_10_1016_j_ces_2008_02_007
crossref_primary_10_1088_2057_1976_aa5949
crossref_primary_10_1098_rsta_2007_0003
crossref_primary_10_1088_0960_1317_25_2_025013
crossref_primary_10_1002_apj_353
crossref_primary_10_1016_j_cherd_2008_06_002
crossref_primary_10_1080_10255842_2016_1173684
crossref_primary_10_1007_s10237_009_0160_7
crossref_primary_10_1007_s00542_012_1663_1
crossref_primary_10_1115_1_4030923
crossref_primary_10_1109_JMEMS_2015_2429675
crossref_primary_10_1016_j_biomaterials_2012_06_065
Cites_doi 10.1016/j.addr.2003.10.031
10.1016/j.addr.2003.10.027
10.1016/j.addr.2003.10.024
10.1016/S0065-2156(08)70197-2
10.1016/S0168-3659(03)00123-8
10.1016/j.addr.2003.10.028
10.1016/j.jbiomech.2003.12.010
10.1109/MMB.2000.893777
10.1073/pnas.2331316100
10.1115/1.2895727
10.1126/science.2218494
10.1152/jappl.1948.1.2.93
10.1016/j.addr.2003.10.023
10.1016/S0009-2509(02)00623-1
10.1002/bit.260350402
10.1021/js980042+
10.1016/S0169-409X(00)00138-1
10.1016/j.addr.2003.10.025
10.1080/01457630500207667
10.1038/nrd1304
ContentType Journal Article
Copyright 2007 INIST-CNRS
Copyright_xml – notice: 2007 INIST-CNRS
DBID IQODW
AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1088/0960-1317/16/11/034
DatabaseName Pascal-Francis
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
Applied Sciences
EISSN 1361-6439
EndPage 2501
ExternalDocumentID 10_1088_0960_1317_16_11_034
18264266
GroupedDBID 02O
1JI
1PV
1WK
29L
4.4
5B3
5GY
5PX
5VS
5ZH
69O
7.M
7.Q
AAGCD
AAJIO
AALHV
ABHWH
ABQJV
ACGFS
AEFHF
AENEX
AFYNE
AHSEE
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CJUJL
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
FEDTE
G8K
HAK
HVGLF
IHE
IOP
IZVLO
KNG
KOT
LAP
M45
MGA
N5L
N9A
NT-
NT.
P2P
Q02
R4D
RIN
RNS
RO9
ROL
RPA
RW3
S3P
SY9
TN5
UCJ
UNR
W28
X
XPP
ZMT
-~X
5ZI
AAGCF
AAHTB
AAJKP
AATNI
ABPEJ
ABVAM
ACAFW
ACBEA
ACGFO
ACHIP
AKPSB
CBCFC
CEBXE
CRLBU
IJHAN
IQODW
JCGBZ
KC5
PJBAE
RKQ
T37
AAYXX
ABJNI
AERVB
AOAED
CITATION
7TB
8FD
FR3
KR7
ID FETCH-LOGICAL-c384t-4469818294189703f617485c3f6039e689e4cf15cfb737d8e20c3f6df1ee82c3
IEDL.DBID IOP
ISSN 0960-1317
IngestDate Sat Oct 05 05:09:43 EDT 2024
Thu Sep 26 18:02:47 EDT 2024
Sun Oct 29 17:09:06 EDT 2023
Tue Nov 10 14:20:33 EST 2020
Mon May 13 14:03:42 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Nanometer scale
Gripping
Transient response
Microelectronic fabrication
Needle
Microequipment
Glass
Drug dispensation
Metal
Experimental study
Modeling
Silicon polymer
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c384t-4469818294189703f617485c3f6039e689e4cf15cfb737d8e20c3f6df1ee82c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 29342596
PQPubID 23500
PageCount 10
ParticipantIDs crossref_primary_10_1088_0960_1317_16_11_034
iop_primary_10_1088_0960_1317_16_11_034
proquest_miscellaneous_29342596
pascalfrancis_primary_18264266
PublicationCentury 2000
PublicationDate 2006-11-01
PublicationDateYYYYMMDD 2006-11-01
PublicationDate_xml – month: 11
  year: 2006
  text: 2006-11-01
  day: 01
PublicationDecade 2000
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of micromechanics and microengineering
PublicationYear 2006
Publisher IOP Publishing
Institute of Physics
Publisher_xml – name: IOP Publishing
– name: Institute of Physics
References 24
28
Bronaugh R L (6) 1999
Pennes H H (25) 1948; 1
Langer R (2) 1998; 392
Stoeber B Liepmann D (17) 2000
Lebouitz K S Pisano A P (18) 1998
Tien C L (23) 1989; 27
Liu J (26) 2004
Champion R H (20) 1992
Torvi D A (30) 1994; 116
Park K (1) 1997
10
11
12
13
14
15
Poling B E (27) 2001
16
Bejan A (22) 1999
3
4
5
Liu J (29) 1997
Wang P M Cornwell M G Prausnitz M R (19) 2002; 1
7
8
9
21
References_xml – ident: 11
  doi: 10.1016/j.addr.2003.10.031
– volume: 392
  start-page: 5
  year: 1998
  ident: 2
  publication-title: Nature
  contributor:
    fullname: Langer R
– ident: 9
  doi: 10.1016/j.addr.2003.10.027
– start-page: 102
  year: 1997
  ident: 29
  publication-title: Bioheat Transfer
  contributor:
    fullname: Liu J
– ident: 12
  doi: 10.1016/j.addr.2003.10.024
– volume: 27
  start-page: 225
  issn: 0065-2156
  year: 1989
  ident: 23
  publication-title: Adv. Appl. Mech.
  doi: 10.1016/S0065-2156(08)70197-2
  contributor:
    fullname: Tien C L
– ident: 13
  doi: 10.1016/S0168-3659(03)00123-8
– start-page: 235
  year: 1998
  ident: 18
  publication-title: Proc. Symp. Microstructures and Microfabricated Systems IV
  contributor:
    fullname: Lebouitz K S Pisano A P
– year: 1999
  ident: 6
  publication-title: Percutaneous Absorption: Drugs-Cosmetics-Mechanisms-Methodology
  contributor:
    fullname: Bronaugh R L
– ident: 8
  doi: 10.1016/j.addr.2003.10.028
– ident: 16
  doi: 10.1016/j.jbiomech.2003.12.010
– year: 1992
  ident: 20
  publication-title: Textbook of Dermatology
  contributor:
    fullname: Champion R H
– start-page: 224
  year: 2000
  ident: 17
  publication-title: 1st Ann. Int. IEEE-EMBS Special Topic Conf. on Microtechnologies in Medicine and Biology
  doi: 10.1109/MMB.2000.893777
  contributor:
    fullname: Stoeber B Liepmann D
– ident: 15
  doi: 10.1073/pnas.2331316100
– volume: 116
  start-page: 250
  year: 1994
  ident: 30
  publication-title: ASME J. Biomech. Eng.
  doi: 10.1115/1.2895727
  contributor:
    fullname: Torvi D A
– start-page: 54
  year: 1997
  ident: 1
  publication-title: Controlled Drug Delivery: Challenges and Strategies
  contributor:
    fullname: Park K
– ident: 4
  doi: 10.1126/science.2218494
– volume: 1
  start-page: 93
  year: 1948
  ident: 25
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1948.1.2.93
  contributor:
    fullname: Pennes H H
– ident: 5
  doi: 10.1016/j.addr.2003.10.023
– year: 1999
  ident: 22
  publication-title: Convection in Porous Media
  contributor:
    fullname: Bejan A
– ident: 24
  doi: 10.1016/S0009-2509(02)00623-1
– ident: 28
  doi: 10.1002/bit.260350402
– year: 2001
  ident: 27
  publication-title: The Properties of Gases and Liquids
  contributor:
    fullname: Poling B E
– ident: 3
  doi: 10.1021/js980042+
– ident: 10
  doi: 10.1016/S0169-409X(00)00138-1
– ident: 7
  doi: 10.1016/j.addr.2003.10.025
– start-page: 1
  year: 2004
  ident: 26
  publication-title: ASME Int. Mechanical Engineering Congress and RD&D Expo
  contributor:
    fullname: Liu J
– volume: 1
  start-page: 506
  year: 2002
  ident: 19
  publication-title: Proc. Second Joint EMBS/BMES Conf.
  contributor:
    fullname: Wang P M Cornwell M G Prausnitz M R
– ident: 21
  doi: 10.1080/01457630500207667
– ident: 14
  doi: 10.1038/nrd1304
SSID ssj0011818
Score 2.0554338
Snippet Transdermal drug delivery is generally limited by the extraordinary barrier properties of the stratum corneum, the outer 10-15 mum layer of skin. A...
SourceID proquest
crossref
pascalfrancis
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2492
SubjectTerms Applied sciences
Electronics
Exact sciences and technology
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Mechanical engineering. Machine design
Mechanical instruments, equipment and techniques
Microelectronic fabrication (materials and surfaces technology)
Micromechanical devices and systems
Physics
Precision engineering, watch making
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Title Modeling of transdermal drug delivery with a microneedle array
URI http://iopscience.iop.org/0960-1317/16/11/034
https://search.proquest.com/docview/29342596
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60IOjBR1WsjxpQ8OK2TXe7m70IIpYiWD1U6C3s5iFibUu7PdRf78y22wct0lsg2YSdJPPNZF4At4ioOhbcc4SuuQ7lK3FiW9UOooMf6jhASCSL7mvTb3x4L-1aex6s_tXrTzl_CZupJZ9kbIcjzJW5X-a8XHEp-yflOKFwvbf3mc0AsSrlu9n4LMcQqnhr5ljCoW1cjLwioyESxk4qWqww5xRx6gfQzOJ2Jo4m36VREpfU72oax81-5hD2p7Ine5wcliPYMt087C1kJMzDTuoRqobH8EBV0ihWnfUsSwjRNDHxDtOD0SejLrwEY0bvuCxiP-TXh7PojmHRYBCNT6BVf249NZxpsQVHucJLHI9KSaKyEXpchMgGLIo2nqgpbFTc0PgiNJ6yvKZsHLiBFqZaoT5tuTGiqtxTyHVxnTNgtoI7zGOlFQpjSgRCKd8EeCAC5QmrVAHuM8rL_iSlhkxN4UJIoo8k-kjuo3IikT4FuEHqzUauGSH72hbgbnHUv_MVl_Z5_g1qWiSvFOA623iJd40MKFHX9EZDiaIRsrjQP994sQvYTd9s0uDFS8glg5G5QikmiYvp4f0D4Lzi8g
link.rule.ids 315,786,790,1564,27957,27958,53941
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT-swEB6xCAQH4LGIslp6SFxIUzdO4lyQEFABj-0AEjcr8cIBaKs2PcCvZyZpeGURQuIWyVs8Hs839oxnAHYQUU0mufCkCQOP4pV4mWsaD9EhSkwWIySSRffiMjq5FWd34d3oW5hOdyj66_hZBgouSTh0iJM-Kd0eR9zzeeRz7jcC4XeNG4fJMEgEbc7Tq-s3SwIiWCGNq0ZV5KGvO3qHTuP4B-QrmfaRXK7Mc_FJZBc41JoHXc2gdD95qA_yrK5fPgR3_N0UF2BuqKayg7LFHxiz7UWYHQleuAhThfOo7i_BPiVUo2ftrONYTuBnSN4_MtMb3DMqwv3yzOjKl6XsiVwAsRfzaFna66XPy3DTOr45PPGGeRk8HUiRe4KyTuK5BIktE5QYDrUgIUONH40gsZFMrNCOh9plcRAbaZsNKjOOWyubOliBiTaOswrMNZAZeKaNRr1Ny1hqHdkYeSfWQjqta7BXLYfqltE3VGE1l1IRjRTRSPEIzzEKaVSDv0jRt5pf1FBIxRrsjtb6tr-td4v_vw0eyki1qcF2xQ0KtyXZWtK27Qz6CrUolIZJtPbjwbZh-vqopc5PL_-tw0xx01M8edyAibw3sJuo--TZVsHcr1_I8t0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+of+transdermal+drug+delivery+with+a+microneedle+array&rft.jtitle=Journal+of+micromechanics+and+microengineering&rft.au=Lv%2C+Y-G&rft.au=Liu%2C+J&rft.au=Gao%2C+Y-H&rft.au=Xu%2C+B&rft.date=2006-11-01&rft.issn=0960-1317&rft.eissn=1361-6439&rft.volume=16&rft.issue=11&rft.spage=2492&rft.epage=2501&rft_id=info:doi/10.1088%2F0960-1317%2F16%2F11%2F034&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1317&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1317&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1317&client=summon